162306a36Sopenharmony_ci// SPDX-License-Identifier: GPL-2.0-only 262306a36Sopenharmony_ci/* 362306a36Sopenharmony_ci * sl28cpld PWM driver 462306a36Sopenharmony_ci * 562306a36Sopenharmony_ci * Copyright (c) 2020 Michael Walle <michael@walle.cc> 662306a36Sopenharmony_ci * 762306a36Sopenharmony_ci * There is no public datasheet available for this PWM core. But it is easy 862306a36Sopenharmony_ci * enough to be briefly explained. It consists of one 8-bit counter. The PWM 962306a36Sopenharmony_ci * supports four distinct frequencies by selecting when to reset the counter. 1062306a36Sopenharmony_ci * With the prescaler setting you can select which bit of the counter is used 1162306a36Sopenharmony_ci * to reset it. This implies that the higher the frequency the less remaining 1262306a36Sopenharmony_ci * bits are available for the actual counter. 1362306a36Sopenharmony_ci * 1462306a36Sopenharmony_ci * Let cnt[7:0] be the counter, clocked at 32kHz: 1562306a36Sopenharmony_ci * +-----------+--------+--------------+-----------+---------------+ 1662306a36Sopenharmony_ci * | prescaler | reset | counter bits | frequency | period length | 1762306a36Sopenharmony_ci * +-----------+--------+--------------+-----------+---------------+ 1862306a36Sopenharmony_ci * | 0 | cnt[7] | cnt[6:0] | 250 Hz | 4000000 ns | 1962306a36Sopenharmony_ci * | 1 | cnt[6] | cnt[5:0] | 500 Hz | 2000000 ns | 2062306a36Sopenharmony_ci * | 2 | cnt[5] | cnt[4:0] | 1 kHz | 1000000 ns | 2162306a36Sopenharmony_ci * | 3 | cnt[4] | cnt[3:0] | 2 kHz | 500000 ns | 2262306a36Sopenharmony_ci * +-----------+--------+--------------+-----------+---------------+ 2362306a36Sopenharmony_ci * 2462306a36Sopenharmony_ci * Limitations: 2562306a36Sopenharmony_ci * - The hardware cannot generate a 100% duty cycle if the prescaler is 0. 2662306a36Sopenharmony_ci * - The hardware cannot atomically set the prescaler and the counter value, 2762306a36Sopenharmony_ci * which might lead to glitches and inconsistent states if a write fails. 2862306a36Sopenharmony_ci * - The counter is not reset if you switch the prescaler which leads 2962306a36Sopenharmony_ci * to glitches, too. 3062306a36Sopenharmony_ci * - The duty cycle will switch immediately and not after a complete cycle. 3162306a36Sopenharmony_ci * - Depending on the actual implementation, disabling the PWM might have 3262306a36Sopenharmony_ci * side effects. For example, if the output pin is shared with a GPIO pin 3362306a36Sopenharmony_ci * it will automatically switch back to GPIO mode. 3462306a36Sopenharmony_ci */ 3562306a36Sopenharmony_ci 3662306a36Sopenharmony_ci#include <linux/bitfield.h> 3762306a36Sopenharmony_ci#include <linux/kernel.h> 3862306a36Sopenharmony_ci#include <linux/mod_devicetable.h> 3962306a36Sopenharmony_ci#include <linux/module.h> 4062306a36Sopenharmony_ci#include <linux/platform_device.h> 4162306a36Sopenharmony_ci#include <linux/property.h> 4262306a36Sopenharmony_ci#include <linux/pwm.h> 4362306a36Sopenharmony_ci#include <linux/regmap.h> 4462306a36Sopenharmony_ci 4562306a36Sopenharmony_ci/* 4662306a36Sopenharmony_ci * PWM timer block registers. 4762306a36Sopenharmony_ci */ 4862306a36Sopenharmony_ci#define SL28CPLD_PWM_CTRL 0x00 4962306a36Sopenharmony_ci#define SL28CPLD_PWM_CTRL_ENABLE BIT(7) 5062306a36Sopenharmony_ci#define SL28CPLD_PWM_CTRL_PRESCALER_MASK GENMASK(1, 0) 5162306a36Sopenharmony_ci#define SL28CPLD_PWM_CYCLE 0x01 5262306a36Sopenharmony_ci#define SL28CPLD_PWM_CYCLE_MAX GENMASK(6, 0) 5362306a36Sopenharmony_ci 5462306a36Sopenharmony_ci#define SL28CPLD_PWM_CLK 32000 /* 32 kHz */ 5562306a36Sopenharmony_ci#define SL28CPLD_PWM_MAX_DUTY_CYCLE(prescaler) (1 << (7 - (prescaler))) 5662306a36Sopenharmony_ci#define SL28CPLD_PWM_PERIOD(prescaler) \ 5762306a36Sopenharmony_ci (NSEC_PER_SEC / SL28CPLD_PWM_CLK * SL28CPLD_PWM_MAX_DUTY_CYCLE(prescaler)) 5862306a36Sopenharmony_ci 5962306a36Sopenharmony_ci/* 6062306a36Sopenharmony_ci * We calculate the duty cycle like this: 6162306a36Sopenharmony_ci * duty_cycle_ns = pwm_cycle_reg * max_period_ns / max_duty_cycle 6262306a36Sopenharmony_ci * 6362306a36Sopenharmony_ci * With 6462306a36Sopenharmony_ci * max_period_ns = 1 << (7 - prescaler) / SL28CPLD_PWM_CLK * NSEC_PER_SEC 6562306a36Sopenharmony_ci * max_duty_cycle = 1 << (7 - prescaler) 6662306a36Sopenharmony_ci * this then simplifies to: 6762306a36Sopenharmony_ci * duty_cycle_ns = pwm_cycle_reg / SL28CPLD_PWM_CLK * NSEC_PER_SEC 6862306a36Sopenharmony_ci * = NSEC_PER_SEC / SL28CPLD_PWM_CLK * pwm_cycle_reg 6962306a36Sopenharmony_ci * 7062306a36Sopenharmony_ci * NSEC_PER_SEC is a multiple of SL28CPLD_PWM_CLK, therefore we're not losing 7162306a36Sopenharmony_ci * precision by doing the divison first. 7262306a36Sopenharmony_ci */ 7362306a36Sopenharmony_ci#define SL28CPLD_PWM_TO_DUTY_CYCLE(reg) \ 7462306a36Sopenharmony_ci (NSEC_PER_SEC / SL28CPLD_PWM_CLK * (reg)) 7562306a36Sopenharmony_ci#define SL28CPLD_PWM_FROM_DUTY_CYCLE(duty_cycle) \ 7662306a36Sopenharmony_ci (DIV_ROUND_DOWN_ULL((duty_cycle), NSEC_PER_SEC / SL28CPLD_PWM_CLK)) 7762306a36Sopenharmony_ci 7862306a36Sopenharmony_ci#define sl28cpld_pwm_read(priv, reg, val) \ 7962306a36Sopenharmony_ci regmap_read((priv)->regmap, (priv)->offset + (reg), (val)) 8062306a36Sopenharmony_ci#define sl28cpld_pwm_write(priv, reg, val) \ 8162306a36Sopenharmony_ci regmap_write((priv)->regmap, (priv)->offset + (reg), (val)) 8262306a36Sopenharmony_ci 8362306a36Sopenharmony_cistruct sl28cpld_pwm { 8462306a36Sopenharmony_ci struct pwm_chip chip; 8562306a36Sopenharmony_ci struct regmap *regmap; 8662306a36Sopenharmony_ci u32 offset; 8762306a36Sopenharmony_ci}; 8862306a36Sopenharmony_ci 8962306a36Sopenharmony_cistatic inline struct sl28cpld_pwm *sl28cpld_pwm_from_chip(struct pwm_chip *chip) 9062306a36Sopenharmony_ci{ 9162306a36Sopenharmony_ci return container_of(chip, struct sl28cpld_pwm, chip); 9262306a36Sopenharmony_ci} 9362306a36Sopenharmony_ci 9462306a36Sopenharmony_cistatic int sl28cpld_pwm_get_state(struct pwm_chip *chip, 9562306a36Sopenharmony_ci struct pwm_device *pwm, 9662306a36Sopenharmony_ci struct pwm_state *state) 9762306a36Sopenharmony_ci{ 9862306a36Sopenharmony_ci struct sl28cpld_pwm *priv = sl28cpld_pwm_from_chip(chip); 9962306a36Sopenharmony_ci unsigned int reg; 10062306a36Sopenharmony_ci int prescaler; 10162306a36Sopenharmony_ci 10262306a36Sopenharmony_ci sl28cpld_pwm_read(priv, SL28CPLD_PWM_CTRL, ®); 10362306a36Sopenharmony_ci 10462306a36Sopenharmony_ci state->enabled = reg & SL28CPLD_PWM_CTRL_ENABLE; 10562306a36Sopenharmony_ci 10662306a36Sopenharmony_ci prescaler = FIELD_GET(SL28CPLD_PWM_CTRL_PRESCALER_MASK, reg); 10762306a36Sopenharmony_ci state->period = SL28CPLD_PWM_PERIOD(prescaler); 10862306a36Sopenharmony_ci 10962306a36Sopenharmony_ci sl28cpld_pwm_read(priv, SL28CPLD_PWM_CYCLE, ®); 11062306a36Sopenharmony_ci state->duty_cycle = SL28CPLD_PWM_TO_DUTY_CYCLE(reg); 11162306a36Sopenharmony_ci state->polarity = PWM_POLARITY_NORMAL; 11262306a36Sopenharmony_ci 11362306a36Sopenharmony_ci /* 11462306a36Sopenharmony_ci * Sanitize values for the PWM core. Depending on the prescaler it 11562306a36Sopenharmony_ci * might happen that we calculate a duty_cycle greater than the actual 11662306a36Sopenharmony_ci * period. This might happen if someone (e.g. the bootloader) sets an 11762306a36Sopenharmony_ci * invalid combination of values. The behavior of the hardware is 11862306a36Sopenharmony_ci * undefined in this case. But we need to report sane values back to 11962306a36Sopenharmony_ci * the PWM core. 12062306a36Sopenharmony_ci */ 12162306a36Sopenharmony_ci state->duty_cycle = min(state->duty_cycle, state->period); 12262306a36Sopenharmony_ci 12362306a36Sopenharmony_ci return 0; 12462306a36Sopenharmony_ci} 12562306a36Sopenharmony_ci 12662306a36Sopenharmony_cistatic int sl28cpld_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm, 12762306a36Sopenharmony_ci const struct pwm_state *state) 12862306a36Sopenharmony_ci{ 12962306a36Sopenharmony_ci struct sl28cpld_pwm *priv = sl28cpld_pwm_from_chip(chip); 13062306a36Sopenharmony_ci unsigned int cycle, prescaler; 13162306a36Sopenharmony_ci bool write_duty_cycle_first; 13262306a36Sopenharmony_ci int ret; 13362306a36Sopenharmony_ci u8 ctrl; 13462306a36Sopenharmony_ci 13562306a36Sopenharmony_ci /* Polarity inversion is not supported */ 13662306a36Sopenharmony_ci if (state->polarity != PWM_POLARITY_NORMAL) 13762306a36Sopenharmony_ci return -EINVAL; 13862306a36Sopenharmony_ci 13962306a36Sopenharmony_ci /* 14062306a36Sopenharmony_ci * Calculate the prescaler. Pick the biggest period that isn't 14162306a36Sopenharmony_ci * bigger than the requested period. 14262306a36Sopenharmony_ci */ 14362306a36Sopenharmony_ci prescaler = DIV_ROUND_UP_ULL(SL28CPLD_PWM_PERIOD(0), state->period); 14462306a36Sopenharmony_ci prescaler = order_base_2(prescaler); 14562306a36Sopenharmony_ci 14662306a36Sopenharmony_ci if (prescaler > field_max(SL28CPLD_PWM_CTRL_PRESCALER_MASK)) 14762306a36Sopenharmony_ci return -ERANGE; 14862306a36Sopenharmony_ci 14962306a36Sopenharmony_ci ctrl = FIELD_PREP(SL28CPLD_PWM_CTRL_PRESCALER_MASK, prescaler); 15062306a36Sopenharmony_ci if (state->enabled) 15162306a36Sopenharmony_ci ctrl |= SL28CPLD_PWM_CTRL_ENABLE; 15262306a36Sopenharmony_ci 15362306a36Sopenharmony_ci cycle = SL28CPLD_PWM_FROM_DUTY_CYCLE(state->duty_cycle); 15462306a36Sopenharmony_ci cycle = min_t(unsigned int, cycle, SL28CPLD_PWM_MAX_DUTY_CYCLE(prescaler)); 15562306a36Sopenharmony_ci 15662306a36Sopenharmony_ci /* 15762306a36Sopenharmony_ci * Work around the hardware limitation. See also above. Trap 100% duty 15862306a36Sopenharmony_ci * cycle if the prescaler is 0. Set prescaler to 1 instead. We don't 15962306a36Sopenharmony_ci * care about the frequency because its "all-one" in either case. 16062306a36Sopenharmony_ci * 16162306a36Sopenharmony_ci * We don't need to check the actual prescaler setting, because only 16262306a36Sopenharmony_ci * if the prescaler is 0 we can have this particular value. 16362306a36Sopenharmony_ci */ 16462306a36Sopenharmony_ci if (cycle == SL28CPLD_PWM_MAX_DUTY_CYCLE(0)) { 16562306a36Sopenharmony_ci ctrl &= ~SL28CPLD_PWM_CTRL_PRESCALER_MASK; 16662306a36Sopenharmony_ci ctrl |= FIELD_PREP(SL28CPLD_PWM_CTRL_PRESCALER_MASK, 1); 16762306a36Sopenharmony_ci cycle = SL28CPLD_PWM_MAX_DUTY_CYCLE(1); 16862306a36Sopenharmony_ci } 16962306a36Sopenharmony_ci 17062306a36Sopenharmony_ci /* 17162306a36Sopenharmony_ci * To avoid glitches when we switch the prescaler, we have to make sure 17262306a36Sopenharmony_ci * we have a valid duty cycle for the new mode. 17362306a36Sopenharmony_ci * 17462306a36Sopenharmony_ci * Take the current prescaler (or the current period length) into 17562306a36Sopenharmony_ci * account to decide whether we have to write the duty cycle or the new 17662306a36Sopenharmony_ci * prescaler first. If the period length is decreasing we have to 17762306a36Sopenharmony_ci * write the duty cycle first. 17862306a36Sopenharmony_ci */ 17962306a36Sopenharmony_ci write_duty_cycle_first = pwm->state.period > state->period; 18062306a36Sopenharmony_ci 18162306a36Sopenharmony_ci if (write_duty_cycle_first) { 18262306a36Sopenharmony_ci ret = sl28cpld_pwm_write(priv, SL28CPLD_PWM_CYCLE, cycle); 18362306a36Sopenharmony_ci if (ret) 18462306a36Sopenharmony_ci return ret; 18562306a36Sopenharmony_ci } 18662306a36Sopenharmony_ci 18762306a36Sopenharmony_ci ret = sl28cpld_pwm_write(priv, SL28CPLD_PWM_CTRL, ctrl); 18862306a36Sopenharmony_ci if (ret) 18962306a36Sopenharmony_ci return ret; 19062306a36Sopenharmony_ci 19162306a36Sopenharmony_ci if (!write_duty_cycle_first) { 19262306a36Sopenharmony_ci ret = sl28cpld_pwm_write(priv, SL28CPLD_PWM_CYCLE, cycle); 19362306a36Sopenharmony_ci if (ret) 19462306a36Sopenharmony_ci return ret; 19562306a36Sopenharmony_ci } 19662306a36Sopenharmony_ci 19762306a36Sopenharmony_ci return 0; 19862306a36Sopenharmony_ci} 19962306a36Sopenharmony_ci 20062306a36Sopenharmony_cistatic const struct pwm_ops sl28cpld_pwm_ops = { 20162306a36Sopenharmony_ci .apply = sl28cpld_pwm_apply, 20262306a36Sopenharmony_ci .get_state = sl28cpld_pwm_get_state, 20362306a36Sopenharmony_ci .owner = THIS_MODULE, 20462306a36Sopenharmony_ci}; 20562306a36Sopenharmony_ci 20662306a36Sopenharmony_cistatic int sl28cpld_pwm_probe(struct platform_device *pdev) 20762306a36Sopenharmony_ci{ 20862306a36Sopenharmony_ci struct sl28cpld_pwm *priv; 20962306a36Sopenharmony_ci struct pwm_chip *chip; 21062306a36Sopenharmony_ci int ret; 21162306a36Sopenharmony_ci 21262306a36Sopenharmony_ci if (!pdev->dev.parent) { 21362306a36Sopenharmony_ci dev_err(&pdev->dev, "no parent device\n"); 21462306a36Sopenharmony_ci return -ENODEV; 21562306a36Sopenharmony_ci } 21662306a36Sopenharmony_ci 21762306a36Sopenharmony_ci priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL); 21862306a36Sopenharmony_ci if (!priv) 21962306a36Sopenharmony_ci return -ENOMEM; 22062306a36Sopenharmony_ci 22162306a36Sopenharmony_ci priv->regmap = dev_get_regmap(pdev->dev.parent, NULL); 22262306a36Sopenharmony_ci if (!priv->regmap) { 22362306a36Sopenharmony_ci dev_err(&pdev->dev, "could not get parent regmap\n"); 22462306a36Sopenharmony_ci return -ENODEV; 22562306a36Sopenharmony_ci } 22662306a36Sopenharmony_ci 22762306a36Sopenharmony_ci ret = device_property_read_u32(&pdev->dev, "reg", &priv->offset); 22862306a36Sopenharmony_ci if (ret) { 22962306a36Sopenharmony_ci dev_err(&pdev->dev, "no 'reg' property found (%pe)\n", 23062306a36Sopenharmony_ci ERR_PTR(ret)); 23162306a36Sopenharmony_ci return -EINVAL; 23262306a36Sopenharmony_ci } 23362306a36Sopenharmony_ci 23462306a36Sopenharmony_ci /* Initialize the pwm_chip structure */ 23562306a36Sopenharmony_ci chip = &priv->chip; 23662306a36Sopenharmony_ci chip->dev = &pdev->dev; 23762306a36Sopenharmony_ci chip->ops = &sl28cpld_pwm_ops; 23862306a36Sopenharmony_ci chip->npwm = 1; 23962306a36Sopenharmony_ci 24062306a36Sopenharmony_ci ret = devm_pwmchip_add(&pdev->dev, chip); 24162306a36Sopenharmony_ci if (ret) { 24262306a36Sopenharmony_ci dev_err(&pdev->dev, "failed to add PWM chip (%pe)", 24362306a36Sopenharmony_ci ERR_PTR(ret)); 24462306a36Sopenharmony_ci return ret; 24562306a36Sopenharmony_ci } 24662306a36Sopenharmony_ci 24762306a36Sopenharmony_ci return 0; 24862306a36Sopenharmony_ci} 24962306a36Sopenharmony_ci 25062306a36Sopenharmony_cistatic const struct of_device_id sl28cpld_pwm_of_match[] = { 25162306a36Sopenharmony_ci { .compatible = "kontron,sl28cpld-pwm" }, 25262306a36Sopenharmony_ci {} 25362306a36Sopenharmony_ci}; 25462306a36Sopenharmony_ciMODULE_DEVICE_TABLE(of, sl28cpld_pwm_of_match); 25562306a36Sopenharmony_ci 25662306a36Sopenharmony_cistatic struct platform_driver sl28cpld_pwm_driver = { 25762306a36Sopenharmony_ci .probe = sl28cpld_pwm_probe, 25862306a36Sopenharmony_ci .driver = { 25962306a36Sopenharmony_ci .name = "sl28cpld-pwm", 26062306a36Sopenharmony_ci .of_match_table = sl28cpld_pwm_of_match, 26162306a36Sopenharmony_ci }, 26262306a36Sopenharmony_ci}; 26362306a36Sopenharmony_cimodule_platform_driver(sl28cpld_pwm_driver); 26462306a36Sopenharmony_ci 26562306a36Sopenharmony_ciMODULE_DESCRIPTION("sl28cpld PWM Driver"); 26662306a36Sopenharmony_ciMODULE_AUTHOR("Michael Walle <michael@walle.cc>"); 26762306a36Sopenharmony_ciMODULE_LICENSE("GPL"); 268