xref: /kernel/linux/linux-6.6/drivers/rtc/rtc-cmos.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * RTC class driver for "CMOS RTC":  PCs, ACPI, etc
4 *
5 * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
6 * Copyright (C) 2006 David Brownell (convert to new framework)
7 */
8
9/*
10 * The original "cmos clock" chip was an MC146818 chip, now obsolete.
11 * That defined the register interface now provided by all PCs, some
12 * non-PC systems, and incorporated into ACPI.  Modern PC chipsets
13 * integrate an MC146818 clone in their southbridge, and boards use
14 * that instead of discrete clones like the DS12887 or M48T86.  There
15 * are also clones that connect using the LPC bus.
16 *
17 * That register API is also used directly by various other drivers
18 * (notably for integrated NVRAM), infrastructure (x86 has code to
19 * bypass the RTC framework, directly reading the RTC during boot
20 * and updating minutes/seconds for systems using NTP synch) and
21 * utilities (like userspace 'hwclock', if no /dev node exists).
22 *
23 * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
24 * interrupts disabled, holding the global rtc_lock, to exclude those
25 * other drivers and utilities on correctly configured systems.
26 */
27
28#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29
30#include <linux/kernel.h>
31#include <linux/module.h>
32#include <linux/init.h>
33#include <linux/interrupt.h>
34#include <linux/spinlock.h>
35#include <linux/platform_device.h>
36#include <linux/log2.h>
37#include <linux/pm.h>
38#include <linux/of.h>
39#include <linux/of_platform.h>
40#ifdef CONFIG_X86
41#include <asm/i8259.h>
42#include <asm/processor.h>
43#include <linux/dmi.h>
44#endif
45
46/* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
47#include <linux/mc146818rtc.h>
48
49#ifdef CONFIG_ACPI
50/*
51 * Use ACPI SCI to replace HPET interrupt for RTC Alarm event
52 *
53 * If cleared, ACPI SCI is only used to wake up the system from suspend
54 *
55 * If set, ACPI SCI is used to handle UIE/AIE and system wakeup
56 */
57
58static bool use_acpi_alarm;
59module_param(use_acpi_alarm, bool, 0444);
60
61static inline int cmos_use_acpi_alarm(void)
62{
63	return use_acpi_alarm;
64}
65#else /* !CONFIG_ACPI */
66
67static inline int cmos_use_acpi_alarm(void)
68{
69	return 0;
70}
71#endif
72
73struct cmos_rtc {
74	struct rtc_device	*rtc;
75	struct device		*dev;
76	int			irq;
77	struct resource		*iomem;
78	time64_t		alarm_expires;
79
80	void			(*wake_on)(struct device *);
81	void			(*wake_off)(struct device *);
82
83	u8			enabled_wake;
84	u8			suspend_ctrl;
85
86	/* newer hardware extends the original register set */
87	u8			day_alrm;
88	u8			mon_alrm;
89	u8			century;
90
91	struct rtc_wkalrm	saved_wkalrm;
92};
93
94/* both platform and pnp busses use negative numbers for invalid irqs */
95#define is_valid_irq(n)		((n) > 0)
96
97static const char driver_name[] = "rtc_cmos";
98
99/* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
100 * always mask it against the irq enable bits in RTC_CONTROL.  Bit values
101 * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
102 */
103#define	RTC_IRQMASK	(RTC_PF | RTC_AF | RTC_UF)
104
105static inline int is_intr(u8 rtc_intr)
106{
107	if (!(rtc_intr & RTC_IRQF))
108		return 0;
109	return rtc_intr & RTC_IRQMASK;
110}
111
112/*----------------------------------------------------------------*/
113
114/* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
115 * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
116 * used in a broken "legacy replacement" mode.  The breakage includes
117 * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
118 * other (better) use.
119 *
120 * When that broken mode is in use, platform glue provides a partial
121 * emulation of hardware RTC IRQ facilities using HPET #1.  We don't
122 * want to use HPET for anything except those IRQs though...
123 */
124#ifdef CONFIG_HPET_EMULATE_RTC
125#include <asm/hpet.h>
126#else
127
128static inline int is_hpet_enabled(void)
129{
130	return 0;
131}
132
133static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
134{
135	return 0;
136}
137
138static inline int hpet_set_rtc_irq_bit(unsigned long mask)
139{
140	return 0;
141}
142
143static inline int
144hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
145{
146	return 0;
147}
148
149static inline int hpet_set_periodic_freq(unsigned long freq)
150{
151	return 0;
152}
153
154static inline int hpet_rtc_dropped_irq(void)
155{
156	return 0;
157}
158
159static inline int hpet_rtc_timer_init(void)
160{
161	return 0;
162}
163
164extern irq_handler_t hpet_rtc_interrupt;
165
166static inline int hpet_register_irq_handler(irq_handler_t handler)
167{
168	return 0;
169}
170
171static inline int hpet_unregister_irq_handler(irq_handler_t handler)
172{
173	return 0;
174}
175
176#endif
177
178/* Don't use HPET for RTC Alarm event if ACPI Fixed event is used */
179static inline int use_hpet_alarm(void)
180{
181	return is_hpet_enabled() && !cmos_use_acpi_alarm();
182}
183
184/*----------------------------------------------------------------*/
185
186#ifdef RTC_PORT
187
188/* Most newer x86 systems have two register banks, the first used
189 * for RTC and NVRAM and the second only for NVRAM.  Caller must
190 * own rtc_lock ... and we won't worry about access during NMI.
191 */
192#define can_bank2	true
193
194static inline unsigned char cmos_read_bank2(unsigned char addr)
195{
196	outb(addr, RTC_PORT(2));
197	return inb(RTC_PORT(3));
198}
199
200static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
201{
202	outb(addr, RTC_PORT(2));
203	outb(val, RTC_PORT(3));
204}
205
206#else
207
208#define can_bank2	false
209
210static inline unsigned char cmos_read_bank2(unsigned char addr)
211{
212	return 0;
213}
214
215static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
216{
217}
218
219#endif
220
221/*----------------------------------------------------------------*/
222
223static int cmos_read_time(struct device *dev, struct rtc_time *t)
224{
225	int ret;
226
227	/*
228	 * If pm_trace abused the RTC for storage, set the timespec to 0,
229	 * which tells the caller that this RTC value is unusable.
230	 */
231	if (!pm_trace_rtc_valid())
232		return -EIO;
233
234	ret = mc146818_get_time(t, 1000);
235	if (ret < 0) {
236		dev_err_ratelimited(dev, "unable to read current time\n");
237		return ret;
238	}
239
240	return 0;
241}
242
243static int cmos_set_time(struct device *dev, struct rtc_time *t)
244{
245	/* NOTE: this ignores the issue whereby updating the seconds
246	 * takes effect exactly 500ms after we write the register.
247	 * (Also queueing and other delays before we get this far.)
248	 */
249	return mc146818_set_time(t);
250}
251
252struct cmos_read_alarm_callback_param {
253	struct cmos_rtc *cmos;
254	struct rtc_time *time;
255	unsigned char	rtc_control;
256};
257
258static void cmos_read_alarm_callback(unsigned char __always_unused seconds,
259				     void *param_in)
260{
261	struct cmos_read_alarm_callback_param *p =
262		(struct cmos_read_alarm_callback_param *)param_in;
263	struct rtc_time *time = p->time;
264
265	time->tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
266	time->tm_min = CMOS_READ(RTC_MINUTES_ALARM);
267	time->tm_hour = CMOS_READ(RTC_HOURS_ALARM);
268
269	if (p->cmos->day_alrm) {
270		/* ignore upper bits on readback per ACPI spec */
271		time->tm_mday = CMOS_READ(p->cmos->day_alrm) & 0x3f;
272		if (!time->tm_mday)
273			time->tm_mday = -1;
274
275		if (p->cmos->mon_alrm) {
276			time->tm_mon = CMOS_READ(p->cmos->mon_alrm);
277			if (!time->tm_mon)
278				time->tm_mon = -1;
279		}
280	}
281
282	p->rtc_control = CMOS_READ(RTC_CONTROL);
283}
284
285static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
286{
287	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
288	struct cmos_read_alarm_callback_param p = {
289		.cmos = cmos,
290		.time = &t->time,
291	};
292
293	/* This not only a rtc_op, but also called directly */
294	if (!is_valid_irq(cmos->irq))
295		return -ETIMEDOUT;
296
297	/* Basic alarms only support hour, minute, and seconds fields.
298	 * Some also support day and month, for alarms up to a year in
299	 * the future.
300	 */
301
302	/* Some Intel chipsets disconnect the alarm registers when the clock
303	 * update is in progress - during this time reads return bogus values
304	 * and writes may fail silently. See for example "7th Generation Intel®
305	 * Processor Family I/O for U/Y Platforms [...] Datasheet", section
306	 * 27.7.1
307	 *
308	 * Use the mc146818_avoid_UIP() function to avoid this.
309	 */
310	if (!mc146818_avoid_UIP(cmos_read_alarm_callback, 10, &p))
311		return -EIO;
312
313	if (!(p.rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
314		if (((unsigned)t->time.tm_sec) < 0x60)
315			t->time.tm_sec = bcd2bin(t->time.tm_sec);
316		else
317			t->time.tm_sec = -1;
318		if (((unsigned)t->time.tm_min) < 0x60)
319			t->time.tm_min = bcd2bin(t->time.tm_min);
320		else
321			t->time.tm_min = -1;
322		if (((unsigned)t->time.tm_hour) < 0x24)
323			t->time.tm_hour = bcd2bin(t->time.tm_hour);
324		else
325			t->time.tm_hour = -1;
326
327		if (cmos->day_alrm) {
328			if (((unsigned)t->time.tm_mday) <= 0x31)
329				t->time.tm_mday = bcd2bin(t->time.tm_mday);
330			else
331				t->time.tm_mday = -1;
332
333			if (cmos->mon_alrm) {
334				if (((unsigned)t->time.tm_mon) <= 0x12)
335					t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
336				else
337					t->time.tm_mon = -1;
338			}
339		}
340	}
341
342	t->enabled = !!(p.rtc_control & RTC_AIE);
343	t->pending = 0;
344
345	return 0;
346}
347
348static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
349{
350	unsigned char	rtc_intr;
351
352	/* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
353	 * allegedly some older rtcs need that to handle irqs properly
354	 */
355	rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
356
357	if (use_hpet_alarm())
358		return;
359
360	rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
361	if (is_intr(rtc_intr))
362		rtc_update_irq(cmos->rtc, 1, rtc_intr);
363}
364
365static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
366{
367	unsigned char	rtc_control;
368
369	/* flush any pending IRQ status, notably for update irqs,
370	 * before we enable new IRQs
371	 */
372	rtc_control = CMOS_READ(RTC_CONTROL);
373	cmos_checkintr(cmos, rtc_control);
374
375	rtc_control |= mask;
376	CMOS_WRITE(rtc_control, RTC_CONTROL);
377	if (use_hpet_alarm())
378		hpet_set_rtc_irq_bit(mask);
379
380	if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) {
381		if (cmos->wake_on)
382			cmos->wake_on(cmos->dev);
383	}
384
385	cmos_checkintr(cmos, rtc_control);
386}
387
388static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
389{
390	unsigned char	rtc_control;
391
392	rtc_control = CMOS_READ(RTC_CONTROL);
393	rtc_control &= ~mask;
394	CMOS_WRITE(rtc_control, RTC_CONTROL);
395	if (use_hpet_alarm())
396		hpet_mask_rtc_irq_bit(mask);
397
398	if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) {
399		if (cmos->wake_off)
400			cmos->wake_off(cmos->dev);
401	}
402
403	cmos_checkintr(cmos, rtc_control);
404}
405
406static int cmos_validate_alarm(struct device *dev, struct rtc_wkalrm *t)
407{
408	struct cmos_rtc *cmos = dev_get_drvdata(dev);
409	struct rtc_time now;
410
411	cmos_read_time(dev, &now);
412
413	if (!cmos->day_alrm) {
414		time64_t t_max_date;
415		time64_t t_alrm;
416
417		t_max_date = rtc_tm_to_time64(&now);
418		t_max_date += 24 * 60 * 60 - 1;
419		t_alrm = rtc_tm_to_time64(&t->time);
420		if (t_alrm > t_max_date) {
421			dev_err(dev,
422				"Alarms can be up to one day in the future\n");
423			return -EINVAL;
424		}
425	} else if (!cmos->mon_alrm) {
426		struct rtc_time max_date = now;
427		time64_t t_max_date;
428		time64_t t_alrm;
429		int max_mday;
430
431		if (max_date.tm_mon == 11) {
432			max_date.tm_mon = 0;
433			max_date.tm_year += 1;
434		} else {
435			max_date.tm_mon += 1;
436		}
437		max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
438		if (max_date.tm_mday > max_mday)
439			max_date.tm_mday = max_mday;
440
441		t_max_date = rtc_tm_to_time64(&max_date);
442		t_max_date -= 1;
443		t_alrm = rtc_tm_to_time64(&t->time);
444		if (t_alrm > t_max_date) {
445			dev_err(dev,
446				"Alarms can be up to one month in the future\n");
447			return -EINVAL;
448		}
449	} else {
450		struct rtc_time max_date = now;
451		time64_t t_max_date;
452		time64_t t_alrm;
453		int max_mday;
454
455		max_date.tm_year += 1;
456		max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
457		if (max_date.tm_mday > max_mday)
458			max_date.tm_mday = max_mday;
459
460		t_max_date = rtc_tm_to_time64(&max_date);
461		t_max_date -= 1;
462		t_alrm = rtc_tm_to_time64(&t->time);
463		if (t_alrm > t_max_date) {
464			dev_err(dev,
465				"Alarms can be up to one year in the future\n");
466			return -EINVAL;
467		}
468	}
469
470	return 0;
471}
472
473struct cmos_set_alarm_callback_param {
474	struct cmos_rtc *cmos;
475	unsigned char mon, mday, hrs, min, sec;
476	struct rtc_wkalrm *t;
477};
478
479/* Note: this function may be executed by mc146818_avoid_UIP() more then
480 *	 once
481 */
482static void cmos_set_alarm_callback(unsigned char __always_unused seconds,
483				    void *param_in)
484{
485	struct cmos_set_alarm_callback_param *p =
486		(struct cmos_set_alarm_callback_param *)param_in;
487
488	/* next rtc irq must not be from previous alarm setting */
489	cmos_irq_disable(p->cmos, RTC_AIE);
490
491	/* update alarm */
492	CMOS_WRITE(p->hrs, RTC_HOURS_ALARM);
493	CMOS_WRITE(p->min, RTC_MINUTES_ALARM);
494	CMOS_WRITE(p->sec, RTC_SECONDS_ALARM);
495
496	/* the system may support an "enhanced" alarm */
497	if (p->cmos->day_alrm) {
498		CMOS_WRITE(p->mday, p->cmos->day_alrm);
499		if (p->cmos->mon_alrm)
500			CMOS_WRITE(p->mon, p->cmos->mon_alrm);
501	}
502
503	if (use_hpet_alarm()) {
504		/*
505		 * FIXME the HPET alarm glue currently ignores day_alrm
506		 * and mon_alrm ...
507		 */
508		hpet_set_alarm_time(p->t->time.tm_hour, p->t->time.tm_min,
509				    p->t->time.tm_sec);
510	}
511
512	if (p->t->enabled)
513		cmos_irq_enable(p->cmos, RTC_AIE);
514}
515
516static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
517{
518	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
519	struct cmos_set_alarm_callback_param p = {
520		.cmos = cmos,
521		.t = t
522	};
523	unsigned char rtc_control;
524	int ret;
525
526	/* This not only a rtc_op, but also called directly */
527	if (!is_valid_irq(cmos->irq))
528		return -EIO;
529
530	ret = cmos_validate_alarm(dev, t);
531	if (ret < 0)
532		return ret;
533
534	p.mon = t->time.tm_mon + 1;
535	p.mday = t->time.tm_mday;
536	p.hrs = t->time.tm_hour;
537	p.min = t->time.tm_min;
538	p.sec = t->time.tm_sec;
539
540	spin_lock_irq(&rtc_lock);
541	rtc_control = CMOS_READ(RTC_CONTROL);
542	spin_unlock_irq(&rtc_lock);
543
544	if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
545		/* Writing 0xff means "don't care" or "match all".  */
546		p.mon = (p.mon <= 12) ? bin2bcd(p.mon) : 0xff;
547		p.mday = (p.mday >= 1 && p.mday <= 31) ? bin2bcd(p.mday) : 0xff;
548		p.hrs = (p.hrs < 24) ? bin2bcd(p.hrs) : 0xff;
549		p.min = (p.min < 60) ? bin2bcd(p.min) : 0xff;
550		p.sec = (p.sec < 60) ? bin2bcd(p.sec) : 0xff;
551	}
552
553	/*
554	 * Some Intel chipsets disconnect the alarm registers when the clock
555	 * update is in progress - during this time writes fail silently.
556	 *
557	 * Use mc146818_avoid_UIP() to avoid this.
558	 */
559	if (!mc146818_avoid_UIP(cmos_set_alarm_callback, 10, &p))
560		return -ETIMEDOUT;
561
562	cmos->alarm_expires = rtc_tm_to_time64(&t->time);
563
564	return 0;
565}
566
567static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
568{
569	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
570	unsigned long	flags;
571
572	spin_lock_irqsave(&rtc_lock, flags);
573
574	if (enabled)
575		cmos_irq_enable(cmos, RTC_AIE);
576	else
577		cmos_irq_disable(cmos, RTC_AIE);
578
579	spin_unlock_irqrestore(&rtc_lock, flags);
580	return 0;
581}
582
583#if IS_ENABLED(CONFIG_RTC_INTF_PROC)
584
585static int cmos_procfs(struct device *dev, struct seq_file *seq)
586{
587	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
588	unsigned char	rtc_control, valid;
589
590	spin_lock_irq(&rtc_lock);
591	rtc_control = CMOS_READ(RTC_CONTROL);
592	valid = CMOS_READ(RTC_VALID);
593	spin_unlock_irq(&rtc_lock);
594
595	/* NOTE:  at least ICH6 reports battery status using a different
596	 * (non-RTC) bit; and SQWE is ignored on many current systems.
597	 */
598	seq_printf(seq,
599		   "periodic_IRQ\t: %s\n"
600		   "update_IRQ\t: %s\n"
601		   "HPET_emulated\t: %s\n"
602		   // "square_wave\t: %s\n"
603		   "BCD\t\t: %s\n"
604		   "DST_enable\t: %s\n"
605		   "periodic_freq\t: %d\n"
606		   "batt_status\t: %s\n",
607		   (rtc_control & RTC_PIE) ? "yes" : "no",
608		   (rtc_control & RTC_UIE) ? "yes" : "no",
609		   use_hpet_alarm() ? "yes" : "no",
610		   // (rtc_control & RTC_SQWE) ? "yes" : "no",
611		   (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
612		   (rtc_control & RTC_DST_EN) ? "yes" : "no",
613		   cmos->rtc->irq_freq,
614		   (valid & RTC_VRT) ? "okay" : "dead");
615
616	return 0;
617}
618
619#else
620#define	cmos_procfs	NULL
621#endif
622
623static const struct rtc_class_ops cmos_rtc_ops = {
624	.read_time		= cmos_read_time,
625	.set_time		= cmos_set_time,
626	.read_alarm		= cmos_read_alarm,
627	.set_alarm		= cmos_set_alarm,
628	.proc			= cmos_procfs,
629	.alarm_irq_enable	= cmos_alarm_irq_enable,
630};
631
632/*----------------------------------------------------------------*/
633
634/*
635 * All these chips have at least 64 bytes of address space, shared by
636 * RTC registers and NVRAM.  Most of those bytes of NVRAM are used
637 * by boot firmware.  Modern chips have 128 or 256 bytes.
638 */
639
640#define NVRAM_OFFSET	(RTC_REG_D + 1)
641
642static int cmos_nvram_read(void *priv, unsigned int off, void *val,
643			   size_t count)
644{
645	unsigned char *buf = val;
646	int	retval;
647
648	off += NVRAM_OFFSET;
649	spin_lock_irq(&rtc_lock);
650	for (retval = 0; count; count--, off++, retval++) {
651		if (off < 128)
652			*buf++ = CMOS_READ(off);
653		else if (can_bank2)
654			*buf++ = cmos_read_bank2(off);
655		else
656			break;
657	}
658	spin_unlock_irq(&rtc_lock);
659
660	return retval;
661}
662
663static int cmos_nvram_write(void *priv, unsigned int off, void *val,
664			    size_t count)
665{
666	struct cmos_rtc	*cmos = priv;
667	unsigned char	*buf = val;
668	int		retval;
669
670	/* NOTE:  on at least PCs and Ataris, the boot firmware uses a
671	 * checksum on part of the NVRAM data.  That's currently ignored
672	 * here.  If userspace is smart enough to know what fields of
673	 * NVRAM to update, updating checksums is also part of its job.
674	 */
675	off += NVRAM_OFFSET;
676	spin_lock_irq(&rtc_lock);
677	for (retval = 0; count; count--, off++, retval++) {
678		/* don't trash RTC registers */
679		if (off == cmos->day_alrm
680				|| off == cmos->mon_alrm
681				|| off == cmos->century)
682			buf++;
683		else if (off < 128)
684			CMOS_WRITE(*buf++, off);
685		else if (can_bank2)
686			cmos_write_bank2(*buf++, off);
687		else
688			break;
689	}
690	spin_unlock_irq(&rtc_lock);
691
692	return retval;
693}
694
695/*----------------------------------------------------------------*/
696
697static struct cmos_rtc	cmos_rtc;
698
699static irqreturn_t cmos_interrupt(int irq, void *p)
700{
701	u8		irqstat;
702	u8		rtc_control;
703
704	spin_lock(&rtc_lock);
705
706	/* When the HPET interrupt handler calls us, the interrupt
707	 * status is passed as arg1 instead of the irq number.  But
708	 * always clear irq status, even when HPET is in the way.
709	 *
710	 * Note that HPET and RTC are almost certainly out of phase,
711	 * giving different IRQ status ...
712	 */
713	irqstat = CMOS_READ(RTC_INTR_FLAGS);
714	rtc_control = CMOS_READ(RTC_CONTROL);
715	if (use_hpet_alarm())
716		irqstat = (unsigned long)irq & 0xF0;
717
718	/* If we were suspended, RTC_CONTROL may not be accurate since the
719	 * bios may have cleared it.
720	 */
721	if (!cmos_rtc.suspend_ctrl)
722		irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
723	else
724		irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
725
726	/* All Linux RTC alarms should be treated as if they were oneshot.
727	 * Similar code may be needed in system wakeup paths, in case the
728	 * alarm woke the system.
729	 */
730	if (irqstat & RTC_AIE) {
731		cmos_rtc.suspend_ctrl &= ~RTC_AIE;
732		rtc_control &= ~RTC_AIE;
733		CMOS_WRITE(rtc_control, RTC_CONTROL);
734		if (use_hpet_alarm())
735			hpet_mask_rtc_irq_bit(RTC_AIE);
736		CMOS_READ(RTC_INTR_FLAGS);
737	}
738	spin_unlock(&rtc_lock);
739
740	if (is_intr(irqstat)) {
741		rtc_update_irq(p, 1, irqstat);
742		return IRQ_HANDLED;
743	} else
744		return IRQ_NONE;
745}
746
747#ifdef	CONFIG_ACPI
748
749#include <linux/acpi.h>
750
751static u32 rtc_handler(void *context)
752{
753	struct device *dev = context;
754	struct cmos_rtc *cmos = dev_get_drvdata(dev);
755	unsigned char rtc_control = 0;
756	unsigned char rtc_intr;
757	unsigned long flags;
758
759
760	/*
761	 * Always update rtc irq when ACPI is used as RTC Alarm.
762	 * Or else, ACPI SCI is enabled during suspend/resume only,
763	 * update rtc irq in that case.
764	 */
765	if (cmos_use_acpi_alarm())
766		cmos_interrupt(0, (void *)cmos->rtc);
767	else {
768		/* Fix me: can we use cmos_interrupt() here as well? */
769		spin_lock_irqsave(&rtc_lock, flags);
770		if (cmos_rtc.suspend_ctrl)
771			rtc_control = CMOS_READ(RTC_CONTROL);
772		if (rtc_control & RTC_AIE) {
773			cmos_rtc.suspend_ctrl &= ~RTC_AIE;
774			CMOS_WRITE(rtc_control, RTC_CONTROL);
775			rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
776			rtc_update_irq(cmos->rtc, 1, rtc_intr);
777		}
778		spin_unlock_irqrestore(&rtc_lock, flags);
779	}
780
781	pm_wakeup_hard_event(dev);
782	acpi_clear_event(ACPI_EVENT_RTC);
783	acpi_disable_event(ACPI_EVENT_RTC, 0);
784	return ACPI_INTERRUPT_HANDLED;
785}
786
787static void acpi_rtc_event_setup(struct device *dev)
788{
789	if (acpi_disabled)
790		return;
791
792	acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev);
793	/*
794	 * After the RTC handler is installed, the Fixed_RTC event should
795	 * be disabled. Only when the RTC alarm is set will it be enabled.
796	 */
797	acpi_clear_event(ACPI_EVENT_RTC);
798	acpi_disable_event(ACPI_EVENT_RTC, 0);
799}
800
801static void acpi_rtc_event_cleanup(void)
802{
803	if (acpi_disabled)
804		return;
805
806	acpi_remove_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler);
807}
808
809static void rtc_wake_on(struct device *dev)
810{
811	acpi_clear_event(ACPI_EVENT_RTC);
812	acpi_enable_event(ACPI_EVENT_RTC, 0);
813}
814
815static void rtc_wake_off(struct device *dev)
816{
817	acpi_disable_event(ACPI_EVENT_RTC, 0);
818}
819
820#ifdef CONFIG_X86
821static void use_acpi_alarm_quirks(void)
822{
823	switch (boot_cpu_data.x86_vendor) {
824	case X86_VENDOR_INTEL:
825		if (dmi_get_bios_year() < 2015)
826			return;
827		break;
828	case X86_VENDOR_AMD:
829	case X86_VENDOR_HYGON:
830		if (dmi_get_bios_year() < 2021)
831			return;
832		break;
833	default:
834		return;
835	}
836	if (!is_hpet_enabled())
837		return;
838
839	use_acpi_alarm = true;
840}
841#else
842static inline void use_acpi_alarm_quirks(void) { }
843#endif
844
845static void acpi_cmos_wake_setup(struct device *dev)
846{
847	if (acpi_disabled)
848		return;
849
850	use_acpi_alarm_quirks();
851
852	cmos_rtc.wake_on = rtc_wake_on;
853	cmos_rtc.wake_off = rtc_wake_off;
854
855	/* ACPI tables bug workaround. */
856	if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
857		dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
858			acpi_gbl_FADT.month_alarm);
859		acpi_gbl_FADT.month_alarm = 0;
860	}
861
862	cmos_rtc.day_alrm = acpi_gbl_FADT.day_alarm;
863	cmos_rtc.mon_alrm = acpi_gbl_FADT.month_alarm;
864	cmos_rtc.century = acpi_gbl_FADT.century;
865
866	if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
867		dev_info(dev, "RTC can wake from S4\n");
868
869	/* RTC always wakes from S1/S2/S3, and often S4/STD */
870	device_init_wakeup(dev, 1);
871}
872
873static void cmos_check_acpi_rtc_status(struct device *dev,
874					      unsigned char *rtc_control)
875{
876	struct cmos_rtc *cmos = dev_get_drvdata(dev);
877	acpi_event_status rtc_status;
878	acpi_status status;
879
880	if (acpi_gbl_FADT.flags & ACPI_FADT_FIXED_RTC)
881		return;
882
883	status = acpi_get_event_status(ACPI_EVENT_RTC, &rtc_status);
884	if (ACPI_FAILURE(status)) {
885		dev_err(dev, "Could not get RTC status\n");
886	} else if (rtc_status & ACPI_EVENT_FLAG_SET) {
887		unsigned char mask;
888		*rtc_control &= ~RTC_AIE;
889		CMOS_WRITE(*rtc_control, RTC_CONTROL);
890		mask = CMOS_READ(RTC_INTR_FLAGS);
891		rtc_update_irq(cmos->rtc, 1, mask);
892	}
893}
894
895#else /* !CONFIG_ACPI */
896
897static inline void acpi_rtc_event_setup(struct device *dev)
898{
899}
900
901static inline void acpi_rtc_event_cleanup(void)
902{
903}
904
905static inline void acpi_cmos_wake_setup(struct device *dev)
906{
907}
908
909static inline void cmos_check_acpi_rtc_status(struct device *dev,
910					      unsigned char *rtc_control)
911{
912}
913#endif /* CONFIG_ACPI */
914
915#ifdef	CONFIG_PNP
916#define	INITSECTION
917
918#else
919#define	INITSECTION	__init
920#endif
921
922#define SECS_PER_DAY	(24 * 60 * 60)
923#define SECS_PER_MONTH	(28 * SECS_PER_DAY)
924#define SECS_PER_YEAR	(365 * SECS_PER_DAY)
925
926static int INITSECTION
927cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
928{
929	struct cmos_rtc_board_info	*info = dev_get_platdata(dev);
930	int				retval = 0;
931	unsigned char			rtc_control;
932	unsigned			address_space;
933	u32				flags = 0;
934	struct nvmem_config nvmem_cfg = {
935		.name = "cmos_nvram",
936		.word_size = 1,
937		.stride = 1,
938		.reg_read = cmos_nvram_read,
939		.reg_write = cmos_nvram_write,
940		.priv = &cmos_rtc,
941	};
942
943	/* there can be only one ... */
944	if (cmos_rtc.dev)
945		return -EBUSY;
946
947	if (!ports)
948		return -ENODEV;
949
950	/* Claim I/O ports ASAP, minimizing conflict with legacy driver.
951	 *
952	 * REVISIT non-x86 systems may instead use memory space resources
953	 * (needing ioremap etc), not i/o space resources like this ...
954	 */
955	if (RTC_IOMAPPED)
956		ports = request_region(ports->start, resource_size(ports),
957				       driver_name);
958	else
959		ports = request_mem_region(ports->start, resource_size(ports),
960					   driver_name);
961	if (!ports) {
962		dev_dbg(dev, "i/o registers already in use\n");
963		return -EBUSY;
964	}
965
966	cmos_rtc.irq = rtc_irq;
967	cmos_rtc.iomem = ports;
968
969	/* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
970	 * driver did, but don't reject unknown configs.   Old hardware
971	 * won't address 128 bytes.  Newer chips have multiple banks,
972	 * though they may not be listed in one I/O resource.
973	 */
974#if	defined(CONFIG_ATARI)
975	address_space = 64;
976#elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
977			|| defined(__sparc__) || defined(__mips__) \
978			|| defined(__powerpc__)
979	address_space = 128;
980#else
981#warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
982	address_space = 128;
983#endif
984	if (can_bank2 && ports->end > (ports->start + 1))
985		address_space = 256;
986
987	/* For ACPI systems extension info comes from the FADT.  On others,
988	 * board specific setup provides it as appropriate.  Systems where
989	 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
990	 * some almost-clones) can provide hooks to make that behave.
991	 *
992	 * Note that ACPI doesn't preclude putting these registers into
993	 * "extended" areas of the chip, including some that we won't yet
994	 * expect CMOS_READ and friends to handle.
995	 */
996	if (info) {
997		if (info->flags)
998			flags = info->flags;
999		if (info->address_space)
1000			address_space = info->address_space;
1001
1002		cmos_rtc.day_alrm = info->rtc_day_alarm;
1003		cmos_rtc.mon_alrm = info->rtc_mon_alarm;
1004		cmos_rtc.century = info->rtc_century;
1005
1006		if (info->wake_on && info->wake_off) {
1007			cmos_rtc.wake_on = info->wake_on;
1008			cmos_rtc.wake_off = info->wake_off;
1009		}
1010	} else {
1011		acpi_cmos_wake_setup(dev);
1012	}
1013
1014	if (cmos_rtc.day_alrm >= 128)
1015		cmos_rtc.day_alrm = 0;
1016
1017	if (cmos_rtc.mon_alrm >= 128)
1018		cmos_rtc.mon_alrm = 0;
1019
1020	if (cmos_rtc.century >= 128)
1021		cmos_rtc.century = 0;
1022
1023	cmos_rtc.dev = dev;
1024	dev_set_drvdata(dev, &cmos_rtc);
1025
1026	cmos_rtc.rtc = devm_rtc_allocate_device(dev);
1027	if (IS_ERR(cmos_rtc.rtc)) {
1028		retval = PTR_ERR(cmos_rtc.rtc);
1029		goto cleanup0;
1030	}
1031
1032	if (cmos_rtc.mon_alrm)
1033		cmos_rtc.rtc->alarm_offset_max = SECS_PER_YEAR - 1;
1034	else if (cmos_rtc.day_alrm)
1035		cmos_rtc.rtc->alarm_offset_max = SECS_PER_MONTH - 1;
1036	else
1037		cmos_rtc.rtc->alarm_offset_max = SECS_PER_DAY - 1;
1038
1039	rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
1040
1041	if (!mc146818_does_rtc_work()) {
1042		dev_warn(dev, "broken or not accessible\n");
1043		retval = -ENXIO;
1044		goto cleanup1;
1045	}
1046
1047	spin_lock_irq(&rtc_lock);
1048
1049	if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) {
1050		/* force periodic irq to CMOS reset default of 1024Hz;
1051		 *
1052		 * REVISIT it's been reported that at least one x86_64 ALI
1053		 * mobo doesn't use 32KHz here ... for portability we might
1054		 * need to do something about other clock frequencies.
1055		 */
1056		cmos_rtc.rtc->irq_freq = 1024;
1057		if (use_hpet_alarm())
1058			hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
1059		CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
1060	}
1061
1062	/* disable irqs */
1063	if (is_valid_irq(rtc_irq))
1064		cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
1065
1066	rtc_control = CMOS_READ(RTC_CONTROL);
1067
1068	spin_unlock_irq(&rtc_lock);
1069
1070	if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
1071		dev_warn(dev, "only 24-hr supported\n");
1072		retval = -ENXIO;
1073		goto cleanup1;
1074	}
1075
1076	if (use_hpet_alarm())
1077		hpet_rtc_timer_init();
1078
1079	if (is_valid_irq(rtc_irq)) {
1080		irq_handler_t rtc_cmos_int_handler;
1081
1082		if (use_hpet_alarm()) {
1083			rtc_cmos_int_handler = hpet_rtc_interrupt;
1084			retval = hpet_register_irq_handler(cmos_interrupt);
1085			if (retval) {
1086				hpet_mask_rtc_irq_bit(RTC_IRQMASK);
1087				dev_warn(dev, "hpet_register_irq_handler "
1088						" failed in rtc_init().");
1089				goto cleanup1;
1090			}
1091		} else
1092			rtc_cmos_int_handler = cmos_interrupt;
1093
1094		retval = request_irq(rtc_irq, rtc_cmos_int_handler,
1095				0, dev_name(&cmos_rtc.rtc->dev),
1096				cmos_rtc.rtc);
1097		if (retval < 0) {
1098			dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
1099			goto cleanup1;
1100		}
1101	} else {
1102		clear_bit(RTC_FEATURE_ALARM, cmos_rtc.rtc->features);
1103	}
1104
1105	cmos_rtc.rtc->ops = &cmos_rtc_ops;
1106
1107	retval = devm_rtc_register_device(cmos_rtc.rtc);
1108	if (retval)
1109		goto cleanup2;
1110
1111	/* Set the sync offset for the periodic 11min update correct */
1112	cmos_rtc.rtc->set_offset_nsec = NSEC_PER_SEC / 2;
1113
1114	/* export at least the first block of NVRAM */
1115	nvmem_cfg.size = address_space - NVRAM_OFFSET;
1116	devm_rtc_nvmem_register(cmos_rtc.rtc, &nvmem_cfg);
1117
1118	/*
1119	 * Everything has gone well so far, so by default register a handler for
1120	 * the ACPI RTC fixed event.
1121	 */
1122	if (!info)
1123		acpi_rtc_event_setup(dev);
1124
1125	dev_info(dev, "%s%s, %d bytes nvram%s\n",
1126		 !is_valid_irq(rtc_irq) ? "no alarms" :
1127		 cmos_rtc.mon_alrm ? "alarms up to one year" :
1128		 cmos_rtc.day_alrm ? "alarms up to one month" :
1129		 "alarms up to one day",
1130		 cmos_rtc.century ? ", y3k" : "",
1131		 nvmem_cfg.size,
1132		 use_hpet_alarm() ? ", hpet irqs" : "");
1133
1134	return 0;
1135
1136cleanup2:
1137	if (is_valid_irq(rtc_irq))
1138		free_irq(rtc_irq, cmos_rtc.rtc);
1139cleanup1:
1140	cmos_rtc.dev = NULL;
1141cleanup0:
1142	if (RTC_IOMAPPED)
1143		release_region(ports->start, resource_size(ports));
1144	else
1145		release_mem_region(ports->start, resource_size(ports));
1146	return retval;
1147}
1148
1149static void cmos_do_shutdown(int rtc_irq)
1150{
1151	spin_lock_irq(&rtc_lock);
1152	if (is_valid_irq(rtc_irq))
1153		cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
1154	spin_unlock_irq(&rtc_lock);
1155}
1156
1157static void cmos_do_remove(struct device *dev)
1158{
1159	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1160	struct resource *ports;
1161
1162	cmos_do_shutdown(cmos->irq);
1163
1164	if (is_valid_irq(cmos->irq)) {
1165		free_irq(cmos->irq, cmos->rtc);
1166		if (use_hpet_alarm())
1167			hpet_unregister_irq_handler(cmos_interrupt);
1168	}
1169
1170	if (!dev_get_platdata(dev))
1171		acpi_rtc_event_cleanup();
1172
1173	cmos->rtc = NULL;
1174
1175	ports = cmos->iomem;
1176	if (RTC_IOMAPPED)
1177		release_region(ports->start, resource_size(ports));
1178	else
1179		release_mem_region(ports->start, resource_size(ports));
1180	cmos->iomem = NULL;
1181
1182	cmos->dev = NULL;
1183}
1184
1185static int cmos_aie_poweroff(struct device *dev)
1186{
1187	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1188	struct rtc_time now;
1189	time64_t t_now;
1190	int retval = 0;
1191	unsigned char rtc_control;
1192
1193	if (!cmos->alarm_expires)
1194		return -EINVAL;
1195
1196	spin_lock_irq(&rtc_lock);
1197	rtc_control = CMOS_READ(RTC_CONTROL);
1198	spin_unlock_irq(&rtc_lock);
1199
1200	/* We only care about the situation where AIE is disabled. */
1201	if (rtc_control & RTC_AIE)
1202		return -EBUSY;
1203
1204	cmos_read_time(dev, &now);
1205	t_now = rtc_tm_to_time64(&now);
1206
1207	/*
1208	 * When enabling "RTC wake-up" in BIOS setup, the machine reboots
1209	 * automatically right after shutdown on some buggy boxes.
1210	 * This automatic rebooting issue won't happen when the alarm
1211	 * time is larger than now+1 seconds.
1212	 *
1213	 * If the alarm time is equal to now+1 seconds, the issue can be
1214	 * prevented by cancelling the alarm.
1215	 */
1216	if (cmos->alarm_expires == t_now + 1) {
1217		struct rtc_wkalrm alarm;
1218
1219		/* Cancel the AIE timer by configuring the past time. */
1220		rtc_time64_to_tm(t_now - 1, &alarm.time);
1221		alarm.enabled = 0;
1222		retval = cmos_set_alarm(dev, &alarm);
1223	} else if (cmos->alarm_expires > t_now + 1) {
1224		retval = -EBUSY;
1225	}
1226
1227	return retval;
1228}
1229
1230static int cmos_suspend(struct device *dev)
1231{
1232	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1233	unsigned char	tmp;
1234
1235	/* only the alarm might be a wakeup event source */
1236	spin_lock_irq(&rtc_lock);
1237	cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
1238	if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
1239		unsigned char	mask;
1240
1241		if (device_may_wakeup(dev))
1242			mask = RTC_IRQMASK & ~RTC_AIE;
1243		else
1244			mask = RTC_IRQMASK;
1245		tmp &= ~mask;
1246		CMOS_WRITE(tmp, RTC_CONTROL);
1247		if (use_hpet_alarm())
1248			hpet_mask_rtc_irq_bit(mask);
1249		cmos_checkintr(cmos, tmp);
1250	}
1251	spin_unlock_irq(&rtc_lock);
1252
1253	if ((tmp & RTC_AIE) && !cmos_use_acpi_alarm()) {
1254		cmos->enabled_wake = 1;
1255		if (cmos->wake_on)
1256			cmos->wake_on(dev);
1257		else
1258			enable_irq_wake(cmos->irq);
1259	}
1260
1261	memset(&cmos->saved_wkalrm, 0, sizeof(struct rtc_wkalrm));
1262	cmos_read_alarm(dev, &cmos->saved_wkalrm);
1263
1264	dev_dbg(dev, "suspend%s, ctrl %02x\n",
1265			(tmp & RTC_AIE) ? ", alarm may wake" : "",
1266			tmp);
1267
1268	return 0;
1269}
1270
1271/* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
1272 * after a detour through G3 "mechanical off", although the ACPI spec
1273 * says wakeup should only work from G1/S4 "hibernate".  To most users,
1274 * distinctions between S4 and S5 are pointless.  So when the hardware
1275 * allows, don't draw that distinction.
1276 */
1277static inline int cmos_poweroff(struct device *dev)
1278{
1279	if (!IS_ENABLED(CONFIG_PM))
1280		return -ENOSYS;
1281
1282	return cmos_suspend(dev);
1283}
1284
1285static void cmos_check_wkalrm(struct device *dev)
1286{
1287	struct cmos_rtc *cmos = dev_get_drvdata(dev);
1288	struct rtc_wkalrm current_alarm;
1289	time64_t t_now;
1290	time64_t t_current_expires;
1291	time64_t t_saved_expires;
1292	struct rtc_time now;
1293
1294	/* Check if we have RTC Alarm armed */
1295	if (!(cmos->suspend_ctrl & RTC_AIE))
1296		return;
1297
1298	cmos_read_time(dev, &now);
1299	t_now = rtc_tm_to_time64(&now);
1300
1301	/*
1302	 * ACPI RTC wake event is cleared after resume from STR,
1303	 * ACK the rtc irq here
1304	 */
1305	if (t_now >= cmos->alarm_expires && cmos_use_acpi_alarm()) {
1306		local_irq_disable();
1307		cmos_interrupt(0, (void *)cmos->rtc);
1308		local_irq_enable();
1309		return;
1310	}
1311
1312	memset(&current_alarm, 0, sizeof(struct rtc_wkalrm));
1313	cmos_read_alarm(dev, &current_alarm);
1314	t_current_expires = rtc_tm_to_time64(&current_alarm.time);
1315	t_saved_expires = rtc_tm_to_time64(&cmos->saved_wkalrm.time);
1316	if (t_current_expires != t_saved_expires ||
1317	    cmos->saved_wkalrm.enabled != current_alarm.enabled) {
1318		cmos_set_alarm(dev, &cmos->saved_wkalrm);
1319	}
1320}
1321
1322static int __maybe_unused cmos_resume(struct device *dev)
1323{
1324	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1325	unsigned char tmp;
1326
1327	if (cmos->enabled_wake && !cmos_use_acpi_alarm()) {
1328		if (cmos->wake_off)
1329			cmos->wake_off(dev);
1330		else
1331			disable_irq_wake(cmos->irq);
1332		cmos->enabled_wake = 0;
1333	}
1334
1335	/* The BIOS might have changed the alarm, restore it */
1336	cmos_check_wkalrm(dev);
1337
1338	spin_lock_irq(&rtc_lock);
1339	tmp = cmos->suspend_ctrl;
1340	cmos->suspend_ctrl = 0;
1341	/* re-enable any irqs previously active */
1342	if (tmp & RTC_IRQMASK) {
1343		unsigned char	mask;
1344
1345		if (device_may_wakeup(dev) && use_hpet_alarm())
1346			hpet_rtc_timer_init();
1347
1348		do {
1349			CMOS_WRITE(tmp, RTC_CONTROL);
1350			if (use_hpet_alarm())
1351				hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
1352
1353			mask = CMOS_READ(RTC_INTR_FLAGS);
1354			mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
1355			if (!use_hpet_alarm() || !is_intr(mask))
1356				break;
1357
1358			/* force one-shot behavior if HPET blocked
1359			 * the wake alarm's irq
1360			 */
1361			rtc_update_irq(cmos->rtc, 1, mask);
1362			tmp &= ~RTC_AIE;
1363			hpet_mask_rtc_irq_bit(RTC_AIE);
1364		} while (mask & RTC_AIE);
1365
1366		if (tmp & RTC_AIE)
1367			cmos_check_acpi_rtc_status(dev, &tmp);
1368	}
1369	spin_unlock_irq(&rtc_lock);
1370
1371	dev_dbg(dev, "resume, ctrl %02x\n", tmp);
1372
1373	return 0;
1374}
1375
1376static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
1377
1378/*----------------------------------------------------------------*/
1379
1380/* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
1381 * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
1382 * probably list them in similar PNPBIOS tables; so PNP is more common.
1383 *
1384 * We don't use legacy "poke at the hardware" probing.  Ancient PCs that
1385 * predate even PNPBIOS should set up platform_bus devices.
1386 */
1387
1388#ifdef	CONFIG_PNP
1389
1390#include <linux/pnp.h>
1391
1392static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
1393{
1394	int irq;
1395
1396	if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0)) {
1397		irq = 0;
1398#ifdef CONFIG_X86
1399		/* Some machines contain a PNP entry for the RTC, but
1400		 * don't define the IRQ. It should always be safe to
1401		 * hardcode it on systems with a legacy PIC.
1402		 */
1403		if (nr_legacy_irqs())
1404			irq = RTC_IRQ;
1405#endif
1406	} else {
1407		irq = pnp_irq(pnp, 0);
1408	}
1409
1410	return cmos_do_probe(&pnp->dev, pnp_get_resource(pnp, IORESOURCE_IO, 0), irq);
1411}
1412
1413static void cmos_pnp_remove(struct pnp_dev *pnp)
1414{
1415	cmos_do_remove(&pnp->dev);
1416}
1417
1418static void cmos_pnp_shutdown(struct pnp_dev *pnp)
1419{
1420	struct device *dev = &pnp->dev;
1421	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1422
1423	if (system_state == SYSTEM_POWER_OFF) {
1424		int retval = cmos_poweroff(dev);
1425
1426		if (cmos_aie_poweroff(dev) < 0 && !retval)
1427			return;
1428	}
1429
1430	cmos_do_shutdown(cmos->irq);
1431}
1432
1433static const struct pnp_device_id rtc_ids[] = {
1434	{ .id = "PNP0b00", },
1435	{ .id = "PNP0b01", },
1436	{ .id = "PNP0b02", },
1437	{ },
1438};
1439MODULE_DEVICE_TABLE(pnp, rtc_ids);
1440
1441static struct pnp_driver cmos_pnp_driver = {
1442	.name		= driver_name,
1443	.id_table	= rtc_ids,
1444	.probe		= cmos_pnp_probe,
1445	.remove		= cmos_pnp_remove,
1446	.shutdown	= cmos_pnp_shutdown,
1447
1448	/* flag ensures resume() gets called, and stops syslog spam */
1449	.flags		= PNP_DRIVER_RES_DO_NOT_CHANGE,
1450	.driver		= {
1451			.pm = &cmos_pm_ops,
1452	},
1453};
1454
1455#endif	/* CONFIG_PNP */
1456
1457#ifdef CONFIG_OF
1458static const struct of_device_id of_cmos_match[] = {
1459	{
1460		.compatible = "motorola,mc146818",
1461	},
1462	{ },
1463};
1464MODULE_DEVICE_TABLE(of, of_cmos_match);
1465
1466static __init void cmos_of_init(struct platform_device *pdev)
1467{
1468	struct device_node *node = pdev->dev.of_node;
1469	const __be32 *val;
1470
1471	if (!node)
1472		return;
1473
1474	val = of_get_property(node, "ctrl-reg", NULL);
1475	if (val)
1476		CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
1477
1478	val = of_get_property(node, "freq-reg", NULL);
1479	if (val)
1480		CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
1481}
1482#else
1483static inline void cmos_of_init(struct platform_device *pdev) {}
1484#endif
1485/*----------------------------------------------------------------*/
1486
1487/* Platform setup should have set up an RTC device, when PNP is
1488 * unavailable ... this could happen even on (older) PCs.
1489 */
1490
1491static int __init cmos_platform_probe(struct platform_device *pdev)
1492{
1493	struct resource *resource;
1494	int irq;
1495
1496	cmos_of_init(pdev);
1497
1498	if (RTC_IOMAPPED)
1499		resource = platform_get_resource(pdev, IORESOURCE_IO, 0);
1500	else
1501		resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1502	irq = platform_get_irq(pdev, 0);
1503	if (irq < 0)
1504		irq = -1;
1505
1506	return cmos_do_probe(&pdev->dev, resource, irq);
1507}
1508
1509static void cmos_platform_remove(struct platform_device *pdev)
1510{
1511	cmos_do_remove(&pdev->dev);
1512}
1513
1514static void cmos_platform_shutdown(struct platform_device *pdev)
1515{
1516	struct device *dev = &pdev->dev;
1517	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1518
1519	if (system_state == SYSTEM_POWER_OFF) {
1520		int retval = cmos_poweroff(dev);
1521
1522		if (cmos_aie_poweroff(dev) < 0 && !retval)
1523			return;
1524	}
1525
1526	cmos_do_shutdown(cmos->irq);
1527}
1528
1529/* work with hotplug and coldplug */
1530MODULE_ALIAS("platform:rtc_cmos");
1531
1532static struct platform_driver cmos_platform_driver = {
1533	.remove_new	= cmos_platform_remove,
1534	.shutdown	= cmos_platform_shutdown,
1535	.driver = {
1536		.name		= driver_name,
1537		.pm		= &cmos_pm_ops,
1538		.of_match_table = of_match_ptr(of_cmos_match),
1539	}
1540};
1541
1542#ifdef CONFIG_PNP
1543static bool pnp_driver_registered;
1544#endif
1545static bool platform_driver_registered;
1546
1547static int __init cmos_init(void)
1548{
1549	int retval = 0;
1550
1551#ifdef	CONFIG_PNP
1552	retval = pnp_register_driver(&cmos_pnp_driver);
1553	if (retval == 0)
1554		pnp_driver_registered = true;
1555#endif
1556
1557	if (!cmos_rtc.dev) {
1558		retval = platform_driver_probe(&cmos_platform_driver,
1559					       cmos_platform_probe);
1560		if (retval == 0)
1561			platform_driver_registered = true;
1562	}
1563
1564	if (retval == 0)
1565		return 0;
1566
1567#ifdef	CONFIG_PNP
1568	if (pnp_driver_registered)
1569		pnp_unregister_driver(&cmos_pnp_driver);
1570#endif
1571	return retval;
1572}
1573module_init(cmos_init);
1574
1575static void __exit cmos_exit(void)
1576{
1577#ifdef	CONFIG_PNP
1578	if (pnp_driver_registered)
1579		pnp_unregister_driver(&cmos_pnp_driver);
1580#endif
1581	if (platform_driver_registered)
1582		platform_driver_unregister(&cmos_platform_driver);
1583}
1584module_exit(cmos_exit);
1585
1586
1587MODULE_AUTHOR("David Brownell");
1588MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1589MODULE_LICENSE("GPL");
1590