162306a36Sopenharmony_ci// SPDX-License-Identifier: GPL-2.0-or-later 262306a36Sopenharmony_ci/* 362306a36Sopenharmony_ci * drivers/pwm/pwm-tegra.c 462306a36Sopenharmony_ci * 562306a36Sopenharmony_ci * Tegra pulse-width-modulation controller driver 662306a36Sopenharmony_ci * 762306a36Sopenharmony_ci * Copyright (c) 2010-2020, NVIDIA Corporation. 862306a36Sopenharmony_ci * Based on arch/arm/plat-mxc/pwm.c by Sascha Hauer <s.hauer@pengutronix.de> 962306a36Sopenharmony_ci * 1062306a36Sopenharmony_ci * Overview of Tegra Pulse Width Modulator Register: 1162306a36Sopenharmony_ci * 1. 13-bit: Frequency division (SCALE) 1262306a36Sopenharmony_ci * 2. 8-bit : Pulse division (DUTY) 1362306a36Sopenharmony_ci * 3. 1-bit : Enable bit 1462306a36Sopenharmony_ci * 1562306a36Sopenharmony_ci * The PWM clock frequency is divided by 256 before subdividing it based 1662306a36Sopenharmony_ci * on the programmable frequency division value to generate the required 1762306a36Sopenharmony_ci * frequency for PWM output. The maximum output frequency that can be 1862306a36Sopenharmony_ci * achieved is (max rate of source clock) / 256. 1962306a36Sopenharmony_ci * e.g. if source clock rate is 408 MHz, maximum output frequency can be: 2062306a36Sopenharmony_ci * 408 MHz/256 = 1.6 MHz. 2162306a36Sopenharmony_ci * This 1.6 MHz frequency can further be divided using SCALE value in PWM. 2262306a36Sopenharmony_ci * 2362306a36Sopenharmony_ci * PWM pulse width: 8 bits are usable [23:16] for varying pulse width. 2462306a36Sopenharmony_ci * To achieve 100% duty cycle, program Bit [24] of this register to 2562306a36Sopenharmony_ci * 1’b1. In which case the other bits [23:16] are set to don't care. 2662306a36Sopenharmony_ci * 2762306a36Sopenharmony_ci * Limitations: 2862306a36Sopenharmony_ci * - When PWM is disabled, the output is driven to inactive. 2962306a36Sopenharmony_ci * - It does not allow the current PWM period to complete and 3062306a36Sopenharmony_ci * stops abruptly. 3162306a36Sopenharmony_ci * 3262306a36Sopenharmony_ci * - If the register is reconfigured while PWM is running, 3362306a36Sopenharmony_ci * it does not complete the currently running period. 3462306a36Sopenharmony_ci * 3562306a36Sopenharmony_ci * - If the user input duty is beyond acceptible limits, 3662306a36Sopenharmony_ci * -EINVAL is returned. 3762306a36Sopenharmony_ci */ 3862306a36Sopenharmony_ci 3962306a36Sopenharmony_ci#include <linux/clk.h> 4062306a36Sopenharmony_ci#include <linux/err.h> 4162306a36Sopenharmony_ci#include <linux/io.h> 4262306a36Sopenharmony_ci#include <linux/module.h> 4362306a36Sopenharmony_ci#include <linux/of.h> 4462306a36Sopenharmony_ci#include <linux/pm_opp.h> 4562306a36Sopenharmony_ci#include <linux/pwm.h> 4662306a36Sopenharmony_ci#include <linux/platform_device.h> 4762306a36Sopenharmony_ci#include <linux/pinctrl/consumer.h> 4862306a36Sopenharmony_ci#include <linux/pm_runtime.h> 4962306a36Sopenharmony_ci#include <linux/slab.h> 5062306a36Sopenharmony_ci#include <linux/reset.h> 5162306a36Sopenharmony_ci 5262306a36Sopenharmony_ci#include <soc/tegra/common.h> 5362306a36Sopenharmony_ci 5462306a36Sopenharmony_ci#define PWM_ENABLE (1 << 31) 5562306a36Sopenharmony_ci#define PWM_DUTY_WIDTH 8 5662306a36Sopenharmony_ci#define PWM_DUTY_SHIFT 16 5762306a36Sopenharmony_ci#define PWM_SCALE_WIDTH 13 5862306a36Sopenharmony_ci#define PWM_SCALE_SHIFT 0 5962306a36Sopenharmony_ci 6062306a36Sopenharmony_cistruct tegra_pwm_soc { 6162306a36Sopenharmony_ci unsigned int num_channels; 6262306a36Sopenharmony_ci 6362306a36Sopenharmony_ci /* Maximum IP frequency for given SoCs */ 6462306a36Sopenharmony_ci unsigned long max_frequency; 6562306a36Sopenharmony_ci}; 6662306a36Sopenharmony_ci 6762306a36Sopenharmony_cistruct tegra_pwm_chip { 6862306a36Sopenharmony_ci struct pwm_chip chip; 6962306a36Sopenharmony_ci struct device *dev; 7062306a36Sopenharmony_ci 7162306a36Sopenharmony_ci struct clk *clk; 7262306a36Sopenharmony_ci struct reset_control*rst; 7362306a36Sopenharmony_ci 7462306a36Sopenharmony_ci unsigned long clk_rate; 7562306a36Sopenharmony_ci unsigned long min_period_ns; 7662306a36Sopenharmony_ci 7762306a36Sopenharmony_ci void __iomem *regs; 7862306a36Sopenharmony_ci 7962306a36Sopenharmony_ci const struct tegra_pwm_soc *soc; 8062306a36Sopenharmony_ci}; 8162306a36Sopenharmony_ci 8262306a36Sopenharmony_cistatic inline struct tegra_pwm_chip *to_tegra_pwm_chip(struct pwm_chip *chip) 8362306a36Sopenharmony_ci{ 8462306a36Sopenharmony_ci return container_of(chip, struct tegra_pwm_chip, chip); 8562306a36Sopenharmony_ci} 8662306a36Sopenharmony_ci 8762306a36Sopenharmony_cistatic inline u32 pwm_readl(struct tegra_pwm_chip *pc, unsigned int offset) 8862306a36Sopenharmony_ci{ 8962306a36Sopenharmony_ci return readl(pc->regs + (offset << 4)); 9062306a36Sopenharmony_ci} 9162306a36Sopenharmony_ci 9262306a36Sopenharmony_cistatic inline void pwm_writel(struct tegra_pwm_chip *pc, unsigned int offset, u32 value) 9362306a36Sopenharmony_ci{ 9462306a36Sopenharmony_ci writel(value, pc->regs + (offset << 4)); 9562306a36Sopenharmony_ci} 9662306a36Sopenharmony_ci 9762306a36Sopenharmony_cistatic int tegra_pwm_config(struct pwm_chip *chip, struct pwm_device *pwm, 9862306a36Sopenharmony_ci int duty_ns, int period_ns) 9962306a36Sopenharmony_ci{ 10062306a36Sopenharmony_ci struct tegra_pwm_chip *pc = to_tegra_pwm_chip(chip); 10162306a36Sopenharmony_ci unsigned long long c = duty_ns; 10262306a36Sopenharmony_ci unsigned long rate, required_clk_rate; 10362306a36Sopenharmony_ci u32 val = 0; 10462306a36Sopenharmony_ci int err; 10562306a36Sopenharmony_ci 10662306a36Sopenharmony_ci /* 10762306a36Sopenharmony_ci * Convert from duty_ns / period_ns to a fixed number of duty ticks 10862306a36Sopenharmony_ci * per (1 << PWM_DUTY_WIDTH) cycles and make sure to round to the 10962306a36Sopenharmony_ci * nearest integer during division. 11062306a36Sopenharmony_ci */ 11162306a36Sopenharmony_ci c *= (1 << PWM_DUTY_WIDTH); 11262306a36Sopenharmony_ci c = DIV_ROUND_CLOSEST_ULL(c, period_ns); 11362306a36Sopenharmony_ci 11462306a36Sopenharmony_ci val = (u32)c << PWM_DUTY_SHIFT; 11562306a36Sopenharmony_ci 11662306a36Sopenharmony_ci /* 11762306a36Sopenharmony_ci * min period = max clock limit >> PWM_DUTY_WIDTH 11862306a36Sopenharmony_ci */ 11962306a36Sopenharmony_ci if (period_ns < pc->min_period_ns) 12062306a36Sopenharmony_ci return -EINVAL; 12162306a36Sopenharmony_ci 12262306a36Sopenharmony_ci /* 12362306a36Sopenharmony_ci * Compute the prescaler value for which (1 << PWM_DUTY_WIDTH) 12462306a36Sopenharmony_ci * cycles at the PWM clock rate will take period_ns nanoseconds. 12562306a36Sopenharmony_ci * 12662306a36Sopenharmony_ci * num_channels: If single instance of PWM controller has multiple 12762306a36Sopenharmony_ci * channels (e.g. Tegra210 or older) then it is not possible to 12862306a36Sopenharmony_ci * configure separate clock rates to each of the channels, in such 12962306a36Sopenharmony_ci * case the value stored during probe will be referred. 13062306a36Sopenharmony_ci * 13162306a36Sopenharmony_ci * If every PWM controller instance has one channel respectively, i.e. 13262306a36Sopenharmony_ci * nums_channels == 1 then only the clock rate can be modified 13362306a36Sopenharmony_ci * dynamically (e.g. Tegra186 or Tegra194). 13462306a36Sopenharmony_ci */ 13562306a36Sopenharmony_ci if (pc->soc->num_channels == 1) { 13662306a36Sopenharmony_ci /* 13762306a36Sopenharmony_ci * Rate is multiplied with 2^PWM_DUTY_WIDTH so that it matches 13862306a36Sopenharmony_ci * with the maximum possible rate that the controller can 13962306a36Sopenharmony_ci * provide. Any further lower value can be derived by setting 14062306a36Sopenharmony_ci * PFM bits[0:12]. 14162306a36Sopenharmony_ci * 14262306a36Sopenharmony_ci * required_clk_rate is a reference rate for source clock and 14362306a36Sopenharmony_ci * it is derived based on user requested period. By setting the 14462306a36Sopenharmony_ci * source clock rate as required_clk_rate, PWM controller will 14562306a36Sopenharmony_ci * be able to configure the requested period. 14662306a36Sopenharmony_ci */ 14762306a36Sopenharmony_ci required_clk_rate = DIV_ROUND_UP_ULL((u64)NSEC_PER_SEC << PWM_DUTY_WIDTH, 14862306a36Sopenharmony_ci period_ns); 14962306a36Sopenharmony_ci 15062306a36Sopenharmony_ci if (required_clk_rate > clk_round_rate(pc->clk, required_clk_rate)) 15162306a36Sopenharmony_ci /* 15262306a36Sopenharmony_ci * required_clk_rate is a lower bound for the input 15362306a36Sopenharmony_ci * rate; for lower rates there is no value for PWM_SCALE 15462306a36Sopenharmony_ci * that yields a period less than or equal to the 15562306a36Sopenharmony_ci * requested period. Hence, for lower rates, double the 15662306a36Sopenharmony_ci * required_clk_rate to get a clock rate that can meet 15762306a36Sopenharmony_ci * the requested period. 15862306a36Sopenharmony_ci */ 15962306a36Sopenharmony_ci required_clk_rate *= 2; 16062306a36Sopenharmony_ci 16162306a36Sopenharmony_ci err = dev_pm_opp_set_rate(pc->dev, required_clk_rate); 16262306a36Sopenharmony_ci if (err < 0) 16362306a36Sopenharmony_ci return -EINVAL; 16462306a36Sopenharmony_ci 16562306a36Sopenharmony_ci /* Store the new rate for further references */ 16662306a36Sopenharmony_ci pc->clk_rate = clk_get_rate(pc->clk); 16762306a36Sopenharmony_ci } 16862306a36Sopenharmony_ci 16962306a36Sopenharmony_ci /* Consider precision in PWM_SCALE_WIDTH rate calculation */ 17062306a36Sopenharmony_ci rate = mul_u64_u64_div_u64(pc->clk_rate, period_ns, 17162306a36Sopenharmony_ci (u64)NSEC_PER_SEC << PWM_DUTY_WIDTH); 17262306a36Sopenharmony_ci 17362306a36Sopenharmony_ci /* 17462306a36Sopenharmony_ci * Since the actual PWM divider is the register's frequency divider 17562306a36Sopenharmony_ci * field plus 1, we need to decrement to get the correct value to 17662306a36Sopenharmony_ci * write to the register. 17762306a36Sopenharmony_ci */ 17862306a36Sopenharmony_ci if (rate > 0) 17962306a36Sopenharmony_ci rate--; 18062306a36Sopenharmony_ci else 18162306a36Sopenharmony_ci return -EINVAL; 18262306a36Sopenharmony_ci 18362306a36Sopenharmony_ci /* 18462306a36Sopenharmony_ci * Make sure that the rate will fit in the register's frequency 18562306a36Sopenharmony_ci * divider field. 18662306a36Sopenharmony_ci */ 18762306a36Sopenharmony_ci if (rate >> PWM_SCALE_WIDTH) 18862306a36Sopenharmony_ci return -EINVAL; 18962306a36Sopenharmony_ci 19062306a36Sopenharmony_ci val |= rate << PWM_SCALE_SHIFT; 19162306a36Sopenharmony_ci 19262306a36Sopenharmony_ci /* 19362306a36Sopenharmony_ci * If the PWM channel is disabled, make sure to turn on the clock 19462306a36Sopenharmony_ci * before writing the register. Otherwise, keep it enabled. 19562306a36Sopenharmony_ci */ 19662306a36Sopenharmony_ci if (!pwm_is_enabled(pwm)) { 19762306a36Sopenharmony_ci err = pm_runtime_resume_and_get(pc->dev); 19862306a36Sopenharmony_ci if (err) 19962306a36Sopenharmony_ci return err; 20062306a36Sopenharmony_ci } else 20162306a36Sopenharmony_ci val |= PWM_ENABLE; 20262306a36Sopenharmony_ci 20362306a36Sopenharmony_ci pwm_writel(pc, pwm->hwpwm, val); 20462306a36Sopenharmony_ci 20562306a36Sopenharmony_ci /* 20662306a36Sopenharmony_ci * If the PWM is not enabled, turn the clock off again to save power. 20762306a36Sopenharmony_ci */ 20862306a36Sopenharmony_ci if (!pwm_is_enabled(pwm)) 20962306a36Sopenharmony_ci pm_runtime_put(pc->dev); 21062306a36Sopenharmony_ci 21162306a36Sopenharmony_ci return 0; 21262306a36Sopenharmony_ci} 21362306a36Sopenharmony_ci 21462306a36Sopenharmony_cistatic int tegra_pwm_enable(struct pwm_chip *chip, struct pwm_device *pwm) 21562306a36Sopenharmony_ci{ 21662306a36Sopenharmony_ci struct tegra_pwm_chip *pc = to_tegra_pwm_chip(chip); 21762306a36Sopenharmony_ci int rc = 0; 21862306a36Sopenharmony_ci u32 val; 21962306a36Sopenharmony_ci 22062306a36Sopenharmony_ci rc = pm_runtime_resume_and_get(pc->dev); 22162306a36Sopenharmony_ci if (rc) 22262306a36Sopenharmony_ci return rc; 22362306a36Sopenharmony_ci 22462306a36Sopenharmony_ci val = pwm_readl(pc, pwm->hwpwm); 22562306a36Sopenharmony_ci val |= PWM_ENABLE; 22662306a36Sopenharmony_ci pwm_writel(pc, pwm->hwpwm, val); 22762306a36Sopenharmony_ci 22862306a36Sopenharmony_ci return 0; 22962306a36Sopenharmony_ci} 23062306a36Sopenharmony_ci 23162306a36Sopenharmony_cistatic void tegra_pwm_disable(struct pwm_chip *chip, struct pwm_device *pwm) 23262306a36Sopenharmony_ci{ 23362306a36Sopenharmony_ci struct tegra_pwm_chip *pc = to_tegra_pwm_chip(chip); 23462306a36Sopenharmony_ci u32 val; 23562306a36Sopenharmony_ci 23662306a36Sopenharmony_ci val = pwm_readl(pc, pwm->hwpwm); 23762306a36Sopenharmony_ci val &= ~PWM_ENABLE; 23862306a36Sopenharmony_ci pwm_writel(pc, pwm->hwpwm, val); 23962306a36Sopenharmony_ci 24062306a36Sopenharmony_ci pm_runtime_put_sync(pc->dev); 24162306a36Sopenharmony_ci} 24262306a36Sopenharmony_ci 24362306a36Sopenharmony_cistatic int tegra_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm, 24462306a36Sopenharmony_ci const struct pwm_state *state) 24562306a36Sopenharmony_ci{ 24662306a36Sopenharmony_ci int err; 24762306a36Sopenharmony_ci bool enabled = pwm->state.enabled; 24862306a36Sopenharmony_ci 24962306a36Sopenharmony_ci if (state->polarity != PWM_POLARITY_NORMAL) 25062306a36Sopenharmony_ci return -EINVAL; 25162306a36Sopenharmony_ci 25262306a36Sopenharmony_ci if (!state->enabled) { 25362306a36Sopenharmony_ci if (enabled) 25462306a36Sopenharmony_ci tegra_pwm_disable(chip, pwm); 25562306a36Sopenharmony_ci 25662306a36Sopenharmony_ci return 0; 25762306a36Sopenharmony_ci } 25862306a36Sopenharmony_ci 25962306a36Sopenharmony_ci err = tegra_pwm_config(pwm->chip, pwm, state->duty_cycle, state->period); 26062306a36Sopenharmony_ci if (err) 26162306a36Sopenharmony_ci return err; 26262306a36Sopenharmony_ci 26362306a36Sopenharmony_ci if (!enabled) 26462306a36Sopenharmony_ci err = tegra_pwm_enable(chip, pwm); 26562306a36Sopenharmony_ci 26662306a36Sopenharmony_ci return err; 26762306a36Sopenharmony_ci} 26862306a36Sopenharmony_ci 26962306a36Sopenharmony_cistatic const struct pwm_ops tegra_pwm_ops = { 27062306a36Sopenharmony_ci .apply = tegra_pwm_apply, 27162306a36Sopenharmony_ci .owner = THIS_MODULE, 27262306a36Sopenharmony_ci}; 27362306a36Sopenharmony_ci 27462306a36Sopenharmony_cistatic int tegra_pwm_probe(struct platform_device *pdev) 27562306a36Sopenharmony_ci{ 27662306a36Sopenharmony_ci struct tegra_pwm_chip *pc; 27762306a36Sopenharmony_ci int ret; 27862306a36Sopenharmony_ci 27962306a36Sopenharmony_ci pc = devm_kzalloc(&pdev->dev, sizeof(*pc), GFP_KERNEL); 28062306a36Sopenharmony_ci if (!pc) 28162306a36Sopenharmony_ci return -ENOMEM; 28262306a36Sopenharmony_ci 28362306a36Sopenharmony_ci pc->soc = of_device_get_match_data(&pdev->dev); 28462306a36Sopenharmony_ci pc->dev = &pdev->dev; 28562306a36Sopenharmony_ci 28662306a36Sopenharmony_ci pc->regs = devm_platform_ioremap_resource(pdev, 0); 28762306a36Sopenharmony_ci if (IS_ERR(pc->regs)) 28862306a36Sopenharmony_ci return PTR_ERR(pc->regs); 28962306a36Sopenharmony_ci 29062306a36Sopenharmony_ci platform_set_drvdata(pdev, pc); 29162306a36Sopenharmony_ci 29262306a36Sopenharmony_ci pc->clk = devm_clk_get(&pdev->dev, NULL); 29362306a36Sopenharmony_ci if (IS_ERR(pc->clk)) 29462306a36Sopenharmony_ci return PTR_ERR(pc->clk); 29562306a36Sopenharmony_ci 29662306a36Sopenharmony_ci ret = devm_tegra_core_dev_init_opp_table_common(&pdev->dev); 29762306a36Sopenharmony_ci if (ret) 29862306a36Sopenharmony_ci return ret; 29962306a36Sopenharmony_ci 30062306a36Sopenharmony_ci pm_runtime_enable(&pdev->dev); 30162306a36Sopenharmony_ci ret = pm_runtime_resume_and_get(&pdev->dev); 30262306a36Sopenharmony_ci if (ret) 30362306a36Sopenharmony_ci return ret; 30462306a36Sopenharmony_ci 30562306a36Sopenharmony_ci /* Set maximum frequency of the IP */ 30662306a36Sopenharmony_ci ret = dev_pm_opp_set_rate(pc->dev, pc->soc->max_frequency); 30762306a36Sopenharmony_ci if (ret < 0) { 30862306a36Sopenharmony_ci dev_err(&pdev->dev, "Failed to set max frequency: %d\n", ret); 30962306a36Sopenharmony_ci goto put_pm; 31062306a36Sopenharmony_ci } 31162306a36Sopenharmony_ci 31262306a36Sopenharmony_ci /* 31362306a36Sopenharmony_ci * The requested and configured frequency may differ due to 31462306a36Sopenharmony_ci * clock register resolutions. Get the configured frequency 31562306a36Sopenharmony_ci * so that PWM period can be calculated more accurately. 31662306a36Sopenharmony_ci */ 31762306a36Sopenharmony_ci pc->clk_rate = clk_get_rate(pc->clk); 31862306a36Sopenharmony_ci 31962306a36Sopenharmony_ci /* Set minimum limit of PWM period for the IP */ 32062306a36Sopenharmony_ci pc->min_period_ns = 32162306a36Sopenharmony_ci (NSEC_PER_SEC / (pc->soc->max_frequency >> PWM_DUTY_WIDTH)) + 1; 32262306a36Sopenharmony_ci 32362306a36Sopenharmony_ci pc->rst = devm_reset_control_get_exclusive(&pdev->dev, "pwm"); 32462306a36Sopenharmony_ci if (IS_ERR(pc->rst)) { 32562306a36Sopenharmony_ci ret = PTR_ERR(pc->rst); 32662306a36Sopenharmony_ci dev_err(&pdev->dev, "Reset control is not found: %d\n", ret); 32762306a36Sopenharmony_ci goto put_pm; 32862306a36Sopenharmony_ci } 32962306a36Sopenharmony_ci 33062306a36Sopenharmony_ci reset_control_deassert(pc->rst); 33162306a36Sopenharmony_ci 33262306a36Sopenharmony_ci pc->chip.dev = &pdev->dev; 33362306a36Sopenharmony_ci pc->chip.ops = &tegra_pwm_ops; 33462306a36Sopenharmony_ci pc->chip.npwm = pc->soc->num_channels; 33562306a36Sopenharmony_ci 33662306a36Sopenharmony_ci ret = pwmchip_add(&pc->chip); 33762306a36Sopenharmony_ci if (ret < 0) { 33862306a36Sopenharmony_ci dev_err(&pdev->dev, "pwmchip_add() failed: %d\n", ret); 33962306a36Sopenharmony_ci reset_control_assert(pc->rst); 34062306a36Sopenharmony_ci goto put_pm; 34162306a36Sopenharmony_ci } 34262306a36Sopenharmony_ci 34362306a36Sopenharmony_ci pm_runtime_put(&pdev->dev); 34462306a36Sopenharmony_ci 34562306a36Sopenharmony_ci return 0; 34662306a36Sopenharmony_ciput_pm: 34762306a36Sopenharmony_ci pm_runtime_put_sync_suspend(&pdev->dev); 34862306a36Sopenharmony_ci pm_runtime_force_suspend(&pdev->dev); 34962306a36Sopenharmony_ci return ret; 35062306a36Sopenharmony_ci} 35162306a36Sopenharmony_ci 35262306a36Sopenharmony_cistatic void tegra_pwm_remove(struct platform_device *pdev) 35362306a36Sopenharmony_ci{ 35462306a36Sopenharmony_ci struct tegra_pwm_chip *pc = platform_get_drvdata(pdev); 35562306a36Sopenharmony_ci 35662306a36Sopenharmony_ci pwmchip_remove(&pc->chip); 35762306a36Sopenharmony_ci 35862306a36Sopenharmony_ci reset_control_assert(pc->rst); 35962306a36Sopenharmony_ci 36062306a36Sopenharmony_ci pm_runtime_force_suspend(&pdev->dev); 36162306a36Sopenharmony_ci} 36262306a36Sopenharmony_ci 36362306a36Sopenharmony_cistatic int __maybe_unused tegra_pwm_runtime_suspend(struct device *dev) 36462306a36Sopenharmony_ci{ 36562306a36Sopenharmony_ci struct tegra_pwm_chip *pc = dev_get_drvdata(dev); 36662306a36Sopenharmony_ci int err; 36762306a36Sopenharmony_ci 36862306a36Sopenharmony_ci clk_disable_unprepare(pc->clk); 36962306a36Sopenharmony_ci 37062306a36Sopenharmony_ci err = pinctrl_pm_select_sleep_state(dev); 37162306a36Sopenharmony_ci if (err) { 37262306a36Sopenharmony_ci clk_prepare_enable(pc->clk); 37362306a36Sopenharmony_ci return err; 37462306a36Sopenharmony_ci } 37562306a36Sopenharmony_ci 37662306a36Sopenharmony_ci return 0; 37762306a36Sopenharmony_ci} 37862306a36Sopenharmony_ci 37962306a36Sopenharmony_cistatic int __maybe_unused tegra_pwm_runtime_resume(struct device *dev) 38062306a36Sopenharmony_ci{ 38162306a36Sopenharmony_ci struct tegra_pwm_chip *pc = dev_get_drvdata(dev); 38262306a36Sopenharmony_ci int err; 38362306a36Sopenharmony_ci 38462306a36Sopenharmony_ci err = pinctrl_pm_select_default_state(dev); 38562306a36Sopenharmony_ci if (err) 38662306a36Sopenharmony_ci return err; 38762306a36Sopenharmony_ci 38862306a36Sopenharmony_ci err = clk_prepare_enable(pc->clk); 38962306a36Sopenharmony_ci if (err) { 39062306a36Sopenharmony_ci pinctrl_pm_select_sleep_state(dev); 39162306a36Sopenharmony_ci return err; 39262306a36Sopenharmony_ci } 39362306a36Sopenharmony_ci 39462306a36Sopenharmony_ci return 0; 39562306a36Sopenharmony_ci} 39662306a36Sopenharmony_ci 39762306a36Sopenharmony_cistatic const struct tegra_pwm_soc tegra20_pwm_soc = { 39862306a36Sopenharmony_ci .num_channels = 4, 39962306a36Sopenharmony_ci .max_frequency = 48000000UL, 40062306a36Sopenharmony_ci}; 40162306a36Sopenharmony_ci 40262306a36Sopenharmony_cistatic const struct tegra_pwm_soc tegra186_pwm_soc = { 40362306a36Sopenharmony_ci .num_channels = 1, 40462306a36Sopenharmony_ci .max_frequency = 102000000UL, 40562306a36Sopenharmony_ci}; 40662306a36Sopenharmony_ci 40762306a36Sopenharmony_cistatic const struct tegra_pwm_soc tegra194_pwm_soc = { 40862306a36Sopenharmony_ci .num_channels = 1, 40962306a36Sopenharmony_ci .max_frequency = 408000000UL, 41062306a36Sopenharmony_ci}; 41162306a36Sopenharmony_ci 41262306a36Sopenharmony_cistatic const struct of_device_id tegra_pwm_of_match[] = { 41362306a36Sopenharmony_ci { .compatible = "nvidia,tegra20-pwm", .data = &tegra20_pwm_soc }, 41462306a36Sopenharmony_ci { .compatible = "nvidia,tegra186-pwm", .data = &tegra186_pwm_soc }, 41562306a36Sopenharmony_ci { .compatible = "nvidia,tegra194-pwm", .data = &tegra194_pwm_soc }, 41662306a36Sopenharmony_ci { } 41762306a36Sopenharmony_ci}; 41862306a36Sopenharmony_ciMODULE_DEVICE_TABLE(of, tegra_pwm_of_match); 41962306a36Sopenharmony_ci 42062306a36Sopenharmony_cistatic const struct dev_pm_ops tegra_pwm_pm_ops = { 42162306a36Sopenharmony_ci SET_RUNTIME_PM_OPS(tegra_pwm_runtime_suspend, tegra_pwm_runtime_resume, 42262306a36Sopenharmony_ci NULL) 42362306a36Sopenharmony_ci SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, 42462306a36Sopenharmony_ci pm_runtime_force_resume) 42562306a36Sopenharmony_ci}; 42662306a36Sopenharmony_ci 42762306a36Sopenharmony_cistatic struct platform_driver tegra_pwm_driver = { 42862306a36Sopenharmony_ci .driver = { 42962306a36Sopenharmony_ci .name = "tegra-pwm", 43062306a36Sopenharmony_ci .of_match_table = tegra_pwm_of_match, 43162306a36Sopenharmony_ci .pm = &tegra_pwm_pm_ops, 43262306a36Sopenharmony_ci }, 43362306a36Sopenharmony_ci .probe = tegra_pwm_probe, 43462306a36Sopenharmony_ci .remove_new = tegra_pwm_remove, 43562306a36Sopenharmony_ci}; 43662306a36Sopenharmony_ci 43762306a36Sopenharmony_cimodule_platform_driver(tegra_pwm_driver); 43862306a36Sopenharmony_ci 43962306a36Sopenharmony_ciMODULE_LICENSE("GPL"); 44062306a36Sopenharmony_ciMODULE_AUTHOR("Sandipan Patra <spatra@nvidia.com>"); 44162306a36Sopenharmony_ciMODULE_DESCRIPTION("Tegra PWM controller driver"); 44262306a36Sopenharmony_ciMODULE_ALIAS("platform:tegra-pwm"); 443