1// SPDX-License-Identifier: GPL-2.0-or-later
2//
3// core.c  --  Voltage/Current Regulator framework.
4//
5// Copyright 2007, 2008 Wolfson Microelectronics PLC.
6// Copyright 2008 SlimLogic Ltd.
7//
8// Author: Liam Girdwood <lrg@slimlogic.co.uk>
9
10#include <linux/kernel.h>
11#include <linux/init.h>
12#include <linux/debugfs.h>
13#include <linux/device.h>
14#include <linux/slab.h>
15#include <linux/async.h>
16#include <linux/err.h>
17#include <linux/mutex.h>
18#include <linux/suspend.h>
19#include <linux/delay.h>
20#include <linux/gpio/consumer.h>
21#include <linux/of.h>
22#include <linux/regmap.h>
23#include <linux/regulator/of_regulator.h>
24#include <linux/regulator/consumer.h>
25#include <linux/regulator/coupler.h>
26#include <linux/regulator/driver.h>
27#include <linux/regulator/machine.h>
28#include <linux/module.h>
29
30#define CREATE_TRACE_POINTS
31#include <trace/events/regulator.h>
32
33#include "dummy.h"
34#include "internal.h"
35
36static DEFINE_WW_CLASS(regulator_ww_class);
37static DEFINE_MUTEX(regulator_nesting_mutex);
38static DEFINE_MUTEX(regulator_list_mutex);
39static LIST_HEAD(regulator_map_list);
40static LIST_HEAD(regulator_ena_gpio_list);
41static LIST_HEAD(regulator_supply_alias_list);
42static LIST_HEAD(regulator_coupler_list);
43static bool has_full_constraints;
44
45static struct dentry *debugfs_root;
46
47/*
48 * struct regulator_map
49 *
50 * Used to provide symbolic supply names to devices.
51 */
52struct regulator_map {
53	struct list_head list;
54	const char *dev_name;   /* The dev_name() for the consumer */
55	const char *supply;
56	struct regulator_dev *regulator;
57};
58
59/*
60 * struct regulator_enable_gpio
61 *
62 * Management for shared enable GPIO pin
63 */
64struct regulator_enable_gpio {
65	struct list_head list;
66	struct gpio_desc *gpiod;
67	u32 enable_count;	/* a number of enabled shared GPIO */
68	u32 request_count;	/* a number of requested shared GPIO */
69};
70
71/*
72 * struct regulator_supply_alias
73 *
74 * Used to map lookups for a supply onto an alternative device.
75 */
76struct regulator_supply_alias {
77	struct list_head list;
78	struct device *src_dev;
79	const char *src_supply;
80	struct device *alias_dev;
81	const char *alias_supply;
82};
83
84static int _regulator_is_enabled(struct regulator_dev *rdev);
85static int _regulator_disable(struct regulator *regulator);
86static int _regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags);
87static int _regulator_get_current_limit(struct regulator_dev *rdev);
88static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
89static int _notifier_call_chain(struct regulator_dev *rdev,
90				  unsigned long event, void *data);
91static int _regulator_do_set_voltage(struct regulator_dev *rdev,
92				     int min_uV, int max_uV);
93static int regulator_balance_voltage(struct regulator_dev *rdev,
94				     suspend_state_t state);
95static struct regulator *create_regulator(struct regulator_dev *rdev,
96					  struct device *dev,
97					  const char *supply_name);
98static void destroy_regulator(struct regulator *regulator);
99static void _regulator_put(struct regulator *regulator);
100
101const char *rdev_get_name(struct regulator_dev *rdev)
102{
103	if (rdev->constraints && rdev->constraints->name)
104		return rdev->constraints->name;
105	else if (rdev->desc->name)
106		return rdev->desc->name;
107	else
108		return "";
109}
110EXPORT_SYMBOL_GPL(rdev_get_name);
111
112static bool have_full_constraints(void)
113{
114	return has_full_constraints || of_have_populated_dt();
115}
116
117static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
118{
119	if (!rdev->constraints) {
120		rdev_err(rdev, "no constraints\n");
121		return false;
122	}
123
124	if (rdev->constraints->valid_ops_mask & ops)
125		return true;
126
127	return false;
128}
129
130/**
131 * regulator_lock_nested - lock a single regulator
132 * @rdev:		regulator source
133 * @ww_ctx:		w/w mutex acquire context
134 *
135 * This function can be called many times by one task on
136 * a single regulator and its mutex will be locked only
137 * once. If a task, which is calling this function is other
138 * than the one, which initially locked the mutex, it will
139 * wait on mutex.
140 */
141static inline int regulator_lock_nested(struct regulator_dev *rdev,
142					struct ww_acquire_ctx *ww_ctx)
143{
144	bool lock = false;
145	int ret = 0;
146
147	mutex_lock(&regulator_nesting_mutex);
148
149	if (!ww_mutex_trylock(&rdev->mutex, ww_ctx)) {
150		if (rdev->mutex_owner == current)
151			rdev->ref_cnt++;
152		else
153			lock = true;
154
155		if (lock) {
156			mutex_unlock(&regulator_nesting_mutex);
157			ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
158			mutex_lock(&regulator_nesting_mutex);
159		}
160	} else {
161		lock = true;
162	}
163
164	if (lock && ret != -EDEADLK) {
165		rdev->ref_cnt++;
166		rdev->mutex_owner = current;
167	}
168
169	mutex_unlock(&regulator_nesting_mutex);
170
171	return ret;
172}
173
174/**
175 * regulator_lock - lock a single regulator
176 * @rdev:		regulator source
177 *
178 * This function can be called many times by one task on
179 * a single regulator and its mutex will be locked only
180 * once. If a task, which is calling this function is other
181 * than the one, which initially locked the mutex, it will
182 * wait on mutex.
183 */
184static void regulator_lock(struct regulator_dev *rdev)
185{
186	regulator_lock_nested(rdev, NULL);
187}
188
189/**
190 * regulator_unlock - unlock a single regulator
191 * @rdev:		regulator_source
192 *
193 * This function unlocks the mutex when the
194 * reference counter reaches 0.
195 */
196static void regulator_unlock(struct regulator_dev *rdev)
197{
198	mutex_lock(&regulator_nesting_mutex);
199
200	if (--rdev->ref_cnt == 0) {
201		rdev->mutex_owner = NULL;
202		ww_mutex_unlock(&rdev->mutex);
203	}
204
205	WARN_ON_ONCE(rdev->ref_cnt < 0);
206
207	mutex_unlock(&regulator_nesting_mutex);
208}
209
210/**
211 * regulator_lock_two - lock two regulators
212 * @rdev1:		first regulator
213 * @rdev2:		second regulator
214 * @ww_ctx:		w/w mutex acquire context
215 *
216 * Locks both rdevs using the regulator_ww_class.
217 */
218static void regulator_lock_two(struct regulator_dev *rdev1,
219			       struct regulator_dev *rdev2,
220			       struct ww_acquire_ctx *ww_ctx)
221{
222	struct regulator_dev *held, *contended;
223	int ret;
224
225	ww_acquire_init(ww_ctx, &regulator_ww_class);
226
227	/* Try to just grab both of them */
228	ret = regulator_lock_nested(rdev1, ww_ctx);
229	WARN_ON(ret);
230	ret = regulator_lock_nested(rdev2, ww_ctx);
231	if (ret != -EDEADLOCK) {
232		WARN_ON(ret);
233		goto exit;
234	}
235
236	held = rdev1;
237	contended = rdev2;
238	while (true) {
239		regulator_unlock(held);
240
241		ww_mutex_lock_slow(&contended->mutex, ww_ctx);
242		contended->ref_cnt++;
243		contended->mutex_owner = current;
244		swap(held, contended);
245		ret = regulator_lock_nested(contended, ww_ctx);
246
247		if (ret != -EDEADLOCK) {
248			WARN_ON(ret);
249			break;
250		}
251	}
252
253exit:
254	ww_acquire_done(ww_ctx);
255}
256
257/**
258 * regulator_unlock_two - unlock two regulators
259 * @rdev1:		first regulator
260 * @rdev2:		second regulator
261 * @ww_ctx:		w/w mutex acquire context
262 *
263 * The inverse of regulator_lock_two().
264 */
265
266static void regulator_unlock_two(struct regulator_dev *rdev1,
267				 struct regulator_dev *rdev2,
268				 struct ww_acquire_ctx *ww_ctx)
269{
270	regulator_unlock(rdev2);
271	regulator_unlock(rdev1);
272	ww_acquire_fini(ww_ctx);
273}
274
275static bool regulator_supply_is_couple(struct regulator_dev *rdev)
276{
277	struct regulator_dev *c_rdev;
278	int i;
279
280	for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
281		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
282
283		if (rdev->supply->rdev == c_rdev)
284			return true;
285	}
286
287	return false;
288}
289
290static void regulator_unlock_recursive(struct regulator_dev *rdev,
291				       unsigned int n_coupled)
292{
293	struct regulator_dev *c_rdev, *supply_rdev;
294	int i, supply_n_coupled;
295
296	for (i = n_coupled; i > 0; i--) {
297		c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
298
299		if (!c_rdev)
300			continue;
301
302		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
303			supply_rdev = c_rdev->supply->rdev;
304			supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
305
306			regulator_unlock_recursive(supply_rdev,
307						   supply_n_coupled);
308		}
309
310		regulator_unlock(c_rdev);
311	}
312}
313
314static int regulator_lock_recursive(struct regulator_dev *rdev,
315				    struct regulator_dev **new_contended_rdev,
316				    struct regulator_dev **old_contended_rdev,
317				    struct ww_acquire_ctx *ww_ctx)
318{
319	struct regulator_dev *c_rdev;
320	int i, err;
321
322	for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
323		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
324
325		if (!c_rdev)
326			continue;
327
328		if (c_rdev != *old_contended_rdev) {
329			err = regulator_lock_nested(c_rdev, ww_ctx);
330			if (err) {
331				if (err == -EDEADLK) {
332					*new_contended_rdev = c_rdev;
333					goto err_unlock;
334				}
335
336				/* shouldn't happen */
337				WARN_ON_ONCE(err != -EALREADY);
338			}
339		} else {
340			*old_contended_rdev = NULL;
341		}
342
343		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
344			err = regulator_lock_recursive(c_rdev->supply->rdev,
345						       new_contended_rdev,
346						       old_contended_rdev,
347						       ww_ctx);
348			if (err) {
349				regulator_unlock(c_rdev);
350				goto err_unlock;
351			}
352		}
353	}
354
355	return 0;
356
357err_unlock:
358	regulator_unlock_recursive(rdev, i);
359
360	return err;
361}
362
363/**
364 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
365 *				regulators
366 * @rdev:			regulator source
367 * @ww_ctx:			w/w mutex acquire context
368 *
369 * Unlock all regulators related with rdev by coupling or supplying.
370 */
371static void regulator_unlock_dependent(struct regulator_dev *rdev,
372				       struct ww_acquire_ctx *ww_ctx)
373{
374	regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
375	ww_acquire_fini(ww_ctx);
376}
377
378/**
379 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
380 * @rdev:			regulator source
381 * @ww_ctx:			w/w mutex acquire context
382 *
383 * This function as a wrapper on regulator_lock_recursive(), which locks
384 * all regulators related with rdev by coupling or supplying.
385 */
386static void regulator_lock_dependent(struct regulator_dev *rdev,
387				     struct ww_acquire_ctx *ww_ctx)
388{
389	struct regulator_dev *new_contended_rdev = NULL;
390	struct regulator_dev *old_contended_rdev = NULL;
391	int err;
392
393	mutex_lock(&regulator_list_mutex);
394
395	ww_acquire_init(ww_ctx, &regulator_ww_class);
396
397	do {
398		if (new_contended_rdev) {
399			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
400			old_contended_rdev = new_contended_rdev;
401			old_contended_rdev->ref_cnt++;
402			old_contended_rdev->mutex_owner = current;
403		}
404
405		err = regulator_lock_recursive(rdev,
406					       &new_contended_rdev,
407					       &old_contended_rdev,
408					       ww_ctx);
409
410		if (old_contended_rdev)
411			regulator_unlock(old_contended_rdev);
412
413	} while (err == -EDEADLK);
414
415	ww_acquire_done(ww_ctx);
416
417	mutex_unlock(&regulator_list_mutex);
418}
419
420/**
421 * of_get_child_regulator - get a child regulator device node
422 * based on supply name
423 * @parent: Parent device node
424 * @prop_name: Combination regulator supply name and "-supply"
425 *
426 * Traverse all child nodes.
427 * Extract the child regulator device node corresponding to the supply name.
428 * returns the device node corresponding to the regulator if found, else
429 * returns NULL.
430 */
431static struct device_node *of_get_child_regulator(struct device_node *parent,
432						  const char *prop_name)
433{
434	struct device_node *regnode = NULL;
435	struct device_node *child = NULL;
436
437	for_each_child_of_node(parent, child) {
438		regnode = of_parse_phandle(child, prop_name, 0);
439
440		if (!regnode) {
441			regnode = of_get_child_regulator(child, prop_name);
442			if (regnode)
443				goto err_node_put;
444		} else {
445			goto err_node_put;
446		}
447	}
448	return NULL;
449
450err_node_put:
451	of_node_put(child);
452	return regnode;
453}
454
455/**
456 * of_get_regulator - get a regulator device node based on supply name
457 * @dev: Device pointer for the consumer (of regulator) device
458 * @supply: regulator supply name
459 *
460 * Extract the regulator device node corresponding to the supply name.
461 * returns the device node corresponding to the regulator if found, else
462 * returns NULL.
463 */
464static struct device_node *of_get_regulator(struct device *dev, const char *supply)
465{
466	struct device_node *regnode = NULL;
467	char prop_name[64]; /* 64 is max size of property name */
468
469	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
470
471	snprintf(prop_name, 64, "%s-supply", supply);
472	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
473
474	if (!regnode) {
475		regnode = of_get_child_regulator(dev->of_node, prop_name);
476		if (regnode)
477			return regnode;
478
479		dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
480				prop_name, dev->of_node);
481		return NULL;
482	}
483	return regnode;
484}
485
486/* Platform voltage constraint check */
487int regulator_check_voltage(struct regulator_dev *rdev,
488			    int *min_uV, int *max_uV)
489{
490	BUG_ON(*min_uV > *max_uV);
491
492	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
493		rdev_err(rdev, "voltage operation not allowed\n");
494		return -EPERM;
495	}
496
497	if (*max_uV > rdev->constraints->max_uV)
498		*max_uV = rdev->constraints->max_uV;
499	if (*min_uV < rdev->constraints->min_uV)
500		*min_uV = rdev->constraints->min_uV;
501
502	if (*min_uV > *max_uV) {
503		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
504			 *min_uV, *max_uV);
505		return -EINVAL;
506	}
507
508	return 0;
509}
510
511/* return 0 if the state is valid */
512static int regulator_check_states(suspend_state_t state)
513{
514	return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
515}
516
517/* Make sure we select a voltage that suits the needs of all
518 * regulator consumers
519 */
520int regulator_check_consumers(struct regulator_dev *rdev,
521			      int *min_uV, int *max_uV,
522			      suspend_state_t state)
523{
524	struct regulator *regulator;
525	struct regulator_voltage *voltage;
526
527	list_for_each_entry(regulator, &rdev->consumer_list, list) {
528		voltage = &regulator->voltage[state];
529		/*
530		 * Assume consumers that didn't say anything are OK
531		 * with anything in the constraint range.
532		 */
533		if (!voltage->min_uV && !voltage->max_uV)
534			continue;
535
536		if (*max_uV > voltage->max_uV)
537			*max_uV = voltage->max_uV;
538		if (*min_uV < voltage->min_uV)
539			*min_uV = voltage->min_uV;
540	}
541
542	if (*min_uV > *max_uV) {
543		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
544			*min_uV, *max_uV);
545		return -EINVAL;
546	}
547
548	return 0;
549}
550
551/* current constraint check */
552static int regulator_check_current_limit(struct regulator_dev *rdev,
553					int *min_uA, int *max_uA)
554{
555	BUG_ON(*min_uA > *max_uA);
556
557	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
558		rdev_err(rdev, "current operation not allowed\n");
559		return -EPERM;
560	}
561
562	if (*max_uA > rdev->constraints->max_uA)
563		*max_uA = rdev->constraints->max_uA;
564	if (*min_uA < rdev->constraints->min_uA)
565		*min_uA = rdev->constraints->min_uA;
566
567	if (*min_uA > *max_uA) {
568		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
569			 *min_uA, *max_uA);
570		return -EINVAL;
571	}
572
573	return 0;
574}
575
576/* operating mode constraint check */
577static int regulator_mode_constrain(struct regulator_dev *rdev,
578				    unsigned int *mode)
579{
580	switch (*mode) {
581	case REGULATOR_MODE_FAST:
582	case REGULATOR_MODE_NORMAL:
583	case REGULATOR_MODE_IDLE:
584	case REGULATOR_MODE_STANDBY:
585		break;
586	default:
587		rdev_err(rdev, "invalid mode %x specified\n", *mode);
588		return -EINVAL;
589	}
590
591	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
592		rdev_err(rdev, "mode operation not allowed\n");
593		return -EPERM;
594	}
595
596	/* The modes are bitmasks, the most power hungry modes having
597	 * the lowest values. If the requested mode isn't supported
598	 * try higher modes.
599	 */
600	while (*mode) {
601		if (rdev->constraints->valid_modes_mask & *mode)
602			return 0;
603		*mode /= 2;
604	}
605
606	return -EINVAL;
607}
608
609static inline struct regulator_state *
610regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
611{
612	if (rdev->constraints == NULL)
613		return NULL;
614
615	switch (state) {
616	case PM_SUSPEND_STANDBY:
617		return &rdev->constraints->state_standby;
618	case PM_SUSPEND_MEM:
619		return &rdev->constraints->state_mem;
620	case PM_SUSPEND_MAX:
621		return &rdev->constraints->state_disk;
622	default:
623		return NULL;
624	}
625}
626
627static const struct regulator_state *
628regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
629{
630	const struct regulator_state *rstate;
631
632	rstate = regulator_get_suspend_state(rdev, state);
633	if (rstate == NULL)
634		return NULL;
635
636	/* If we have no suspend mode configuration don't set anything;
637	 * only warn if the driver implements set_suspend_voltage or
638	 * set_suspend_mode callback.
639	 */
640	if (rstate->enabled != ENABLE_IN_SUSPEND &&
641	    rstate->enabled != DISABLE_IN_SUSPEND) {
642		if (rdev->desc->ops->set_suspend_voltage ||
643		    rdev->desc->ops->set_suspend_mode)
644			rdev_warn(rdev, "No configuration\n");
645		return NULL;
646	}
647
648	return rstate;
649}
650
651static ssize_t microvolts_show(struct device *dev,
652			       struct device_attribute *attr, char *buf)
653{
654	struct regulator_dev *rdev = dev_get_drvdata(dev);
655	int uV;
656
657	regulator_lock(rdev);
658	uV = regulator_get_voltage_rdev(rdev);
659	regulator_unlock(rdev);
660
661	if (uV < 0)
662		return uV;
663	return sprintf(buf, "%d\n", uV);
664}
665static DEVICE_ATTR_RO(microvolts);
666
667static ssize_t microamps_show(struct device *dev,
668			      struct device_attribute *attr, char *buf)
669{
670	struct regulator_dev *rdev = dev_get_drvdata(dev);
671
672	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
673}
674static DEVICE_ATTR_RO(microamps);
675
676static ssize_t name_show(struct device *dev, struct device_attribute *attr,
677			 char *buf)
678{
679	struct regulator_dev *rdev = dev_get_drvdata(dev);
680
681	return sprintf(buf, "%s\n", rdev_get_name(rdev));
682}
683static DEVICE_ATTR_RO(name);
684
685static const char *regulator_opmode_to_str(int mode)
686{
687	switch (mode) {
688	case REGULATOR_MODE_FAST:
689		return "fast";
690	case REGULATOR_MODE_NORMAL:
691		return "normal";
692	case REGULATOR_MODE_IDLE:
693		return "idle";
694	case REGULATOR_MODE_STANDBY:
695		return "standby";
696	}
697	return "unknown";
698}
699
700static ssize_t regulator_print_opmode(char *buf, int mode)
701{
702	return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
703}
704
705static ssize_t opmode_show(struct device *dev,
706			   struct device_attribute *attr, char *buf)
707{
708	struct regulator_dev *rdev = dev_get_drvdata(dev);
709
710	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
711}
712static DEVICE_ATTR_RO(opmode);
713
714static ssize_t regulator_print_state(char *buf, int state)
715{
716	if (state > 0)
717		return sprintf(buf, "enabled\n");
718	else if (state == 0)
719		return sprintf(buf, "disabled\n");
720	else
721		return sprintf(buf, "unknown\n");
722}
723
724static ssize_t state_show(struct device *dev,
725			  struct device_attribute *attr, char *buf)
726{
727	struct regulator_dev *rdev = dev_get_drvdata(dev);
728	ssize_t ret;
729
730	regulator_lock(rdev);
731	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
732	regulator_unlock(rdev);
733
734	return ret;
735}
736static DEVICE_ATTR_RO(state);
737
738static ssize_t status_show(struct device *dev,
739			   struct device_attribute *attr, char *buf)
740{
741	struct regulator_dev *rdev = dev_get_drvdata(dev);
742	int status;
743	char *label;
744
745	status = rdev->desc->ops->get_status(rdev);
746	if (status < 0)
747		return status;
748
749	switch (status) {
750	case REGULATOR_STATUS_OFF:
751		label = "off";
752		break;
753	case REGULATOR_STATUS_ON:
754		label = "on";
755		break;
756	case REGULATOR_STATUS_ERROR:
757		label = "error";
758		break;
759	case REGULATOR_STATUS_FAST:
760		label = "fast";
761		break;
762	case REGULATOR_STATUS_NORMAL:
763		label = "normal";
764		break;
765	case REGULATOR_STATUS_IDLE:
766		label = "idle";
767		break;
768	case REGULATOR_STATUS_STANDBY:
769		label = "standby";
770		break;
771	case REGULATOR_STATUS_BYPASS:
772		label = "bypass";
773		break;
774	case REGULATOR_STATUS_UNDEFINED:
775		label = "undefined";
776		break;
777	default:
778		return -ERANGE;
779	}
780
781	return sprintf(buf, "%s\n", label);
782}
783static DEVICE_ATTR_RO(status);
784
785static ssize_t min_microamps_show(struct device *dev,
786				  struct device_attribute *attr, char *buf)
787{
788	struct regulator_dev *rdev = dev_get_drvdata(dev);
789
790	if (!rdev->constraints)
791		return sprintf(buf, "constraint not defined\n");
792
793	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
794}
795static DEVICE_ATTR_RO(min_microamps);
796
797static ssize_t max_microamps_show(struct device *dev,
798				  struct device_attribute *attr, char *buf)
799{
800	struct regulator_dev *rdev = dev_get_drvdata(dev);
801
802	if (!rdev->constraints)
803		return sprintf(buf, "constraint not defined\n");
804
805	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
806}
807static DEVICE_ATTR_RO(max_microamps);
808
809static ssize_t min_microvolts_show(struct device *dev,
810				   struct device_attribute *attr, char *buf)
811{
812	struct regulator_dev *rdev = dev_get_drvdata(dev);
813
814	if (!rdev->constraints)
815		return sprintf(buf, "constraint not defined\n");
816
817	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
818}
819static DEVICE_ATTR_RO(min_microvolts);
820
821static ssize_t max_microvolts_show(struct device *dev,
822				   struct device_attribute *attr, char *buf)
823{
824	struct regulator_dev *rdev = dev_get_drvdata(dev);
825
826	if (!rdev->constraints)
827		return sprintf(buf, "constraint not defined\n");
828
829	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
830}
831static DEVICE_ATTR_RO(max_microvolts);
832
833static ssize_t requested_microamps_show(struct device *dev,
834					struct device_attribute *attr, char *buf)
835{
836	struct regulator_dev *rdev = dev_get_drvdata(dev);
837	struct regulator *regulator;
838	int uA = 0;
839
840	regulator_lock(rdev);
841	list_for_each_entry(regulator, &rdev->consumer_list, list) {
842		if (regulator->enable_count)
843			uA += regulator->uA_load;
844	}
845	regulator_unlock(rdev);
846	return sprintf(buf, "%d\n", uA);
847}
848static DEVICE_ATTR_RO(requested_microamps);
849
850static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
851			      char *buf)
852{
853	struct regulator_dev *rdev = dev_get_drvdata(dev);
854	return sprintf(buf, "%d\n", rdev->use_count);
855}
856static DEVICE_ATTR_RO(num_users);
857
858static ssize_t type_show(struct device *dev, struct device_attribute *attr,
859			 char *buf)
860{
861	struct regulator_dev *rdev = dev_get_drvdata(dev);
862
863	switch (rdev->desc->type) {
864	case REGULATOR_VOLTAGE:
865		return sprintf(buf, "voltage\n");
866	case REGULATOR_CURRENT:
867		return sprintf(buf, "current\n");
868	}
869	return sprintf(buf, "unknown\n");
870}
871static DEVICE_ATTR_RO(type);
872
873static ssize_t suspend_mem_microvolts_show(struct device *dev,
874					   struct device_attribute *attr, char *buf)
875{
876	struct regulator_dev *rdev = dev_get_drvdata(dev);
877
878	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
879}
880static DEVICE_ATTR_RO(suspend_mem_microvolts);
881
882static ssize_t suspend_disk_microvolts_show(struct device *dev,
883					    struct device_attribute *attr, char *buf)
884{
885	struct regulator_dev *rdev = dev_get_drvdata(dev);
886
887	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
888}
889static DEVICE_ATTR_RO(suspend_disk_microvolts);
890
891static ssize_t suspend_standby_microvolts_show(struct device *dev,
892					       struct device_attribute *attr, char *buf)
893{
894	struct regulator_dev *rdev = dev_get_drvdata(dev);
895
896	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
897}
898static DEVICE_ATTR_RO(suspend_standby_microvolts);
899
900static ssize_t suspend_mem_mode_show(struct device *dev,
901				     struct device_attribute *attr, char *buf)
902{
903	struct regulator_dev *rdev = dev_get_drvdata(dev);
904
905	return regulator_print_opmode(buf,
906		rdev->constraints->state_mem.mode);
907}
908static DEVICE_ATTR_RO(suspend_mem_mode);
909
910static ssize_t suspend_disk_mode_show(struct device *dev,
911				      struct device_attribute *attr, char *buf)
912{
913	struct regulator_dev *rdev = dev_get_drvdata(dev);
914
915	return regulator_print_opmode(buf,
916		rdev->constraints->state_disk.mode);
917}
918static DEVICE_ATTR_RO(suspend_disk_mode);
919
920static ssize_t suspend_standby_mode_show(struct device *dev,
921					 struct device_attribute *attr, char *buf)
922{
923	struct regulator_dev *rdev = dev_get_drvdata(dev);
924
925	return regulator_print_opmode(buf,
926		rdev->constraints->state_standby.mode);
927}
928static DEVICE_ATTR_RO(suspend_standby_mode);
929
930static ssize_t suspend_mem_state_show(struct device *dev,
931				      struct device_attribute *attr, char *buf)
932{
933	struct regulator_dev *rdev = dev_get_drvdata(dev);
934
935	return regulator_print_state(buf,
936			rdev->constraints->state_mem.enabled);
937}
938static DEVICE_ATTR_RO(suspend_mem_state);
939
940static ssize_t suspend_disk_state_show(struct device *dev,
941				       struct device_attribute *attr, char *buf)
942{
943	struct regulator_dev *rdev = dev_get_drvdata(dev);
944
945	return regulator_print_state(buf,
946			rdev->constraints->state_disk.enabled);
947}
948static DEVICE_ATTR_RO(suspend_disk_state);
949
950static ssize_t suspend_standby_state_show(struct device *dev,
951					  struct device_attribute *attr, char *buf)
952{
953	struct regulator_dev *rdev = dev_get_drvdata(dev);
954
955	return regulator_print_state(buf,
956			rdev->constraints->state_standby.enabled);
957}
958static DEVICE_ATTR_RO(suspend_standby_state);
959
960static ssize_t bypass_show(struct device *dev,
961			   struct device_attribute *attr, char *buf)
962{
963	struct regulator_dev *rdev = dev_get_drvdata(dev);
964	const char *report;
965	bool bypass;
966	int ret;
967
968	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
969
970	if (ret != 0)
971		report = "unknown";
972	else if (bypass)
973		report = "enabled";
974	else
975		report = "disabled";
976
977	return sprintf(buf, "%s\n", report);
978}
979static DEVICE_ATTR_RO(bypass);
980
981#define REGULATOR_ERROR_ATTR(name, bit)							\
982	static ssize_t name##_show(struct device *dev, struct device_attribute *attr,	\
983				   char *buf)						\
984	{										\
985		int ret;								\
986		unsigned int flags;							\
987		struct regulator_dev *rdev = dev_get_drvdata(dev);			\
988		ret = _regulator_get_error_flags(rdev, &flags);				\
989		if (ret)								\
990			return ret;							\
991		return sysfs_emit(buf, "%d\n", !!(flags & (bit)));			\
992	}										\
993	static DEVICE_ATTR_RO(name)
994
995REGULATOR_ERROR_ATTR(under_voltage, REGULATOR_ERROR_UNDER_VOLTAGE);
996REGULATOR_ERROR_ATTR(over_current, REGULATOR_ERROR_OVER_CURRENT);
997REGULATOR_ERROR_ATTR(regulation_out, REGULATOR_ERROR_REGULATION_OUT);
998REGULATOR_ERROR_ATTR(fail, REGULATOR_ERROR_FAIL);
999REGULATOR_ERROR_ATTR(over_temp, REGULATOR_ERROR_OVER_TEMP);
1000REGULATOR_ERROR_ATTR(under_voltage_warn, REGULATOR_ERROR_UNDER_VOLTAGE_WARN);
1001REGULATOR_ERROR_ATTR(over_current_warn, REGULATOR_ERROR_OVER_CURRENT_WARN);
1002REGULATOR_ERROR_ATTR(over_voltage_warn, REGULATOR_ERROR_OVER_VOLTAGE_WARN);
1003REGULATOR_ERROR_ATTR(over_temp_warn, REGULATOR_ERROR_OVER_TEMP_WARN);
1004
1005/* Calculate the new optimum regulator operating mode based on the new total
1006 * consumer load. All locks held by caller
1007 */
1008static int drms_uA_update(struct regulator_dev *rdev)
1009{
1010	struct regulator *sibling;
1011	int current_uA = 0, output_uV, input_uV, err;
1012	unsigned int mode;
1013
1014	/*
1015	 * first check to see if we can set modes at all, otherwise just
1016	 * tell the consumer everything is OK.
1017	 */
1018	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
1019		rdev_dbg(rdev, "DRMS operation not allowed\n");
1020		return 0;
1021	}
1022
1023	if (!rdev->desc->ops->get_optimum_mode &&
1024	    !rdev->desc->ops->set_load)
1025		return 0;
1026
1027	if (!rdev->desc->ops->set_mode &&
1028	    !rdev->desc->ops->set_load)
1029		return -EINVAL;
1030
1031	/* calc total requested load */
1032	list_for_each_entry(sibling, &rdev->consumer_list, list) {
1033		if (sibling->enable_count)
1034			current_uA += sibling->uA_load;
1035	}
1036
1037	current_uA += rdev->constraints->system_load;
1038
1039	if (rdev->desc->ops->set_load) {
1040		/* set the optimum mode for our new total regulator load */
1041		err = rdev->desc->ops->set_load(rdev, current_uA);
1042		if (err < 0)
1043			rdev_err(rdev, "failed to set load %d: %pe\n",
1044				 current_uA, ERR_PTR(err));
1045	} else {
1046		/*
1047		 * Unfortunately in some cases the constraints->valid_ops has
1048		 * REGULATOR_CHANGE_DRMS but there are no valid modes listed.
1049		 * That's not really legit but we won't consider it a fatal
1050		 * error here. We'll treat it as if REGULATOR_CHANGE_DRMS
1051		 * wasn't set.
1052		 */
1053		if (!rdev->constraints->valid_modes_mask) {
1054			rdev_dbg(rdev, "Can change modes; but no valid mode\n");
1055			return 0;
1056		}
1057
1058		/* get output voltage */
1059		output_uV = regulator_get_voltage_rdev(rdev);
1060
1061		/*
1062		 * Don't return an error; if regulator driver cares about
1063		 * output_uV then it's up to the driver to validate.
1064		 */
1065		if (output_uV <= 0)
1066			rdev_dbg(rdev, "invalid output voltage found\n");
1067
1068		/* get input voltage */
1069		input_uV = 0;
1070		if (rdev->supply)
1071			input_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
1072		if (input_uV <= 0)
1073			input_uV = rdev->constraints->input_uV;
1074
1075		/*
1076		 * Don't return an error; if regulator driver cares about
1077		 * input_uV then it's up to the driver to validate.
1078		 */
1079		if (input_uV <= 0)
1080			rdev_dbg(rdev, "invalid input voltage found\n");
1081
1082		/* now get the optimum mode for our new total regulator load */
1083		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
1084							 output_uV, current_uA);
1085
1086		/* check the new mode is allowed */
1087		err = regulator_mode_constrain(rdev, &mode);
1088		if (err < 0) {
1089			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
1090				 current_uA, input_uV, output_uV, ERR_PTR(err));
1091			return err;
1092		}
1093
1094		err = rdev->desc->ops->set_mode(rdev, mode);
1095		if (err < 0)
1096			rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
1097				 mode, ERR_PTR(err));
1098	}
1099
1100	return err;
1101}
1102
1103static int __suspend_set_state(struct regulator_dev *rdev,
1104			       const struct regulator_state *rstate)
1105{
1106	int ret = 0;
1107
1108	if (rstate->enabled == ENABLE_IN_SUSPEND &&
1109		rdev->desc->ops->set_suspend_enable)
1110		ret = rdev->desc->ops->set_suspend_enable(rdev);
1111	else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1112		rdev->desc->ops->set_suspend_disable)
1113		ret = rdev->desc->ops->set_suspend_disable(rdev);
1114	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1115		ret = 0;
1116
1117	if (ret < 0) {
1118		rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1119		return ret;
1120	}
1121
1122	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1123		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1124		if (ret < 0) {
1125			rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1126			return ret;
1127		}
1128	}
1129
1130	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1131		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1132		if (ret < 0) {
1133			rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1134			return ret;
1135		}
1136	}
1137
1138	return ret;
1139}
1140
1141static int suspend_set_initial_state(struct regulator_dev *rdev)
1142{
1143	const struct regulator_state *rstate;
1144
1145	rstate = regulator_get_suspend_state_check(rdev,
1146			rdev->constraints->initial_state);
1147	if (!rstate)
1148		return 0;
1149
1150	return __suspend_set_state(rdev, rstate);
1151}
1152
1153#if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
1154static void print_constraints_debug(struct regulator_dev *rdev)
1155{
1156	struct regulation_constraints *constraints = rdev->constraints;
1157	char buf[160] = "";
1158	size_t len = sizeof(buf) - 1;
1159	int count = 0;
1160	int ret;
1161
1162	if (constraints->min_uV && constraints->max_uV) {
1163		if (constraints->min_uV == constraints->max_uV)
1164			count += scnprintf(buf + count, len - count, "%d mV ",
1165					   constraints->min_uV / 1000);
1166		else
1167			count += scnprintf(buf + count, len - count,
1168					   "%d <--> %d mV ",
1169					   constraints->min_uV / 1000,
1170					   constraints->max_uV / 1000);
1171	}
1172
1173	if (!constraints->min_uV ||
1174	    constraints->min_uV != constraints->max_uV) {
1175		ret = regulator_get_voltage_rdev(rdev);
1176		if (ret > 0)
1177			count += scnprintf(buf + count, len - count,
1178					   "at %d mV ", ret / 1000);
1179	}
1180
1181	if (constraints->uV_offset)
1182		count += scnprintf(buf + count, len - count, "%dmV offset ",
1183				   constraints->uV_offset / 1000);
1184
1185	if (constraints->min_uA && constraints->max_uA) {
1186		if (constraints->min_uA == constraints->max_uA)
1187			count += scnprintf(buf + count, len - count, "%d mA ",
1188					   constraints->min_uA / 1000);
1189		else
1190			count += scnprintf(buf + count, len - count,
1191					   "%d <--> %d mA ",
1192					   constraints->min_uA / 1000,
1193					   constraints->max_uA / 1000);
1194	}
1195
1196	if (!constraints->min_uA ||
1197	    constraints->min_uA != constraints->max_uA) {
1198		ret = _regulator_get_current_limit(rdev);
1199		if (ret > 0)
1200			count += scnprintf(buf + count, len - count,
1201					   "at %d mA ", ret / 1000);
1202	}
1203
1204	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1205		count += scnprintf(buf + count, len - count, "fast ");
1206	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1207		count += scnprintf(buf + count, len - count, "normal ");
1208	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1209		count += scnprintf(buf + count, len - count, "idle ");
1210	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1211		count += scnprintf(buf + count, len - count, "standby ");
1212
1213	if (!count)
1214		count = scnprintf(buf, len, "no parameters");
1215	else
1216		--count;
1217
1218	count += scnprintf(buf + count, len - count, ", %s",
1219		_regulator_is_enabled(rdev) ? "enabled" : "disabled");
1220
1221	rdev_dbg(rdev, "%s\n", buf);
1222}
1223#else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1224static inline void print_constraints_debug(struct regulator_dev *rdev) {}
1225#endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1226
1227static void print_constraints(struct regulator_dev *rdev)
1228{
1229	struct regulation_constraints *constraints = rdev->constraints;
1230
1231	print_constraints_debug(rdev);
1232
1233	if ((constraints->min_uV != constraints->max_uV) &&
1234	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1235		rdev_warn(rdev,
1236			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1237}
1238
1239static int machine_constraints_voltage(struct regulator_dev *rdev,
1240	struct regulation_constraints *constraints)
1241{
1242	const struct regulator_ops *ops = rdev->desc->ops;
1243	int ret;
1244
1245	/* do we need to apply the constraint voltage */
1246	if (rdev->constraints->apply_uV &&
1247	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
1248		int target_min, target_max;
1249		int current_uV = regulator_get_voltage_rdev(rdev);
1250
1251		if (current_uV == -ENOTRECOVERABLE) {
1252			/* This regulator can't be read and must be initialized */
1253			rdev_info(rdev, "Setting %d-%duV\n",
1254				  rdev->constraints->min_uV,
1255				  rdev->constraints->max_uV);
1256			_regulator_do_set_voltage(rdev,
1257						  rdev->constraints->min_uV,
1258						  rdev->constraints->max_uV);
1259			current_uV = regulator_get_voltage_rdev(rdev);
1260		}
1261
1262		if (current_uV < 0) {
1263			if (current_uV != -EPROBE_DEFER)
1264				rdev_err(rdev,
1265					 "failed to get the current voltage: %pe\n",
1266					 ERR_PTR(current_uV));
1267			return current_uV;
1268		}
1269
1270		/*
1271		 * If we're below the minimum voltage move up to the
1272		 * minimum voltage, if we're above the maximum voltage
1273		 * then move down to the maximum.
1274		 */
1275		target_min = current_uV;
1276		target_max = current_uV;
1277
1278		if (current_uV < rdev->constraints->min_uV) {
1279			target_min = rdev->constraints->min_uV;
1280			target_max = rdev->constraints->min_uV;
1281		}
1282
1283		if (current_uV > rdev->constraints->max_uV) {
1284			target_min = rdev->constraints->max_uV;
1285			target_max = rdev->constraints->max_uV;
1286		}
1287
1288		if (target_min != current_uV || target_max != current_uV) {
1289			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1290				  current_uV, target_min, target_max);
1291			ret = _regulator_do_set_voltage(
1292				rdev, target_min, target_max);
1293			if (ret < 0) {
1294				rdev_err(rdev,
1295					"failed to apply %d-%duV constraint: %pe\n",
1296					target_min, target_max, ERR_PTR(ret));
1297				return ret;
1298			}
1299		}
1300	}
1301
1302	/* constrain machine-level voltage specs to fit
1303	 * the actual range supported by this regulator.
1304	 */
1305	if (ops->list_voltage && rdev->desc->n_voltages) {
1306		int	count = rdev->desc->n_voltages;
1307		int	i;
1308		int	min_uV = INT_MAX;
1309		int	max_uV = INT_MIN;
1310		int	cmin = constraints->min_uV;
1311		int	cmax = constraints->max_uV;
1312
1313		/* it's safe to autoconfigure fixed-voltage supplies
1314		 * and the constraints are used by list_voltage.
1315		 */
1316		if (count == 1 && !cmin) {
1317			cmin = 1;
1318			cmax = INT_MAX;
1319			constraints->min_uV = cmin;
1320			constraints->max_uV = cmax;
1321		}
1322
1323		/* voltage constraints are optional */
1324		if ((cmin == 0) && (cmax == 0))
1325			return 0;
1326
1327		/* else require explicit machine-level constraints */
1328		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1329			rdev_err(rdev, "invalid voltage constraints\n");
1330			return -EINVAL;
1331		}
1332
1333		/* no need to loop voltages if range is continuous */
1334		if (rdev->desc->continuous_voltage_range)
1335			return 0;
1336
1337		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1338		for (i = 0; i < count; i++) {
1339			int	value;
1340
1341			value = ops->list_voltage(rdev, i);
1342			if (value <= 0)
1343				continue;
1344
1345			/* maybe adjust [min_uV..max_uV] */
1346			if (value >= cmin && value < min_uV)
1347				min_uV = value;
1348			if (value <= cmax && value > max_uV)
1349				max_uV = value;
1350		}
1351
1352		/* final: [min_uV..max_uV] valid iff constraints valid */
1353		if (max_uV < min_uV) {
1354			rdev_err(rdev,
1355				 "unsupportable voltage constraints %u-%uuV\n",
1356				 min_uV, max_uV);
1357			return -EINVAL;
1358		}
1359
1360		/* use regulator's subset of machine constraints */
1361		if (constraints->min_uV < min_uV) {
1362			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1363				 constraints->min_uV, min_uV);
1364			constraints->min_uV = min_uV;
1365		}
1366		if (constraints->max_uV > max_uV) {
1367			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1368				 constraints->max_uV, max_uV);
1369			constraints->max_uV = max_uV;
1370		}
1371	}
1372
1373	return 0;
1374}
1375
1376static int machine_constraints_current(struct regulator_dev *rdev,
1377	struct regulation_constraints *constraints)
1378{
1379	const struct regulator_ops *ops = rdev->desc->ops;
1380	int ret;
1381
1382	if (!constraints->min_uA && !constraints->max_uA)
1383		return 0;
1384
1385	if (constraints->min_uA > constraints->max_uA) {
1386		rdev_err(rdev, "Invalid current constraints\n");
1387		return -EINVAL;
1388	}
1389
1390	if (!ops->set_current_limit || !ops->get_current_limit) {
1391		rdev_warn(rdev, "Operation of current configuration missing\n");
1392		return 0;
1393	}
1394
1395	/* Set regulator current in constraints range */
1396	ret = ops->set_current_limit(rdev, constraints->min_uA,
1397			constraints->max_uA);
1398	if (ret < 0) {
1399		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1400		return ret;
1401	}
1402
1403	return 0;
1404}
1405
1406static int _regulator_do_enable(struct regulator_dev *rdev);
1407
1408static int notif_set_limit(struct regulator_dev *rdev,
1409			   int (*set)(struct regulator_dev *, int, int, bool),
1410			   int limit, int severity)
1411{
1412	bool enable;
1413
1414	if (limit == REGULATOR_NOTIF_LIMIT_DISABLE) {
1415		enable = false;
1416		limit = 0;
1417	} else {
1418		enable = true;
1419	}
1420
1421	if (limit == REGULATOR_NOTIF_LIMIT_ENABLE)
1422		limit = 0;
1423
1424	return set(rdev, limit, severity, enable);
1425}
1426
1427static int handle_notify_limits(struct regulator_dev *rdev,
1428			int (*set)(struct regulator_dev *, int, int, bool),
1429			struct notification_limit *limits)
1430{
1431	int ret = 0;
1432
1433	if (!set)
1434		return -EOPNOTSUPP;
1435
1436	if (limits->prot)
1437		ret = notif_set_limit(rdev, set, limits->prot,
1438				      REGULATOR_SEVERITY_PROT);
1439	if (ret)
1440		return ret;
1441
1442	if (limits->err)
1443		ret = notif_set_limit(rdev, set, limits->err,
1444				      REGULATOR_SEVERITY_ERR);
1445	if (ret)
1446		return ret;
1447
1448	if (limits->warn)
1449		ret = notif_set_limit(rdev, set, limits->warn,
1450				      REGULATOR_SEVERITY_WARN);
1451
1452	return ret;
1453}
1454/**
1455 * set_machine_constraints - sets regulator constraints
1456 * @rdev: regulator source
1457 *
1458 * Allows platform initialisation code to define and constrain
1459 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1460 * Constraints *must* be set by platform code in order for some
1461 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1462 * set_mode.
1463 */
1464static int set_machine_constraints(struct regulator_dev *rdev)
1465{
1466	int ret = 0;
1467	const struct regulator_ops *ops = rdev->desc->ops;
1468
1469	ret = machine_constraints_voltage(rdev, rdev->constraints);
1470	if (ret != 0)
1471		return ret;
1472
1473	ret = machine_constraints_current(rdev, rdev->constraints);
1474	if (ret != 0)
1475		return ret;
1476
1477	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1478		ret = ops->set_input_current_limit(rdev,
1479						   rdev->constraints->ilim_uA);
1480		if (ret < 0) {
1481			rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1482			return ret;
1483		}
1484	}
1485
1486	/* do we need to setup our suspend state */
1487	if (rdev->constraints->initial_state) {
1488		ret = suspend_set_initial_state(rdev);
1489		if (ret < 0) {
1490			rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1491			return ret;
1492		}
1493	}
1494
1495	if (rdev->constraints->initial_mode) {
1496		if (!ops->set_mode) {
1497			rdev_err(rdev, "no set_mode operation\n");
1498			return -EINVAL;
1499		}
1500
1501		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1502		if (ret < 0) {
1503			rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1504			return ret;
1505		}
1506	} else if (rdev->constraints->system_load) {
1507		/*
1508		 * We'll only apply the initial system load if an
1509		 * initial mode wasn't specified.
1510		 */
1511		drms_uA_update(rdev);
1512	}
1513
1514	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1515		&& ops->set_ramp_delay) {
1516		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1517		if (ret < 0) {
1518			rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1519			return ret;
1520		}
1521	}
1522
1523	if (rdev->constraints->pull_down && ops->set_pull_down) {
1524		ret = ops->set_pull_down(rdev);
1525		if (ret < 0) {
1526			rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1527			return ret;
1528		}
1529	}
1530
1531	if (rdev->constraints->soft_start && ops->set_soft_start) {
1532		ret = ops->set_soft_start(rdev);
1533		if (ret < 0) {
1534			rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1535			return ret;
1536		}
1537	}
1538
1539	/*
1540	 * Existing logic does not warn if over_current_protection is given as
1541	 * a constraint but driver does not support that. I think we should
1542	 * warn about this type of issues as it is possible someone changes
1543	 * PMIC on board to another type - and the another PMIC's driver does
1544	 * not support setting protection. Board composer may happily believe
1545	 * the DT limits are respected - especially if the new PMIC HW also
1546	 * supports protection but the driver does not. I won't change the logic
1547	 * without hearing more experienced opinion on this though.
1548	 *
1549	 * If warning is seen as a good idea then we can merge handling the
1550	 * over-curret protection and detection and get rid of this special
1551	 * handling.
1552	 */
1553	if (rdev->constraints->over_current_protection
1554		&& ops->set_over_current_protection) {
1555		int lim = rdev->constraints->over_curr_limits.prot;
1556
1557		ret = ops->set_over_current_protection(rdev, lim,
1558						       REGULATOR_SEVERITY_PROT,
1559						       true);
1560		if (ret < 0) {
1561			rdev_err(rdev, "failed to set over current protection: %pe\n",
1562				 ERR_PTR(ret));
1563			return ret;
1564		}
1565	}
1566
1567	if (rdev->constraints->over_current_detection)
1568		ret = handle_notify_limits(rdev,
1569					   ops->set_over_current_protection,
1570					   &rdev->constraints->over_curr_limits);
1571	if (ret) {
1572		if (ret != -EOPNOTSUPP) {
1573			rdev_err(rdev, "failed to set over current limits: %pe\n",
1574				 ERR_PTR(ret));
1575			return ret;
1576		}
1577		rdev_warn(rdev,
1578			  "IC does not support requested over-current limits\n");
1579	}
1580
1581	if (rdev->constraints->over_voltage_detection)
1582		ret = handle_notify_limits(rdev,
1583					   ops->set_over_voltage_protection,
1584					   &rdev->constraints->over_voltage_limits);
1585	if (ret) {
1586		if (ret != -EOPNOTSUPP) {
1587			rdev_err(rdev, "failed to set over voltage limits %pe\n",
1588				 ERR_PTR(ret));
1589			return ret;
1590		}
1591		rdev_warn(rdev,
1592			  "IC does not support requested over voltage limits\n");
1593	}
1594
1595	if (rdev->constraints->under_voltage_detection)
1596		ret = handle_notify_limits(rdev,
1597					   ops->set_under_voltage_protection,
1598					   &rdev->constraints->under_voltage_limits);
1599	if (ret) {
1600		if (ret != -EOPNOTSUPP) {
1601			rdev_err(rdev, "failed to set under voltage limits %pe\n",
1602				 ERR_PTR(ret));
1603			return ret;
1604		}
1605		rdev_warn(rdev,
1606			  "IC does not support requested under voltage limits\n");
1607	}
1608
1609	if (rdev->constraints->over_temp_detection)
1610		ret = handle_notify_limits(rdev,
1611					   ops->set_thermal_protection,
1612					   &rdev->constraints->temp_limits);
1613	if (ret) {
1614		if (ret != -EOPNOTSUPP) {
1615			rdev_err(rdev, "failed to set temperature limits %pe\n",
1616				 ERR_PTR(ret));
1617			return ret;
1618		}
1619		rdev_warn(rdev,
1620			  "IC does not support requested temperature limits\n");
1621	}
1622
1623	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1624		bool ad_state = (rdev->constraints->active_discharge ==
1625			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1626
1627		ret = ops->set_active_discharge(rdev, ad_state);
1628		if (ret < 0) {
1629			rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1630			return ret;
1631		}
1632	}
1633
1634	/*
1635	 * If there is no mechanism for controlling the regulator then
1636	 * flag it as always_on so we don't end up duplicating checks
1637	 * for this so much.  Note that we could control the state of
1638	 * a supply to control the output on a regulator that has no
1639	 * direct control.
1640	 */
1641	if (!rdev->ena_pin && !ops->enable) {
1642		if (rdev->supply_name && !rdev->supply)
1643			return -EPROBE_DEFER;
1644
1645		if (rdev->supply)
1646			rdev->constraints->always_on =
1647				rdev->supply->rdev->constraints->always_on;
1648		else
1649			rdev->constraints->always_on = true;
1650	}
1651
1652	/* If the constraints say the regulator should be on at this point
1653	 * and we have control then make sure it is enabled.
1654	 */
1655	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1656		/* If we want to enable this regulator, make sure that we know
1657		 * the supplying regulator.
1658		 */
1659		if (rdev->supply_name && !rdev->supply)
1660			return -EPROBE_DEFER;
1661
1662		/* If supplying regulator has already been enabled,
1663		 * it's not intended to have use_count increment
1664		 * when rdev is only boot-on.
1665		 */
1666		if (rdev->supply &&
1667		    (rdev->constraints->always_on ||
1668		     !regulator_is_enabled(rdev->supply))) {
1669			ret = regulator_enable(rdev->supply);
1670			if (ret < 0) {
1671				_regulator_put(rdev->supply);
1672				rdev->supply = NULL;
1673				return ret;
1674			}
1675		}
1676
1677		ret = _regulator_do_enable(rdev);
1678		if (ret < 0 && ret != -EINVAL) {
1679			rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1680			return ret;
1681		}
1682
1683		if (rdev->constraints->always_on)
1684			rdev->use_count++;
1685	} else if (rdev->desc->off_on_delay) {
1686		rdev->last_off = ktime_get();
1687	}
1688
1689	print_constraints(rdev);
1690	return 0;
1691}
1692
1693/**
1694 * set_supply - set regulator supply regulator
1695 * @rdev: regulator (locked)
1696 * @supply_rdev: supply regulator (locked))
1697 *
1698 * Called by platform initialisation code to set the supply regulator for this
1699 * regulator. This ensures that a regulators supply will also be enabled by the
1700 * core if it's child is enabled.
1701 */
1702static int set_supply(struct regulator_dev *rdev,
1703		      struct regulator_dev *supply_rdev)
1704{
1705	int err;
1706
1707	rdev_dbg(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1708
1709	if (!try_module_get(supply_rdev->owner))
1710		return -ENODEV;
1711
1712	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1713	if (rdev->supply == NULL) {
1714		module_put(supply_rdev->owner);
1715		err = -ENOMEM;
1716		return err;
1717	}
1718	supply_rdev->open_count++;
1719
1720	return 0;
1721}
1722
1723/**
1724 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1725 * @rdev:         regulator source
1726 * @consumer_dev_name: dev_name() string for device supply applies to
1727 * @supply:       symbolic name for supply
1728 *
1729 * Allows platform initialisation code to map physical regulator
1730 * sources to symbolic names for supplies for use by devices.  Devices
1731 * should use these symbolic names to request regulators, avoiding the
1732 * need to provide board-specific regulator names as platform data.
1733 */
1734static int set_consumer_device_supply(struct regulator_dev *rdev,
1735				      const char *consumer_dev_name,
1736				      const char *supply)
1737{
1738	struct regulator_map *node, *new_node;
1739	int has_dev;
1740
1741	if (supply == NULL)
1742		return -EINVAL;
1743
1744	if (consumer_dev_name != NULL)
1745		has_dev = 1;
1746	else
1747		has_dev = 0;
1748
1749	new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1750	if (new_node == NULL)
1751		return -ENOMEM;
1752
1753	new_node->regulator = rdev;
1754	new_node->supply = supply;
1755
1756	if (has_dev) {
1757		new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1758		if (new_node->dev_name == NULL) {
1759			kfree(new_node);
1760			return -ENOMEM;
1761		}
1762	}
1763
1764	mutex_lock(&regulator_list_mutex);
1765	list_for_each_entry(node, &regulator_map_list, list) {
1766		if (node->dev_name && consumer_dev_name) {
1767			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1768				continue;
1769		} else if (node->dev_name || consumer_dev_name) {
1770			continue;
1771		}
1772
1773		if (strcmp(node->supply, supply) != 0)
1774			continue;
1775
1776		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1777			 consumer_dev_name,
1778			 dev_name(&node->regulator->dev),
1779			 node->regulator->desc->name,
1780			 supply,
1781			 dev_name(&rdev->dev), rdev_get_name(rdev));
1782		goto fail;
1783	}
1784
1785	list_add(&new_node->list, &regulator_map_list);
1786	mutex_unlock(&regulator_list_mutex);
1787
1788	return 0;
1789
1790fail:
1791	mutex_unlock(&regulator_list_mutex);
1792	kfree(new_node->dev_name);
1793	kfree(new_node);
1794	return -EBUSY;
1795}
1796
1797static void unset_regulator_supplies(struct regulator_dev *rdev)
1798{
1799	struct regulator_map *node, *n;
1800
1801	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1802		if (rdev == node->regulator) {
1803			list_del(&node->list);
1804			kfree(node->dev_name);
1805			kfree(node);
1806		}
1807	}
1808}
1809
1810#ifdef CONFIG_DEBUG_FS
1811static ssize_t constraint_flags_read_file(struct file *file,
1812					  char __user *user_buf,
1813					  size_t count, loff_t *ppos)
1814{
1815	const struct regulator *regulator = file->private_data;
1816	const struct regulation_constraints *c = regulator->rdev->constraints;
1817	char *buf;
1818	ssize_t ret;
1819
1820	if (!c)
1821		return 0;
1822
1823	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1824	if (!buf)
1825		return -ENOMEM;
1826
1827	ret = snprintf(buf, PAGE_SIZE,
1828			"always_on: %u\n"
1829			"boot_on: %u\n"
1830			"apply_uV: %u\n"
1831			"ramp_disable: %u\n"
1832			"soft_start: %u\n"
1833			"pull_down: %u\n"
1834			"over_current_protection: %u\n",
1835			c->always_on,
1836			c->boot_on,
1837			c->apply_uV,
1838			c->ramp_disable,
1839			c->soft_start,
1840			c->pull_down,
1841			c->over_current_protection);
1842
1843	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1844	kfree(buf);
1845
1846	return ret;
1847}
1848
1849#endif
1850
1851static const struct file_operations constraint_flags_fops = {
1852#ifdef CONFIG_DEBUG_FS
1853	.open = simple_open,
1854	.read = constraint_flags_read_file,
1855	.llseek = default_llseek,
1856#endif
1857};
1858
1859#define REG_STR_SIZE	64
1860
1861static struct regulator *create_regulator(struct regulator_dev *rdev,
1862					  struct device *dev,
1863					  const char *supply_name)
1864{
1865	struct regulator *regulator;
1866	int err = 0;
1867
1868	lockdep_assert_held_once(&rdev->mutex.base);
1869
1870	if (dev) {
1871		char buf[REG_STR_SIZE];
1872		int size;
1873
1874		size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1875				dev->kobj.name, supply_name);
1876		if (size >= REG_STR_SIZE)
1877			return NULL;
1878
1879		supply_name = kstrdup(buf, GFP_KERNEL);
1880		if (supply_name == NULL)
1881			return NULL;
1882	} else {
1883		supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1884		if (supply_name == NULL)
1885			return NULL;
1886	}
1887
1888	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1889	if (regulator == NULL) {
1890		kfree_const(supply_name);
1891		return NULL;
1892	}
1893
1894	regulator->rdev = rdev;
1895	regulator->supply_name = supply_name;
1896
1897	list_add(&regulator->list, &rdev->consumer_list);
1898
1899	if (dev) {
1900		regulator->dev = dev;
1901
1902		/* Add a link to the device sysfs entry */
1903		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1904					       supply_name);
1905		if (err) {
1906			rdev_dbg(rdev, "could not add device link %s: %pe\n",
1907				  dev->kobj.name, ERR_PTR(err));
1908			/* non-fatal */
1909		}
1910	}
1911
1912	if (err != -EEXIST)
1913		regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs);
1914	if (IS_ERR(regulator->debugfs))
1915		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1916
1917	debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1918			   &regulator->uA_load);
1919	debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1920			   &regulator->voltage[PM_SUSPEND_ON].min_uV);
1921	debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1922			   &regulator->voltage[PM_SUSPEND_ON].max_uV);
1923	debugfs_create_file("constraint_flags", 0444, regulator->debugfs,
1924			    regulator, &constraint_flags_fops);
1925
1926	/*
1927	 * Check now if the regulator is an always on regulator - if
1928	 * it is then we don't need to do nearly so much work for
1929	 * enable/disable calls.
1930	 */
1931	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1932	    _regulator_is_enabled(rdev))
1933		regulator->always_on = true;
1934
1935	return regulator;
1936}
1937
1938static int _regulator_get_enable_time(struct regulator_dev *rdev)
1939{
1940	if (rdev->constraints && rdev->constraints->enable_time)
1941		return rdev->constraints->enable_time;
1942	if (rdev->desc->ops->enable_time)
1943		return rdev->desc->ops->enable_time(rdev);
1944	return rdev->desc->enable_time;
1945}
1946
1947static struct regulator_supply_alias *regulator_find_supply_alias(
1948		struct device *dev, const char *supply)
1949{
1950	struct regulator_supply_alias *map;
1951
1952	list_for_each_entry(map, &regulator_supply_alias_list, list)
1953		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1954			return map;
1955
1956	return NULL;
1957}
1958
1959static void regulator_supply_alias(struct device **dev, const char **supply)
1960{
1961	struct regulator_supply_alias *map;
1962
1963	map = regulator_find_supply_alias(*dev, *supply);
1964	if (map) {
1965		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1966				*supply, map->alias_supply,
1967				dev_name(map->alias_dev));
1968		*dev = map->alias_dev;
1969		*supply = map->alias_supply;
1970	}
1971}
1972
1973static int regulator_match(struct device *dev, const void *data)
1974{
1975	struct regulator_dev *r = dev_to_rdev(dev);
1976
1977	return strcmp(rdev_get_name(r), data) == 0;
1978}
1979
1980static struct regulator_dev *regulator_lookup_by_name(const char *name)
1981{
1982	struct device *dev;
1983
1984	dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1985
1986	return dev ? dev_to_rdev(dev) : NULL;
1987}
1988
1989/**
1990 * regulator_dev_lookup - lookup a regulator device.
1991 * @dev: device for regulator "consumer".
1992 * @supply: Supply name or regulator ID.
1993 *
1994 * If successful, returns a struct regulator_dev that corresponds to the name
1995 * @supply and with the embedded struct device refcount incremented by one.
1996 * The refcount must be dropped by calling put_device().
1997 * On failure one of the following ERR-PTR-encoded values is returned:
1998 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1999 * in the future.
2000 */
2001static struct regulator_dev *regulator_dev_lookup(struct device *dev,
2002						  const char *supply)
2003{
2004	struct regulator_dev *r = NULL;
2005	struct device_node *node;
2006	struct regulator_map *map;
2007	const char *devname = NULL;
2008
2009	regulator_supply_alias(&dev, &supply);
2010
2011	/* first do a dt based lookup */
2012	if (dev && dev->of_node) {
2013		node = of_get_regulator(dev, supply);
2014		if (node) {
2015			r = of_find_regulator_by_node(node);
2016			of_node_put(node);
2017			if (r)
2018				return r;
2019
2020			/*
2021			 * We have a node, but there is no device.
2022			 * assume it has not registered yet.
2023			 */
2024			return ERR_PTR(-EPROBE_DEFER);
2025		}
2026	}
2027
2028	/* if not found, try doing it non-dt way */
2029	if (dev)
2030		devname = dev_name(dev);
2031
2032	mutex_lock(&regulator_list_mutex);
2033	list_for_each_entry(map, &regulator_map_list, list) {
2034		/* If the mapping has a device set up it must match */
2035		if (map->dev_name &&
2036		    (!devname || strcmp(map->dev_name, devname)))
2037			continue;
2038
2039		if (strcmp(map->supply, supply) == 0 &&
2040		    get_device(&map->regulator->dev)) {
2041			r = map->regulator;
2042			break;
2043		}
2044	}
2045	mutex_unlock(&regulator_list_mutex);
2046
2047	if (r)
2048		return r;
2049
2050	r = regulator_lookup_by_name(supply);
2051	if (r)
2052		return r;
2053
2054	return ERR_PTR(-ENODEV);
2055}
2056
2057static int regulator_resolve_supply(struct regulator_dev *rdev)
2058{
2059	struct regulator_dev *r;
2060	struct device *dev = rdev->dev.parent;
2061	struct ww_acquire_ctx ww_ctx;
2062	int ret = 0;
2063
2064	/* No supply to resolve? */
2065	if (!rdev->supply_name)
2066		return 0;
2067
2068	/* Supply already resolved? (fast-path without locking contention) */
2069	if (rdev->supply)
2070		return 0;
2071
2072	r = regulator_dev_lookup(dev, rdev->supply_name);
2073	if (IS_ERR(r)) {
2074		ret = PTR_ERR(r);
2075
2076		/* Did the lookup explicitly defer for us? */
2077		if (ret == -EPROBE_DEFER)
2078			goto out;
2079
2080		if (have_full_constraints()) {
2081			r = dummy_regulator_rdev;
2082			get_device(&r->dev);
2083		} else {
2084			dev_err(dev, "Failed to resolve %s-supply for %s\n",
2085				rdev->supply_name, rdev->desc->name);
2086			ret = -EPROBE_DEFER;
2087			goto out;
2088		}
2089	}
2090
2091	if (r == rdev) {
2092		dev_err(dev, "Supply for %s (%s) resolved to itself\n",
2093			rdev->desc->name, rdev->supply_name);
2094		if (!have_full_constraints()) {
2095			ret = -EINVAL;
2096			goto out;
2097		}
2098		r = dummy_regulator_rdev;
2099		get_device(&r->dev);
2100	}
2101
2102	/*
2103	 * If the supply's parent device is not the same as the
2104	 * regulator's parent device, then ensure the parent device
2105	 * is bound before we resolve the supply, in case the parent
2106	 * device get probe deferred and unregisters the supply.
2107	 */
2108	if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
2109		if (!device_is_bound(r->dev.parent)) {
2110			put_device(&r->dev);
2111			ret = -EPROBE_DEFER;
2112			goto out;
2113		}
2114	}
2115
2116	/* Recursively resolve the supply of the supply */
2117	ret = regulator_resolve_supply(r);
2118	if (ret < 0) {
2119		put_device(&r->dev);
2120		goto out;
2121	}
2122
2123	/*
2124	 * Recheck rdev->supply with rdev->mutex lock held to avoid a race
2125	 * between rdev->supply null check and setting rdev->supply in
2126	 * set_supply() from concurrent tasks.
2127	 */
2128	regulator_lock_two(rdev, r, &ww_ctx);
2129
2130	/* Supply just resolved by a concurrent task? */
2131	if (rdev->supply) {
2132		regulator_unlock_two(rdev, r, &ww_ctx);
2133		put_device(&r->dev);
2134		goto out;
2135	}
2136
2137	ret = set_supply(rdev, r);
2138	if (ret < 0) {
2139		regulator_unlock_two(rdev, r, &ww_ctx);
2140		put_device(&r->dev);
2141		goto out;
2142	}
2143
2144	regulator_unlock_two(rdev, r, &ww_ctx);
2145
2146	/*
2147	 * In set_machine_constraints() we may have turned this regulator on
2148	 * but we couldn't propagate to the supply if it hadn't been resolved
2149	 * yet.  Do it now.
2150	 */
2151	if (rdev->use_count) {
2152		ret = regulator_enable(rdev->supply);
2153		if (ret < 0) {
2154			_regulator_put(rdev->supply);
2155			rdev->supply = NULL;
2156			goto out;
2157		}
2158	}
2159
2160out:
2161	return ret;
2162}
2163
2164/* Internal regulator request function */
2165struct regulator *_regulator_get(struct device *dev, const char *id,
2166				 enum regulator_get_type get_type)
2167{
2168	struct regulator_dev *rdev;
2169	struct regulator *regulator;
2170	struct device_link *link;
2171	int ret;
2172
2173	if (get_type >= MAX_GET_TYPE) {
2174		dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
2175		return ERR_PTR(-EINVAL);
2176	}
2177
2178	if (id == NULL) {
2179		pr_err("get() with no identifier\n");
2180		return ERR_PTR(-EINVAL);
2181	}
2182
2183	rdev = regulator_dev_lookup(dev, id);
2184	if (IS_ERR(rdev)) {
2185		ret = PTR_ERR(rdev);
2186
2187		/*
2188		 * If regulator_dev_lookup() fails with error other
2189		 * than -ENODEV our job here is done, we simply return it.
2190		 */
2191		if (ret != -ENODEV)
2192			return ERR_PTR(ret);
2193
2194		if (!have_full_constraints()) {
2195			dev_warn(dev,
2196				 "incomplete constraints, dummy supplies not allowed\n");
2197			return ERR_PTR(-ENODEV);
2198		}
2199
2200		switch (get_type) {
2201		case NORMAL_GET:
2202			/*
2203			 * Assume that a regulator is physically present and
2204			 * enabled, even if it isn't hooked up, and just
2205			 * provide a dummy.
2206			 */
2207			dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
2208			rdev = dummy_regulator_rdev;
2209			get_device(&rdev->dev);
2210			break;
2211
2212		case EXCLUSIVE_GET:
2213			dev_warn(dev,
2214				 "dummy supplies not allowed for exclusive requests\n");
2215			fallthrough;
2216
2217		default:
2218			return ERR_PTR(-ENODEV);
2219		}
2220	}
2221
2222	if (rdev->exclusive) {
2223		regulator = ERR_PTR(-EPERM);
2224		put_device(&rdev->dev);
2225		return regulator;
2226	}
2227
2228	if (get_type == EXCLUSIVE_GET && rdev->open_count) {
2229		regulator = ERR_PTR(-EBUSY);
2230		put_device(&rdev->dev);
2231		return regulator;
2232	}
2233
2234	mutex_lock(&regulator_list_mutex);
2235	ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
2236	mutex_unlock(&regulator_list_mutex);
2237
2238	if (ret != 0) {
2239		regulator = ERR_PTR(-EPROBE_DEFER);
2240		put_device(&rdev->dev);
2241		return regulator;
2242	}
2243
2244	ret = regulator_resolve_supply(rdev);
2245	if (ret < 0) {
2246		regulator = ERR_PTR(ret);
2247		put_device(&rdev->dev);
2248		return regulator;
2249	}
2250
2251	if (!try_module_get(rdev->owner)) {
2252		regulator = ERR_PTR(-EPROBE_DEFER);
2253		put_device(&rdev->dev);
2254		return regulator;
2255	}
2256
2257	regulator_lock(rdev);
2258	regulator = create_regulator(rdev, dev, id);
2259	regulator_unlock(rdev);
2260	if (regulator == NULL) {
2261		regulator = ERR_PTR(-ENOMEM);
2262		module_put(rdev->owner);
2263		put_device(&rdev->dev);
2264		return regulator;
2265	}
2266
2267	rdev->open_count++;
2268	if (get_type == EXCLUSIVE_GET) {
2269		rdev->exclusive = 1;
2270
2271		ret = _regulator_is_enabled(rdev);
2272		if (ret > 0) {
2273			rdev->use_count = 1;
2274			regulator->enable_count = 1;
2275		} else {
2276			rdev->use_count = 0;
2277			regulator->enable_count = 0;
2278		}
2279	}
2280
2281	link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
2282	if (!IS_ERR_OR_NULL(link))
2283		regulator->device_link = true;
2284
2285	return regulator;
2286}
2287
2288/**
2289 * regulator_get - lookup and obtain a reference to a regulator.
2290 * @dev: device for regulator "consumer"
2291 * @id: Supply name or regulator ID.
2292 *
2293 * Returns a struct regulator corresponding to the regulator producer,
2294 * or IS_ERR() condition containing errno.
2295 *
2296 * Use of supply names configured via set_consumer_device_supply() is
2297 * strongly encouraged.  It is recommended that the supply name used
2298 * should match the name used for the supply and/or the relevant
2299 * device pins in the datasheet.
2300 */
2301struct regulator *regulator_get(struct device *dev, const char *id)
2302{
2303	return _regulator_get(dev, id, NORMAL_GET);
2304}
2305EXPORT_SYMBOL_GPL(regulator_get);
2306
2307/**
2308 * regulator_get_exclusive - obtain exclusive access to a regulator.
2309 * @dev: device for regulator "consumer"
2310 * @id: Supply name or regulator ID.
2311 *
2312 * Returns a struct regulator corresponding to the regulator producer,
2313 * or IS_ERR() condition containing errno.  Other consumers will be
2314 * unable to obtain this regulator while this reference is held and the
2315 * use count for the regulator will be initialised to reflect the current
2316 * state of the regulator.
2317 *
2318 * This is intended for use by consumers which cannot tolerate shared
2319 * use of the regulator such as those which need to force the
2320 * regulator off for correct operation of the hardware they are
2321 * controlling.
2322 *
2323 * Use of supply names configured via set_consumer_device_supply() is
2324 * strongly encouraged.  It is recommended that the supply name used
2325 * should match the name used for the supply and/or the relevant
2326 * device pins in the datasheet.
2327 */
2328struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2329{
2330	return _regulator_get(dev, id, EXCLUSIVE_GET);
2331}
2332EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2333
2334/**
2335 * regulator_get_optional - obtain optional access to a regulator.
2336 * @dev: device for regulator "consumer"
2337 * @id: Supply name or regulator ID.
2338 *
2339 * Returns a struct regulator corresponding to the regulator producer,
2340 * or IS_ERR() condition containing errno.
2341 *
2342 * This is intended for use by consumers for devices which can have
2343 * some supplies unconnected in normal use, such as some MMC devices.
2344 * It can allow the regulator core to provide stub supplies for other
2345 * supplies requested using normal regulator_get() calls without
2346 * disrupting the operation of drivers that can handle absent
2347 * supplies.
2348 *
2349 * Use of supply names configured via set_consumer_device_supply() is
2350 * strongly encouraged.  It is recommended that the supply name used
2351 * should match the name used for the supply and/or the relevant
2352 * device pins in the datasheet.
2353 */
2354struct regulator *regulator_get_optional(struct device *dev, const char *id)
2355{
2356	return _regulator_get(dev, id, OPTIONAL_GET);
2357}
2358EXPORT_SYMBOL_GPL(regulator_get_optional);
2359
2360static void destroy_regulator(struct regulator *regulator)
2361{
2362	struct regulator_dev *rdev = regulator->rdev;
2363
2364	debugfs_remove_recursive(regulator->debugfs);
2365
2366	if (regulator->dev) {
2367		if (regulator->device_link)
2368			device_link_remove(regulator->dev, &rdev->dev);
2369
2370		/* remove any sysfs entries */
2371		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2372	}
2373
2374	regulator_lock(rdev);
2375	list_del(&regulator->list);
2376
2377	rdev->open_count--;
2378	rdev->exclusive = 0;
2379	regulator_unlock(rdev);
2380
2381	kfree_const(regulator->supply_name);
2382	kfree(regulator);
2383}
2384
2385/* regulator_list_mutex lock held by regulator_put() */
2386static void _regulator_put(struct regulator *regulator)
2387{
2388	struct regulator_dev *rdev;
2389
2390	if (IS_ERR_OR_NULL(regulator))
2391		return;
2392
2393	lockdep_assert_held_once(&regulator_list_mutex);
2394
2395	/* Docs say you must disable before calling regulator_put() */
2396	WARN_ON(regulator->enable_count);
2397
2398	rdev = regulator->rdev;
2399
2400	destroy_regulator(regulator);
2401
2402	module_put(rdev->owner);
2403	put_device(&rdev->dev);
2404}
2405
2406/**
2407 * regulator_put - "free" the regulator source
2408 * @regulator: regulator source
2409 *
2410 * Note: drivers must ensure that all regulator_enable calls made on this
2411 * regulator source are balanced by regulator_disable calls prior to calling
2412 * this function.
2413 */
2414void regulator_put(struct regulator *regulator)
2415{
2416	mutex_lock(&regulator_list_mutex);
2417	_regulator_put(regulator);
2418	mutex_unlock(&regulator_list_mutex);
2419}
2420EXPORT_SYMBOL_GPL(regulator_put);
2421
2422/**
2423 * regulator_register_supply_alias - Provide device alias for supply lookup
2424 *
2425 * @dev: device that will be given as the regulator "consumer"
2426 * @id: Supply name or regulator ID
2427 * @alias_dev: device that should be used to lookup the supply
2428 * @alias_id: Supply name or regulator ID that should be used to lookup the
2429 * supply
2430 *
2431 * All lookups for id on dev will instead be conducted for alias_id on
2432 * alias_dev.
2433 */
2434int regulator_register_supply_alias(struct device *dev, const char *id,
2435				    struct device *alias_dev,
2436				    const char *alias_id)
2437{
2438	struct regulator_supply_alias *map;
2439
2440	map = regulator_find_supply_alias(dev, id);
2441	if (map)
2442		return -EEXIST;
2443
2444	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2445	if (!map)
2446		return -ENOMEM;
2447
2448	map->src_dev = dev;
2449	map->src_supply = id;
2450	map->alias_dev = alias_dev;
2451	map->alias_supply = alias_id;
2452
2453	list_add(&map->list, &regulator_supply_alias_list);
2454
2455	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2456		id, dev_name(dev), alias_id, dev_name(alias_dev));
2457
2458	return 0;
2459}
2460EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2461
2462/**
2463 * regulator_unregister_supply_alias - Remove device alias
2464 *
2465 * @dev: device that will be given as the regulator "consumer"
2466 * @id: Supply name or regulator ID
2467 *
2468 * Remove a lookup alias if one exists for id on dev.
2469 */
2470void regulator_unregister_supply_alias(struct device *dev, const char *id)
2471{
2472	struct regulator_supply_alias *map;
2473
2474	map = regulator_find_supply_alias(dev, id);
2475	if (map) {
2476		list_del(&map->list);
2477		kfree(map);
2478	}
2479}
2480EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2481
2482/**
2483 * regulator_bulk_register_supply_alias - register multiple aliases
2484 *
2485 * @dev: device that will be given as the regulator "consumer"
2486 * @id: List of supply names or regulator IDs
2487 * @alias_dev: device that should be used to lookup the supply
2488 * @alias_id: List of supply names or regulator IDs that should be used to
2489 * lookup the supply
2490 * @num_id: Number of aliases to register
2491 *
2492 * @return 0 on success, an errno on failure.
2493 *
2494 * This helper function allows drivers to register several supply
2495 * aliases in one operation.  If any of the aliases cannot be
2496 * registered any aliases that were registered will be removed
2497 * before returning to the caller.
2498 */
2499int regulator_bulk_register_supply_alias(struct device *dev,
2500					 const char *const *id,
2501					 struct device *alias_dev,
2502					 const char *const *alias_id,
2503					 int num_id)
2504{
2505	int i;
2506	int ret;
2507
2508	for (i = 0; i < num_id; ++i) {
2509		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2510						      alias_id[i]);
2511		if (ret < 0)
2512			goto err;
2513	}
2514
2515	return 0;
2516
2517err:
2518	dev_err(dev,
2519		"Failed to create supply alias %s,%s -> %s,%s\n",
2520		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2521
2522	while (--i >= 0)
2523		regulator_unregister_supply_alias(dev, id[i]);
2524
2525	return ret;
2526}
2527EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2528
2529/**
2530 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2531 *
2532 * @dev: device that will be given as the regulator "consumer"
2533 * @id: List of supply names or regulator IDs
2534 * @num_id: Number of aliases to unregister
2535 *
2536 * This helper function allows drivers to unregister several supply
2537 * aliases in one operation.
2538 */
2539void regulator_bulk_unregister_supply_alias(struct device *dev,
2540					    const char *const *id,
2541					    int num_id)
2542{
2543	int i;
2544
2545	for (i = 0; i < num_id; ++i)
2546		regulator_unregister_supply_alias(dev, id[i]);
2547}
2548EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2549
2550
2551/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2552static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2553				const struct regulator_config *config)
2554{
2555	struct regulator_enable_gpio *pin, *new_pin;
2556	struct gpio_desc *gpiod;
2557
2558	gpiod = config->ena_gpiod;
2559	new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2560
2561	mutex_lock(&regulator_list_mutex);
2562
2563	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2564		if (pin->gpiod == gpiod) {
2565			rdev_dbg(rdev, "GPIO is already used\n");
2566			goto update_ena_gpio_to_rdev;
2567		}
2568	}
2569
2570	if (new_pin == NULL) {
2571		mutex_unlock(&regulator_list_mutex);
2572		return -ENOMEM;
2573	}
2574
2575	pin = new_pin;
2576	new_pin = NULL;
2577
2578	pin->gpiod = gpiod;
2579	list_add(&pin->list, &regulator_ena_gpio_list);
2580
2581update_ena_gpio_to_rdev:
2582	pin->request_count++;
2583	rdev->ena_pin = pin;
2584
2585	mutex_unlock(&regulator_list_mutex);
2586	kfree(new_pin);
2587
2588	return 0;
2589}
2590
2591static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2592{
2593	struct regulator_enable_gpio *pin, *n;
2594
2595	if (!rdev->ena_pin)
2596		return;
2597
2598	/* Free the GPIO only in case of no use */
2599	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2600		if (pin != rdev->ena_pin)
2601			continue;
2602
2603		if (--pin->request_count)
2604			break;
2605
2606		gpiod_put(pin->gpiod);
2607		list_del(&pin->list);
2608		kfree(pin);
2609		break;
2610	}
2611
2612	rdev->ena_pin = NULL;
2613}
2614
2615/**
2616 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2617 * @rdev: regulator_dev structure
2618 * @enable: enable GPIO at initial use?
2619 *
2620 * GPIO is enabled in case of initial use. (enable_count is 0)
2621 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2622 */
2623static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2624{
2625	struct regulator_enable_gpio *pin = rdev->ena_pin;
2626
2627	if (!pin)
2628		return -EINVAL;
2629
2630	if (enable) {
2631		/* Enable GPIO at initial use */
2632		if (pin->enable_count == 0)
2633			gpiod_set_value_cansleep(pin->gpiod, 1);
2634
2635		pin->enable_count++;
2636	} else {
2637		if (pin->enable_count > 1) {
2638			pin->enable_count--;
2639			return 0;
2640		}
2641
2642		/* Disable GPIO if not used */
2643		if (pin->enable_count <= 1) {
2644			gpiod_set_value_cansleep(pin->gpiod, 0);
2645			pin->enable_count = 0;
2646		}
2647	}
2648
2649	return 0;
2650}
2651
2652/**
2653 * _regulator_delay_helper - a delay helper function
2654 * @delay: time to delay in microseconds
2655 *
2656 * Delay for the requested amount of time as per the guidelines in:
2657 *
2658 *     Documentation/timers/timers-howto.rst
2659 *
2660 * The assumption here is that these regulator operations will never used in
2661 * atomic context and therefore sleeping functions can be used.
2662 */
2663static void _regulator_delay_helper(unsigned int delay)
2664{
2665	unsigned int ms = delay / 1000;
2666	unsigned int us = delay % 1000;
2667
2668	if (ms > 0) {
2669		/*
2670		 * For small enough values, handle super-millisecond
2671		 * delays in the usleep_range() call below.
2672		 */
2673		if (ms < 20)
2674			us += ms * 1000;
2675		else
2676			msleep(ms);
2677	}
2678
2679	/*
2680	 * Give the scheduler some room to coalesce with any other
2681	 * wakeup sources. For delays shorter than 10 us, don't even
2682	 * bother setting up high-resolution timers and just busy-
2683	 * loop.
2684	 */
2685	if (us >= 10)
2686		usleep_range(us, us + 100);
2687	else
2688		udelay(us);
2689}
2690
2691/**
2692 * _regulator_check_status_enabled
2693 *
2694 * A helper function to check if the regulator status can be interpreted
2695 * as 'regulator is enabled'.
2696 * @rdev: the regulator device to check
2697 *
2698 * Return:
2699 * * 1			- if status shows regulator is in enabled state
2700 * * 0			- if not enabled state
2701 * * Error Value	- as received from ops->get_status()
2702 */
2703static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2704{
2705	int ret = rdev->desc->ops->get_status(rdev);
2706
2707	if (ret < 0) {
2708		rdev_info(rdev, "get_status returned error: %d\n", ret);
2709		return ret;
2710	}
2711
2712	switch (ret) {
2713	case REGULATOR_STATUS_OFF:
2714	case REGULATOR_STATUS_ERROR:
2715	case REGULATOR_STATUS_UNDEFINED:
2716		return 0;
2717	default:
2718		return 1;
2719	}
2720}
2721
2722static int _regulator_do_enable(struct regulator_dev *rdev)
2723{
2724	int ret, delay;
2725
2726	/* Query before enabling in case configuration dependent.  */
2727	ret = _regulator_get_enable_time(rdev);
2728	if (ret >= 0) {
2729		delay = ret;
2730	} else {
2731		rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2732		delay = 0;
2733	}
2734
2735	trace_regulator_enable(rdev_get_name(rdev));
2736
2737	if (rdev->desc->off_on_delay) {
2738		/* if needed, keep a distance of off_on_delay from last time
2739		 * this regulator was disabled.
2740		 */
2741		ktime_t end = ktime_add_us(rdev->last_off, rdev->desc->off_on_delay);
2742		s64 remaining = ktime_us_delta(end, ktime_get_boottime());
2743
2744		if (remaining > 0)
2745			_regulator_delay_helper(remaining);
2746	}
2747
2748	if (rdev->ena_pin) {
2749		if (!rdev->ena_gpio_state) {
2750			ret = regulator_ena_gpio_ctrl(rdev, true);
2751			if (ret < 0)
2752				return ret;
2753			rdev->ena_gpio_state = 1;
2754		}
2755	} else if (rdev->desc->ops->enable) {
2756		ret = rdev->desc->ops->enable(rdev);
2757		if (ret < 0)
2758			return ret;
2759	} else {
2760		return -EINVAL;
2761	}
2762
2763	/* Allow the regulator to ramp; it would be useful to extend
2764	 * this for bulk operations so that the regulators can ramp
2765	 * together.
2766	 */
2767	trace_regulator_enable_delay(rdev_get_name(rdev));
2768
2769	/* If poll_enabled_time is set, poll upto the delay calculated
2770	 * above, delaying poll_enabled_time uS to check if the regulator
2771	 * actually got enabled.
2772	 * If the regulator isn't enabled after our delay helper has expired,
2773	 * return -ETIMEDOUT.
2774	 */
2775	if (rdev->desc->poll_enabled_time) {
2776		int time_remaining = delay;
2777
2778		while (time_remaining > 0) {
2779			_regulator_delay_helper(rdev->desc->poll_enabled_time);
2780
2781			if (rdev->desc->ops->get_status) {
2782				ret = _regulator_check_status_enabled(rdev);
2783				if (ret < 0)
2784					return ret;
2785				else if (ret)
2786					break;
2787			} else if (rdev->desc->ops->is_enabled(rdev))
2788				break;
2789
2790			time_remaining -= rdev->desc->poll_enabled_time;
2791		}
2792
2793		if (time_remaining <= 0) {
2794			rdev_err(rdev, "Enabled check timed out\n");
2795			return -ETIMEDOUT;
2796		}
2797	} else {
2798		_regulator_delay_helper(delay);
2799	}
2800
2801	trace_regulator_enable_complete(rdev_get_name(rdev));
2802
2803	return 0;
2804}
2805
2806/**
2807 * _regulator_handle_consumer_enable - handle that a consumer enabled
2808 * @regulator: regulator source
2809 *
2810 * Some things on a regulator consumer (like the contribution towards total
2811 * load on the regulator) only have an effect when the consumer wants the
2812 * regulator enabled.  Explained in example with two consumers of the same
2813 * regulator:
2814 *   consumer A: set_load(100);       => total load = 0
2815 *   consumer A: regulator_enable();  => total load = 100
2816 *   consumer B: set_load(1000);      => total load = 100
2817 *   consumer B: regulator_enable();  => total load = 1100
2818 *   consumer A: regulator_disable(); => total_load = 1000
2819 *
2820 * This function (together with _regulator_handle_consumer_disable) is
2821 * responsible for keeping track of the refcount for a given regulator consumer
2822 * and applying / unapplying these things.
2823 *
2824 * Returns 0 upon no error; -error upon error.
2825 */
2826static int _regulator_handle_consumer_enable(struct regulator *regulator)
2827{
2828	int ret;
2829	struct regulator_dev *rdev = regulator->rdev;
2830
2831	lockdep_assert_held_once(&rdev->mutex.base);
2832
2833	regulator->enable_count++;
2834	if (regulator->uA_load && regulator->enable_count == 1) {
2835		ret = drms_uA_update(rdev);
2836		if (ret)
2837			regulator->enable_count--;
2838		return ret;
2839	}
2840
2841	return 0;
2842}
2843
2844/**
2845 * _regulator_handle_consumer_disable - handle that a consumer disabled
2846 * @regulator: regulator source
2847 *
2848 * The opposite of _regulator_handle_consumer_enable().
2849 *
2850 * Returns 0 upon no error; -error upon error.
2851 */
2852static int _regulator_handle_consumer_disable(struct regulator *regulator)
2853{
2854	struct regulator_dev *rdev = regulator->rdev;
2855
2856	lockdep_assert_held_once(&rdev->mutex.base);
2857
2858	if (!regulator->enable_count) {
2859		rdev_err(rdev, "Underflow of regulator enable count\n");
2860		return -EINVAL;
2861	}
2862
2863	regulator->enable_count--;
2864	if (regulator->uA_load && regulator->enable_count == 0)
2865		return drms_uA_update(rdev);
2866
2867	return 0;
2868}
2869
2870/* locks held by regulator_enable() */
2871static int _regulator_enable(struct regulator *regulator)
2872{
2873	struct regulator_dev *rdev = regulator->rdev;
2874	int ret;
2875
2876	lockdep_assert_held_once(&rdev->mutex.base);
2877
2878	if (rdev->use_count == 0 && rdev->supply) {
2879		ret = _regulator_enable(rdev->supply);
2880		if (ret < 0)
2881			return ret;
2882	}
2883
2884	/* balance only if there are regulators coupled */
2885	if (rdev->coupling_desc.n_coupled > 1) {
2886		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2887		if (ret < 0)
2888			goto err_disable_supply;
2889	}
2890
2891	ret = _regulator_handle_consumer_enable(regulator);
2892	if (ret < 0)
2893		goto err_disable_supply;
2894
2895	if (rdev->use_count == 0) {
2896		/*
2897		 * The regulator may already be enabled if it's not switchable
2898		 * or was left on
2899		 */
2900		ret = _regulator_is_enabled(rdev);
2901		if (ret == -EINVAL || ret == 0) {
2902			if (!regulator_ops_is_valid(rdev,
2903					REGULATOR_CHANGE_STATUS)) {
2904				ret = -EPERM;
2905				goto err_consumer_disable;
2906			}
2907
2908			ret = _regulator_do_enable(rdev);
2909			if (ret < 0)
2910				goto err_consumer_disable;
2911
2912			_notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2913					     NULL);
2914		} else if (ret < 0) {
2915			rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2916			goto err_consumer_disable;
2917		}
2918		/* Fallthrough on positive return values - already enabled */
2919	}
2920
2921	if (regulator->enable_count == 1)
2922		rdev->use_count++;
2923
2924	return 0;
2925
2926err_consumer_disable:
2927	_regulator_handle_consumer_disable(regulator);
2928
2929err_disable_supply:
2930	if (rdev->use_count == 0 && rdev->supply)
2931		_regulator_disable(rdev->supply);
2932
2933	return ret;
2934}
2935
2936/**
2937 * regulator_enable - enable regulator output
2938 * @regulator: regulator source
2939 *
2940 * Request that the regulator be enabled with the regulator output at
2941 * the predefined voltage or current value.  Calls to regulator_enable()
2942 * must be balanced with calls to regulator_disable().
2943 *
2944 * NOTE: the output value can be set by other drivers, boot loader or may be
2945 * hardwired in the regulator.
2946 */
2947int regulator_enable(struct regulator *regulator)
2948{
2949	struct regulator_dev *rdev = regulator->rdev;
2950	struct ww_acquire_ctx ww_ctx;
2951	int ret;
2952
2953	regulator_lock_dependent(rdev, &ww_ctx);
2954	ret = _regulator_enable(regulator);
2955	regulator_unlock_dependent(rdev, &ww_ctx);
2956
2957	return ret;
2958}
2959EXPORT_SYMBOL_GPL(regulator_enable);
2960
2961static int _regulator_do_disable(struct regulator_dev *rdev)
2962{
2963	int ret;
2964
2965	trace_regulator_disable(rdev_get_name(rdev));
2966
2967	if (rdev->ena_pin) {
2968		if (rdev->ena_gpio_state) {
2969			ret = regulator_ena_gpio_ctrl(rdev, false);
2970			if (ret < 0)
2971				return ret;
2972			rdev->ena_gpio_state = 0;
2973		}
2974
2975	} else if (rdev->desc->ops->disable) {
2976		ret = rdev->desc->ops->disable(rdev);
2977		if (ret != 0)
2978			return ret;
2979	}
2980
2981	if (rdev->desc->off_on_delay)
2982		rdev->last_off = ktime_get_boottime();
2983
2984	trace_regulator_disable_complete(rdev_get_name(rdev));
2985
2986	return 0;
2987}
2988
2989/* locks held by regulator_disable() */
2990static int _regulator_disable(struct regulator *regulator)
2991{
2992	struct regulator_dev *rdev = regulator->rdev;
2993	int ret = 0;
2994
2995	lockdep_assert_held_once(&rdev->mutex.base);
2996
2997	if (WARN(regulator->enable_count == 0,
2998		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2999		return -EIO;
3000
3001	if (regulator->enable_count == 1) {
3002	/* disabling last enable_count from this regulator */
3003		/* are we the last user and permitted to disable ? */
3004		if (rdev->use_count == 1 &&
3005		    (rdev->constraints && !rdev->constraints->always_on)) {
3006
3007			/* we are last user */
3008			if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
3009				ret = _notifier_call_chain(rdev,
3010							   REGULATOR_EVENT_PRE_DISABLE,
3011							   NULL);
3012				if (ret & NOTIFY_STOP_MASK)
3013					return -EINVAL;
3014
3015				ret = _regulator_do_disable(rdev);
3016				if (ret < 0) {
3017					rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
3018					_notifier_call_chain(rdev,
3019							REGULATOR_EVENT_ABORT_DISABLE,
3020							NULL);
3021					return ret;
3022				}
3023				_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
3024						NULL);
3025			}
3026
3027			rdev->use_count = 0;
3028		} else if (rdev->use_count > 1) {
3029			rdev->use_count--;
3030		}
3031	}
3032
3033	if (ret == 0)
3034		ret = _regulator_handle_consumer_disable(regulator);
3035
3036	if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
3037		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3038
3039	if (ret == 0 && rdev->use_count == 0 && rdev->supply)
3040		ret = _regulator_disable(rdev->supply);
3041
3042	return ret;
3043}
3044
3045/**
3046 * regulator_disable - disable regulator output
3047 * @regulator: regulator source
3048 *
3049 * Disable the regulator output voltage or current.  Calls to
3050 * regulator_enable() must be balanced with calls to
3051 * regulator_disable().
3052 *
3053 * NOTE: this will only disable the regulator output if no other consumer
3054 * devices have it enabled, the regulator device supports disabling and
3055 * machine constraints permit this operation.
3056 */
3057int regulator_disable(struct regulator *regulator)
3058{
3059	struct regulator_dev *rdev = regulator->rdev;
3060	struct ww_acquire_ctx ww_ctx;
3061	int ret;
3062
3063	regulator_lock_dependent(rdev, &ww_ctx);
3064	ret = _regulator_disable(regulator);
3065	regulator_unlock_dependent(rdev, &ww_ctx);
3066
3067	return ret;
3068}
3069EXPORT_SYMBOL_GPL(regulator_disable);
3070
3071/* locks held by regulator_force_disable() */
3072static int _regulator_force_disable(struct regulator_dev *rdev)
3073{
3074	int ret = 0;
3075
3076	lockdep_assert_held_once(&rdev->mutex.base);
3077
3078	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3079			REGULATOR_EVENT_PRE_DISABLE, NULL);
3080	if (ret & NOTIFY_STOP_MASK)
3081		return -EINVAL;
3082
3083	ret = _regulator_do_disable(rdev);
3084	if (ret < 0) {
3085		rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
3086		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3087				REGULATOR_EVENT_ABORT_DISABLE, NULL);
3088		return ret;
3089	}
3090
3091	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3092			REGULATOR_EVENT_DISABLE, NULL);
3093
3094	return 0;
3095}
3096
3097/**
3098 * regulator_force_disable - force disable regulator output
3099 * @regulator: regulator source
3100 *
3101 * Forcibly disable the regulator output voltage or current.
3102 * NOTE: this *will* disable the regulator output even if other consumer
3103 * devices have it enabled. This should be used for situations when device
3104 * damage will likely occur if the regulator is not disabled (e.g. over temp).
3105 */
3106int regulator_force_disable(struct regulator *regulator)
3107{
3108	struct regulator_dev *rdev = regulator->rdev;
3109	struct ww_acquire_ctx ww_ctx;
3110	int ret;
3111
3112	regulator_lock_dependent(rdev, &ww_ctx);
3113
3114	ret = _regulator_force_disable(regulator->rdev);
3115
3116	if (rdev->coupling_desc.n_coupled > 1)
3117		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3118
3119	if (regulator->uA_load) {
3120		regulator->uA_load = 0;
3121		ret = drms_uA_update(rdev);
3122	}
3123
3124	if (rdev->use_count != 0 && rdev->supply)
3125		_regulator_disable(rdev->supply);
3126
3127	regulator_unlock_dependent(rdev, &ww_ctx);
3128
3129	return ret;
3130}
3131EXPORT_SYMBOL_GPL(regulator_force_disable);
3132
3133static void regulator_disable_work(struct work_struct *work)
3134{
3135	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
3136						  disable_work.work);
3137	struct ww_acquire_ctx ww_ctx;
3138	int count, i, ret;
3139	struct regulator *regulator;
3140	int total_count = 0;
3141
3142	regulator_lock_dependent(rdev, &ww_ctx);
3143
3144	/*
3145	 * Workqueue functions queue the new work instance while the previous
3146	 * work instance is being processed. Cancel the queued work instance
3147	 * as the work instance under processing does the job of the queued
3148	 * work instance.
3149	 */
3150	cancel_delayed_work(&rdev->disable_work);
3151
3152	list_for_each_entry(regulator, &rdev->consumer_list, list) {
3153		count = regulator->deferred_disables;
3154
3155		if (!count)
3156			continue;
3157
3158		total_count += count;
3159		regulator->deferred_disables = 0;
3160
3161		for (i = 0; i < count; i++) {
3162			ret = _regulator_disable(regulator);
3163			if (ret != 0)
3164				rdev_err(rdev, "Deferred disable failed: %pe\n",
3165					 ERR_PTR(ret));
3166		}
3167	}
3168	WARN_ON(!total_count);
3169
3170	if (rdev->coupling_desc.n_coupled > 1)
3171		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3172
3173	regulator_unlock_dependent(rdev, &ww_ctx);
3174}
3175
3176/**
3177 * regulator_disable_deferred - disable regulator output with delay
3178 * @regulator: regulator source
3179 * @ms: milliseconds until the regulator is disabled
3180 *
3181 * Execute regulator_disable() on the regulator after a delay.  This
3182 * is intended for use with devices that require some time to quiesce.
3183 *
3184 * NOTE: this will only disable the regulator output if no other consumer
3185 * devices have it enabled, the regulator device supports disabling and
3186 * machine constraints permit this operation.
3187 */
3188int regulator_disable_deferred(struct regulator *regulator, int ms)
3189{
3190	struct regulator_dev *rdev = regulator->rdev;
3191
3192	if (!ms)
3193		return regulator_disable(regulator);
3194
3195	regulator_lock(rdev);
3196	regulator->deferred_disables++;
3197	mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
3198			 msecs_to_jiffies(ms));
3199	regulator_unlock(rdev);
3200
3201	return 0;
3202}
3203EXPORT_SYMBOL_GPL(regulator_disable_deferred);
3204
3205static int _regulator_is_enabled(struct regulator_dev *rdev)
3206{
3207	/* A GPIO control always takes precedence */
3208	if (rdev->ena_pin)
3209		return rdev->ena_gpio_state;
3210
3211	/* If we don't know then assume that the regulator is always on */
3212	if (!rdev->desc->ops->is_enabled)
3213		return 1;
3214
3215	return rdev->desc->ops->is_enabled(rdev);
3216}
3217
3218static int _regulator_list_voltage(struct regulator_dev *rdev,
3219				   unsigned selector, int lock)
3220{
3221	const struct regulator_ops *ops = rdev->desc->ops;
3222	int ret;
3223
3224	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
3225		return rdev->desc->fixed_uV;
3226
3227	if (ops->list_voltage) {
3228		if (selector >= rdev->desc->n_voltages)
3229			return -EINVAL;
3230		if (selector < rdev->desc->linear_min_sel)
3231			return 0;
3232		if (lock)
3233			regulator_lock(rdev);
3234		ret = ops->list_voltage(rdev, selector);
3235		if (lock)
3236			regulator_unlock(rdev);
3237	} else if (rdev->is_switch && rdev->supply) {
3238		ret = _regulator_list_voltage(rdev->supply->rdev,
3239					      selector, lock);
3240	} else {
3241		return -EINVAL;
3242	}
3243
3244	if (ret > 0) {
3245		if (ret < rdev->constraints->min_uV)
3246			ret = 0;
3247		else if (ret > rdev->constraints->max_uV)
3248			ret = 0;
3249	}
3250
3251	return ret;
3252}
3253
3254/**
3255 * regulator_is_enabled - is the regulator output enabled
3256 * @regulator: regulator source
3257 *
3258 * Returns positive if the regulator driver backing the source/client
3259 * has requested that the device be enabled, zero if it hasn't, else a
3260 * negative errno code.
3261 *
3262 * Note that the device backing this regulator handle can have multiple
3263 * users, so it might be enabled even if regulator_enable() was never
3264 * called for this particular source.
3265 */
3266int regulator_is_enabled(struct regulator *regulator)
3267{
3268	int ret;
3269
3270	if (regulator->always_on)
3271		return 1;
3272
3273	regulator_lock(regulator->rdev);
3274	ret = _regulator_is_enabled(regulator->rdev);
3275	regulator_unlock(regulator->rdev);
3276
3277	return ret;
3278}
3279EXPORT_SYMBOL_GPL(regulator_is_enabled);
3280
3281/**
3282 * regulator_count_voltages - count regulator_list_voltage() selectors
3283 * @regulator: regulator source
3284 *
3285 * Returns number of selectors, or negative errno.  Selectors are
3286 * numbered starting at zero, and typically correspond to bitfields
3287 * in hardware registers.
3288 */
3289int regulator_count_voltages(struct regulator *regulator)
3290{
3291	struct regulator_dev	*rdev = regulator->rdev;
3292
3293	if (rdev->desc->n_voltages)
3294		return rdev->desc->n_voltages;
3295
3296	if (!rdev->is_switch || !rdev->supply)
3297		return -EINVAL;
3298
3299	return regulator_count_voltages(rdev->supply);
3300}
3301EXPORT_SYMBOL_GPL(regulator_count_voltages);
3302
3303/**
3304 * regulator_list_voltage - enumerate supported voltages
3305 * @regulator: regulator source
3306 * @selector: identify voltage to list
3307 * Context: can sleep
3308 *
3309 * Returns a voltage that can be passed to @regulator_set_voltage(),
3310 * zero if this selector code can't be used on this system, or a
3311 * negative errno.
3312 */
3313int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3314{
3315	return _regulator_list_voltage(regulator->rdev, selector, 1);
3316}
3317EXPORT_SYMBOL_GPL(regulator_list_voltage);
3318
3319/**
3320 * regulator_get_regmap - get the regulator's register map
3321 * @regulator: regulator source
3322 *
3323 * Returns the register map for the given regulator, or an ERR_PTR value
3324 * if the regulator doesn't use regmap.
3325 */
3326struct regmap *regulator_get_regmap(struct regulator *regulator)
3327{
3328	struct regmap *map = regulator->rdev->regmap;
3329
3330	return map ? map : ERR_PTR(-EOPNOTSUPP);
3331}
3332
3333/**
3334 * regulator_get_hardware_vsel_register - get the HW voltage selector register
3335 * @regulator: regulator source
3336 * @vsel_reg: voltage selector register, output parameter
3337 * @vsel_mask: mask for voltage selector bitfield, output parameter
3338 *
3339 * Returns the hardware register offset and bitmask used for setting the
3340 * regulator voltage. This might be useful when configuring voltage-scaling
3341 * hardware or firmware that can make I2C requests behind the kernel's back,
3342 * for example.
3343 *
3344 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3345 * and 0 is returned, otherwise a negative errno is returned.
3346 */
3347int regulator_get_hardware_vsel_register(struct regulator *regulator,
3348					 unsigned *vsel_reg,
3349					 unsigned *vsel_mask)
3350{
3351	struct regulator_dev *rdev = regulator->rdev;
3352	const struct regulator_ops *ops = rdev->desc->ops;
3353
3354	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3355		return -EOPNOTSUPP;
3356
3357	*vsel_reg = rdev->desc->vsel_reg;
3358	*vsel_mask = rdev->desc->vsel_mask;
3359
3360	return 0;
3361}
3362EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3363
3364/**
3365 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3366 * @regulator: regulator source
3367 * @selector: identify voltage to list
3368 *
3369 * Converts the selector to a hardware-specific voltage selector that can be
3370 * directly written to the regulator registers. The address of the voltage
3371 * register can be determined by calling @regulator_get_hardware_vsel_register.
3372 *
3373 * On error a negative errno is returned.
3374 */
3375int regulator_list_hardware_vsel(struct regulator *regulator,
3376				 unsigned selector)
3377{
3378	struct regulator_dev *rdev = regulator->rdev;
3379	const struct regulator_ops *ops = rdev->desc->ops;
3380
3381	if (selector >= rdev->desc->n_voltages)
3382		return -EINVAL;
3383	if (selector < rdev->desc->linear_min_sel)
3384		return 0;
3385	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3386		return -EOPNOTSUPP;
3387
3388	return selector;
3389}
3390EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3391
3392/**
3393 * regulator_get_linear_step - return the voltage step size between VSEL values
3394 * @regulator: regulator source
3395 *
3396 * Returns the voltage step size between VSEL values for linear
3397 * regulators, or return 0 if the regulator isn't a linear regulator.
3398 */
3399unsigned int regulator_get_linear_step(struct regulator *regulator)
3400{
3401	struct regulator_dev *rdev = regulator->rdev;
3402
3403	return rdev->desc->uV_step;
3404}
3405EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3406
3407/**
3408 * regulator_is_supported_voltage - check if a voltage range can be supported
3409 *
3410 * @regulator: Regulator to check.
3411 * @min_uV: Minimum required voltage in uV.
3412 * @max_uV: Maximum required voltage in uV.
3413 *
3414 * Returns a boolean.
3415 */
3416int regulator_is_supported_voltage(struct regulator *regulator,
3417				   int min_uV, int max_uV)
3418{
3419	struct regulator_dev *rdev = regulator->rdev;
3420	int i, voltages, ret;
3421
3422	/* If we can't change voltage check the current voltage */
3423	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3424		ret = regulator_get_voltage(regulator);
3425		if (ret >= 0)
3426			return min_uV <= ret && ret <= max_uV;
3427		else
3428			return ret;
3429	}
3430
3431	/* Any voltage within constrains range is fine? */
3432	if (rdev->desc->continuous_voltage_range)
3433		return min_uV >= rdev->constraints->min_uV &&
3434				max_uV <= rdev->constraints->max_uV;
3435
3436	ret = regulator_count_voltages(regulator);
3437	if (ret < 0)
3438		return 0;
3439	voltages = ret;
3440
3441	for (i = 0; i < voltages; i++) {
3442		ret = regulator_list_voltage(regulator, i);
3443
3444		if (ret >= min_uV && ret <= max_uV)
3445			return 1;
3446	}
3447
3448	return 0;
3449}
3450EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3451
3452static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3453				 int max_uV)
3454{
3455	const struct regulator_desc *desc = rdev->desc;
3456
3457	if (desc->ops->map_voltage)
3458		return desc->ops->map_voltage(rdev, min_uV, max_uV);
3459
3460	if (desc->ops->list_voltage == regulator_list_voltage_linear)
3461		return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3462
3463	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3464		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3465
3466	if (desc->ops->list_voltage ==
3467		regulator_list_voltage_pickable_linear_range)
3468		return regulator_map_voltage_pickable_linear_range(rdev,
3469							min_uV, max_uV);
3470
3471	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3472}
3473
3474static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3475				       int min_uV, int max_uV,
3476				       unsigned *selector)
3477{
3478	struct pre_voltage_change_data data;
3479	int ret;
3480
3481	data.old_uV = regulator_get_voltage_rdev(rdev);
3482	data.min_uV = min_uV;
3483	data.max_uV = max_uV;
3484	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3485				   &data);
3486	if (ret & NOTIFY_STOP_MASK)
3487		return -EINVAL;
3488
3489	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3490	if (ret >= 0)
3491		return ret;
3492
3493	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3494			     (void *)data.old_uV);
3495
3496	return ret;
3497}
3498
3499static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3500					   int uV, unsigned selector)
3501{
3502	struct pre_voltage_change_data data;
3503	int ret;
3504
3505	data.old_uV = regulator_get_voltage_rdev(rdev);
3506	data.min_uV = uV;
3507	data.max_uV = uV;
3508	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3509				   &data);
3510	if (ret & NOTIFY_STOP_MASK)
3511		return -EINVAL;
3512
3513	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3514	if (ret >= 0)
3515		return ret;
3516
3517	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3518			     (void *)data.old_uV);
3519
3520	return ret;
3521}
3522
3523static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3524					   int uV, int new_selector)
3525{
3526	const struct regulator_ops *ops = rdev->desc->ops;
3527	int diff, old_sel, curr_sel, ret;
3528
3529	/* Stepping is only needed if the regulator is enabled. */
3530	if (!_regulator_is_enabled(rdev))
3531		goto final_set;
3532
3533	if (!ops->get_voltage_sel)
3534		return -EINVAL;
3535
3536	old_sel = ops->get_voltage_sel(rdev);
3537	if (old_sel < 0)
3538		return old_sel;
3539
3540	diff = new_selector - old_sel;
3541	if (diff == 0)
3542		return 0; /* No change needed. */
3543
3544	if (diff > 0) {
3545		/* Stepping up. */
3546		for (curr_sel = old_sel + rdev->desc->vsel_step;
3547		     curr_sel < new_selector;
3548		     curr_sel += rdev->desc->vsel_step) {
3549			/*
3550			 * Call the callback directly instead of using
3551			 * _regulator_call_set_voltage_sel() as we don't
3552			 * want to notify anyone yet. Same in the branch
3553			 * below.
3554			 */
3555			ret = ops->set_voltage_sel(rdev, curr_sel);
3556			if (ret)
3557				goto try_revert;
3558		}
3559	} else {
3560		/* Stepping down. */
3561		for (curr_sel = old_sel - rdev->desc->vsel_step;
3562		     curr_sel > new_selector;
3563		     curr_sel -= rdev->desc->vsel_step) {
3564			ret = ops->set_voltage_sel(rdev, curr_sel);
3565			if (ret)
3566				goto try_revert;
3567		}
3568	}
3569
3570final_set:
3571	/* The final selector will trigger the notifiers. */
3572	return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3573
3574try_revert:
3575	/*
3576	 * At least try to return to the previous voltage if setting a new
3577	 * one failed.
3578	 */
3579	(void)ops->set_voltage_sel(rdev, old_sel);
3580	return ret;
3581}
3582
3583static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3584				       int old_uV, int new_uV)
3585{
3586	unsigned int ramp_delay = 0;
3587
3588	if (rdev->constraints->ramp_delay)
3589		ramp_delay = rdev->constraints->ramp_delay;
3590	else if (rdev->desc->ramp_delay)
3591		ramp_delay = rdev->desc->ramp_delay;
3592	else if (rdev->constraints->settling_time)
3593		return rdev->constraints->settling_time;
3594	else if (rdev->constraints->settling_time_up &&
3595		 (new_uV > old_uV))
3596		return rdev->constraints->settling_time_up;
3597	else if (rdev->constraints->settling_time_down &&
3598		 (new_uV < old_uV))
3599		return rdev->constraints->settling_time_down;
3600
3601	if (ramp_delay == 0)
3602		return 0;
3603
3604	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3605}
3606
3607static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3608				     int min_uV, int max_uV)
3609{
3610	int ret;
3611	int delay = 0;
3612	int best_val = 0;
3613	unsigned int selector;
3614	int old_selector = -1;
3615	const struct regulator_ops *ops = rdev->desc->ops;
3616	int old_uV = regulator_get_voltage_rdev(rdev);
3617
3618	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3619
3620	min_uV += rdev->constraints->uV_offset;
3621	max_uV += rdev->constraints->uV_offset;
3622
3623	/*
3624	 * If we can't obtain the old selector there is not enough
3625	 * info to call set_voltage_time_sel().
3626	 */
3627	if (_regulator_is_enabled(rdev) &&
3628	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
3629		old_selector = ops->get_voltage_sel(rdev);
3630		if (old_selector < 0)
3631			return old_selector;
3632	}
3633
3634	if (ops->set_voltage) {
3635		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3636						  &selector);
3637
3638		if (ret >= 0) {
3639			if (ops->list_voltage)
3640				best_val = ops->list_voltage(rdev,
3641							     selector);
3642			else
3643				best_val = regulator_get_voltage_rdev(rdev);
3644		}
3645
3646	} else if (ops->set_voltage_sel) {
3647		ret = regulator_map_voltage(rdev, min_uV, max_uV);
3648		if (ret >= 0) {
3649			best_val = ops->list_voltage(rdev, ret);
3650			if (min_uV <= best_val && max_uV >= best_val) {
3651				selector = ret;
3652				if (old_selector == selector)
3653					ret = 0;
3654				else if (rdev->desc->vsel_step)
3655					ret = _regulator_set_voltage_sel_step(
3656						rdev, best_val, selector);
3657				else
3658					ret = _regulator_call_set_voltage_sel(
3659						rdev, best_val, selector);
3660			} else {
3661				ret = -EINVAL;
3662			}
3663		}
3664	} else {
3665		ret = -EINVAL;
3666	}
3667
3668	if (ret)
3669		goto out;
3670
3671	if (ops->set_voltage_time_sel) {
3672		/*
3673		 * Call set_voltage_time_sel if successfully obtained
3674		 * old_selector
3675		 */
3676		if (old_selector >= 0 && old_selector != selector)
3677			delay = ops->set_voltage_time_sel(rdev, old_selector,
3678							  selector);
3679	} else {
3680		if (old_uV != best_val) {
3681			if (ops->set_voltage_time)
3682				delay = ops->set_voltage_time(rdev, old_uV,
3683							      best_val);
3684			else
3685				delay = _regulator_set_voltage_time(rdev,
3686								    old_uV,
3687								    best_val);
3688		}
3689	}
3690
3691	if (delay < 0) {
3692		rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3693		delay = 0;
3694	}
3695
3696	/* Insert any necessary delays */
3697	_regulator_delay_helper(delay);
3698
3699	if (best_val >= 0) {
3700		unsigned long data = best_val;
3701
3702		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3703				     (void *)data);
3704	}
3705
3706out:
3707	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3708
3709	return ret;
3710}
3711
3712static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3713				  int min_uV, int max_uV, suspend_state_t state)
3714{
3715	struct regulator_state *rstate;
3716	int uV, sel;
3717
3718	rstate = regulator_get_suspend_state(rdev, state);
3719	if (rstate == NULL)
3720		return -EINVAL;
3721
3722	if (min_uV < rstate->min_uV)
3723		min_uV = rstate->min_uV;
3724	if (max_uV > rstate->max_uV)
3725		max_uV = rstate->max_uV;
3726
3727	sel = regulator_map_voltage(rdev, min_uV, max_uV);
3728	if (sel < 0)
3729		return sel;
3730
3731	uV = rdev->desc->ops->list_voltage(rdev, sel);
3732	if (uV >= min_uV && uV <= max_uV)
3733		rstate->uV = uV;
3734
3735	return 0;
3736}
3737
3738static int regulator_set_voltage_unlocked(struct regulator *regulator,
3739					  int min_uV, int max_uV,
3740					  suspend_state_t state)
3741{
3742	struct regulator_dev *rdev = regulator->rdev;
3743	struct regulator_voltage *voltage = &regulator->voltage[state];
3744	int ret = 0;
3745	int old_min_uV, old_max_uV;
3746	int current_uV;
3747
3748	/* If we're setting the same range as last time the change
3749	 * should be a noop (some cpufreq implementations use the same
3750	 * voltage for multiple frequencies, for example).
3751	 */
3752	if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3753		goto out;
3754
3755	/* If we're trying to set a range that overlaps the current voltage,
3756	 * return successfully even though the regulator does not support
3757	 * changing the voltage.
3758	 */
3759	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3760		current_uV = regulator_get_voltage_rdev(rdev);
3761		if (min_uV <= current_uV && current_uV <= max_uV) {
3762			voltage->min_uV = min_uV;
3763			voltage->max_uV = max_uV;
3764			goto out;
3765		}
3766	}
3767
3768	/* sanity check */
3769	if (!rdev->desc->ops->set_voltage &&
3770	    !rdev->desc->ops->set_voltage_sel) {
3771		ret = -EINVAL;
3772		goto out;
3773	}
3774
3775	/* constraints check */
3776	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3777	if (ret < 0)
3778		goto out;
3779
3780	/* restore original values in case of error */
3781	old_min_uV = voltage->min_uV;
3782	old_max_uV = voltage->max_uV;
3783	voltage->min_uV = min_uV;
3784	voltage->max_uV = max_uV;
3785
3786	/* for not coupled regulators this will just set the voltage */
3787	ret = regulator_balance_voltage(rdev, state);
3788	if (ret < 0) {
3789		voltage->min_uV = old_min_uV;
3790		voltage->max_uV = old_max_uV;
3791	}
3792
3793out:
3794	return ret;
3795}
3796
3797int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3798			       int max_uV, suspend_state_t state)
3799{
3800	int best_supply_uV = 0;
3801	int supply_change_uV = 0;
3802	int ret;
3803
3804	if (rdev->supply &&
3805	    regulator_ops_is_valid(rdev->supply->rdev,
3806				   REGULATOR_CHANGE_VOLTAGE) &&
3807	    (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3808					   rdev->desc->ops->get_voltage_sel))) {
3809		int current_supply_uV;
3810		int selector;
3811
3812		selector = regulator_map_voltage(rdev, min_uV, max_uV);
3813		if (selector < 0) {
3814			ret = selector;
3815			goto out;
3816		}
3817
3818		best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3819		if (best_supply_uV < 0) {
3820			ret = best_supply_uV;
3821			goto out;
3822		}
3823
3824		best_supply_uV += rdev->desc->min_dropout_uV;
3825
3826		current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3827		if (current_supply_uV < 0) {
3828			ret = current_supply_uV;
3829			goto out;
3830		}
3831
3832		supply_change_uV = best_supply_uV - current_supply_uV;
3833	}
3834
3835	if (supply_change_uV > 0) {
3836		ret = regulator_set_voltage_unlocked(rdev->supply,
3837				best_supply_uV, INT_MAX, state);
3838		if (ret) {
3839			dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
3840				ERR_PTR(ret));
3841			goto out;
3842		}
3843	}
3844
3845	if (state == PM_SUSPEND_ON)
3846		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3847	else
3848		ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3849							max_uV, state);
3850	if (ret < 0)
3851		goto out;
3852
3853	if (supply_change_uV < 0) {
3854		ret = regulator_set_voltage_unlocked(rdev->supply,
3855				best_supply_uV, INT_MAX, state);
3856		if (ret)
3857			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
3858				 ERR_PTR(ret));
3859		/* No need to fail here */
3860		ret = 0;
3861	}
3862
3863out:
3864	return ret;
3865}
3866EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3867
3868static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3869					int *current_uV, int *min_uV)
3870{
3871	struct regulation_constraints *constraints = rdev->constraints;
3872
3873	/* Limit voltage change only if necessary */
3874	if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3875		return 1;
3876
3877	if (*current_uV < 0) {
3878		*current_uV = regulator_get_voltage_rdev(rdev);
3879
3880		if (*current_uV < 0)
3881			return *current_uV;
3882	}
3883
3884	if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3885		return 1;
3886
3887	/* Clamp target voltage within the given step */
3888	if (*current_uV < *min_uV)
3889		*min_uV = min(*current_uV + constraints->max_uV_step,
3890			      *min_uV);
3891	else
3892		*min_uV = max(*current_uV - constraints->max_uV_step,
3893			      *min_uV);
3894
3895	return 0;
3896}
3897
3898static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3899					 int *current_uV,
3900					 int *min_uV, int *max_uV,
3901					 suspend_state_t state,
3902					 int n_coupled)
3903{
3904	struct coupling_desc *c_desc = &rdev->coupling_desc;
3905	struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3906	struct regulation_constraints *constraints = rdev->constraints;
3907	int desired_min_uV = 0, desired_max_uV = INT_MAX;
3908	int max_current_uV = 0, min_current_uV = INT_MAX;
3909	int highest_min_uV = 0, target_uV, possible_uV;
3910	int i, ret, max_spread;
3911	bool done;
3912
3913	*current_uV = -1;
3914
3915	/*
3916	 * If there are no coupled regulators, simply set the voltage
3917	 * demanded by consumers.
3918	 */
3919	if (n_coupled == 1) {
3920		/*
3921		 * If consumers don't provide any demands, set voltage
3922		 * to min_uV
3923		 */
3924		desired_min_uV = constraints->min_uV;
3925		desired_max_uV = constraints->max_uV;
3926
3927		ret = regulator_check_consumers(rdev,
3928						&desired_min_uV,
3929						&desired_max_uV, state);
3930		if (ret < 0)
3931			return ret;
3932
3933		possible_uV = desired_min_uV;
3934		done = true;
3935
3936		goto finish;
3937	}
3938
3939	/* Find highest min desired voltage */
3940	for (i = 0; i < n_coupled; i++) {
3941		int tmp_min = 0;
3942		int tmp_max = INT_MAX;
3943
3944		lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3945
3946		ret = regulator_check_consumers(c_rdevs[i],
3947						&tmp_min,
3948						&tmp_max, state);
3949		if (ret < 0)
3950			return ret;
3951
3952		ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3953		if (ret < 0)
3954			return ret;
3955
3956		highest_min_uV = max(highest_min_uV, tmp_min);
3957
3958		if (i == 0) {
3959			desired_min_uV = tmp_min;
3960			desired_max_uV = tmp_max;
3961		}
3962	}
3963
3964	max_spread = constraints->max_spread[0];
3965
3966	/*
3967	 * Let target_uV be equal to the desired one if possible.
3968	 * If not, set it to minimum voltage, allowed by other coupled
3969	 * regulators.
3970	 */
3971	target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3972
3973	/*
3974	 * Find min and max voltages, which currently aren't violating
3975	 * max_spread.
3976	 */
3977	for (i = 1; i < n_coupled; i++) {
3978		int tmp_act;
3979
3980		if (!_regulator_is_enabled(c_rdevs[i]))
3981			continue;
3982
3983		tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3984		if (tmp_act < 0)
3985			return tmp_act;
3986
3987		min_current_uV = min(tmp_act, min_current_uV);
3988		max_current_uV = max(tmp_act, max_current_uV);
3989	}
3990
3991	/* There aren't any other regulators enabled */
3992	if (max_current_uV == 0) {
3993		possible_uV = target_uV;
3994	} else {
3995		/*
3996		 * Correct target voltage, so as it currently isn't
3997		 * violating max_spread
3998		 */
3999		possible_uV = max(target_uV, max_current_uV - max_spread);
4000		possible_uV = min(possible_uV, min_current_uV + max_spread);
4001	}
4002
4003	if (possible_uV > desired_max_uV)
4004		return -EINVAL;
4005
4006	done = (possible_uV == target_uV);
4007	desired_min_uV = possible_uV;
4008
4009finish:
4010	/* Apply max_uV_step constraint if necessary */
4011	if (state == PM_SUSPEND_ON) {
4012		ret = regulator_limit_voltage_step(rdev, current_uV,
4013						   &desired_min_uV);
4014		if (ret < 0)
4015			return ret;
4016
4017		if (ret == 0)
4018			done = false;
4019	}
4020
4021	/* Set current_uV if wasn't done earlier in the code and if necessary */
4022	if (n_coupled > 1 && *current_uV == -1) {
4023
4024		if (_regulator_is_enabled(rdev)) {
4025			ret = regulator_get_voltage_rdev(rdev);
4026			if (ret < 0)
4027				return ret;
4028
4029			*current_uV = ret;
4030		} else {
4031			*current_uV = desired_min_uV;
4032		}
4033	}
4034
4035	*min_uV = desired_min_uV;
4036	*max_uV = desired_max_uV;
4037
4038	return done;
4039}
4040
4041int regulator_do_balance_voltage(struct regulator_dev *rdev,
4042				 suspend_state_t state, bool skip_coupled)
4043{
4044	struct regulator_dev **c_rdevs;
4045	struct regulator_dev *best_rdev;
4046	struct coupling_desc *c_desc = &rdev->coupling_desc;
4047	int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
4048	unsigned int delta, best_delta;
4049	unsigned long c_rdev_done = 0;
4050	bool best_c_rdev_done;
4051
4052	c_rdevs = c_desc->coupled_rdevs;
4053	n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
4054
4055	/*
4056	 * Find the best possible voltage change on each loop. Leave the loop
4057	 * if there isn't any possible change.
4058	 */
4059	do {
4060		best_c_rdev_done = false;
4061		best_delta = 0;
4062		best_min_uV = 0;
4063		best_max_uV = 0;
4064		best_c_rdev = 0;
4065		best_rdev = NULL;
4066
4067		/*
4068		 * Find highest difference between optimal voltage
4069		 * and current voltage.
4070		 */
4071		for (i = 0; i < n_coupled; i++) {
4072			/*
4073			 * optimal_uV is the best voltage that can be set for
4074			 * i-th regulator at the moment without violating
4075			 * max_spread constraint in order to balance
4076			 * the coupled voltages.
4077			 */
4078			int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
4079
4080			if (test_bit(i, &c_rdev_done))
4081				continue;
4082
4083			ret = regulator_get_optimal_voltage(c_rdevs[i],
4084							    &current_uV,
4085							    &optimal_uV,
4086							    &optimal_max_uV,
4087							    state, n_coupled);
4088			if (ret < 0)
4089				goto out;
4090
4091			delta = abs(optimal_uV - current_uV);
4092
4093			if (delta && best_delta <= delta) {
4094				best_c_rdev_done = ret;
4095				best_delta = delta;
4096				best_rdev = c_rdevs[i];
4097				best_min_uV = optimal_uV;
4098				best_max_uV = optimal_max_uV;
4099				best_c_rdev = i;
4100			}
4101		}
4102
4103		/* Nothing to change, return successfully */
4104		if (!best_rdev) {
4105			ret = 0;
4106			goto out;
4107		}
4108
4109		ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
4110						 best_max_uV, state);
4111
4112		if (ret < 0)
4113			goto out;
4114
4115		if (best_c_rdev_done)
4116			set_bit(best_c_rdev, &c_rdev_done);
4117
4118	} while (n_coupled > 1);
4119
4120out:
4121	return ret;
4122}
4123
4124static int regulator_balance_voltage(struct regulator_dev *rdev,
4125				     suspend_state_t state)
4126{
4127	struct coupling_desc *c_desc = &rdev->coupling_desc;
4128	struct regulator_coupler *coupler = c_desc->coupler;
4129	bool skip_coupled = false;
4130
4131	/*
4132	 * If system is in a state other than PM_SUSPEND_ON, don't check
4133	 * other coupled regulators.
4134	 */
4135	if (state != PM_SUSPEND_ON)
4136		skip_coupled = true;
4137
4138	if (c_desc->n_resolved < c_desc->n_coupled) {
4139		rdev_err(rdev, "Not all coupled regulators registered\n");
4140		return -EPERM;
4141	}
4142
4143	/* Invoke custom balancer for customized couplers */
4144	if (coupler && coupler->balance_voltage)
4145		return coupler->balance_voltage(coupler, rdev, state);
4146
4147	return regulator_do_balance_voltage(rdev, state, skip_coupled);
4148}
4149
4150/**
4151 * regulator_set_voltage - set regulator output voltage
4152 * @regulator: regulator source
4153 * @min_uV: Minimum required voltage in uV
4154 * @max_uV: Maximum acceptable voltage in uV
4155 *
4156 * Sets a voltage regulator to the desired output voltage. This can be set
4157 * during any regulator state. IOW, regulator can be disabled or enabled.
4158 *
4159 * If the regulator is enabled then the voltage will change to the new value
4160 * immediately otherwise if the regulator is disabled the regulator will
4161 * output at the new voltage when enabled.
4162 *
4163 * NOTE: If the regulator is shared between several devices then the lowest
4164 * request voltage that meets the system constraints will be used.
4165 * Regulator system constraints must be set for this regulator before
4166 * calling this function otherwise this call will fail.
4167 */
4168int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
4169{
4170	struct ww_acquire_ctx ww_ctx;
4171	int ret;
4172
4173	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4174
4175	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
4176					     PM_SUSPEND_ON);
4177
4178	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4179
4180	return ret;
4181}
4182EXPORT_SYMBOL_GPL(regulator_set_voltage);
4183
4184static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
4185					   suspend_state_t state, bool en)
4186{
4187	struct regulator_state *rstate;
4188
4189	rstate = regulator_get_suspend_state(rdev, state);
4190	if (rstate == NULL)
4191		return -EINVAL;
4192
4193	if (!rstate->changeable)
4194		return -EPERM;
4195
4196	rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
4197
4198	return 0;
4199}
4200
4201int regulator_suspend_enable(struct regulator_dev *rdev,
4202				    suspend_state_t state)
4203{
4204	return regulator_suspend_toggle(rdev, state, true);
4205}
4206EXPORT_SYMBOL_GPL(regulator_suspend_enable);
4207
4208int regulator_suspend_disable(struct regulator_dev *rdev,
4209				     suspend_state_t state)
4210{
4211	struct regulator *regulator;
4212	struct regulator_voltage *voltage;
4213
4214	/*
4215	 * if any consumer wants this regulator device keeping on in
4216	 * suspend states, don't set it as disabled.
4217	 */
4218	list_for_each_entry(regulator, &rdev->consumer_list, list) {
4219		voltage = &regulator->voltage[state];
4220		if (voltage->min_uV || voltage->max_uV)
4221			return 0;
4222	}
4223
4224	return regulator_suspend_toggle(rdev, state, false);
4225}
4226EXPORT_SYMBOL_GPL(regulator_suspend_disable);
4227
4228static int _regulator_set_suspend_voltage(struct regulator *regulator,
4229					  int min_uV, int max_uV,
4230					  suspend_state_t state)
4231{
4232	struct regulator_dev *rdev = regulator->rdev;
4233	struct regulator_state *rstate;
4234
4235	rstate = regulator_get_suspend_state(rdev, state);
4236	if (rstate == NULL)
4237		return -EINVAL;
4238
4239	if (rstate->min_uV == rstate->max_uV) {
4240		rdev_err(rdev, "The suspend voltage can't be changed!\n");
4241		return -EPERM;
4242	}
4243
4244	return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
4245}
4246
4247int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
4248				  int max_uV, suspend_state_t state)
4249{
4250	struct ww_acquire_ctx ww_ctx;
4251	int ret;
4252
4253	/* PM_SUSPEND_ON is handled by regulator_set_voltage() */
4254	if (regulator_check_states(state) || state == PM_SUSPEND_ON)
4255		return -EINVAL;
4256
4257	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4258
4259	ret = _regulator_set_suspend_voltage(regulator, min_uV,
4260					     max_uV, state);
4261
4262	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4263
4264	return ret;
4265}
4266EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
4267
4268/**
4269 * regulator_set_voltage_time - get raise/fall time
4270 * @regulator: regulator source
4271 * @old_uV: starting voltage in microvolts
4272 * @new_uV: target voltage in microvolts
4273 *
4274 * Provided with the starting and ending voltage, this function attempts to
4275 * calculate the time in microseconds required to rise or fall to this new
4276 * voltage.
4277 */
4278int regulator_set_voltage_time(struct regulator *regulator,
4279			       int old_uV, int new_uV)
4280{
4281	struct regulator_dev *rdev = regulator->rdev;
4282	const struct regulator_ops *ops = rdev->desc->ops;
4283	int old_sel = -1;
4284	int new_sel = -1;
4285	int voltage;
4286	int i;
4287
4288	if (ops->set_voltage_time)
4289		return ops->set_voltage_time(rdev, old_uV, new_uV);
4290	else if (!ops->set_voltage_time_sel)
4291		return _regulator_set_voltage_time(rdev, old_uV, new_uV);
4292
4293	/* Currently requires operations to do this */
4294	if (!ops->list_voltage || !rdev->desc->n_voltages)
4295		return -EINVAL;
4296
4297	for (i = 0; i < rdev->desc->n_voltages; i++) {
4298		/* We only look for exact voltage matches here */
4299		if (i < rdev->desc->linear_min_sel)
4300			continue;
4301
4302		if (old_sel >= 0 && new_sel >= 0)
4303			break;
4304
4305		voltage = regulator_list_voltage(regulator, i);
4306		if (voltage < 0)
4307			return -EINVAL;
4308		if (voltage == 0)
4309			continue;
4310		if (voltage == old_uV)
4311			old_sel = i;
4312		if (voltage == new_uV)
4313			new_sel = i;
4314	}
4315
4316	if (old_sel < 0 || new_sel < 0)
4317		return -EINVAL;
4318
4319	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4320}
4321EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4322
4323/**
4324 * regulator_set_voltage_time_sel - get raise/fall time
4325 * @rdev: regulator source device
4326 * @old_selector: selector for starting voltage
4327 * @new_selector: selector for target voltage
4328 *
4329 * Provided with the starting and target voltage selectors, this function
4330 * returns time in microseconds required to rise or fall to this new voltage
4331 *
4332 * Drivers providing ramp_delay in regulation_constraints can use this as their
4333 * set_voltage_time_sel() operation.
4334 */
4335int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4336				   unsigned int old_selector,
4337				   unsigned int new_selector)
4338{
4339	int old_volt, new_volt;
4340
4341	/* sanity check */
4342	if (!rdev->desc->ops->list_voltage)
4343		return -EINVAL;
4344
4345	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4346	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4347
4348	if (rdev->desc->ops->set_voltage_time)
4349		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4350							 new_volt);
4351	else
4352		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4353}
4354EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4355
4356int regulator_sync_voltage_rdev(struct regulator_dev *rdev)
4357{
4358	int ret;
4359
4360	regulator_lock(rdev);
4361
4362	if (!rdev->desc->ops->set_voltage &&
4363	    !rdev->desc->ops->set_voltage_sel) {
4364		ret = -EINVAL;
4365		goto out;
4366	}
4367
4368	/* balance only, if regulator is coupled */
4369	if (rdev->coupling_desc.n_coupled > 1)
4370		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4371	else
4372		ret = -EOPNOTSUPP;
4373
4374out:
4375	regulator_unlock(rdev);
4376	return ret;
4377}
4378
4379/**
4380 * regulator_sync_voltage - re-apply last regulator output voltage
4381 * @regulator: regulator source
4382 *
4383 * Re-apply the last configured voltage.  This is intended to be used
4384 * where some external control source the consumer is cooperating with
4385 * has caused the configured voltage to change.
4386 */
4387int regulator_sync_voltage(struct regulator *regulator)
4388{
4389	struct regulator_dev *rdev = regulator->rdev;
4390	struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
4391	int ret, min_uV, max_uV;
4392
4393	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
4394		return 0;
4395
4396	regulator_lock(rdev);
4397
4398	if (!rdev->desc->ops->set_voltage &&
4399	    !rdev->desc->ops->set_voltage_sel) {
4400		ret = -EINVAL;
4401		goto out;
4402	}
4403
4404	/* This is only going to work if we've had a voltage configured. */
4405	if (!voltage->min_uV && !voltage->max_uV) {
4406		ret = -EINVAL;
4407		goto out;
4408	}
4409
4410	min_uV = voltage->min_uV;
4411	max_uV = voltage->max_uV;
4412
4413	/* This should be a paranoia check... */
4414	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4415	if (ret < 0)
4416		goto out;
4417
4418	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4419	if (ret < 0)
4420		goto out;
4421
4422	/* balance only, if regulator is coupled */
4423	if (rdev->coupling_desc.n_coupled > 1)
4424		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4425	else
4426		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4427
4428out:
4429	regulator_unlock(rdev);
4430	return ret;
4431}
4432EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4433
4434int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4435{
4436	int sel, ret;
4437	bool bypassed;
4438
4439	if (rdev->desc->ops->get_bypass) {
4440		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4441		if (ret < 0)
4442			return ret;
4443		if (bypassed) {
4444			/* if bypassed the regulator must have a supply */
4445			if (!rdev->supply) {
4446				rdev_err(rdev,
4447					 "bypassed regulator has no supply!\n");
4448				return -EPROBE_DEFER;
4449			}
4450
4451			return regulator_get_voltage_rdev(rdev->supply->rdev);
4452		}
4453	}
4454
4455	if (rdev->desc->ops->get_voltage_sel) {
4456		sel = rdev->desc->ops->get_voltage_sel(rdev);
4457		if (sel < 0)
4458			return sel;
4459		ret = rdev->desc->ops->list_voltage(rdev, sel);
4460	} else if (rdev->desc->ops->get_voltage) {
4461		ret = rdev->desc->ops->get_voltage(rdev);
4462	} else if (rdev->desc->ops->list_voltage) {
4463		ret = rdev->desc->ops->list_voltage(rdev, 0);
4464	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4465		ret = rdev->desc->fixed_uV;
4466	} else if (rdev->supply) {
4467		ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4468	} else if (rdev->supply_name) {
4469		return -EPROBE_DEFER;
4470	} else {
4471		return -EINVAL;
4472	}
4473
4474	if (ret < 0)
4475		return ret;
4476	return ret - rdev->constraints->uV_offset;
4477}
4478EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4479
4480/**
4481 * regulator_get_voltage - get regulator output voltage
4482 * @regulator: regulator source
4483 *
4484 * This returns the current regulator voltage in uV.
4485 *
4486 * NOTE: If the regulator is disabled it will return the voltage value. This
4487 * function should not be used to determine regulator state.
4488 */
4489int regulator_get_voltage(struct regulator *regulator)
4490{
4491	struct ww_acquire_ctx ww_ctx;
4492	int ret;
4493
4494	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4495	ret = regulator_get_voltage_rdev(regulator->rdev);
4496	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4497
4498	return ret;
4499}
4500EXPORT_SYMBOL_GPL(regulator_get_voltage);
4501
4502/**
4503 * regulator_set_current_limit - set regulator output current limit
4504 * @regulator: regulator source
4505 * @min_uA: Minimum supported current in uA
4506 * @max_uA: Maximum supported current in uA
4507 *
4508 * Sets current sink to the desired output current. This can be set during
4509 * any regulator state. IOW, regulator can be disabled or enabled.
4510 *
4511 * If the regulator is enabled then the current will change to the new value
4512 * immediately otherwise if the regulator is disabled the regulator will
4513 * output at the new current when enabled.
4514 *
4515 * NOTE: Regulator system constraints must be set for this regulator before
4516 * calling this function otherwise this call will fail.
4517 */
4518int regulator_set_current_limit(struct regulator *regulator,
4519			       int min_uA, int max_uA)
4520{
4521	struct regulator_dev *rdev = regulator->rdev;
4522	int ret;
4523
4524	regulator_lock(rdev);
4525
4526	/* sanity check */
4527	if (!rdev->desc->ops->set_current_limit) {
4528		ret = -EINVAL;
4529		goto out;
4530	}
4531
4532	/* constraints check */
4533	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4534	if (ret < 0)
4535		goto out;
4536
4537	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4538out:
4539	regulator_unlock(rdev);
4540	return ret;
4541}
4542EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4543
4544static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4545{
4546	/* sanity check */
4547	if (!rdev->desc->ops->get_current_limit)
4548		return -EINVAL;
4549
4550	return rdev->desc->ops->get_current_limit(rdev);
4551}
4552
4553static int _regulator_get_current_limit(struct regulator_dev *rdev)
4554{
4555	int ret;
4556
4557	regulator_lock(rdev);
4558	ret = _regulator_get_current_limit_unlocked(rdev);
4559	regulator_unlock(rdev);
4560
4561	return ret;
4562}
4563
4564/**
4565 * regulator_get_current_limit - get regulator output current
4566 * @regulator: regulator source
4567 *
4568 * This returns the current supplied by the specified current sink in uA.
4569 *
4570 * NOTE: If the regulator is disabled it will return the current value. This
4571 * function should not be used to determine regulator state.
4572 */
4573int regulator_get_current_limit(struct regulator *regulator)
4574{
4575	return _regulator_get_current_limit(regulator->rdev);
4576}
4577EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4578
4579/**
4580 * regulator_set_mode - set regulator operating mode
4581 * @regulator: regulator source
4582 * @mode: operating mode - one of the REGULATOR_MODE constants
4583 *
4584 * Set regulator operating mode to increase regulator efficiency or improve
4585 * regulation performance.
4586 *
4587 * NOTE: Regulator system constraints must be set for this regulator before
4588 * calling this function otherwise this call will fail.
4589 */
4590int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4591{
4592	struct regulator_dev *rdev = regulator->rdev;
4593	int ret;
4594	int regulator_curr_mode;
4595
4596	regulator_lock(rdev);
4597
4598	/* sanity check */
4599	if (!rdev->desc->ops->set_mode) {
4600		ret = -EINVAL;
4601		goto out;
4602	}
4603
4604	/* return if the same mode is requested */
4605	if (rdev->desc->ops->get_mode) {
4606		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4607		if (regulator_curr_mode == mode) {
4608			ret = 0;
4609			goto out;
4610		}
4611	}
4612
4613	/* constraints check */
4614	ret = regulator_mode_constrain(rdev, &mode);
4615	if (ret < 0)
4616		goto out;
4617
4618	ret = rdev->desc->ops->set_mode(rdev, mode);
4619out:
4620	regulator_unlock(rdev);
4621	return ret;
4622}
4623EXPORT_SYMBOL_GPL(regulator_set_mode);
4624
4625static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4626{
4627	/* sanity check */
4628	if (!rdev->desc->ops->get_mode)
4629		return -EINVAL;
4630
4631	return rdev->desc->ops->get_mode(rdev);
4632}
4633
4634static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4635{
4636	int ret;
4637
4638	regulator_lock(rdev);
4639	ret = _regulator_get_mode_unlocked(rdev);
4640	regulator_unlock(rdev);
4641
4642	return ret;
4643}
4644
4645/**
4646 * regulator_get_mode - get regulator operating mode
4647 * @regulator: regulator source
4648 *
4649 * Get the current regulator operating mode.
4650 */
4651unsigned int regulator_get_mode(struct regulator *regulator)
4652{
4653	return _regulator_get_mode(regulator->rdev);
4654}
4655EXPORT_SYMBOL_GPL(regulator_get_mode);
4656
4657static int rdev_get_cached_err_flags(struct regulator_dev *rdev)
4658{
4659	int ret = 0;
4660
4661	if (rdev->use_cached_err) {
4662		spin_lock(&rdev->err_lock);
4663		ret = rdev->cached_err;
4664		spin_unlock(&rdev->err_lock);
4665	}
4666	return ret;
4667}
4668
4669static int _regulator_get_error_flags(struct regulator_dev *rdev,
4670					unsigned int *flags)
4671{
4672	int cached_flags, ret = 0;
4673
4674	regulator_lock(rdev);
4675
4676	cached_flags = rdev_get_cached_err_flags(rdev);
4677
4678	if (rdev->desc->ops->get_error_flags)
4679		ret = rdev->desc->ops->get_error_flags(rdev, flags);
4680	else if (!rdev->use_cached_err)
4681		ret = -EINVAL;
4682
4683	*flags |= cached_flags;
4684
4685	regulator_unlock(rdev);
4686
4687	return ret;
4688}
4689
4690/**
4691 * regulator_get_error_flags - get regulator error information
4692 * @regulator: regulator source
4693 * @flags: pointer to store error flags
4694 *
4695 * Get the current regulator error information.
4696 */
4697int regulator_get_error_flags(struct regulator *regulator,
4698				unsigned int *flags)
4699{
4700	return _regulator_get_error_flags(regulator->rdev, flags);
4701}
4702EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4703
4704/**
4705 * regulator_set_load - set regulator load
4706 * @regulator: regulator source
4707 * @uA_load: load current
4708 *
4709 * Notifies the regulator core of a new device load. This is then used by
4710 * DRMS (if enabled by constraints) to set the most efficient regulator
4711 * operating mode for the new regulator loading.
4712 *
4713 * Consumer devices notify their supply regulator of the maximum power
4714 * they will require (can be taken from device datasheet in the power
4715 * consumption tables) when they change operational status and hence power
4716 * state. Examples of operational state changes that can affect power
4717 * consumption are :-
4718 *
4719 *    o Device is opened / closed.
4720 *    o Device I/O is about to begin or has just finished.
4721 *    o Device is idling in between work.
4722 *
4723 * This information is also exported via sysfs to userspace.
4724 *
4725 * DRMS will sum the total requested load on the regulator and change
4726 * to the most efficient operating mode if platform constraints allow.
4727 *
4728 * NOTE: when a regulator consumer requests to have a regulator
4729 * disabled then any load that consumer requested no longer counts
4730 * toward the total requested load.  If the regulator is re-enabled
4731 * then the previously requested load will start counting again.
4732 *
4733 * If a regulator is an always-on regulator then an individual consumer's
4734 * load will still be removed if that consumer is fully disabled.
4735 *
4736 * On error a negative errno is returned.
4737 */
4738int regulator_set_load(struct regulator *regulator, int uA_load)
4739{
4740	struct regulator_dev *rdev = regulator->rdev;
4741	int old_uA_load;
4742	int ret = 0;
4743
4744	regulator_lock(rdev);
4745	old_uA_load = regulator->uA_load;
4746	regulator->uA_load = uA_load;
4747	if (regulator->enable_count && old_uA_load != uA_load) {
4748		ret = drms_uA_update(rdev);
4749		if (ret < 0)
4750			regulator->uA_load = old_uA_load;
4751	}
4752	regulator_unlock(rdev);
4753
4754	return ret;
4755}
4756EXPORT_SYMBOL_GPL(regulator_set_load);
4757
4758/**
4759 * regulator_allow_bypass - allow the regulator to go into bypass mode
4760 *
4761 * @regulator: Regulator to configure
4762 * @enable: enable or disable bypass mode
4763 *
4764 * Allow the regulator to go into bypass mode if all other consumers
4765 * for the regulator also enable bypass mode and the machine
4766 * constraints allow this.  Bypass mode means that the regulator is
4767 * simply passing the input directly to the output with no regulation.
4768 */
4769int regulator_allow_bypass(struct regulator *regulator, bool enable)
4770{
4771	struct regulator_dev *rdev = regulator->rdev;
4772	const char *name = rdev_get_name(rdev);
4773	int ret = 0;
4774
4775	if (!rdev->desc->ops->set_bypass)
4776		return 0;
4777
4778	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4779		return 0;
4780
4781	regulator_lock(rdev);
4782
4783	if (enable && !regulator->bypass) {
4784		rdev->bypass_count++;
4785
4786		if (rdev->bypass_count == rdev->open_count) {
4787			trace_regulator_bypass_enable(name);
4788
4789			ret = rdev->desc->ops->set_bypass(rdev, enable);
4790			if (ret != 0)
4791				rdev->bypass_count--;
4792			else
4793				trace_regulator_bypass_enable_complete(name);
4794		}
4795
4796	} else if (!enable && regulator->bypass) {
4797		rdev->bypass_count--;
4798
4799		if (rdev->bypass_count != rdev->open_count) {
4800			trace_regulator_bypass_disable(name);
4801
4802			ret = rdev->desc->ops->set_bypass(rdev, enable);
4803			if (ret != 0)
4804				rdev->bypass_count++;
4805			else
4806				trace_regulator_bypass_disable_complete(name);
4807		}
4808	}
4809
4810	if (ret == 0)
4811		regulator->bypass = enable;
4812
4813	regulator_unlock(rdev);
4814
4815	return ret;
4816}
4817EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4818
4819/**
4820 * regulator_register_notifier - register regulator event notifier
4821 * @regulator: regulator source
4822 * @nb: notifier block
4823 *
4824 * Register notifier block to receive regulator events.
4825 */
4826int regulator_register_notifier(struct regulator *regulator,
4827			      struct notifier_block *nb)
4828{
4829	return blocking_notifier_chain_register(&regulator->rdev->notifier,
4830						nb);
4831}
4832EXPORT_SYMBOL_GPL(regulator_register_notifier);
4833
4834/**
4835 * regulator_unregister_notifier - unregister regulator event notifier
4836 * @regulator: regulator source
4837 * @nb: notifier block
4838 *
4839 * Unregister regulator event notifier block.
4840 */
4841int regulator_unregister_notifier(struct regulator *regulator,
4842				struct notifier_block *nb)
4843{
4844	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
4845						  nb);
4846}
4847EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4848
4849/* notify regulator consumers and downstream regulator consumers.
4850 * Note mutex must be held by caller.
4851 */
4852static int _notifier_call_chain(struct regulator_dev *rdev,
4853				  unsigned long event, void *data)
4854{
4855	/* call rdev chain first */
4856	return blocking_notifier_call_chain(&rdev->notifier, event, data);
4857}
4858
4859int _regulator_bulk_get(struct device *dev, int num_consumers,
4860			struct regulator_bulk_data *consumers, enum regulator_get_type get_type)
4861{
4862	int i;
4863	int ret;
4864
4865	for (i = 0; i < num_consumers; i++)
4866		consumers[i].consumer = NULL;
4867
4868	for (i = 0; i < num_consumers; i++) {
4869		consumers[i].consumer = _regulator_get(dev,
4870						       consumers[i].supply, get_type);
4871		if (IS_ERR(consumers[i].consumer)) {
4872			ret = dev_err_probe(dev, PTR_ERR(consumers[i].consumer),
4873					    "Failed to get supply '%s'",
4874					    consumers[i].supply);
4875			consumers[i].consumer = NULL;
4876			goto err;
4877		}
4878
4879		if (consumers[i].init_load_uA > 0) {
4880			ret = regulator_set_load(consumers[i].consumer,
4881						 consumers[i].init_load_uA);
4882			if (ret) {
4883				i++;
4884				goto err;
4885			}
4886		}
4887	}
4888
4889	return 0;
4890
4891err:
4892	while (--i >= 0)
4893		regulator_put(consumers[i].consumer);
4894
4895	return ret;
4896}
4897
4898/**
4899 * regulator_bulk_get - get multiple regulator consumers
4900 *
4901 * @dev:           Device to supply
4902 * @num_consumers: Number of consumers to register
4903 * @consumers:     Configuration of consumers; clients are stored here.
4904 *
4905 * @return 0 on success, an errno on failure.
4906 *
4907 * This helper function allows drivers to get several regulator
4908 * consumers in one operation.  If any of the regulators cannot be
4909 * acquired then any regulators that were allocated will be freed
4910 * before returning to the caller.
4911 */
4912int regulator_bulk_get(struct device *dev, int num_consumers,
4913		       struct regulator_bulk_data *consumers)
4914{
4915	return _regulator_bulk_get(dev, num_consumers, consumers, NORMAL_GET);
4916}
4917EXPORT_SYMBOL_GPL(regulator_bulk_get);
4918
4919static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4920{
4921	struct regulator_bulk_data *bulk = data;
4922
4923	bulk->ret = regulator_enable(bulk->consumer);
4924}
4925
4926/**
4927 * regulator_bulk_enable - enable multiple regulator consumers
4928 *
4929 * @num_consumers: Number of consumers
4930 * @consumers:     Consumer data; clients are stored here.
4931 * @return         0 on success, an errno on failure
4932 *
4933 * This convenience API allows consumers to enable multiple regulator
4934 * clients in a single API call.  If any consumers cannot be enabled
4935 * then any others that were enabled will be disabled again prior to
4936 * return.
4937 */
4938int regulator_bulk_enable(int num_consumers,
4939			  struct regulator_bulk_data *consumers)
4940{
4941	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4942	int i;
4943	int ret = 0;
4944
4945	for (i = 0; i < num_consumers; i++) {
4946		async_schedule_domain(regulator_bulk_enable_async,
4947				      &consumers[i], &async_domain);
4948	}
4949
4950	async_synchronize_full_domain(&async_domain);
4951
4952	/* If any consumer failed we need to unwind any that succeeded */
4953	for (i = 0; i < num_consumers; i++) {
4954		if (consumers[i].ret != 0) {
4955			ret = consumers[i].ret;
4956			goto err;
4957		}
4958	}
4959
4960	return 0;
4961
4962err:
4963	for (i = 0; i < num_consumers; i++) {
4964		if (consumers[i].ret < 0)
4965			pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
4966			       ERR_PTR(consumers[i].ret));
4967		else
4968			regulator_disable(consumers[i].consumer);
4969	}
4970
4971	return ret;
4972}
4973EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4974
4975/**
4976 * regulator_bulk_disable - disable multiple regulator consumers
4977 *
4978 * @num_consumers: Number of consumers
4979 * @consumers:     Consumer data; clients are stored here.
4980 * @return         0 on success, an errno on failure
4981 *
4982 * This convenience API allows consumers to disable multiple regulator
4983 * clients in a single API call.  If any consumers cannot be disabled
4984 * then any others that were disabled will be enabled again prior to
4985 * return.
4986 */
4987int regulator_bulk_disable(int num_consumers,
4988			   struct regulator_bulk_data *consumers)
4989{
4990	int i;
4991	int ret, r;
4992
4993	for (i = num_consumers - 1; i >= 0; --i) {
4994		ret = regulator_disable(consumers[i].consumer);
4995		if (ret != 0)
4996			goto err;
4997	}
4998
4999	return 0;
5000
5001err:
5002	pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
5003	for (++i; i < num_consumers; ++i) {
5004		r = regulator_enable(consumers[i].consumer);
5005		if (r != 0)
5006			pr_err("Failed to re-enable %s: %pe\n",
5007			       consumers[i].supply, ERR_PTR(r));
5008	}
5009
5010	return ret;
5011}
5012EXPORT_SYMBOL_GPL(regulator_bulk_disable);
5013
5014/**
5015 * regulator_bulk_force_disable - force disable multiple regulator consumers
5016 *
5017 * @num_consumers: Number of consumers
5018 * @consumers:     Consumer data; clients are stored here.
5019 * @return         0 on success, an errno on failure
5020 *
5021 * This convenience API allows consumers to forcibly disable multiple regulator
5022 * clients in a single API call.
5023 * NOTE: This should be used for situations when device damage will
5024 * likely occur if the regulators are not disabled (e.g. over temp).
5025 * Although regulator_force_disable function call for some consumers can
5026 * return error numbers, the function is called for all consumers.
5027 */
5028int regulator_bulk_force_disable(int num_consumers,
5029			   struct regulator_bulk_data *consumers)
5030{
5031	int i;
5032	int ret = 0;
5033
5034	for (i = 0; i < num_consumers; i++) {
5035		consumers[i].ret =
5036			    regulator_force_disable(consumers[i].consumer);
5037
5038		/* Store first error for reporting */
5039		if (consumers[i].ret && !ret)
5040			ret = consumers[i].ret;
5041	}
5042
5043	return ret;
5044}
5045EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
5046
5047/**
5048 * regulator_bulk_free - free multiple regulator consumers
5049 *
5050 * @num_consumers: Number of consumers
5051 * @consumers:     Consumer data; clients are stored here.
5052 *
5053 * This convenience API allows consumers to free multiple regulator
5054 * clients in a single API call.
5055 */
5056void regulator_bulk_free(int num_consumers,
5057			 struct regulator_bulk_data *consumers)
5058{
5059	int i;
5060
5061	for (i = 0; i < num_consumers; i++) {
5062		regulator_put(consumers[i].consumer);
5063		consumers[i].consumer = NULL;
5064	}
5065}
5066EXPORT_SYMBOL_GPL(regulator_bulk_free);
5067
5068/**
5069 * regulator_notifier_call_chain - call regulator event notifier
5070 * @rdev: regulator source
5071 * @event: notifier block
5072 * @data: callback-specific data.
5073 *
5074 * Called by regulator drivers to notify clients a regulator event has
5075 * occurred.
5076 */
5077int regulator_notifier_call_chain(struct regulator_dev *rdev,
5078				  unsigned long event, void *data)
5079{
5080	_notifier_call_chain(rdev, event, data);
5081	return NOTIFY_DONE;
5082
5083}
5084EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
5085
5086/**
5087 * regulator_mode_to_status - convert a regulator mode into a status
5088 *
5089 * @mode: Mode to convert
5090 *
5091 * Convert a regulator mode into a status.
5092 */
5093int regulator_mode_to_status(unsigned int mode)
5094{
5095	switch (mode) {
5096	case REGULATOR_MODE_FAST:
5097		return REGULATOR_STATUS_FAST;
5098	case REGULATOR_MODE_NORMAL:
5099		return REGULATOR_STATUS_NORMAL;
5100	case REGULATOR_MODE_IDLE:
5101		return REGULATOR_STATUS_IDLE;
5102	case REGULATOR_MODE_STANDBY:
5103		return REGULATOR_STATUS_STANDBY;
5104	default:
5105		return REGULATOR_STATUS_UNDEFINED;
5106	}
5107}
5108EXPORT_SYMBOL_GPL(regulator_mode_to_status);
5109
5110static struct attribute *regulator_dev_attrs[] = {
5111	&dev_attr_name.attr,
5112	&dev_attr_num_users.attr,
5113	&dev_attr_type.attr,
5114	&dev_attr_microvolts.attr,
5115	&dev_attr_microamps.attr,
5116	&dev_attr_opmode.attr,
5117	&dev_attr_state.attr,
5118	&dev_attr_status.attr,
5119	&dev_attr_bypass.attr,
5120	&dev_attr_requested_microamps.attr,
5121	&dev_attr_min_microvolts.attr,
5122	&dev_attr_max_microvolts.attr,
5123	&dev_attr_min_microamps.attr,
5124	&dev_attr_max_microamps.attr,
5125	&dev_attr_under_voltage.attr,
5126	&dev_attr_over_current.attr,
5127	&dev_attr_regulation_out.attr,
5128	&dev_attr_fail.attr,
5129	&dev_attr_over_temp.attr,
5130	&dev_attr_under_voltage_warn.attr,
5131	&dev_attr_over_current_warn.attr,
5132	&dev_attr_over_voltage_warn.attr,
5133	&dev_attr_over_temp_warn.attr,
5134	&dev_attr_suspend_standby_state.attr,
5135	&dev_attr_suspend_mem_state.attr,
5136	&dev_attr_suspend_disk_state.attr,
5137	&dev_attr_suspend_standby_microvolts.attr,
5138	&dev_attr_suspend_mem_microvolts.attr,
5139	&dev_attr_suspend_disk_microvolts.attr,
5140	&dev_attr_suspend_standby_mode.attr,
5141	&dev_attr_suspend_mem_mode.attr,
5142	&dev_attr_suspend_disk_mode.attr,
5143	NULL
5144};
5145
5146/*
5147 * To avoid cluttering sysfs (and memory) with useless state, only
5148 * create attributes that can be meaningfully displayed.
5149 */
5150static umode_t regulator_attr_is_visible(struct kobject *kobj,
5151					 struct attribute *attr, int idx)
5152{
5153	struct device *dev = kobj_to_dev(kobj);
5154	struct regulator_dev *rdev = dev_to_rdev(dev);
5155	const struct regulator_ops *ops = rdev->desc->ops;
5156	umode_t mode = attr->mode;
5157
5158	/* these three are always present */
5159	if (attr == &dev_attr_name.attr ||
5160	    attr == &dev_attr_num_users.attr ||
5161	    attr == &dev_attr_type.attr)
5162		return mode;
5163
5164	/* some attributes need specific methods to be displayed */
5165	if (attr == &dev_attr_microvolts.attr) {
5166		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
5167		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
5168		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
5169		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
5170			return mode;
5171		return 0;
5172	}
5173
5174	if (attr == &dev_attr_microamps.attr)
5175		return ops->get_current_limit ? mode : 0;
5176
5177	if (attr == &dev_attr_opmode.attr)
5178		return ops->get_mode ? mode : 0;
5179
5180	if (attr == &dev_attr_state.attr)
5181		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
5182
5183	if (attr == &dev_attr_status.attr)
5184		return ops->get_status ? mode : 0;
5185
5186	if (attr == &dev_attr_bypass.attr)
5187		return ops->get_bypass ? mode : 0;
5188
5189	if (attr == &dev_attr_under_voltage.attr ||
5190	    attr == &dev_attr_over_current.attr ||
5191	    attr == &dev_attr_regulation_out.attr ||
5192	    attr == &dev_attr_fail.attr ||
5193	    attr == &dev_attr_over_temp.attr ||
5194	    attr == &dev_attr_under_voltage_warn.attr ||
5195	    attr == &dev_attr_over_current_warn.attr ||
5196	    attr == &dev_attr_over_voltage_warn.attr ||
5197	    attr == &dev_attr_over_temp_warn.attr)
5198		return ops->get_error_flags ? mode : 0;
5199
5200	/* constraints need specific supporting methods */
5201	if (attr == &dev_attr_min_microvolts.attr ||
5202	    attr == &dev_attr_max_microvolts.attr)
5203		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
5204
5205	if (attr == &dev_attr_min_microamps.attr ||
5206	    attr == &dev_attr_max_microamps.attr)
5207		return ops->set_current_limit ? mode : 0;
5208
5209	if (attr == &dev_attr_suspend_standby_state.attr ||
5210	    attr == &dev_attr_suspend_mem_state.attr ||
5211	    attr == &dev_attr_suspend_disk_state.attr)
5212		return mode;
5213
5214	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
5215	    attr == &dev_attr_suspend_mem_microvolts.attr ||
5216	    attr == &dev_attr_suspend_disk_microvolts.attr)
5217		return ops->set_suspend_voltage ? mode : 0;
5218
5219	if (attr == &dev_attr_suspend_standby_mode.attr ||
5220	    attr == &dev_attr_suspend_mem_mode.attr ||
5221	    attr == &dev_attr_suspend_disk_mode.attr)
5222		return ops->set_suspend_mode ? mode : 0;
5223
5224	return mode;
5225}
5226
5227static const struct attribute_group regulator_dev_group = {
5228	.attrs = regulator_dev_attrs,
5229	.is_visible = regulator_attr_is_visible,
5230};
5231
5232static const struct attribute_group *regulator_dev_groups[] = {
5233	&regulator_dev_group,
5234	NULL
5235};
5236
5237static void regulator_dev_release(struct device *dev)
5238{
5239	struct regulator_dev *rdev = dev_get_drvdata(dev);
5240
5241	debugfs_remove_recursive(rdev->debugfs);
5242	kfree(rdev->constraints);
5243	of_node_put(rdev->dev.of_node);
5244	kfree(rdev);
5245}
5246
5247static void rdev_init_debugfs(struct regulator_dev *rdev)
5248{
5249	struct device *parent = rdev->dev.parent;
5250	const char *rname = rdev_get_name(rdev);
5251	char name[NAME_MAX];
5252
5253	/* Avoid duplicate debugfs directory names */
5254	if (parent && rname == rdev->desc->name) {
5255		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
5256			 rname);
5257		rname = name;
5258	}
5259
5260	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
5261	if (IS_ERR(rdev->debugfs))
5262		rdev_dbg(rdev, "Failed to create debugfs directory\n");
5263
5264	debugfs_create_u32("use_count", 0444, rdev->debugfs,
5265			   &rdev->use_count);
5266	debugfs_create_u32("open_count", 0444, rdev->debugfs,
5267			   &rdev->open_count);
5268	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
5269			   &rdev->bypass_count);
5270}
5271
5272static int regulator_register_resolve_supply(struct device *dev, void *data)
5273{
5274	struct regulator_dev *rdev = dev_to_rdev(dev);
5275
5276	if (regulator_resolve_supply(rdev))
5277		rdev_dbg(rdev, "unable to resolve supply\n");
5278
5279	return 0;
5280}
5281
5282int regulator_coupler_register(struct regulator_coupler *coupler)
5283{
5284	mutex_lock(&regulator_list_mutex);
5285	list_add_tail(&coupler->list, &regulator_coupler_list);
5286	mutex_unlock(&regulator_list_mutex);
5287
5288	return 0;
5289}
5290
5291static struct regulator_coupler *
5292regulator_find_coupler(struct regulator_dev *rdev)
5293{
5294	struct regulator_coupler *coupler;
5295	int err;
5296
5297	/*
5298	 * Note that regulators are appended to the list and the generic
5299	 * coupler is registered first, hence it will be attached at last
5300	 * if nobody cared.
5301	 */
5302	list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
5303		err = coupler->attach_regulator(coupler, rdev);
5304		if (!err) {
5305			if (!coupler->balance_voltage &&
5306			    rdev->coupling_desc.n_coupled > 2)
5307				goto err_unsupported;
5308
5309			return coupler;
5310		}
5311
5312		if (err < 0)
5313			return ERR_PTR(err);
5314
5315		if (err == 1)
5316			continue;
5317
5318		break;
5319	}
5320
5321	return ERR_PTR(-EINVAL);
5322
5323err_unsupported:
5324	if (coupler->detach_regulator)
5325		coupler->detach_regulator(coupler, rdev);
5326
5327	rdev_err(rdev,
5328		"Voltage balancing for multiple regulator couples is unimplemented\n");
5329
5330	return ERR_PTR(-EPERM);
5331}
5332
5333static void regulator_resolve_coupling(struct regulator_dev *rdev)
5334{
5335	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5336	struct coupling_desc *c_desc = &rdev->coupling_desc;
5337	int n_coupled = c_desc->n_coupled;
5338	struct regulator_dev *c_rdev;
5339	int i;
5340
5341	for (i = 1; i < n_coupled; i++) {
5342		/* already resolved */
5343		if (c_desc->coupled_rdevs[i])
5344			continue;
5345
5346		c_rdev = of_parse_coupled_regulator(rdev, i - 1);
5347
5348		if (!c_rdev)
5349			continue;
5350
5351		if (c_rdev->coupling_desc.coupler != coupler) {
5352			rdev_err(rdev, "coupler mismatch with %s\n",
5353				 rdev_get_name(c_rdev));
5354			return;
5355		}
5356
5357		c_desc->coupled_rdevs[i] = c_rdev;
5358		c_desc->n_resolved++;
5359
5360		regulator_resolve_coupling(c_rdev);
5361	}
5362}
5363
5364static void regulator_remove_coupling(struct regulator_dev *rdev)
5365{
5366	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5367	struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
5368	struct regulator_dev *__c_rdev, *c_rdev;
5369	unsigned int __n_coupled, n_coupled;
5370	int i, k;
5371	int err;
5372
5373	n_coupled = c_desc->n_coupled;
5374
5375	for (i = 1; i < n_coupled; i++) {
5376		c_rdev = c_desc->coupled_rdevs[i];
5377
5378		if (!c_rdev)
5379			continue;
5380
5381		regulator_lock(c_rdev);
5382
5383		__c_desc = &c_rdev->coupling_desc;
5384		__n_coupled = __c_desc->n_coupled;
5385
5386		for (k = 1; k < __n_coupled; k++) {
5387			__c_rdev = __c_desc->coupled_rdevs[k];
5388
5389			if (__c_rdev == rdev) {
5390				__c_desc->coupled_rdevs[k] = NULL;
5391				__c_desc->n_resolved--;
5392				break;
5393			}
5394		}
5395
5396		regulator_unlock(c_rdev);
5397
5398		c_desc->coupled_rdevs[i] = NULL;
5399		c_desc->n_resolved--;
5400	}
5401
5402	if (coupler && coupler->detach_regulator) {
5403		err = coupler->detach_regulator(coupler, rdev);
5404		if (err)
5405			rdev_err(rdev, "failed to detach from coupler: %pe\n",
5406				 ERR_PTR(err));
5407	}
5408
5409	kfree(rdev->coupling_desc.coupled_rdevs);
5410	rdev->coupling_desc.coupled_rdevs = NULL;
5411}
5412
5413static int regulator_init_coupling(struct regulator_dev *rdev)
5414{
5415	struct regulator_dev **coupled;
5416	int err, n_phandles;
5417
5418	if (!IS_ENABLED(CONFIG_OF))
5419		n_phandles = 0;
5420	else
5421		n_phandles = of_get_n_coupled(rdev);
5422
5423	coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
5424	if (!coupled)
5425		return -ENOMEM;
5426
5427	rdev->coupling_desc.coupled_rdevs = coupled;
5428
5429	/*
5430	 * Every regulator should always have coupling descriptor filled with
5431	 * at least pointer to itself.
5432	 */
5433	rdev->coupling_desc.coupled_rdevs[0] = rdev;
5434	rdev->coupling_desc.n_coupled = n_phandles + 1;
5435	rdev->coupling_desc.n_resolved++;
5436
5437	/* regulator isn't coupled */
5438	if (n_phandles == 0)
5439		return 0;
5440
5441	if (!of_check_coupling_data(rdev))
5442		return -EPERM;
5443
5444	mutex_lock(&regulator_list_mutex);
5445	rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5446	mutex_unlock(&regulator_list_mutex);
5447
5448	if (IS_ERR(rdev->coupling_desc.coupler)) {
5449		err = PTR_ERR(rdev->coupling_desc.coupler);
5450		rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5451		return err;
5452	}
5453
5454	return 0;
5455}
5456
5457static int generic_coupler_attach(struct regulator_coupler *coupler,
5458				  struct regulator_dev *rdev)
5459{
5460	if (rdev->coupling_desc.n_coupled > 2) {
5461		rdev_err(rdev,
5462			 "Voltage balancing for multiple regulator couples is unimplemented\n");
5463		return -EPERM;
5464	}
5465
5466	if (!rdev->constraints->always_on) {
5467		rdev_err(rdev,
5468			 "Coupling of a non always-on regulator is unimplemented\n");
5469		return -ENOTSUPP;
5470	}
5471
5472	return 0;
5473}
5474
5475static struct regulator_coupler generic_regulator_coupler = {
5476	.attach_regulator = generic_coupler_attach,
5477};
5478
5479/**
5480 * regulator_register - register regulator
5481 * @dev: the device that drive the regulator
5482 * @regulator_desc: regulator to register
5483 * @cfg: runtime configuration for regulator
5484 *
5485 * Called by regulator drivers to register a regulator.
5486 * Returns a valid pointer to struct regulator_dev on success
5487 * or an ERR_PTR() on error.
5488 */
5489struct regulator_dev *
5490regulator_register(struct device *dev,
5491		   const struct regulator_desc *regulator_desc,
5492		   const struct regulator_config *cfg)
5493{
5494	const struct regulator_init_data *init_data;
5495	struct regulator_config *config = NULL;
5496	static atomic_t regulator_no = ATOMIC_INIT(-1);
5497	struct regulator_dev *rdev;
5498	bool dangling_cfg_gpiod = false;
5499	bool dangling_of_gpiod = false;
5500	int ret, i;
5501	bool resolved_early = false;
5502
5503	if (cfg == NULL)
5504		return ERR_PTR(-EINVAL);
5505	if (cfg->ena_gpiod)
5506		dangling_cfg_gpiod = true;
5507	if (regulator_desc == NULL) {
5508		ret = -EINVAL;
5509		goto rinse;
5510	}
5511
5512	WARN_ON(!dev || !cfg->dev);
5513
5514	if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5515		ret = -EINVAL;
5516		goto rinse;
5517	}
5518
5519	if (regulator_desc->type != REGULATOR_VOLTAGE &&
5520	    regulator_desc->type != REGULATOR_CURRENT) {
5521		ret = -EINVAL;
5522		goto rinse;
5523	}
5524
5525	/* Only one of each should be implemented */
5526	WARN_ON(regulator_desc->ops->get_voltage &&
5527		regulator_desc->ops->get_voltage_sel);
5528	WARN_ON(regulator_desc->ops->set_voltage &&
5529		regulator_desc->ops->set_voltage_sel);
5530
5531	/* If we're using selectors we must implement list_voltage. */
5532	if (regulator_desc->ops->get_voltage_sel &&
5533	    !regulator_desc->ops->list_voltage) {
5534		ret = -EINVAL;
5535		goto rinse;
5536	}
5537	if (regulator_desc->ops->set_voltage_sel &&
5538	    !regulator_desc->ops->list_voltage) {
5539		ret = -EINVAL;
5540		goto rinse;
5541	}
5542
5543	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5544	if (rdev == NULL) {
5545		ret = -ENOMEM;
5546		goto rinse;
5547	}
5548	device_initialize(&rdev->dev);
5549	dev_set_drvdata(&rdev->dev, rdev);
5550	rdev->dev.class = &regulator_class;
5551	spin_lock_init(&rdev->err_lock);
5552
5553	/*
5554	 * Duplicate the config so the driver could override it after
5555	 * parsing init data.
5556	 */
5557	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5558	if (config == NULL) {
5559		ret = -ENOMEM;
5560		goto clean;
5561	}
5562
5563	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5564					       &rdev->dev.of_node);
5565
5566	/*
5567	 * Sometimes not all resources are probed already so we need to take
5568	 * that into account. This happens most the time if the ena_gpiod comes
5569	 * from a gpio extender or something else.
5570	 */
5571	if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5572		ret = -EPROBE_DEFER;
5573		goto clean;
5574	}
5575
5576	/*
5577	 * We need to keep track of any GPIO descriptor coming from the
5578	 * device tree until we have handled it over to the core. If the
5579	 * config that was passed in to this function DOES NOT contain
5580	 * a descriptor, and the config after this call DOES contain
5581	 * a descriptor, we definitely got one from parsing the device
5582	 * tree.
5583	 */
5584	if (!cfg->ena_gpiod && config->ena_gpiod)
5585		dangling_of_gpiod = true;
5586	if (!init_data) {
5587		init_data = config->init_data;
5588		rdev->dev.of_node = of_node_get(config->of_node);
5589	}
5590
5591	ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5592	rdev->reg_data = config->driver_data;
5593	rdev->owner = regulator_desc->owner;
5594	rdev->desc = regulator_desc;
5595	if (config->regmap)
5596		rdev->regmap = config->regmap;
5597	else if (dev_get_regmap(dev, NULL))
5598		rdev->regmap = dev_get_regmap(dev, NULL);
5599	else if (dev->parent)
5600		rdev->regmap = dev_get_regmap(dev->parent, NULL);
5601	INIT_LIST_HEAD(&rdev->consumer_list);
5602	INIT_LIST_HEAD(&rdev->list);
5603	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5604	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5605
5606	if (init_data && init_data->supply_regulator)
5607		rdev->supply_name = init_data->supply_regulator;
5608	else if (regulator_desc->supply_name)
5609		rdev->supply_name = regulator_desc->supply_name;
5610
5611	/* register with sysfs */
5612	rdev->dev.parent = config->dev;
5613	dev_set_name(&rdev->dev, "regulator.%lu",
5614		    (unsigned long) atomic_inc_return(&regulator_no));
5615
5616	/* set regulator constraints */
5617	if (init_data)
5618		rdev->constraints = kmemdup(&init_data->constraints,
5619					    sizeof(*rdev->constraints),
5620					    GFP_KERNEL);
5621	else
5622		rdev->constraints = kzalloc(sizeof(*rdev->constraints),
5623					    GFP_KERNEL);
5624	if (!rdev->constraints) {
5625		ret = -ENOMEM;
5626		goto wash;
5627	}
5628
5629	if ((rdev->supply_name && !rdev->supply) &&
5630		(rdev->constraints->always_on ||
5631		 rdev->constraints->boot_on)) {
5632		ret = regulator_resolve_supply(rdev);
5633		if (ret)
5634			rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5635					 ERR_PTR(ret));
5636
5637		resolved_early = true;
5638	}
5639
5640	/* perform any regulator specific init */
5641	if (init_data && init_data->regulator_init) {
5642		ret = init_data->regulator_init(rdev->reg_data);
5643		if (ret < 0)
5644			goto wash;
5645	}
5646
5647	if (config->ena_gpiod) {
5648		ret = regulator_ena_gpio_request(rdev, config);
5649		if (ret != 0) {
5650			rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
5651				 ERR_PTR(ret));
5652			goto wash;
5653		}
5654		/* The regulator core took over the GPIO descriptor */
5655		dangling_cfg_gpiod = false;
5656		dangling_of_gpiod = false;
5657	}
5658
5659	ret = set_machine_constraints(rdev);
5660	if (ret == -EPROBE_DEFER && !resolved_early) {
5661		/* Regulator might be in bypass mode and so needs its supply
5662		 * to set the constraints
5663		 */
5664		/* FIXME: this currently triggers a chicken-and-egg problem
5665		 * when creating -SUPPLY symlink in sysfs to a regulator
5666		 * that is just being created
5667		 */
5668		rdev_dbg(rdev, "will resolve supply early: %s\n",
5669			 rdev->supply_name);
5670		ret = regulator_resolve_supply(rdev);
5671		if (!ret)
5672			ret = set_machine_constraints(rdev);
5673		else
5674			rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5675				 ERR_PTR(ret));
5676	}
5677	if (ret < 0)
5678		goto wash;
5679
5680	ret = regulator_init_coupling(rdev);
5681	if (ret < 0)
5682		goto wash;
5683
5684	/* add consumers devices */
5685	if (init_data) {
5686		for (i = 0; i < init_data->num_consumer_supplies; i++) {
5687			ret = set_consumer_device_supply(rdev,
5688				init_data->consumer_supplies[i].dev_name,
5689				init_data->consumer_supplies[i].supply);
5690			if (ret < 0) {
5691				dev_err(dev, "Failed to set supply %s\n",
5692					init_data->consumer_supplies[i].supply);
5693				goto unset_supplies;
5694			}
5695		}
5696	}
5697
5698	if (!rdev->desc->ops->get_voltage &&
5699	    !rdev->desc->ops->list_voltage &&
5700	    !rdev->desc->fixed_uV)
5701		rdev->is_switch = true;
5702
5703	ret = device_add(&rdev->dev);
5704	if (ret != 0)
5705		goto unset_supplies;
5706
5707	rdev_init_debugfs(rdev);
5708
5709	/* try to resolve regulators coupling since a new one was registered */
5710	mutex_lock(&regulator_list_mutex);
5711	regulator_resolve_coupling(rdev);
5712	mutex_unlock(&regulator_list_mutex);
5713
5714	/* try to resolve regulators supply since a new one was registered */
5715	class_for_each_device(&regulator_class, NULL, NULL,
5716			      regulator_register_resolve_supply);
5717	kfree(config);
5718	return rdev;
5719
5720unset_supplies:
5721	mutex_lock(&regulator_list_mutex);
5722	unset_regulator_supplies(rdev);
5723	regulator_remove_coupling(rdev);
5724	mutex_unlock(&regulator_list_mutex);
5725wash:
5726	regulator_put(rdev->supply);
5727	kfree(rdev->coupling_desc.coupled_rdevs);
5728	mutex_lock(&regulator_list_mutex);
5729	regulator_ena_gpio_free(rdev);
5730	mutex_unlock(&regulator_list_mutex);
5731clean:
5732	if (dangling_of_gpiod)
5733		gpiod_put(config->ena_gpiod);
5734	kfree(config);
5735	put_device(&rdev->dev);
5736rinse:
5737	if (dangling_cfg_gpiod)
5738		gpiod_put(cfg->ena_gpiod);
5739	return ERR_PTR(ret);
5740}
5741EXPORT_SYMBOL_GPL(regulator_register);
5742
5743/**
5744 * regulator_unregister - unregister regulator
5745 * @rdev: regulator to unregister
5746 *
5747 * Called by regulator drivers to unregister a regulator.
5748 */
5749void regulator_unregister(struct regulator_dev *rdev)
5750{
5751	if (rdev == NULL)
5752		return;
5753
5754	if (rdev->supply) {
5755		while (rdev->use_count--)
5756			regulator_disable(rdev->supply);
5757		regulator_put(rdev->supply);
5758	}
5759
5760	flush_work(&rdev->disable_work.work);
5761
5762	mutex_lock(&regulator_list_mutex);
5763
5764	WARN_ON(rdev->open_count);
5765	regulator_remove_coupling(rdev);
5766	unset_regulator_supplies(rdev);
5767	list_del(&rdev->list);
5768	regulator_ena_gpio_free(rdev);
5769	device_unregister(&rdev->dev);
5770
5771	mutex_unlock(&regulator_list_mutex);
5772}
5773EXPORT_SYMBOL_GPL(regulator_unregister);
5774
5775#ifdef CONFIG_SUSPEND
5776/**
5777 * regulator_suspend - prepare regulators for system wide suspend
5778 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5779 *
5780 * Configure each regulator with it's suspend operating parameters for state.
5781 */
5782static int regulator_suspend(struct device *dev)
5783{
5784	struct regulator_dev *rdev = dev_to_rdev(dev);
5785	suspend_state_t state = pm_suspend_target_state;
5786	int ret;
5787	const struct regulator_state *rstate;
5788
5789	rstate = regulator_get_suspend_state_check(rdev, state);
5790	if (!rstate)
5791		return 0;
5792
5793	regulator_lock(rdev);
5794	ret = __suspend_set_state(rdev, rstate);
5795	regulator_unlock(rdev);
5796
5797	return ret;
5798}
5799
5800static int regulator_resume(struct device *dev)
5801{
5802	suspend_state_t state = pm_suspend_target_state;
5803	struct regulator_dev *rdev = dev_to_rdev(dev);
5804	struct regulator_state *rstate;
5805	int ret = 0;
5806
5807	rstate = regulator_get_suspend_state(rdev, state);
5808	if (rstate == NULL)
5809		return 0;
5810
5811	/* Avoid grabbing the lock if we don't need to */
5812	if (!rdev->desc->ops->resume)
5813		return 0;
5814
5815	regulator_lock(rdev);
5816
5817	if (rstate->enabled == ENABLE_IN_SUSPEND ||
5818	    rstate->enabled == DISABLE_IN_SUSPEND)
5819		ret = rdev->desc->ops->resume(rdev);
5820
5821	regulator_unlock(rdev);
5822
5823	return ret;
5824}
5825#else /* !CONFIG_SUSPEND */
5826
5827#define regulator_suspend	NULL
5828#define regulator_resume	NULL
5829
5830#endif /* !CONFIG_SUSPEND */
5831
5832#ifdef CONFIG_PM
5833static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5834	.suspend	= regulator_suspend,
5835	.resume		= regulator_resume,
5836};
5837#endif
5838
5839struct class regulator_class = {
5840	.name = "regulator",
5841	.dev_release = regulator_dev_release,
5842	.dev_groups = regulator_dev_groups,
5843#ifdef CONFIG_PM
5844	.pm = &regulator_pm_ops,
5845#endif
5846};
5847/**
5848 * regulator_has_full_constraints - the system has fully specified constraints
5849 *
5850 * Calling this function will cause the regulator API to disable all
5851 * regulators which have a zero use count and don't have an always_on
5852 * constraint in a late_initcall.
5853 *
5854 * The intention is that this will become the default behaviour in a
5855 * future kernel release so users are encouraged to use this facility
5856 * now.
5857 */
5858void regulator_has_full_constraints(void)
5859{
5860	has_full_constraints = 1;
5861}
5862EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5863
5864/**
5865 * rdev_get_drvdata - get rdev regulator driver data
5866 * @rdev: regulator
5867 *
5868 * Get rdev regulator driver private data. This call can be used in the
5869 * regulator driver context.
5870 */
5871void *rdev_get_drvdata(struct regulator_dev *rdev)
5872{
5873	return rdev->reg_data;
5874}
5875EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5876
5877/**
5878 * regulator_get_drvdata - get regulator driver data
5879 * @regulator: regulator
5880 *
5881 * Get regulator driver private data. This call can be used in the consumer
5882 * driver context when non API regulator specific functions need to be called.
5883 */
5884void *regulator_get_drvdata(struct regulator *regulator)
5885{
5886	return regulator->rdev->reg_data;
5887}
5888EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5889
5890/**
5891 * regulator_set_drvdata - set regulator driver data
5892 * @regulator: regulator
5893 * @data: data
5894 */
5895void regulator_set_drvdata(struct regulator *regulator, void *data)
5896{
5897	regulator->rdev->reg_data = data;
5898}
5899EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5900
5901/**
5902 * rdev_get_id - get regulator ID
5903 * @rdev: regulator
5904 */
5905int rdev_get_id(struct regulator_dev *rdev)
5906{
5907	return rdev->desc->id;
5908}
5909EXPORT_SYMBOL_GPL(rdev_get_id);
5910
5911struct device *rdev_get_dev(struct regulator_dev *rdev)
5912{
5913	return &rdev->dev;
5914}
5915EXPORT_SYMBOL_GPL(rdev_get_dev);
5916
5917struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5918{
5919	return rdev->regmap;
5920}
5921EXPORT_SYMBOL_GPL(rdev_get_regmap);
5922
5923void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5924{
5925	return reg_init_data->driver_data;
5926}
5927EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5928
5929#ifdef CONFIG_DEBUG_FS
5930static int supply_map_show(struct seq_file *sf, void *data)
5931{
5932	struct regulator_map *map;
5933
5934	list_for_each_entry(map, &regulator_map_list, list) {
5935		seq_printf(sf, "%s -> %s.%s\n",
5936				rdev_get_name(map->regulator), map->dev_name,
5937				map->supply);
5938	}
5939
5940	return 0;
5941}
5942DEFINE_SHOW_ATTRIBUTE(supply_map);
5943
5944struct summary_data {
5945	struct seq_file *s;
5946	struct regulator_dev *parent;
5947	int level;
5948};
5949
5950static void regulator_summary_show_subtree(struct seq_file *s,
5951					   struct regulator_dev *rdev,
5952					   int level);
5953
5954static int regulator_summary_show_children(struct device *dev, void *data)
5955{
5956	struct regulator_dev *rdev = dev_to_rdev(dev);
5957	struct summary_data *summary_data = data;
5958
5959	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5960		regulator_summary_show_subtree(summary_data->s, rdev,
5961					       summary_data->level + 1);
5962
5963	return 0;
5964}
5965
5966static void regulator_summary_show_subtree(struct seq_file *s,
5967					   struct regulator_dev *rdev,
5968					   int level)
5969{
5970	struct regulation_constraints *c;
5971	struct regulator *consumer;
5972	struct summary_data summary_data;
5973	unsigned int opmode;
5974
5975	if (!rdev)
5976		return;
5977
5978	opmode = _regulator_get_mode_unlocked(rdev);
5979	seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5980		   level * 3 + 1, "",
5981		   30 - level * 3, rdev_get_name(rdev),
5982		   rdev->use_count, rdev->open_count, rdev->bypass_count,
5983		   regulator_opmode_to_str(opmode));
5984
5985	seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5986	seq_printf(s, "%5dmA ",
5987		   _regulator_get_current_limit_unlocked(rdev) / 1000);
5988
5989	c = rdev->constraints;
5990	if (c) {
5991		switch (rdev->desc->type) {
5992		case REGULATOR_VOLTAGE:
5993			seq_printf(s, "%5dmV %5dmV ",
5994				   c->min_uV / 1000, c->max_uV / 1000);
5995			break;
5996		case REGULATOR_CURRENT:
5997			seq_printf(s, "%5dmA %5dmA ",
5998				   c->min_uA / 1000, c->max_uA / 1000);
5999			break;
6000		}
6001	}
6002
6003	seq_puts(s, "\n");
6004
6005	list_for_each_entry(consumer, &rdev->consumer_list, list) {
6006		if (consumer->dev && consumer->dev->class == &regulator_class)
6007			continue;
6008
6009		seq_printf(s, "%*s%-*s ",
6010			   (level + 1) * 3 + 1, "",
6011			   30 - (level + 1) * 3,
6012			   consumer->supply_name ? consumer->supply_name :
6013			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
6014
6015		switch (rdev->desc->type) {
6016		case REGULATOR_VOLTAGE:
6017			seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
6018				   consumer->enable_count,
6019				   consumer->uA_load / 1000,
6020				   consumer->uA_load && !consumer->enable_count ?
6021				   '*' : ' ',
6022				   consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
6023				   consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
6024			break;
6025		case REGULATOR_CURRENT:
6026			break;
6027		}
6028
6029		seq_puts(s, "\n");
6030	}
6031
6032	summary_data.s = s;
6033	summary_data.level = level;
6034	summary_data.parent = rdev;
6035
6036	class_for_each_device(&regulator_class, NULL, &summary_data,
6037			      regulator_summary_show_children);
6038}
6039
6040struct summary_lock_data {
6041	struct ww_acquire_ctx *ww_ctx;
6042	struct regulator_dev **new_contended_rdev;
6043	struct regulator_dev **old_contended_rdev;
6044};
6045
6046static int regulator_summary_lock_one(struct device *dev, void *data)
6047{
6048	struct regulator_dev *rdev = dev_to_rdev(dev);
6049	struct summary_lock_data *lock_data = data;
6050	int ret = 0;
6051
6052	if (rdev != *lock_data->old_contended_rdev) {
6053		ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
6054
6055		if (ret == -EDEADLK)
6056			*lock_data->new_contended_rdev = rdev;
6057		else
6058			WARN_ON_ONCE(ret);
6059	} else {
6060		*lock_data->old_contended_rdev = NULL;
6061	}
6062
6063	return ret;
6064}
6065
6066static int regulator_summary_unlock_one(struct device *dev, void *data)
6067{
6068	struct regulator_dev *rdev = dev_to_rdev(dev);
6069	struct summary_lock_data *lock_data = data;
6070
6071	if (lock_data) {
6072		if (rdev == *lock_data->new_contended_rdev)
6073			return -EDEADLK;
6074	}
6075
6076	regulator_unlock(rdev);
6077
6078	return 0;
6079}
6080
6081static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
6082				      struct regulator_dev **new_contended_rdev,
6083				      struct regulator_dev **old_contended_rdev)
6084{
6085	struct summary_lock_data lock_data;
6086	int ret;
6087
6088	lock_data.ww_ctx = ww_ctx;
6089	lock_data.new_contended_rdev = new_contended_rdev;
6090	lock_data.old_contended_rdev = old_contended_rdev;
6091
6092	ret = class_for_each_device(&regulator_class, NULL, &lock_data,
6093				    regulator_summary_lock_one);
6094	if (ret)
6095		class_for_each_device(&regulator_class, NULL, &lock_data,
6096				      regulator_summary_unlock_one);
6097
6098	return ret;
6099}
6100
6101static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
6102{
6103	struct regulator_dev *new_contended_rdev = NULL;
6104	struct regulator_dev *old_contended_rdev = NULL;
6105	int err;
6106
6107	mutex_lock(&regulator_list_mutex);
6108
6109	ww_acquire_init(ww_ctx, &regulator_ww_class);
6110
6111	do {
6112		if (new_contended_rdev) {
6113			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
6114			old_contended_rdev = new_contended_rdev;
6115			old_contended_rdev->ref_cnt++;
6116			old_contended_rdev->mutex_owner = current;
6117		}
6118
6119		err = regulator_summary_lock_all(ww_ctx,
6120						 &new_contended_rdev,
6121						 &old_contended_rdev);
6122
6123		if (old_contended_rdev)
6124			regulator_unlock(old_contended_rdev);
6125
6126	} while (err == -EDEADLK);
6127
6128	ww_acquire_done(ww_ctx);
6129}
6130
6131static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
6132{
6133	class_for_each_device(&regulator_class, NULL, NULL,
6134			      regulator_summary_unlock_one);
6135	ww_acquire_fini(ww_ctx);
6136
6137	mutex_unlock(&regulator_list_mutex);
6138}
6139
6140static int regulator_summary_show_roots(struct device *dev, void *data)
6141{
6142	struct regulator_dev *rdev = dev_to_rdev(dev);
6143	struct seq_file *s = data;
6144
6145	if (!rdev->supply)
6146		regulator_summary_show_subtree(s, rdev, 0);
6147
6148	return 0;
6149}
6150
6151static int regulator_summary_show(struct seq_file *s, void *data)
6152{
6153	struct ww_acquire_ctx ww_ctx;
6154
6155	seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
6156	seq_puts(s, "---------------------------------------------------------------------------------------\n");
6157
6158	regulator_summary_lock(&ww_ctx);
6159
6160	class_for_each_device(&regulator_class, NULL, s,
6161			      regulator_summary_show_roots);
6162
6163	regulator_summary_unlock(&ww_ctx);
6164
6165	return 0;
6166}
6167DEFINE_SHOW_ATTRIBUTE(regulator_summary);
6168#endif /* CONFIG_DEBUG_FS */
6169
6170static int __init regulator_init(void)
6171{
6172	int ret;
6173
6174	ret = class_register(&regulator_class);
6175
6176	debugfs_root = debugfs_create_dir("regulator", NULL);
6177	if (IS_ERR(debugfs_root))
6178		pr_debug("regulator: Failed to create debugfs directory\n");
6179
6180#ifdef CONFIG_DEBUG_FS
6181	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
6182			    &supply_map_fops);
6183
6184	debugfs_create_file("regulator_summary", 0444, debugfs_root,
6185			    NULL, &regulator_summary_fops);
6186#endif
6187	regulator_dummy_init();
6188
6189	regulator_coupler_register(&generic_regulator_coupler);
6190
6191	return ret;
6192}
6193
6194/* init early to allow our consumers to complete system booting */
6195core_initcall(regulator_init);
6196
6197static int regulator_late_cleanup(struct device *dev, void *data)
6198{
6199	struct regulator_dev *rdev = dev_to_rdev(dev);
6200	struct regulation_constraints *c = rdev->constraints;
6201	int ret;
6202
6203	if (c && c->always_on)
6204		return 0;
6205
6206	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
6207		return 0;
6208
6209	regulator_lock(rdev);
6210
6211	if (rdev->use_count)
6212		goto unlock;
6213
6214	/* If reading the status failed, assume that it's off. */
6215	if (_regulator_is_enabled(rdev) <= 0)
6216		goto unlock;
6217
6218	if (have_full_constraints()) {
6219		/* We log since this may kill the system if it goes
6220		 * wrong.
6221		 */
6222		rdev_info(rdev, "disabling\n");
6223		ret = _regulator_do_disable(rdev);
6224		if (ret != 0)
6225			rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
6226	} else {
6227		/* The intention is that in future we will
6228		 * assume that full constraints are provided
6229		 * so warn even if we aren't going to do
6230		 * anything here.
6231		 */
6232		rdev_warn(rdev, "incomplete constraints, leaving on\n");
6233	}
6234
6235unlock:
6236	regulator_unlock(rdev);
6237
6238	return 0;
6239}
6240
6241static void regulator_init_complete_work_function(struct work_struct *work)
6242{
6243	/*
6244	 * Regulators may had failed to resolve their input supplies
6245	 * when were registered, either because the input supply was
6246	 * not registered yet or because its parent device was not
6247	 * bound yet. So attempt to resolve the input supplies for
6248	 * pending regulators before trying to disable unused ones.
6249	 */
6250	class_for_each_device(&regulator_class, NULL, NULL,
6251			      regulator_register_resolve_supply);
6252
6253	/* If we have a full configuration then disable any regulators
6254	 * we have permission to change the status for and which are
6255	 * not in use or always_on.  This is effectively the default
6256	 * for DT and ACPI as they have full constraints.
6257	 */
6258	class_for_each_device(&regulator_class, NULL, NULL,
6259			      regulator_late_cleanup);
6260}
6261
6262static DECLARE_DELAYED_WORK(regulator_init_complete_work,
6263			    regulator_init_complete_work_function);
6264
6265static int __init regulator_init_complete(void)
6266{
6267	/*
6268	 * Since DT doesn't provide an idiomatic mechanism for
6269	 * enabling full constraints and since it's much more natural
6270	 * with DT to provide them just assume that a DT enabled
6271	 * system has full constraints.
6272	 */
6273	if (of_have_populated_dt())
6274		has_full_constraints = true;
6275
6276	/*
6277	 * We punt completion for an arbitrary amount of time since
6278	 * systems like distros will load many drivers from userspace
6279	 * so consumers might not always be ready yet, this is
6280	 * particularly an issue with laptops where this might bounce
6281	 * the display off then on.  Ideally we'd get a notification
6282	 * from userspace when this happens but we don't so just wait
6283	 * a bit and hope we waited long enough.  It'd be better if
6284	 * we'd only do this on systems that need it, and a kernel
6285	 * command line option might be useful.
6286	 */
6287	schedule_delayed_work(&regulator_init_complete_work,
6288			      msecs_to_jiffies(30000));
6289
6290	return 0;
6291}
6292late_initcall_sync(regulator_init_complete);
6293