162306a36Sopenharmony_ci// SPDX-License-Identifier: GPL-2.0-or-later 262306a36Sopenharmony_ci/* 362306a36Sopenharmony_ci * Broadcom BCM7038 PWM driver 462306a36Sopenharmony_ci * Author: Florian Fainelli 562306a36Sopenharmony_ci * 662306a36Sopenharmony_ci * Copyright (C) 2015 Broadcom Corporation 762306a36Sopenharmony_ci */ 862306a36Sopenharmony_ci 962306a36Sopenharmony_ci#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 1062306a36Sopenharmony_ci 1162306a36Sopenharmony_ci#include <linux/clk.h> 1262306a36Sopenharmony_ci#include <linux/export.h> 1362306a36Sopenharmony_ci#include <linux/init.h> 1462306a36Sopenharmony_ci#include <linux/io.h> 1562306a36Sopenharmony_ci#include <linux/kernel.h> 1662306a36Sopenharmony_ci#include <linux/module.h> 1762306a36Sopenharmony_ci#include <linux/of.h> 1862306a36Sopenharmony_ci#include <linux/platform_device.h> 1962306a36Sopenharmony_ci#include <linux/pwm.h> 2062306a36Sopenharmony_ci#include <linux/spinlock.h> 2162306a36Sopenharmony_ci 2262306a36Sopenharmony_ci#define PWM_CTRL 0x00 2362306a36Sopenharmony_ci#define CTRL_START BIT(0) 2462306a36Sopenharmony_ci#define CTRL_OEB BIT(1) 2562306a36Sopenharmony_ci#define CTRL_FORCE_HIGH BIT(2) 2662306a36Sopenharmony_ci#define CTRL_OPENDRAIN BIT(3) 2762306a36Sopenharmony_ci#define CTRL_CHAN_OFFS 4 2862306a36Sopenharmony_ci 2962306a36Sopenharmony_ci#define PWM_CTRL2 0x04 3062306a36Sopenharmony_ci#define CTRL2_OUT_SELECT BIT(0) 3162306a36Sopenharmony_ci 3262306a36Sopenharmony_ci#define PWM_CH_SIZE 0x8 3362306a36Sopenharmony_ci 3462306a36Sopenharmony_ci#define PWM_CWORD_MSB(ch) (0x08 + ((ch) * PWM_CH_SIZE)) 3562306a36Sopenharmony_ci#define PWM_CWORD_LSB(ch) (0x0c + ((ch) * PWM_CH_SIZE)) 3662306a36Sopenharmony_ci 3762306a36Sopenharmony_ci/* Number of bits for the CWORD value */ 3862306a36Sopenharmony_ci#define CWORD_BIT_SIZE 16 3962306a36Sopenharmony_ci 4062306a36Sopenharmony_ci/* 4162306a36Sopenharmony_ci * Maximum control word value allowed when variable-frequency PWM is used as a 4262306a36Sopenharmony_ci * clock for the constant-frequency PMW. 4362306a36Sopenharmony_ci */ 4462306a36Sopenharmony_ci#define CONST_VAR_F_MAX 32768 4562306a36Sopenharmony_ci#define CONST_VAR_F_MIN 1 4662306a36Sopenharmony_ci 4762306a36Sopenharmony_ci#define PWM_ON(ch) (0x18 + ((ch) * PWM_CH_SIZE)) 4862306a36Sopenharmony_ci#define PWM_ON_MIN 1 4962306a36Sopenharmony_ci#define PWM_PERIOD(ch) (0x1c + ((ch) * PWM_CH_SIZE)) 5062306a36Sopenharmony_ci#define PWM_PERIOD_MIN 0 5162306a36Sopenharmony_ci 5262306a36Sopenharmony_ci#define PWM_ON_PERIOD_MAX 0xff 5362306a36Sopenharmony_ci 5462306a36Sopenharmony_cistruct brcmstb_pwm { 5562306a36Sopenharmony_ci void __iomem *base; 5662306a36Sopenharmony_ci struct clk *clk; 5762306a36Sopenharmony_ci struct pwm_chip chip; 5862306a36Sopenharmony_ci}; 5962306a36Sopenharmony_ci 6062306a36Sopenharmony_cistatic inline u32 brcmstb_pwm_readl(struct brcmstb_pwm *p, 6162306a36Sopenharmony_ci unsigned int offset) 6262306a36Sopenharmony_ci{ 6362306a36Sopenharmony_ci if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN)) 6462306a36Sopenharmony_ci return __raw_readl(p->base + offset); 6562306a36Sopenharmony_ci else 6662306a36Sopenharmony_ci return readl_relaxed(p->base + offset); 6762306a36Sopenharmony_ci} 6862306a36Sopenharmony_ci 6962306a36Sopenharmony_cistatic inline void brcmstb_pwm_writel(struct brcmstb_pwm *p, u32 value, 7062306a36Sopenharmony_ci unsigned int offset) 7162306a36Sopenharmony_ci{ 7262306a36Sopenharmony_ci if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN)) 7362306a36Sopenharmony_ci __raw_writel(value, p->base + offset); 7462306a36Sopenharmony_ci else 7562306a36Sopenharmony_ci writel_relaxed(value, p->base + offset); 7662306a36Sopenharmony_ci} 7762306a36Sopenharmony_ci 7862306a36Sopenharmony_cistatic inline struct brcmstb_pwm *to_brcmstb_pwm(struct pwm_chip *chip) 7962306a36Sopenharmony_ci{ 8062306a36Sopenharmony_ci return container_of(chip, struct brcmstb_pwm, chip); 8162306a36Sopenharmony_ci} 8262306a36Sopenharmony_ci 8362306a36Sopenharmony_ci/* 8462306a36Sopenharmony_ci * Fv is derived from the variable frequency output. The variable frequency 8562306a36Sopenharmony_ci * output is configured using this formula: 8662306a36Sopenharmony_ci * 8762306a36Sopenharmony_ci * W = cword, if cword < 2 ^ 15 else 16-bit 2's complement of cword 8862306a36Sopenharmony_ci * 8962306a36Sopenharmony_ci * Fv = W x 2 ^ -16 x 27Mhz (reference clock) 9062306a36Sopenharmony_ci * 9162306a36Sopenharmony_ci * The period is: (period + 1) / Fv and "on" time is on / (period + 1) 9262306a36Sopenharmony_ci * 9362306a36Sopenharmony_ci * The PWM core framework specifies that the "duty_ns" parameter is in fact the 9462306a36Sopenharmony_ci * "on" time, so this translates directly into our HW programming here. 9562306a36Sopenharmony_ci */ 9662306a36Sopenharmony_cistatic int brcmstb_pwm_config(struct pwm_chip *chip, struct pwm_device *pwm, 9762306a36Sopenharmony_ci u64 duty_ns, u64 period_ns) 9862306a36Sopenharmony_ci{ 9962306a36Sopenharmony_ci struct brcmstb_pwm *p = to_brcmstb_pwm(chip); 10062306a36Sopenharmony_ci unsigned long pc, dc, cword = CONST_VAR_F_MAX; 10162306a36Sopenharmony_ci unsigned int channel = pwm->hwpwm; 10262306a36Sopenharmony_ci u32 value; 10362306a36Sopenharmony_ci 10462306a36Sopenharmony_ci /* 10562306a36Sopenharmony_ci * If asking for a duty_ns equal to period_ns, we need to substract 10662306a36Sopenharmony_ci * the period value by 1 to make it shorter than the "on" time and 10762306a36Sopenharmony_ci * produce a flat 100% duty cycle signal, and max out the "on" time 10862306a36Sopenharmony_ci */ 10962306a36Sopenharmony_ci if (duty_ns == period_ns) { 11062306a36Sopenharmony_ci dc = PWM_ON_PERIOD_MAX; 11162306a36Sopenharmony_ci pc = PWM_ON_PERIOD_MAX - 1; 11262306a36Sopenharmony_ci goto done; 11362306a36Sopenharmony_ci } 11462306a36Sopenharmony_ci 11562306a36Sopenharmony_ci while (1) { 11662306a36Sopenharmony_ci u64 rate; 11762306a36Sopenharmony_ci 11862306a36Sopenharmony_ci /* 11962306a36Sopenharmony_ci * Calculate the base rate from base frequency and current 12062306a36Sopenharmony_ci * cword 12162306a36Sopenharmony_ci */ 12262306a36Sopenharmony_ci rate = (u64)clk_get_rate(p->clk) * (u64)cword; 12362306a36Sopenharmony_ci rate >>= CWORD_BIT_SIZE; 12462306a36Sopenharmony_ci 12562306a36Sopenharmony_ci pc = mul_u64_u64_div_u64(period_ns, rate, NSEC_PER_SEC); 12662306a36Sopenharmony_ci dc = mul_u64_u64_div_u64(duty_ns + 1, rate, NSEC_PER_SEC); 12762306a36Sopenharmony_ci 12862306a36Sopenharmony_ci /* 12962306a36Sopenharmony_ci * We can be called with separate duty and period updates, 13062306a36Sopenharmony_ci * so do not reject dc == 0 right away 13162306a36Sopenharmony_ci */ 13262306a36Sopenharmony_ci if (pc == PWM_PERIOD_MIN || (dc < PWM_ON_MIN && duty_ns)) 13362306a36Sopenharmony_ci return -EINVAL; 13462306a36Sopenharmony_ci 13562306a36Sopenharmony_ci /* We converged on a calculation */ 13662306a36Sopenharmony_ci if (pc <= PWM_ON_PERIOD_MAX && dc <= PWM_ON_PERIOD_MAX) 13762306a36Sopenharmony_ci break; 13862306a36Sopenharmony_ci 13962306a36Sopenharmony_ci /* 14062306a36Sopenharmony_ci * The cword needs to be a power of 2 for the variable 14162306a36Sopenharmony_ci * frequency generator to output a 50% duty cycle variable 14262306a36Sopenharmony_ci * frequency which is used as input clock to the fixed 14362306a36Sopenharmony_ci * frequency generator. 14462306a36Sopenharmony_ci */ 14562306a36Sopenharmony_ci cword >>= 1; 14662306a36Sopenharmony_ci 14762306a36Sopenharmony_ci /* 14862306a36Sopenharmony_ci * Desired periods are too large, we do not have a divider 14962306a36Sopenharmony_ci * for them 15062306a36Sopenharmony_ci */ 15162306a36Sopenharmony_ci if (cword < CONST_VAR_F_MIN) 15262306a36Sopenharmony_ci return -EINVAL; 15362306a36Sopenharmony_ci } 15462306a36Sopenharmony_ci 15562306a36Sopenharmony_cidone: 15662306a36Sopenharmony_ci /* 15762306a36Sopenharmony_ci * Configure the defined "cword" value to have the variable frequency 15862306a36Sopenharmony_ci * generator output a base frequency for the constant frequency 15962306a36Sopenharmony_ci * generator to derive from. 16062306a36Sopenharmony_ci */ 16162306a36Sopenharmony_ci brcmstb_pwm_writel(p, cword >> 8, PWM_CWORD_MSB(channel)); 16262306a36Sopenharmony_ci brcmstb_pwm_writel(p, cword & 0xff, PWM_CWORD_LSB(channel)); 16362306a36Sopenharmony_ci 16462306a36Sopenharmony_ci /* Select constant frequency signal output */ 16562306a36Sopenharmony_ci value = brcmstb_pwm_readl(p, PWM_CTRL2); 16662306a36Sopenharmony_ci value |= CTRL2_OUT_SELECT << (channel * CTRL_CHAN_OFFS); 16762306a36Sopenharmony_ci brcmstb_pwm_writel(p, value, PWM_CTRL2); 16862306a36Sopenharmony_ci 16962306a36Sopenharmony_ci /* Configure on and period value */ 17062306a36Sopenharmony_ci brcmstb_pwm_writel(p, pc, PWM_PERIOD(channel)); 17162306a36Sopenharmony_ci brcmstb_pwm_writel(p, dc, PWM_ON(channel)); 17262306a36Sopenharmony_ci 17362306a36Sopenharmony_ci return 0; 17462306a36Sopenharmony_ci} 17562306a36Sopenharmony_ci 17662306a36Sopenharmony_cistatic inline void brcmstb_pwm_enable_set(struct brcmstb_pwm *p, 17762306a36Sopenharmony_ci unsigned int channel, bool enable) 17862306a36Sopenharmony_ci{ 17962306a36Sopenharmony_ci unsigned int shift = channel * CTRL_CHAN_OFFS; 18062306a36Sopenharmony_ci u32 value; 18162306a36Sopenharmony_ci 18262306a36Sopenharmony_ci value = brcmstb_pwm_readl(p, PWM_CTRL); 18362306a36Sopenharmony_ci 18462306a36Sopenharmony_ci if (enable) { 18562306a36Sopenharmony_ci value &= ~(CTRL_OEB << shift); 18662306a36Sopenharmony_ci value |= (CTRL_START | CTRL_OPENDRAIN) << shift; 18762306a36Sopenharmony_ci } else { 18862306a36Sopenharmony_ci value &= ~((CTRL_START | CTRL_OPENDRAIN) << shift); 18962306a36Sopenharmony_ci value |= CTRL_OEB << shift; 19062306a36Sopenharmony_ci } 19162306a36Sopenharmony_ci 19262306a36Sopenharmony_ci brcmstb_pwm_writel(p, value, PWM_CTRL); 19362306a36Sopenharmony_ci} 19462306a36Sopenharmony_ci 19562306a36Sopenharmony_cistatic int brcmstb_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm, 19662306a36Sopenharmony_ci const struct pwm_state *state) 19762306a36Sopenharmony_ci{ 19862306a36Sopenharmony_ci struct brcmstb_pwm *p = to_brcmstb_pwm(chip); 19962306a36Sopenharmony_ci int err; 20062306a36Sopenharmony_ci 20162306a36Sopenharmony_ci if (state->polarity != PWM_POLARITY_NORMAL) 20262306a36Sopenharmony_ci return -EINVAL; 20362306a36Sopenharmony_ci 20462306a36Sopenharmony_ci if (!state->enabled) { 20562306a36Sopenharmony_ci if (pwm->state.enabled) 20662306a36Sopenharmony_ci brcmstb_pwm_enable_set(p, pwm->hwpwm, false); 20762306a36Sopenharmony_ci 20862306a36Sopenharmony_ci return 0; 20962306a36Sopenharmony_ci } 21062306a36Sopenharmony_ci 21162306a36Sopenharmony_ci err = brcmstb_pwm_config(chip, pwm, state->duty_cycle, state->period); 21262306a36Sopenharmony_ci if (err) 21362306a36Sopenharmony_ci return err; 21462306a36Sopenharmony_ci 21562306a36Sopenharmony_ci if (!pwm->state.enabled) 21662306a36Sopenharmony_ci brcmstb_pwm_enable_set(p, pwm->hwpwm, true); 21762306a36Sopenharmony_ci 21862306a36Sopenharmony_ci return 0; 21962306a36Sopenharmony_ci} 22062306a36Sopenharmony_ci 22162306a36Sopenharmony_cistatic const struct pwm_ops brcmstb_pwm_ops = { 22262306a36Sopenharmony_ci .apply = brcmstb_pwm_apply, 22362306a36Sopenharmony_ci .owner = THIS_MODULE, 22462306a36Sopenharmony_ci}; 22562306a36Sopenharmony_ci 22662306a36Sopenharmony_cistatic const struct of_device_id brcmstb_pwm_of_match[] = { 22762306a36Sopenharmony_ci { .compatible = "brcm,bcm7038-pwm", }, 22862306a36Sopenharmony_ci { /* sentinel */ } 22962306a36Sopenharmony_ci}; 23062306a36Sopenharmony_ciMODULE_DEVICE_TABLE(of, brcmstb_pwm_of_match); 23162306a36Sopenharmony_ci 23262306a36Sopenharmony_cistatic int brcmstb_pwm_probe(struct platform_device *pdev) 23362306a36Sopenharmony_ci{ 23462306a36Sopenharmony_ci struct brcmstb_pwm *p; 23562306a36Sopenharmony_ci int ret; 23662306a36Sopenharmony_ci 23762306a36Sopenharmony_ci p = devm_kzalloc(&pdev->dev, sizeof(*p), GFP_KERNEL); 23862306a36Sopenharmony_ci if (!p) 23962306a36Sopenharmony_ci return -ENOMEM; 24062306a36Sopenharmony_ci 24162306a36Sopenharmony_ci p->clk = devm_clk_get(&pdev->dev, NULL); 24262306a36Sopenharmony_ci if (IS_ERR(p->clk)) { 24362306a36Sopenharmony_ci dev_err(&pdev->dev, "failed to obtain clock\n"); 24462306a36Sopenharmony_ci return PTR_ERR(p->clk); 24562306a36Sopenharmony_ci } 24662306a36Sopenharmony_ci 24762306a36Sopenharmony_ci ret = clk_prepare_enable(p->clk); 24862306a36Sopenharmony_ci if (ret < 0) { 24962306a36Sopenharmony_ci dev_err(&pdev->dev, "failed to enable clock: %d\n", ret); 25062306a36Sopenharmony_ci return ret; 25162306a36Sopenharmony_ci } 25262306a36Sopenharmony_ci 25362306a36Sopenharmony_ci platform_set_drvdata(pdev, p); 25462306a36Sopenharmony_ci 25562306a36Sopenharmony_ci p->chip.dev = &pdev->dev; 25662306a36Sopenharmony_ci p->chip.ops = &brcmstb_pwm_ops; 25762306a36Sopenharmony_ci p->chip.npwm = 2; 25862306a36Sopenharmony_ci 25962306a36Sopenharmony_ci p->base = devm_platform_ioremap_resource(pdev, 0); 26062306a36Sopenharmony_ci if (IS_ERR(p->base)) { 26162306a36Sopenharmony_ci ret = PTR_ERR(p->base); 26262306a36Sopenharmony_ci goto out_clk; 26362306a36Sopenharmony_ci } 26462306a36Sopenharmony_ci 26562306a36Sopenharmony_ci ret = pwmchip_add(&p->chip); 26662306a36Sopenharmony_ci if (ret) { 26762306a36Sopenharmony_ci dev_err(&pdev->dev, "failed to add PWM chip: %d\n", ret); 26862306a36Sopenharmony_ci goto out_clk; 26962306a36Sopenharmony_ci } 27062306a36Sopenharmony_ci 27162306a36Sopenharmony_ci return 0; 27262306a36Sopenharmony_ci 27362306a36Sopenharmony_ciout_clk: 27462306a36Sopenharmony_ci clk_disable_unprepare(p->clk); 27562306a36Sopenharmony_ci return ret; 27662306a36Sopenharmony_ci} 27762306a36Sopenharmony_ci 27862306a36Sopenharmony_cistatic void brcmstb_pwm_remove(struct platform_device *pdev) 27962306a36Sopenharmony_ci{ 28062306a36Sopenharmony_ci struct brcmstb_pwm *p = platform_get_drvdata(pdev); 28162306a36Sopenharmony_ci 28262306a36Sopenharmony_ci pwmchip_remove(&p->chip); 28362306a36Sopenharmony_ci clk_disable_unprepare(p->clk); 28462306a36Sopenharmony_ci} 28562306a36Sopenharmony_ci 28662306a36Sopenharmony_ci#ifdef CONFIG_PM_SLEEP 28762306a36Sopenharmony_cistatic int brcmstb_pwm_suspend(struct device *dev) 28862306a36Sopenharmony_ci{ 28962306a36Sopenharmony_ci struct brcmstb_pwm *p = dev_get_drvdata(dev); 29062306a36Sopenharmony_ci 29162306a36Sopenharmony_ci clk_disable_unprepare(p->clk); 29262306a36Sopenharmony_ci 29362306a36Sopenharmony_ci return 0; 29462306a36Sopenharmony_ci} 29562306a36Sopenharmony_ci 29662306a36Sopenharmony_cistatic int brcmstb_pwm_resume(struct device *dev) 29762306a36Sopenharmony_ci{ 29862306a36Sopenharmony_ci struct brcmstb_pwm *p = dev_get_drvdata(dev); 29962306a36Sopenharmony_ci 30062306a36Sopenharmony_ci clk_prepare_enable(p->clk); 30162306a36Sopenharmony_ci 30262306a36Sopenharmony_ci return 0; 30362306a36Sopenharmony_ci} 30462306a36Sopenharmony_ci#endif 30562306a36Sopenharmony_ci 30662306a36Sopenharmony_cistatic SIMPLE_DEV_PM_OPS(brcmstb_pwm_pm_ops, brcmstb_pwm_suspend, 30762306a36Sopenharmony_ci brcmstb_pwm_resume); 30862306a36Sopenharmony_ci 30962306a36Sopenharmony_cistatic struct platform_driver brcmstb_pwm_driver = { 31062306a36Sopenharmony_ci .probe = brcmstb_pwm_probe, 31162306a36Sopenharmony_ci .remove_new = brcmstb_pwm_remove, 31262306a36Sopenharmony_ci .driver = { 31362306a36Sopenharmony_ci .name = "pwm-brcmstb", 31462306a36Sopenharmony_ci .of_match_table = brcmstb_pwm_of_match, 31562306a36Sopenharmony_ci .pm = &brcmstb_pwm_pm_ops, 31662306a36Sopenharmony_ci }, 31762306a36Sopenharmony_ci}; 31862306a36Sopenharmony_cimodule_platform_driver(brcmstb_pwm_driver); 31962306a36Sopenharmony_ci 32062306a36Sopenharmony_ciMODULE_AUTHOR("Florian Fainelli <f.fainelli@gmail.com>"); 32162306a36Sopenharmony_ciMODULE_DESCRIPTION("Broadcom STB PWM driver"); 32262306a36Sopenharmony_ciMODULE_ALIAS("platform:pwm-brcmstb"); 32362306a36Sopenharmony_ciMODULE_LICENSE("GPL"); 324