xref: /kernel/linux/linux-6.6/drivers/pwm/pwm-atmel.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Driver for Atmel Pulse Width Modulation Controller
4 *
5 * Copyright (C) 2013 Atmel Corporation
6 *		 Bo Shen <voice.shen@atmel.com>
7 *
8 * Links to reference manuals for the supported PWM chips can be found in
9 * Documentation/arch/arm/microchip.rst.
10 *
11 * Limitations:
12 * - Periods start with the inactive level.
13 * - Hardware has to be stopped in general to update settings.
14 *
15 * Software bugs/possible improvements:
16 * - When atmel_pwm_apply() is called with state->enabled=false a change in
17 *   state->polarity isn't honored.
18 * - Instead of sleeping to wait for a completed period, the interrupt
19 *   functionality could be used.
20 */
21
22#include <linux/clk.h>
23#include <linux/delay.h>
24#include <linux/err.h>
25#include <linux/io.h>
26#include <linux/module.h>
27#include <linux/of.h>
28#include <linux/platform_device.h>
29#include <linux/pwm.h>
30#include <linux/slab.h>
31
32/* The following is global registers for PWM controller */
33#define PWM_ENA			0x04
34#define PWM_DIS			0x08
35#define PWM_SR			0x0C
36#define PWM_ISR			0x1C
37/* Bit field in SR */
38#define PWM_SR_ALL_CH_MASK	0x0F
39
40/* The following register is PWM channel related registers */
41#define PWM_CH_REG_OFFSET	0x200
42#define PWM_CH_REG_SIZE		0x20
43
44#define PWM_CMR			0x0
45/* Bit field in CMR */
46#define PWM_CMR_CPOL		(1 << 9)
47#define PWM_CMR_UPD_CDTY	(1 << 10)
48#define PWM_CMR_CPRE_MSK	0xF
49
50/* The following registers for PWM v1 */
51#define PWMV1_CDTY		0x04
52#define PWMV1_CPRD		0x08
53#define PWMV1_CUPD		0x10
54
55/* The following registers for PWM v2 */
56#define PWMV2_CDTY		0x04
57#define PWMV2_CDTYUPD		0x08
58#define PWMV2_CPRD		0x0C
59#define PWMV2_CPRDUPD		0x10
60
61#define PWM_MAX_PRES		10
62
63struct atmel_pwm_registers {
64	u8 period;
65	u8 period_upd;
66	u8 duty;
67	u8 duty_upd;
68};
69
70struct atmel_pwm_config {
71	u32 period_bits;
72};
73
74struct atmel_pwm_data {
75	struct atmel_pwm_registers regs;
76	struct atmel_pwm_config cfg;
77};
78
79struct atmel_pwm_chip {
80	struct pwm_chip chip;
81	struct clk *clk;
82	void __iomem *base;
83	const struct atmel_pwm_data *data;
84
85	/*
86	 * The hardware supports a mechanism to update a channel's duty cycle at
87	 * the end of the currently running period. When such an update is
88	 * pending we delay disabling the PWM until the new configuration is
89	 * active because otherwise pmw_config(duty_cycle=0); pwm_disable();
90	 * might not result in an inactive output.
91	 * This bitmask tracks for which channels an update is pending in
92	 * hardware.
93	 */
94	u32 update_pending;
95
96	/* Protects .update_pending */
97	spinlock_t lock;
98};
99
100static inline struct atmel_pwm_chip *to_atmel_pwm_chip(struct pwm_chip *chip)
101{
102	return container_of(chip, struct atmel_pwm_chip, chip);
103}
104
105static inline u32 atmel_pwm_readl(struct atmel_pwm_chip *chip,
106				  unsigned long offset)
107{
108	return readl_relaxed(chip->base + offset);
109}
110
111static inline void atmel_pwm_writel(struct atmel_pwm_chip *chip,
112				    unsigned long offset, unsigned long val)
113{
114	writel_relaxed(val, chip->base + offset);
115}
116
117static inline u32 atmel_pwm_ch_readl(struct atmel_pwm_chip *chip,
118				     unsigned int ch, unsigned long offset)
119{
120	unsigned long base = PWM_CH_REG_OFFSET + ch * PWM_CH_REG_SIZE;
121
122	return atmel_pwm_readl(chip, base + offset);
123}
124
125static inline void atmel_pwm_ch_writel(struct atmel_pwm_chip *chip,
126				       unsigned int ch, unsigned long offset,
127				       unsigned long val)
128{
129	unsigned long base = PWM_CH_REG_OFFSET + ch * PWM_CH_REG_SIZE;
130
131	atmel_pwm_writel(chip, base + offset, val);
132}
133
134static void atmel_pwm_update_pending(struct atmel_pwm_chip *chip)
135{
136	/*
137	 * Each channel that has its bit in ISR set started a new period since
138	 * ISR was cleared and so there is no more update pending.  Note that
139	 * reading ISR clears it, so this needs to handle all channels to not
140	 * loose information.
141	 */
142	u32 isr = atmel_pwm_readl(chip, PWM_ISR);
143
144	chip->update_pending &= ~isr;
145}
146
147static void atmel_pwm_set_pending(struct atmel_pwm_chip *chip, unsigned int ch)
148{
149	spin_lock(&chip->lock);
150
151	/*
152	 * Clear pending flags in hardware because otherwise there might still
153	 * be a stale flag in ISR.
154	 */
155	atmel_pwm_update_pending(chip);
156
157	chip->update_pending |= (1 << ch);
158
159	spin_unlock(&chip->lock);
160}
161
162static int atmel_pwm_test_pending(struct atmel_pwm_chip *chip, unsigned int ch)
163{
164	int ret = 0;
165
166	spin_lock(&chip->lock);
167
168	if (chip->update_pending & (1 << ch)) {
169		atmel_pwm_update_pending(chip);
170
171		if (chip->update_pending & (1 << ch))
172			ret = 1;
173	}
174
175	spin_unlock(&chip->lock);
176
177	return ret;
178}
179
180static int atmel_pwm_wait_nonpending(struct atmel_pwm_chip *chip, unsigned int ch)
181{
182	unsigned long timeout = jiffies + 2 * HZ;
183	int ret;
184
185	while ((ret = atmel_pwm_test_pending(chip, ch)) &&
186	       time_before(jiffies, timeout))
187		usleep_range(10, 100);
188
189	return ret ? -ETIMEDOUT : 0;
190}
191
192static int atmel_pwm_calculate_cprd_and_pres(struct pwm_chip *chip,
193					     unsigned long clkrate,
194					     const struct pwm_state *state,
195					     unsigned long *cprd, u32 *pres)
196{
197	struct atmel_pwm_chip *atmel_pwm = to_atmel_pwm_chip(chip);
198	unsigned long long cycles = state->period;
199	int shift;
200
201	/* Calculate the period cycles and prescale value */
202	cycles *= clkrate;
203	do_div(cycles, NSEC_PER_SEC);
204
205	/*
206	 * The register for the period length is cfg.period_bits bits wide.
207	 * So for each bit the number of clock cycles is wider divide the input
208	 * clock frequency by two using pres and shift cprd accordingly.
209	 */
210	shift = fls(cycles) - atmel_pwm->data->cfg.period_bits;
211
212	if (shift > PWM_MAX_PRES) {
213		dev_err(chip->dev, "pres exceeds the maximum value\n");
214		return -EINVAL;
215	} else if (shift > 0) {
216		*pres = shift;
217		cycles >>= *pres;
218	} else {
219		*pres = 0;
220	}
221
222	*cprd = cycles;
223
224	return 0;
225}
226
227static void atmel_pwm_calculate_cdty(const struct pwm_state *state,
228				     unsigned long clkrate, unsigned long cprd,
229				     u32 pres, unsigned long *cdty)
230{
231	unsigned long long cycles = state->duty_cycle;
232
233	cycles *= clkrate;
234	do_div(cycles, NSEC_PER_SEC);
235	cycles >>= pres;
236	*cdty = cprd - cycles;
237}
238
239static void atmel_pwm_update_cdty(struct pwm_chip *chip, struct pwm_device *pwm,
240				  unsigned long cdty)
241{
242	struct atmel_pwm_chip *atmel_pwm = to_atmel_pwm_chip(chip);
243	u32 val;
244
245	if (atmel_pwm->data->regs.duty_upd ==
246	    atmel_pwm->data->regs.period_upd) {
247		val = atmel_pwm_ch_readl(atmel_pwm, pwm->hwpwm, PWM_CMR);
248		val &= ~PWM_CMR_UPD_CDTY;
249		atmel_pwm_ch_writel(atmel_pwm, pwm->hwpwm, PWM_CMR, val);
250	}
251
252	atmel_pwm_ch_writel(atmel_pwm, pwm->hwpwm,
253			    atmel_pwm->data->regs.duty_upd, cdty);
254	atmel_pwm_set_pending(atmel_pwm, pwm->hwpwm);
255}
256
257static void atmel_pwm_set_cprd_cdty(struct pwm_chip *chip,
258				    struct pwm_device *pwm,
259				    unsigned long cprd, unsigned long cdty)
260{
261	struct atmel_pwm_chip *atmel_pwm = to_atmel_pwm_chip(chip);
262
263	atmel_pwm_ch_writel(atmel_pwm, pwm->hwpwm,
264			    atmel_pwm->data->regs.duty, cdty);
265	atmel_pwm_ch_writel(atmel_pwm, pwm->hwpwm,
266			    atmel_pwm->data->regs.period, cprd);
267}
268
269static void atmel_pwm_disable(struct pwm_chip *chip, struct pwm_device *pwm,
270			      bool disable_clk)
271{
272	struct atmel_pwm_chip *atmel_pwm = to_atmel_pwm_chip(chip);
273	unsigned long timeout;
274
275	atmel_pwm_wait_nonpending(atmel_pwm, pwm->hwpwm);
276
277	atmel_pwm_writel(atmel_pwm, PWM_DIS, 1 << pwm->hwpwm);
278
279	/*
280	 * Wait for the PWM channel disable operation to be effective before
281	 * stopping the clock.
282	 */
283	timeout = jiffies + 2 * HZ;
284
285	while ((atmel_pwm_readl(atmel_pwm, PWM_SR) & (1 << pwm->hwpwm)) &&
286	       time_before(jiffies, timeout))
287		usleep_range(10, 100);
288
289	if (disable_clk)
290		clk_disable(atmel_pwm->clk);
291}
292
293static int atmel_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
294			   const struct pwm_state *state)
295{
296	struct atmel_pwm_chip *atmel_pwm = to_atmel_pwm_chip(chip);
297	struct pwm_state cstate;
298	unsigned long cprd, cdty;
299	u32 pres, val;
300	int ret;
301
302	pwm_get_state(pwm, &cstate);
303
304	if (state->enabled) {
305		unsigned long clkrate = clk_get_rate(atmel_pwm->clk);
306
307		if (cstate.enabled &&
308		    cstate.polarity == state->polarity &&
309		    cstate.period == state->period) {
310			u32 cmr = atmel_pwm_ch_readl(atmel_pwm, pwm->hwpwm, PWM_CMR);
311
312			cprd = atmel_pwm_ch_readl(atmel_pwm, pwm->hwpwm,
313						  atmel_pwm->data->regs.period);
314			pres = cmr & PWM_CMR_CPRE_MSK;
315
316			atmel_pwm_calculate_cdty(state, clkrate, cprd, pres, &cdty);
317			atmel_pwm_update_cdty(chip, pwm, cdty);
318			return 0;
319		}
320
321		ret = atmel_pwm_calculate_cprd_and_pres(chip, clkrate, state, &cprd,
322							&pres);
323		if (ret) {
324			dev_err(chip->dev,
325				"failed to calculate cprd and prescaler\n");
326			return ret;
327		}
328
329		atmel_pwm_calculate_cdty(state, clkrate, cprd, pres, &cdty);
330
331		if (cstate.enabled) {
332			atmel_pwm_disable(chip, pwm, false);
333		} else {
334			ret = clk_enable(atmel_pwm->clk);
335			if (ret) {
336				dev_err(chip->dev, "failed to enable clock\n");
337				return ret;
338			}
339		}
340
341		/* It is necessary to preserve CPOL, inside CMR */
342		val = atmel_pwm_ch_readl(atmel_pwm, pwm->hwpwm, PWM_CMR);
343		val = (val & ~PWM_CMR_CPRE_MSK) | (pres & PWM_CMR_CPRE_MSK);
344		if (state->polarity == PWM_POLARITY_NORMAL)
345			val &= ~PWM_CMR_CPOL;
346		else
347			val |= PWM_CMR_CPOL;
348		atmel_pwm_ch_writel(atmel_pwm, pwm->hwpwm, PWM_CMR, val);
349		atmel_pwm_set_cprd_cdty(chip, pwm, cprd, cdty);
350		atmel_pwm_writel(atmel_pwm, PWM_ENA, 1 << pwm->hwpwm);
351	} else if (cstate.enabled) {
352		atmel_pwm_disable(chip, pwm, true);
353	}
354
355	return 0;
356}
357
358static int atmel_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
359			       struct pwm_state *state)
360{
361	struct atmel_pwm_chip *atmel_pwm = to_atmel_pwm_chip(chip);
362	u32 sr, cmr;
363
364	sr = atmel_pwm_readl(atmel_pwm, PWM_SR);
365	cmr = atmel_pwm_ch_readl(atmel_pwm, pwm->hwpwm, PWM_CMR);
366
367	if (sr & (1 << pwm->hwpwm)) {
368		unsigned long rate = clk_get_rate(atmel_pwm->clk);
369		u32 cdty, cprd, pres;
370		u64 tmp;
371
372		pres = cmr & PWM_CMR_CPRE_MSK;
373
374		cprd = atmel_pwm_ch_readl(atmel_pwm, pwm->hwpwm,
375					  atmel_pwm->data->regs.period);
376		tmp = (u64)cprd * NSEC_PER_SEC;
377		tmp <<= pres;
378		state->period = DIV64_U64_ROUND_UP(tmp, rate);
379
380		/* Wait for an updated duty_cycle queued in hardware */
381		atmel_pwm_wait_nonpending(atmel_pwm, pwm->hwpwm);
382
383		cdty = atmel_pwm_ch_readl(atmel_pwm, pwm->hwpwm,
384					  atmel_pwm->data->regs.duty);
385		tmp = (u64)(cprd - cdty) * NSEC_PER_SEC;
386		tmp <<= pres;
387		state->duty_cycle = DIV64_U64_ROUND_UP(tmp, rate);
388
389		state->enabled = true;
390	} else {
391		state->enabled = false;
392	}
393
394	if (cmr & PWM_CMR_CPOL)
395		state->polarity = PWM_POLARITY_INVERSED;
396	else
397		state->polarity = PWM_POLARITY_NORMAL;
398
399	return 0;
400}
401
402static const struct pwm_ops atmel_pwm_ops = {
403	.apply = atmel_pwm_apply,
404	.get_state = atmel_pwm_get_state,
405	.owner = THIS_MODULE,
406};
407
408static const struct atmel_pwm_data atmel_sam9rl_pwm_data = {
409	.regs = {
410		.period		= PWMV1_CPRD,
411		.period_upd	= PWMV1_CUPD,
412		.duty		= PWMV1_CDTY,
413		.duty_upd	= PWMV1_CUPD,
414	},
415	.cfg = {
416		/* 16 bits to keep period and duty. */
417		.period_bits	= 16,
418	},
419};
420
421static const struct atmel_pwm_data atmel_sama5_pwm_data = {
422	.regs = {
423		.period		= PWMV2_CPRD,
424		.period_upd	= PWMV2_CPRDUPD,
425		.duty		= PWMV2_CDTY,
426		.duty_upd	= PWMV2_CDTYUPD,
427	},
428	.cfg = {
429		/* 16 bits to keep period and duty. */
430		.period_bits	= 16,
431	},
432};
433
434static const struct atmel_pwm_data mchp_sam9x60_pwm_data = {
435	.regs = {
436		.period		= PWMV1_CPRD,
437		.period_upd	= PWMV1_CUPD,
438		.duty		= PWMV1_CDTY,
439		.duty_upd	= PWMV1_CUPD,
440	},
441	.cfg = {
442		/* 32 bits to keep period and duty. */
443		.period_bits	= 32,
444	},
445};
446
447static const struct of_device_id atmel_pwm_dt_ids[] = {
448	{
449		.compatible = "atmel,at91sam9rl-pwm",
450		.data = &atmel_sam9rl_pwm_data,
451	}, {
452		.compatible = "atmel,sama5d3-pwm",
453		.data = &atmel_sama5_pwm_data,
454	}, {
455		.compatible = "atmel,sama5d2-pwm",
456		.data = &atmel_sama5_pwm_data,
457	}, {
458		.compatible = "microchip,sam9x60-pwm",
459		.data = &mchp_sam9x60_pwm_data,
460	}, {
461		/* sentinel */
462	},
463};
464MODULE_DEVICE_TABLE(of, atmel_pwm_dt_ids);
465
466static int atmel_pwm_enable_clk_if_on(struct atmel_pwm_chip *atmel_pwm, bool on)
467{
468	unsigned int i, cnt = 0;
469	unsigned long sr;
470	int ret = 0;
471
472	sr = atmel_pwm_readl(atmel_pwm, PWM_SR) & PWM_SR_ALL_CH_MASK;
473	if (!sr)
474		return 0;
475
476	cnt = bitmap_weight(&sr, atmel_pwm->chip.npwm);
477
478	if (!on)
479		goto disable_clk;
480
481	for (i = 0; i < cnt; i++) {
482		ret = clk_enable(atmel_pwm->clk);
483		if (ret) {
484			dev_err(atmel_pwm->chip.dev,
485				"failed to enable clock for pwm %pe\n",
486				ERR_PTR(ret));
487
488			cnt = i;
489			goto disable_clk;
490		}
491	}
492
493	return 0;
494
495disable_clk:
496	while (cnt--)
497		clk_disable(atmel_pwm->clk);
498
499	return ret;
500}
501
502static int atmel_pwm_probe(struct platform_device *pdev)
503{
504	struct atmel_pwm_chip *atmel_pwm;
505	int ret;
506
507	atmel_pwm = devm_kzalloc(&pdev->dev, sizeof(*atmel_pwm), GFP_KERNEL);
508	if (!atmel_pwm)
509		return -ENOMEM;
510
511	atmel_pwm->data = of_device_get_match_data(&pdev->dev);
512
513	atmel_pwm->update_pending = 0;
514	spin_lock_init(&atmel_pwm->lock);
515
516	atmel_pwm->base = devm_platform_ioremap_resource(pdev, 0);
517	if (IS_ERR(atmel_pwm->base))
518		return PTR_ERR(atmel_pwm->base);
519
520	atmel_pwm->clk = devm_clk_get_prepared(&pdev->dev, NULL);
521	if (IS_ERR(atmel_pwm->clk))
522		return dev_err_probe(&pdev->dev, PTR_ERR(atmel_pwm->clk),
523				     "failed to get prepared PWM clock\n");
524
525	atmel_pwm->chip.dev = &pdev->dev;
526	atmel_pwm->chip.ops = &atmel_pwm_ops;
527	atmel_pwm->chip.npwm = 4;
528
529	ret = atmel_pwm_enable_clk_if_on(atmel_pwm, true);
530	if (ret < 0)
531		return ret;
532
533	ret = devm_pwmchip_add(&pdev->dev, &atmel_pwm->chip);
534	if (ret < 0) {
535		dev_err_probe(&pdev->dev, ret, "failed to add PWM chip\n");
536		goto disable_clk;
537	}
538
539	return 0;
540
541disable_clk:
542	atmel_pwm_enable_clk_if_on(atmel_pwm, false);
543
544	return ret;
545}
546
547static struct platform_driver atmel_pwm_driver = {
548	.driver = {
549		.name = "atmel-pwm",
550		.of_match_table = of_match_ptr(atmel_pwm_dt_ids),
551	},
552	.probe = atmel_pwm_probe,
553};
554module_platform_driver(atmel_pwm_driver);
555
556MODULE_ALIAS("platform:atmel-pwm");
557MODULE_AUTHOR("Bo Shen <voice.shen@atmel.com>");
558MODULE_DESCRIPTION("Atmel PWM driver");
559MODULE_LICENSE("GPL v2");
560