1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * PRU-ICSS remoteproc driver for various TI SoCs
4 *
5 * Copyright (C) 2014-2022 Texas Instruments Incorporated - https://www.ti.com/
6 *
7 * Author(s):
8 *	Suman Anna <s-anna@ti.com>
9 *	Andrew F. Davis <afd@ti.com>
10 *	Grzegorz Jaszczyk <grzegorz.jaszczyk@linaro.org> for Texas Instruments
11 *	Puranjay Mohan <p-mohan@ti.com>
12 *	Md Danish Anwar <danishanwar@ti.com>
13 */
14
15#include <linux/bitops.h>
16#include <linux/debugfs.h>
17#include <linux/irqdomain.h>
18#include <linux/module.h>
19#include <linux/of.h>
20#include <linux/of_irq.h>
21#include <linux/platform_device.h>
22#include <linux/remoteproc/pruss.h>
23#include <linux/pruss_driver.h>
24#include <linux/remoteproc.h>
25
26#include "remoteproc_internal.h"
27#include "remoteproc_elf_helpers.h"
28#include "pru_rproc.h"
29
30/* PRU_ICSS_PRU_CTRL registers */
31#define PRU_CTRL_CTRL		0x0000
32#define PRU_CTRL_STS		0x0004
33#define PRU_CTRL_WAKEUP_EN	0x0008
34#define PRU_CTRL_CYCLE		0x000C
35#define PRU_CTRL_STALL		0x0010
36#define PRU_CTRL_CTBIR0		0x0020
37#define PRU_CTRL_CTBIR1		0x0024
38#define PRU_CTRL_CTPPR0		0x0028
39#define PRU_CTRL_CTPPR1		0x002C
40
41/* CTRL register bit-fields */
42#define CTRL_CTRL_SOFT_RST_N	BIT(0)
43#define CTRL_CTRL_EN		BIT(1)
44#define CTRL_CTRL_SLEEPING	BIT(2)
45#define CTRL_CTRL_CTR_EN	BIT(3)
46#define CTRL_CTRL_SINGLE_STEP	BIT(8)
47#define CTRL_CTRL_RUNSTATE	BIT(15)
48
49/* PRU_ICSS_PRU_DEBUG registers */
50#define PRU_DEBUG_GPREG(x)	(0x0000 + (x) * 4)
51#define PRU_DEBUG_CT_REG(x)	(0x0080 + (x) * 4)
52
53/* PRU/RTU/Tx_PRU Core IRAM address masks */
54#define PRU_IRAM_ADDR_MASK	0x3ffff
55#define PRU0_IRAM_ADDR_MASK	0x34000
56#define PRU1_IRAM_ADDR_MASK	0x38000
57#define RTU0_IRAM_ADDR_MASK	0x4000
58#define RTU1_IRAM_ADDR_MASK	0x6000
59#define TX_PRU0_IRAM_ADDR_MASK	0xa000
60#define TX_PRU1_IRAM_ADDR_MASK	0xc000
61
62/* PRU device addresses for various type of PRU RAMs */
63#define PRU_IRAM_DA	0	/* Instruction RAM */
64#define PRU_PDRAM_DA	0	/* Primary Data RAM */
65#define PRU_SDRAM_DA	0x2000	/* Secondary Data RAM */
66#define PRU_SHRDRAM_DA	0x10000 /* Shared Data RAM */
67
68#define MAX_PRU_SYS_EVENTS 160
69
70/**
71 * enum pru_iomem - PRU core memory/register range identifiers
72 *
73 * @PRU_IOMEM_IRAM: PRU Instruction RAM range
74 * @PRU_IOMEM_CTRL: PRU Control register range
75 * @PRU_IOMEM_DEBUG: PRU Debug register range
76 * @PRU_IOMEM_MAX: just keep this one at the end
77 */
78enum pru_iomem {
79	PRU_IOMEM_IRAM = 0,
80	PRU_IOMEM_CTRL,
81	PRU_IOMEM_DEBUG,
82	PRU_IOMEM_MAX,
83};
84
85/**
86 * struct pru_private_data - device data for a PRU core
87 * @type: type of the PRU core (PRU, RTU, Tx_PRU)
88 * @is_k3: flag used to identify the need for special load handling
89 */
90struct pru_private_data {
91	enum pru_type type;
92	unsigned int is_k3 : 1;
93};
94
95/**
96 * struct pru_rproc - PRU remoteproc structure
97 * @id: id of the PRU core within the PRUSS
98 * @dev: PRU core device pointer
99 * @pruss: back-reference to parent PRUSS structure
100 * @rproc: remoteproc pointer for this PRU core
101 * @data: PRU core specific data
102 * @mem_regions: data for each of the PRU memory regions
103 * @client_np: client device node
104 * @lock: mutex to protect client usage
105 * @fw_name: name of firmware image used during loading
106 * @mapped_irq: virtual interrupt numbers of created fw specific mapping
107 * @pru_interrupt_map: pointer to interrupt mapping description (firmware)
108 * @pru_interrupt_map_sz: pru_interrupt_map size
109 * @rmw_lock: lock for read, modify, write operations on registers
110 * @dbg_single_step: debug state variable to set PRU into single step mode
111 * @dbg_continuous: debug state variable to restore PRU execution mode
112 * @evt_count: number of mapped events
113 * @gpmux_save: saved value for gpmux config
114 */
115struct pru_rproc {
116	int id;
117	struct device *dev;
118	struct pruss *pruss;
119	struct rproc *rproc;
120	const struct pru_private_data *data;
121	struct pruss_mem_region mem_regions[PRU_IOMEM_MAX];
122	struct device_node *client_np;
123	struct mutex lock;
124	const char *fw_name;
125	unsigned int *mapped_irq;
126	struct pru_irq_rsc *pru_interrupt_map;
127	size_t pru_interrupt_map_sz;
128	spinlock_t rmw_lock;
129	u32 dbg_single_step;
130	u32 dbg_continuous;
131	u8 evt_count;
132	u8 gpmux_save;
133};
134
135static inline u32 pru_control_read_reg(struct pru_rproc *pru, unsigned int reg)
136{
137	return readl_relaxed(pru->mem_regions[PRU_IOMEM_CTRL].va + reg);
138}
139
140static inline
141void pru_control_write_reg(struct pru_rproc *pru, unsigned int reg, u32 val)
142{
143	writel_relaxed(val, pru->mem_regions[PRU_IOMEM_CTRL].va + reg);
144}
145
146static inline
147void pru_control_set_reg(struct pru_rproc *pru, unsigned int reg,
148			 u32 mask, u32 set)
149{
150	u32 val;
151	unsigned long flags;
152
153	spin_lock_irqsave(&pru->rmw_lock, flags);
154
155	val = pru_control_read_reg(pru, reg);
156	val &= ~mask;
157	val |= (set & mask);
158	pru_control_write_reg(pru, reg, val);
159
160	spin_unlock_irqrestore(&pru->rmw_lock, flags);
161}
162
163/**
164 * pru_rproc_set_firmware() - set firmware for a PRU core
165 * @rproc: the rproc instance of the PRU
166 * @fw_name: the new firmware name, or NULL if default is desired
167 *
168 * Return: 0 on success, or errno in error case.
169 */
170static int pru_rproc_set_firmware(struct rproc *rproc, const char *fw_name)
171{
172	struct pru_rproc *pru = rproc->priv;
173
174	if (!fw_name)
175		fw_name = pru->fw_name;
176
177	return rproc_set_firmware(rproc, fw_name);
178}
179
180static struct rproc *__pru_rproc_get(struct device_node *np, int index)
181{
182	struct rproc *rproc;
183	phandle rproc_phandle;
184	int ret;
185
186	ret = of_property_read_u32_index(np, "ti,prus", index, &rproc_phandle);
187	if (ret)
188		return ERR_PTR(ret);
189
190	rproc = rproc_get_by_phandle(rproc_phandle);
191	if (!rproc) {
192		ret = -EPROBE_DEFER;
193		return ERR_PTR(ret);
194	}
195
196	/* make sure it is PRU rproc */
197	if (!is_pru_rproc(rproc->dev.parent)) {
198		rproc_put(rproc);
199		return ERR_PTR(-ENODEV);
200	}
201
202	return rproc;
203}
204
205/**
206 * pru_rproc_get() - get the PRU rproc instance from a device node
207 * @np: the user/client device node
208 * @index: index to use for the ti,prus property
209 * @pru_id: optional pointer to return the PRU remoteproc processor id
210 *
211 * This function looks through a client device node's "ti,prus" property at
212 * index @index and returns the rproc handle for a valid PRU remote processor if
213 * found. The function allows only one user to own the PRU rproc resource at a
214 * time. Caller must call pru_rproc_put() when done with using the rproc, not
215 * required if the function returns a failure.
216 *
217 * When optional @pru_id pointer is passed the PRU remoteproc processor id is
218 * returned.
219 *
220 * Return: rproc handle on success, and an ERR_PTR on failure using one
221 * of the following error values
222 *    -ENODEV if device is not found
223 *    -EBUSY if PRU is already acquired by anyone
224 *    -EPROBE_DEFER is PRU device is not probed yet
225 */
226struct rproc *pru_rproc_get(struct device_node *np, int index,
227			    enum pruss_pru_id *pru_id)
228{
229	struct rproc *rproc;
230	struct pru_rproc *pru;
231	struct device *dev;
232	const char *fw_name;
233	int ret;
234	u32 mux;
235
236	rproc = __pru_rproc_get(np, index);
237	if (IS_ERR(rproc))
238		return rproc;
239
240	pru = rproc->priv;
241	dev = &rproc->dev;
242
243	mutex_lock(&pru->lock);
244
245	if (pru->client_np) {
246		mutex_unlock(&pru->lock);
247		ret = -EBUSY;
248		goto err_no_rproc_handle;
249	}
250
251	pru->client_np = np;
252	rproc->sysfs_read_only = true;
253
254	mutex_unlock(&pru->lock);
255
256	if (pru_id)
257		*pru_id = pru->id;
258
259	ret = pruss_cfg_get_gpmux(pru->pruss, pru->id, &pru->gpmux_save);
260	if (ret) {
261		dev_err(dev, "failed to get cfg gpmux: %d\n", ret);
262		goto err;
263	}
264
265	/* An error here is acceptable for backward compatibility */
266	ret = of_property_read_u32_index(np, "ti,pruss-gp-mux-sel", index,
267					 &mux);
268	if (!ret) {
269		ret = pruss_cfg_set_gpmux(pru->pruss, pru->id, mux);
270		if (ret) {
271			dev_err(dev, "failed to set cfg gpmux: %d\n", ret);
272			goto err;
273		}
274	}
275
276	ret = of_property_read_string_index(np, "firmware-name", index,
277					    &fw_name);
278	if (!ret) {
279		ret = pru_rproc_set_firmware(rproc, fw_name);
280		if (ret) {
281			dev_err(dev, "failed to set firmware: %d\n", ret);
282			goto err;
283		}
284	}
285
286	return rproc;
287
288err_no_rproc_handle:
289	rproc_put(rproc);
290	return ERR_PTR(ret);
291
292err:
293	pru_rproc_put(rproc);
294	return ERR_PTR(ret);
295}
296EXPORT_SYMBOL_GPL(pru_rproc_get);
297
298/**
299 * pru_rproc_put() - release the PRU rproc resource
300 * @rproc: the rproc resource to release
301 *
302 * Releases the PRU rproc resource and makes it available to other
303 * users.
304 */
305void pru_rproc_put(struct rproc *rproc)
306{
307	struct pru_rproc *pru;
308
309	if (IS_ERR_OR_NULL(rproc) || !is_pru_rproc(rproc->dev.parent))
310		return;
311
312	pru = rproc->priv;
313
314	pruss_cfg_set_gpmux(pru->pruss, pru->id, pru->gpmux_save);
315
316	pru_rproc_set_firmware(rproc, NULL);
317
318	mutex_lock(&pru->lock);
319
320	if (!pru->client_np) {
321		mutex_unlock(&pru->lock);
322		return;
323	}
324
325	pru->client_np = NULL;
326	rproc->sysfs_read_only = false;
327	mutex_unlock(&pru->lock);
328
329	rproc_put(rproc);
330}
331EXPORT_SYMBOL_GPL(pru_rproc_put);
332
333/**
334 * pru_rproc_set_ctable() - set the constant table index for the PRU
335 * @rproc: the rproc instance of the PRU
336 * @c: constant table index to set
337 * @addr: physical address to set it to
338 *
339 * Return: 0 on success, or errno in error case.
340 */
341int pru_rproc_set_ctable(struct rproc *rproc, enum pru_ctable_idx c, u32 addr)
342{
343	struct pru_rproc *pru = rproc->priv;
344	unsigned int reg;
345	u32 mask, set;
346	u16 idx;
347	u16 idx_mask;
348
349	if (IS_ERR_OR_NULL(rproc))
350		return -EINVAL;
351
352	if (!rproc->dev.parent || !is_pru_rproc(rproc->dev.parent))
353		return -ENODEV;
354
355	/* pointer is 16 bit and index is 8-bit so mask out the rest */
356	idx_mask = (c >= PRU_C28) ? 0xFFFF : 0xFF;
357
358	/* ctable uses bit 8 and upwards only */
359	idx = (addr >> 8) & idx_mask;
360
361	/* configurable ctable (i.e. C24) starts at PRU_CTRL_CTBIR0 */
362	reg = PRU_CTRL_CTBIR0 + 4 * (c >> 1);
363	mask = idx_mask << (16 * (c & 1));
364	set = idx << (16 * (c & 1));
365
366	pru_control_set_reg(pru, reg, mask, set);
367
368	return 0;
369}
370EXPORT_SYMBOL_GPL(pru_rproc_set_ctable);
371
372static inline u32 pru_debug_read_reg(struct pru_rproc *pru, unsigned int reg)
373{
374	return readl_relaxed(pru->mem_regions[PRU_IOMEM_DEBUG].va + reg);
375}
376
377static int regs_show(struct seq_file *s, void *data)
378{
379	struct rproc *rproc = s->private;
380	struct pru_rproc *pru = rproc->priv;
381	int i, nregs = 32;
382	u32 pru_sts;
383	int pru_is_running;
384
385	seq_puts(s, "============== Control Registers ==============\n");
386	seq_printf(s, "CTRL      := 0x%08x\n",
387		   pru_control_read_reg(pru, PRU_CTRL_CTRL));
388	pru_sts = pru_control_read_reg(pru, PRU_CTRL_STS);
389	seq_printf(s, "STS (PC)  := 0x%08x (0x%08x)\n", pru_sts, pru_sts << 2);
390	seq_printf(s, "WAKEUP_EN := 0x%08x\n",
391		   pru_control_read_reg(pru, PRU_CTRL_WAKEUP_EN));
392	seq_printf(s, "CYCLE     := 0x%08x\n",
393		   pru_control_read_reg(pru, PRU_CTRL_CYCLE));
394	seq_printf(s, "STALL     := 0x%08x\n",
395		   pru_control_read_reg(pru, PRU_CTRL_STALL));
396	seq_printf(s, "CTBIR0    := 0x%08x\n",
397		   pru_control_read_reg(pru, PRU_CTRL_CTBIR0));
398	seq_printf(s, "CTBIR1    := 0x%08x\n",
399		   pru_control_read_reg(pru, PRU_CTRL_CTBIR1));
400	seq_printf(s, "CTPPR0    := 0x%08x\n",
401		   pru_control_read_reg(pru, PRU_CTRL_CTPPR0));
402	seq_printf(s, "CTPPR1    := 0x%08x\n",
403		   pru_control_read_reg(pru, PRU_CTRL_CTPPR1));
404
405	seq_puts(s, "=============== Debug Registers ===============\n");
406	pru_is_running = pru_control_read_reg(pru, PRU_CTRL_CTRL) &
407				CTRL_CTRL_RUNSTATE;
408	if (pru_is_running) {
409		seq_puts(s, "PRU is executing, cannot print/access debug registers.\n");
410		return 0;
411	}
412
413	for (i = 0; i < nregs; i++) {
414		seq_printf(s, "GPREG%-2d := 0x%08x\tCT_REG%-2d := 0x%08x\n",
415			   i, pru_debug_read_reg(pru, PRU_DEBUG_GPREG(i)),
416			   i, pru_debug_read_reg(pru, PRU_DEBUG_CT_REG(i)));
417	}
418
419	return 0;
420}
421DEFINE_SHOW_ATTRIBUTE(regs);
422
423/*
424 * Control PRU single-step mode
425 *
426 * This is a debug helper function used for controlling the single-step
427 * mode of the PRU. The PRU Debug registers are not accessible when the
428 * PRU is in RUNNING state.
429 *
430 * Writing a non-zero value sets the PRU into single-step mode irrespective
431 * of its previous state. The PRU mode is saved only on the first set into
432 * a single-step mode. Writing a zero value will restore the PRU into its
433 * original mode.
434 */
435static int pru_rproc_debug_ss_set(void *data, u64 val)
436{
437	struct rproc *rproc = data;
438	struct pru_rproc *pru = rproc->priv;
439	u32 reg_val;
440
441	val = val ? 1 : 0;
442	if (!val && !pru->dbg_single_step)
443		return 0;
444
445	reg_val = pru_control_read_reg(pru, PRU_CTRL_CTRL);
446
447	if (val && !pru->dbg_single_step)
448		pru->dbg_continuous = reg_val;
449
450	if (val)
451		reg_val |= CTRL_CTRL_SINGLE_STEP | CTRL_CTRL_EN;
452	else
453		reg_val = pru->dbg_continuous;
454
455	pru->dbg_single_step = val;
456	pru_control_write_reg(pru, PRU_CTRL_CTRL, reg_val);
457
458	return 0;
459}
460
461static int pru_rproc_debug_ss_get(void *data, u64 *val)
462{
463	struct rproc *rproc = data;
464	struct pru_rproc *pru = rproc->priv;
465
466	*val = pru->dbg_single_step;
467
468	return 0;
469}
470DEFINE_DEBUGFS_ATTRIBUTE(pru_rproc_debug_ss_fops, pru_rproc_debug_ss_get,
471			 pru_rproc_debug_ss_set, "%llu\n");
472
473/*
474 * Create PRU-specific debugfs entries
475 *
476 * The entries are created only if the parent remoteproc debugfs directory
477 * exists, and will be cleaned up by the remoteproc core.
478 */
479static void pru_rproc_create_debug_entries(struct rproc *rproc)
480{
481	if (!rproc->dbg_dir)
482		return;
483
484	debugfs_create_file("regs", 0400, rproc->dbg_dir,
485			    rproc, &regs_fops);
486	debugfs_create_file("single_step", 0600, rproc->dbg_dir,
487			    rproc, &pru_rproc_debug_ss_fops);
488}
489
490static void pru_dispose_irq_mapping(struct pru_rproc *pru)
491{
492	if (!pru->mapped_irq)
493		return;
494
495	while (pru->evt_count) {
496		pru->evt_count--;
497		if (pru->mapped_irq[pru->evt_count] > 0)
498			irq_dispose_mapping(pru->mapped_irq[pru->evt_count]);
499	}
500
501	kfree(pru->mapped_irq);
502	pru->mapped_irq = NULL;
503}
504
505/*
506 * Parse the custom PRU interrupt map resource and configure the INTC
507 * appropriately.
508 */
509static int pru_handle_intrmap(struct rproc *rproc)
510{
511	struct device *dev = rproc->dev.parent;
512	struct pru_rproc *pru = rproc->priv;
513	struct pru_irq_rsc *rsc = pru->pru_interrupt_map;
514	struct irq_fwspec fwspec;
515	struct device_node *parent, *irq_parent;
516	int i, ret = 0;
517
518	/* not having pru_interrupt_map is not an error */
519	if (!rsc)
520		return 0;
521
522	/* currently supporting only type 0 */
523	if (rsc->type != 0) {
524		dev_err(dev, "unsupported rsc type: %d\n", rsc->type);
525		return -EINVAL;
526	}
527
528	if (rsc->num_evts > MAX_PRU_SYS_EVENTS)
529		return -EINVAL;
530
531	if (sizeof(*rsc) + rsc->num_evts * sizeof(struct pruss_int_map) !=
532	    pru->pru_interrupt_map_sz)
533		return -EINVAL;
534
535	pru->evt_count = rsc->num_evts;
536	pru->mapped_irq = kcalloc(pru->evt_count, sizeof(unsigned int),
537				  GFP_KERNEL);
538	if (!pru->mapped_irq) {
539		pru->evt_count = 0;
540		return -ENOMEM;
541	}
542
543	/*
544	 * parse and fill in system event to interrupt channel and
545	 * channel-to-host mapping. The interrupt controller to be used
546	 * for these mappings for a given PRU remoteproc is always its
547	 * corresponding sibling PRUSS INTC node.
548	 */
549	parent = of_get_parent(dev_of_node(pru->dev));
550	if (!parent) {
551		kfree(pru->mapped_irq);
552		pru->mapped_irq = NULL;
553		pru->evt_count = 0;
554		return -ENODEV;
555	}
556
557	irq_parent = of_get_child_by_name(parent, "interrupt-controller");
558	of_node_put(parent);
559	if (!irq_parent) {
560		kfree(pru->mapped_irq);
561		pru->mapped_irq = NULL;
562		pru->evt_count = 0;
563		return -ENODEV;
564	}
565
566	fwspec.fwnode = of_node_to_fwnode(irq_parent);
567	fwspec.param_count = 3;
568	for (i = 0; i < pru->evt_count; i++) {
569		fwspec.param[0] = rsc->pru_intc_map[i].event;
570		fwspec.param[1] = rsc->pru_intc_map[i].chnl;
571		fwspec.param[2] = rsc->pru_intc_map[i].host;
572
573		dev_dbg(dev, "mapping%d: event %d, chnl %d, host %d\n",
574			i, fwspec.param[0], fwspec.param[1], fwspec.param[2]);
575
576		pru->mapped_irq[i] = irq_create_fwspec_mapping(&fwspec);
577		if (!pru->mapped_irq[i]) {
578			dev_err(dev, "failed to get virq for fw mapping %d: event %d chnl %d host %d\n",
579				i, fwspec.param[0], fwspec.param[1],
580				fwspec.param[2]);
581			ret = -EINVAL;
582			goto map_fail;
583		}
584	}
585	of_node_put(irq_parent);
586
587	return ret;
588
589map_fail:
590	pru_dispose_irq_mapping(pru);
591	of_node_put(irq_parent);
592
593	return ret;
594}
595
596static int pru_rproc_start(struct rproc *rproc)
597{
598	struct device *dev = &rproc->dev;
599	struct pru_rproc *pru = rproc->priv;
600	const char *names[PRU_TYPE_MAX] = { "PRU", "RTU", "Tx_PRU" };
601	u32 val;
602	int ret;
603
604	dev_dbg(dev, "starting %s%d: entry-point = 0x%llx\n",
605		names[pru->data->type], pru->id, (rproc->bootaddr >> 2));
606
607	ret = pru_handle_intrmap(rproc);
608	/*
609	 * reset references to pru interrupt map - they will stop being valid
610	 * after rproc_start returns
611	 */
612	pru->pru_interrupt_map = NULL;
613	pru->pru_interrupt_map_sz = 0;
614	if (ret)
615		return ret;
616
617	val = CTRL_CTRL_EN | ((rproc->bootaddr >> 2) << 16);
618	pru_control_write_reg(pru, PRU_CTRL_CTRL, val);
619
620	return 0;
621}
622
623static int pru_rproc_stop(struct rproc *rproc)
624{
625	struct device *dev = &rproc->dev;
626	struct pru_rproc *pru = rproc->priv;
627	const char *names[PRU_TYPE_MAX] = { "PRU", "RTU", "Tx_PRU" };
628	u32 val;
629
630	dev_dbg(dev, "stopping %s%d\n", names[pru->data->type], pru->id);
631
632	val = pru_control_read_reg(pru, PRU_CTRL_CTRL);
633	val &= ~CTRL_CTRL_EN;
634	pru_control_write_reg(pru, PRU_CTRL_CTRL, val);
635
636	/* dispose irq mapping - new firmware can provide new mapping */
637	pru_dispose_irq_mapping(pru);
638
639	return 0;
640}
641
642/*
643 * Convert PRU device address (data spaces only) to kernel virtual address.
644 *
645 * Each PRU has access to all data memories within the PRUSS, accessible at
646 * different ranges. So, look through both its primary and secondary Data
647 * RAMs as well as any shared Data RAM to convert a PRU device address to
648 * kernel virtual address. Data RAM0 is primary Data RAM for PRU0 and Data
649 * RAM1 is primary Data RAM for PRU1.
650 */
651static void *pru_d_da_to_va(struct pru_rproc *pru, u32 da, size_t len)
652{
653	struct pruss_mem_region dram0, dram1, shrd_ram;
654	struct pruss *pruss = pru->pruss;
655	u32 offset;
656	void *va = NULL;
657
658	if (len == 0)
659		return NULL;
660
661	dram0 = pruss->mem_regions[PRUSS_MEM_DRAM0];
662	dram1 = pruss->mem_regions[PRUSS_MEM_DRAM1];
663	/* PRU1 has its local RAM addresses reversed */
664	if (pru->id == PRUSS_PRU1)
665		swap(dram0, dram1);
666	shrd_ram = pruss->mem_regions[PRUSS_MEM_SHRD_RAM2];
667
668	if (da + len <= PRU_PDRAM_DA + dram0.size) {
669		offset = da - PRU_PDRAM_DA;
670		va = (__force void *)(dram0.va + offset);
671	} else if (da >= PRU_SDRAM_DA &&
672		   da + len <= PRU_SDRAM_DA + dram1.size) {
673		offset = da - PRU_SDRAM_DA;
674		va = (__force void *)(dram1.va + offset);
675	} else if (da >= PRU_SHRDRAM_DA &&
676		   da + len <= PRU_SHRDRAM_DA + shrd_ram.size) {
677		offset = da - PRU_SHRDRAM_DA;
678		va = (__force void *)(shrd_ram.va + offset);
679	}
680
681	return va;
682}
683
684/*
685 * Convert PRU device address (instruction space) to kernel virtual address.
686 *
687 * A PRU does not have an unified address space. Each PRU has its very own
688 * private Instruction RAM, and its device address is identical to that of
689 * its primary Data RAM device address.
690 */
691static void *pru_i_da_to_va(struct pru_rproc *pru, u32 da, size_t len)
692{
693	u32 offset;
694	void *va = NULL;
695
696	if (len == 0)
697		return NULL;
698
699	/*
700	 * GNU binutils do not support multiple address spaces. The GNU
701	 * linker's default linker script places IRAM at an arbitrary high
702	 * offset, in order to differentiate it from DRAM. Hence we need to
703	 * strip the artificial offset in the IRAM addresses coming from the
704	 * ELF file.
705	 *
706	 * The TI proprietary linker would never set those higher IRAM address
707	 * bits anyway. PRU architecture limits the program counter to 16-bit
708	 * word-address range. This in turn corresponds to 18-bit IRAM
709	 * byte-address range for ELF.
710	 *
711	 * Two more bits are added just in case to make the final 20-bit mask.
712	 * Idea is to have a safeguard in case TI decides to add banking
713	 * in future SoCs.
714	 */
715	da &= 0xfffff;
716
717	if (da + len <= PRU_IRAM_DA + pru->mem_regions[PRU_IOMEM_IRAM].size) {
718		offset = da - PRU_IRAM_DA;
719		va = (__force void *)(pru->mem_regions[PRU_IOMEM_IRAM].va +
720				      offset);
721	}
722
723	return va;
724}
725
726/*
727 * Provide address translations for only PRU Data RAMs through the remoteproc
728 * core for any PRU client drivers. The PRU Instruction RAM access is restricted
729 * only to the PRU loader code.
730 */
731static void *pru_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem)
732{
733	struct pru_rproc *pru = rproc->priv;
734
735	return pru_d_da_to_va(pru, da, len);
736}
737
738/* PRU-specific address translator used by PRU loader. */
739static void *pru_da_to_va(struct rproc *rproc, u64 da, size_t len, bool is_iram)
740{
741	struct pru_rproc *pru = rproc->priv;
742	void *va;
743
744	if (is_iram)
745		va = pru_i_da_to_va(pru, da, len);
746	else
747		va = pru_d_da_to_va(pru, da, len);
748
749	return va;
750}
751
752static struct rproc_ops pru_rproc_ops = {
753	.start		= pru_rproc_start,
754	.stop		= pru_rproc_stop,
755	.da_to_va	= pru_rproc_da_to_va,
756};
757
758/*
759 * Custom memory copy implementation for ICSSG PRU/RTU/Tx_PRU Cores
760 *
761 * The ICSSG PRU/RTU/Tx_PRU cores have a memory copying issue with IRAM
762 * memories, that is not seen on previous generation SoCs. The data is reflected
763 * properly in the IRAM memories only for integer (4-byte) copies. Any unaligned
764 * copies result in all the other pre-existing bytes zeroed out within that
765 * 4-byte boundary, thereby resulting in wrong text/code in the IRAMs. Also, the
766 * IRAM memory port interface does not allow any 8-byte copies (as commonly used
767 * by ARM64 memcpy implementation) and throws an exception. The DRAM memory
768 * ports do not show this behavior.
769 */
770static int pru_rproc_memcpy(void *dest, const void *src, size_t count)
771{
772	const u32 *s = src;
773	u32 *d = dest;
774	size_t size = count / 4;
775	u32 *tmp_src = NULL;
776
777	/*
778	 * TODO: relax limitation of 4-byte aligned dest addresses and copy
779	 * sizes
780	 */
781	if ((long)dest % 4 || count % 4)
782		return -EINVAL;
783
784	/* src offsets in ELF firmware image can be non-aligned */
785	if ((long)src % 4) {
786		tmp_src = kmemdup(src, count, GFP_KERNEL);
787		if (!tmp_src)
788			return -ENOMEM;
789		s = tmp_src;
790	}
791
792	while (size--)
793		*d++ = *s++;
794
795	kfree(tmp_src);
796
797	return 0;
798}
799
800static int
801pru_rproc_load_elf_segments(struct rproc *rproc, const struct firmware *fw)
802{
803	struct pru_rproc *pru = rproc->priv;
804	struct device *dev = &rproc->dev;
805	struct elf32_hdr *ehdr;
806	struct elf32_phdr *phdr;
807	int i, ret = 0;
808	const u8 *elf_data = fw->data;
809
810	ehdr = (struct elf32_hdr *)elf_data;
811	phdr = (struct elf32_phdr *)(elf_data + ehdr->e_phoff);
812
813	/* go through the available ELF segments */
814	for (i = 0; i < ehdr->e_phnum; i++, phdr++) {
815		u32 da = phdr->p_paddr;
816		u32 memsz = phdr->p_memsz;
817		u32 filesz = phdr->p_filesz;
818		u32 offset = phdr->p_offset;
819		bool is_iram;
820		void *ptr;
821
822		if (phdr->p_type != PT_LOAD || !filesz)
823			continue;
824
825		dev_dbg(dev, "phdr: type %d da 0x%x memsz 0x%x filesz 0x%x\n",
826			phdr->p_type, da, memsz, filesz);
827
828		if (filesz > memsz) {
829			dev_err(dev, "bad phdr filesz 0x%x memsz 0x%x\n",
830				filesz, memsz);
831			ret = -EINVAL;
832			break;
833		}
834
835		if (offset + filesz > fw->size) {
836			dev_err(dev, "truncated fw: need 0x%x avail 0x%zx\n",
837				offset + filesz, fw->size);
838			ret = -EINVAL;
839			break;
840		}
841
842		/* grab the kernel address for this device address */
843		is_iram = phdr->p_flags & PF_X;
844		ptr = pru_da_to_va(rproc, da, memsz, is_iram);
845		if (!ptr) {
846			dev_err(dev, "bad phdr da 0x%x mem 0x%x\n", da, memsz);
847			ret = -EINVAL;
848			break;
849		}
850
851		if (pru->data->is_k3) {
852			ret = pru_rproc_memcpy(ptr, elf_data + phdr->p_offset,
853					       filesz);
854			if (ret) {
855				dev_err(dev, "PRU memory copy failed for da 0x%x memsz 0x%x\n",
856					da, memsz);
857				break;
858			}
859		} else {
860			memcpy(ptr, elf_data + phdr->p_offset, filesz);
861		}
862
863		/* skip the memzero logic performed by remoteproc ELF loader */
864	}
865
866	return ret;
867}
868
869static const void *
870pru_rproc_find_interrupt_map(struct device *dev, const struct firmware *fw)
871{
872	struct elf32_shdr *shdr, *name_table_shdr;
873	const char *name_table;
874	const u8 *elf_data = fw->data;
875	struct elf32_hdr *ehdr = (struct elf32_hdr *)elf_data;
876	u16 shnum = ehdr->e_shnum;
877	u16 shstrndx = ehdr->e_shstrndx;
878	int i;
879
880	/* first, get the section header */
881	shdr = (struct elf32_shdr *)(elf_data + ehdr->e_shoff);
882	/* compute name table section header entry in shdr array */
883	name_table_shdr = shdr + shstrndx;
884	/* finally, compute the name table section address in elf */
885	name_table = elf_data + name_table_shdr->sh_offset;
886
887	for (i = 0; i < shnum; i++, shdr++) {
888		u32 size = shdr->sh_size;
889		u32 offset = shdr->sh_offset;
890		u32 name = shdr->sh_name;
891
892		if (strcmp(name_table + name, ".pru_irq_map"))
893			continue;
894
895		/* make sure we have the entire irq map */
896		if (offset + size > fw->size || offset + size < size) {
897			dev_err(dev, ".pru_irq_map section truncated\n");
898			return ERR_PTR(-EINVAL);
899		}
900
901		/* make sure irq map has at least the header */
902		if (sizeof(struct pru_irq_rsc) > size) {
903			dev_err(dev, "header-less .pru_irq_map section\n");
904			return ERR_PTR(-EINVAL);
905		}
906
907		return shdr;
908	}
909
910	dev_dbg(dev, "no .pru_irq_map section found for this fw\n");
911
912	return NULL;
913}
914
915/*
916 * Use a custom parse_fw callback function for dealing with PRU firmware
917 * specific sections.
918 *
919 * The firmware blob can contain optional ELF sections: .resource_table section
920 * and .pru_irq_map one. The second one contains the PRUSS interrupt mapping
921 * description, which needs to be setup before powering on the PRU core. To
922 * avoid RAM wastage this ELF section is not mapped to any ELF segment (by the
923 * firmware linker) and therefore is not loaded to PRU memory.
924 */
925static int pru_rproc_parse_fw(struct rproc *rproc, const struct firmware *fw)
926{
927	struct device *dev = &rproc->dev;
928	struct pru_rproc *pru = rproc->priv;
929	const u8 *elf_data = fw->data;
930	const void *shdr;
931	u8 class = fw_elf_get_class(fw);
932	u64 sh_offset;
933	int ret;
934
935	/* load optional rsc table */
936	ret = rproc_elf_load_rsc_table(rproc, fw);
937	if (ret == -EINVAL)
938		dev_dbg(&rproc->dev, "no resource table found for this fw\n");
939	else if (ret)
940		return ret;
941
942	/* find .pru_interrupt_map section, not having it is not an error */
943	shdr = pru_rproc_find_interrupt_map(dev, fw);
944	if (IS_ERR(shdr))
945		return PTR_ERR(shdr);
946
947	if (!shdr)
948		return 0;
949
950	/* preserve pointer to PRU interrupt map together with it size */
951	sh_offset = elf_shdr_get_sh_offset(class, shdr);
952	pru->pru_interrupt_map = (struct pru_irq_rsc *)(elf_data + sh_offset);
953	pru->pru_interrupt_map_sz = elf_shdr_get_sh_size(class, shdr);
954
955	return 0;
956}
957
958/*
959 * Compute PRU id based on the IRAM addresses. The PRU IRAMs are
960 * always at a particular offset within the PRUSS address space.
961 */
962static int pru_rproc_set_id(struct pru_rproc *pru)
963{
964	int ret = 0;
965
966	switch (pru->mem_regions[PRU_IOMEM_IRAM].pa & PRU_IRAM_ADDR_MASK) {
967	case TX_PRU0_IRAM_ADDR_MASK:
968		fallthrough;
969	case RTU0_IRAM_ADDR_MASK:
970		fallthrough;
971	case PRU0_IRAM_ADDR_MASK:
972		pru->id = PRUSS_PRU0;
973		break;
974	case TX_PRU1_IRAM_ADDR_MASK:
975		fallthrough;
976	case RTU1_IRAM_ADDR_MASK:
977		fallthrough;
978	case PRU1_IRAM_ADDR_MASK:
979		pru->id = PRUSS_PRU1;
980		break;
981	default:
982		ret = -EINVAL;
983	}
984
985	return ret;
986}
987
988static int pru_rproc_probe(struct platform_device *pdev)
989{
990	struct device *dev = &pdev->dev;
991	struct device_node *np = dev->of_node;
992	struct platform_device *ppdev = to_platform_device(dev->parent);
993	struct pru_rproc *pru;
994	const char *fw_name;
995	struct rproc *rproc = NULL;
996	struct resource *res;
997	int i, ret;
998	const struct pru_private_data *data;
999	const char *mem_names[PRU_IOMEM_MAX] = { "iram", "control", "debug" };
1000
1001	data = of_device_get_match_data(&pdev->dev);
1002	if (!data)
1003		return -ENODEV;
1004
1005	ret = of_property_read_string(np, "firmware-name", &fw_name);
1006	if (ret) {
1007		dev_err(dev, "unable to retrieve firmware-name %d\n", ret);
1008		return ret;
1009	}
1010
1011	rproc = devm_rproc_alloc(dev, pdev->name, &pru_rproc_ops, fw_name,
1012				 sizeof(*pru));
1013	if (!rproc) {
1014		dev_err(dev, "rproc_alloc failed\n");
1015		return -ENOMEM;
1016	}
1017	/* use a custom load function to deal with PRU-specific quirks */
1018	rproc->ops->load = pru_rproc_load_elf_segments;
1019
1020	/* use a custom parse function to deal with PRU-specific resources */
1021	rproc->ops->parse_fw = pru_rproc_parse_fw;
1022
1023	/* error recovery is not supported for PRUs */
1024	rproc->recovery_disabled = true;
1025
1026	/*
1027	 * rproc_add will auto-boot the processor normally, but this is not
1028	 * desired with PRU client driven boot-flow methodology. A PRU
1029	 * application/client driver will boot the corresponding PRU
1030	 * remote-processor as part of its state machine either through the
1031	 * remoteproc sysfs interface or through the equivalent kernel API.
1032	 */
1033	rproc->auto_boot = false;
1034
1035	pru = rproc->priv;
1036	pru->dev = dev;
1037	pru->data = data;
1038	pru->pruss = platform_get_drvdata(ppdev);
1039	pru->rproc = rproc;
1040	pru->fw_name = fw_name;
1041	pru->client_np = NULL;
1042	spin_lock_init(&pru->rmw_lock);
1043	mutex_init(&pru->lock);
1044
1045	for (i = 0; i < ARRAY_SIZE(mem_names); i++) {
1046		res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
1047						   mem_names[i]);
1048		pru->mem_regions[i].va = devm_ioremap_resource(dev, res);
1049		if (IS_ERR(pru->mem_regions[i].va)) {
1050			dev_err(dev, "failed to parse and map memory resource %d %s\n",
1051				i, mem_names[i]);
1052			ret = PTR_ERR(pru->mem_regions[i].va);
1053			return ret;
1054		}
1055		pru->mem_regions[i].pa = res->start;
1056		pru->mem_regions[i].size = resource_size(res);
1057
1058		dev_dbg(dev, "memory %8s: pa %pa size 0x%zx va %pK\n",
1059			mem_names[i], &pru->mem_regions[i].pa,
1060			pru->mem_regions[i].size, pru->mem_regions[i].va);
1061	}
1062
1063	ret = pru_rproc_set_id(pru);
1064	if (ret < 0)
1065		return ret;
1066
1067	platform_set_drvdata(pdev, rproc);
1068
1069	ret = devm_rproc_add(dev, pru->rproc);
1070	if (ret) {
1071		dev_err(dev, "rproc_add failed: %d\n", ret);
1072		return ret;
1073	}
1074
1075	pru_rproc_create_debug_entries(rproc);
1076
1077	dev_dbg(dev, "PRU rproc node %pOF probed successfully\n", np);
1078
1079	return 0;
1080}
1081
1082static void pru_rproc_remove(struct platform_device *pdev)
1083{
1084	struct device *dev = &pdev->dev;
1085	struct rproc *rproc = platform_get_drvdata(pdev);
1086
1087	dev_dbg(dev, "%s: removing rproc %s\n", __func__, rproc->name);
1088}
1089
1090static const struct pru_private_data pru_data = {
1091	.type = PRU_TYPE_PRU,
1092};
1093
1094static const struct pru_private_data k3_pru_data = {
1095	.type = PRU_TYPE_PRU,
1096	.is_k3 = 1,
1097};
1098
1099static const struct pru_private_data k3_rtu_data = {
1100	.type = PRU_TYPE_RTU,
1101	.is_k3 = 1,
1102};
1103
1104static const struct pru_private_data k3_tx_pru_data = {
1105	.type = PRU_TYPE_TX_PRU,
1106	.is_k3 = 1,
1107};
1108
1109static const struct of_device_id pru_rproc_match[] = {
1110	{ .compatible = "ti,am3356-pru",	.data = &pru_data },
1111	{ .compatible = "ti,am4376-pru",	.data = &pru_data },
1112	{ .compatible = "ti,am5728-pru",	.data = &pru_data },
1113	{ .compatible = "ti,am642-pru",		.data = &k3_pru_data },
1114	{ .compatible = "ti,am642-rtu",		.data = &k3_rtu_data },
1115	{ .compatible = "ti,am642-tx-pru",	.data = &k3_tx_pru_data },
1116	{ .compatible = "ti,k2g-pru",		.data = &pru_data },
1117	{ .compatible = "ti,am654-pru",		.data = &k3_pru_data },
1118	{ .compatible = "ti,am654-rtu",		.data = &k3_rtu_data },
1119	{ .compatible = "ti,am654-tx-pru",	.data = &k3_tx_pru_data },
1120	{ .compatible = "ti,j721e-pru",		.data = &k3_pru_data },
1121	{ .compatible = "ti,j721e-rtu",		.data = &k3_rtu_data },
1122	{ .compatible = "ti,j721e-tx-pru",	.data = &k3_tx_pru_data },
1123	{ .compatible = "ti,am625-pru",		.data = &k3_pru_data },
1124	{},
1125};
1126MODULE_DEVICE_TABLE(of, pru_rproc_match);
1127
1128static struct platform_driver pru_rproc_driver = {
1129	.driver = {
1130		.name   = PRU_RPROC_DRVNAME,
1131		.of_match_table = pru_rproc_match,
1132		.suppress_bind_attrs = true,
1133	},
1134	.probe  = pru_rproc_probe,
1135	.remove_new = pru_rproc_remove,
1136};
1137module_platform_driver(pru_rproc_driver);
1138
1139MODULE_AUTHOR("Suman Anna <s-anna@ti.com>");
1140MODULE_AUTHOR("Andrew F. Davis <afd@ti.com>");
1141MODULE_AUTHOR("Grzegorz Jaszczyk <grzegorz.jaszczyk@linaro.org>");
1142MODULE_AUTHOR("Puranjay Mohan <p-mohan@ti.com>");
1143MODULE_AUTHOR("Md Danish Anwar <danishanwar@ti.com>");
1144MODULE_DESCRIPTION("PRU-ICSS Remote Processor Driver");
1145MODULE_LICENSE("GPL v2");
1146