xref: /kernel/linux/linux-6.6/drivers/pwm/core.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Generic pwmlib implementation
4 *
5 * Copyright (C) 2011 Sascha Hauer <s.hauer@pengutronix.de>
6 * Copyright (C) 2011-2012 Avionic Design GmbH
7 */
8
9#include <linux/acpi.h>
10#include <linux/module.h>
11#include <linux/of.h>
12#include <linux/pwm.h>
13#include <linux/list.h>
14#include <linux/mutex.h>
15#include <linux/err.h>
16#include <linux/slab.h>
17#include <linux/device.h>
18#include <linux/debugfs.h>
19#include <linux/seq_file.h>
20
21#include <dt-bindings/pwm/pwm.h>
22
23#define CREATE_TRACE_POINTS
24#include <trace/events/pwm.h>
25
26#define MAX_PWMS 1024
27
28static DEFINE_MUTEX(pwm_lookup_lock);
29static LIST_HEAD(pwm_lookup_list);
30
31/* protects access to pwm_chips and allocated_pwms */
32static DEFINE_MUTEX(pwm_lock);
33
34static LIST_HEAD(pwm_chips);
35static DECLARE_BITMAP(allocated_pwms, MAX_PWMS);
36
37/* Called with pwm_lock held */
38static int alloc_pwms(unsigned int count)
39{
40	unsigned int start;
41
42	start = bitmap_find_next_zero_area(allocated_pwms, MAX_PWMS, 0,
43					   count, 0);
44
45	if (start + count > MAX_PWMS)
46		return -ENOSPC;
47
48	bitmap_set(allocated_pwms, start, count);
49
50	return start;
51}
52
53/* Called with pwm_lock held */
54static void free_pwms(struct pwm_chip *chip)
55{
56	bitmap_clear(allocated_pwms, chip->base, chip->npwm);
57
58	kfree(chip->pwms);
59	chip->pwms = NULL;
60}
61
62static struct pwm_chip *pwmchip_find_by_name(const char *name)
63{
64	struct pwm_chip *chip;
65
66	if (!name)
67		return NULL;
68
69	mutex_lock(&pwm_lock);
70
71	list_for_each_entry(chip, &pwm_chips, list) {
72		const char *chip_name = dev_name(chip->dev);
73
74		if (chip_name && strcmp(chip_name, name) == 0) {
75			mutex_unlock(&pwm_lock);
76			return chip;
77		}
78	}
79
80	mutex_unlock(&pwm_lock);
81
82	return NULL;
83}
84
85static int pwm_device_request(struct pwm_device *pwm, const char *label)
86{
87	int err;
88
89	if (test_bit(PWMF_REQUESTED, &pwm->flags))
90		return -EBUSY;
91
92	if (!try_module_get(pwm->chip->ops->owner))
93		return -ENODEV;
94
95	if (pwm->chip->ops->request) {
96		err = pwm->chip->ops->request(pwm->chip, pwm);
97		if (err) {
98			module_put(pwm->chip->ops->owner);
99			return err;
100		}
101	}
102
103	if (pwm->chip->ops->get_state) {
104		/*
105		 * Zero-initialize state because most drivers are unaware of
106		 * .usage_power. The other members of state are supposed to be
107		 * set by lowlevel drivers. We still initialize the whole
108		 * structure for simplicity even though this might paper over
109		 * faulty implementations of .get_state().
110		 */
111		struct pwm_state state = { 0, };
112
113		err = pwm->chip->ops->get_state(pwm->chip, pwm, &state);
114		trace_pwm_get(pwm, &state, err);
115
116		if (!err)
117			pwm->state = state;
118
119		if (IS_ENABLED(CONFIG_PWM_DEBUG))
120			pwm->last = pwm->state;
121	}
122
123	set_bit(PWMF_REQUESTED, &pwm->flags);
124	pwm->label = label;
125
126	return 0;
127}
128
129struct pwm_device *
130of_pwm_xlate_with_flags(struct pwm_chip *chip, const struct of_phandle_args *args)
131{
132	struct pwm_device *pwm;
133
134	if (chip->of_pwm_n_cells < 2)
135		return ERR_PTR(-EINVAL);
136
137	/* flags in the third cell are optional */
138	if (args->args_count < 2)
139		return ERR_PTR(-EINVAL);
140
141	if (args->args[0] >= chip->npwm)
142		return ERR_PTR(-EINVAL);
143
144	pwm = pwm_request_from_chip(chip, args->args[0], NULL);
145	if (IS_ERR(pwm))
146		return pwm;
147
148	pwm->args.period = args->args[1];
149	pwm->args.polarity = PWM_POLARITY_NORMAL;
150
151	if (chip->of_pwm_n_cells >= 3) {
152		if (args->args_count > 2 && args->args[2] & PWM_POLARITY_INVERTED)
153			pwm->args.polarity = PWM_POLARITY_INVERSED;
154	}
155
156	return pwm;
157}
158EXPORT_SYMBOL_GPL(of_pwm_xlate_with_flags);
159
160struct pwm_device *
161of_pwm_single_xlate(struct pwm_chip *chip, const struct of_phandle_args *args)
162{
163	struct pwm_device *pwm;
164
165	if (chip->of_pwm_n_cells < 1)
166		return ERR_PTR(-EINVAL);
167
168	/* validate that one cell is specified, optionally with flags */
169	if (args->args_count != 1 && args->args_count != 2)
170		return ERR_PTR(-EINVAL);
171
172	pwm = pwm_request_from_chip(chip, 0, NULL);
173	if (IS_ERR(pwm))
174		return pwm;
175
176	pwm->args.period = args->args[0];
177	pwm->args.polarity = PWM_POLARITY_NORMAL;
178
179	if (args->args_count == 2 && args->args[1] & PWM_POLARITY_INVERTED)
180		pwm->args.polarity = PWM_POLARITY_INVERSED;
181
182	return pwm;
183}
184EXPORT_SYMBOL_GPL(of_pwm_single_xlate);
185
186static void of_pwmchip_add(struct pwm_chip *chip)
187{
188	if (!chip->dev || !chip->dev->of_node)
189		return;
190
191	if (!chip->of_xlate) {
192		u32 pwm_cells;
193
194		if (of_property_read_u32(chip->dev->of_node, "#pwm-cells",
195					 &pwm_cells))
196			pwm_cells = 2;
197
198		chip->of_xlate = of_pwm_xlate_with_flags;
199		chip->of_pwm_n_cells = pwm_cells;
200	}
201
202	of_node_get(chip->dev->of_node);
203}
204
205static void of_pwmchip_remove(struct pwm_chip *chip)
206{
207	if (chip->dev)
208		of_node_put(chip->dev->of_node);
209}
210
211/**
212 * pwm_set_chip_data() - set private chip data for a PWM
213 * @pwm: PWM device
214 * @data: pointer to chip-specific data
215 *
216 * Returns: 0 on success or a negative error code on failure.
217 */
218int pwm_set_chip_data(struct pwm_device *pwm, void *data)
219{
220	if (!pwm)
221		return -EINVAL;
222
223	pwm->chip_data = data;
224
225	return 0;
226}
227EXPORT_SYMBOL_GPL(pwm_set_chip_data);
228
229/**
230 * pwm_get_chip_data() - get private chip data for a PWM
231 * @pwm: PWM device
232 *
233 * Returns: A pointer to the chip-private data for the PWM device.
234 */
235void *pwm_get_chip_data(struct pwm_device *pwm)
236{
237	return pwm ? pwm->chip_data : NULL;
238}
239EXPORT_SYMBOL_GPL(pwm_get_chip_data);
240
241static bool pwm_ops_check(const struct pwm_chip *chip)
242{
243	const struct pwm_ops *ops = chip->ops;
244
245	if (!ops->apply)
246		return false;
247
248	if (IS_ENABLED(CONFIG_PWM_DEBUG) && !ops->get_state)
249		dev_warn(chip->dev,
250			 "Please implement the .get_state() callback\n");
251
252	return true;
253}
254
255/**
256 * pwmchip_add() - register a new PWM chip
257 * @chip: the PWM chip to add
258 *
259 * Register a new PWM chip.
260 *
261 * Returns: 0 on success or a negative error code on failure.
262 */
263int pwmchip_add(struct pwm_chip *chip)
264{
265	struct pwm_device *pwm;
266	unsigned int i;
267	int ret;
268
269	if (!chip || !chip->dev || !chip->ops || !chip->npwm)
270		return -EINVAL;
271
272	if (!pwm_ops_check(chip))
273		return -EINVAL;
274
275	chip->pwms = kcalloc(chip->npwm, sizeof(*pwm), GFP_KERNEL);
276	if (!chip->pwms)
277		return -ENOMEM;
278
279	mutex_lock(&pwm_lock);
280
281	ret = alloc_pwms(chip->npwm);
282	if (ret < 0) {
283		mutex_unlock(&pwm_lock);
284		kfree(chip->pwms);
285		return ret;
286	}
287
288	chip->base = ret;
289
290	for (i = 0; i < chip->npwm; i++) {
291		pwm = &chip->pwms[i];
292
293		pwm->chip = chip;
294		pwm->pwm = chip->base + i;
295		pwm->hwpwm = i;
296	}
297
298	list_add(&chip->list, &pwm_chips);
299
300	mutex_unlock(&pwm_lock);
301
302	if (IS_ENABLED(CONFIG_OF))
303		of_pwmchip_add(chip);
304
305	pwmchip_sysfs_export(chip);
306
307	return 0;
308}
309EXPORT_SYMBOL_GPL(pwmchip_add);
310
311/**
312 * pwmchip_remove() - remove a PWM chip
313 * @chip: the PWM chip to remove
314 *
315 * Removes a PWM chip.
316 */
317void pwmchip_remove(struct pwm_chip *chip)
318{
319	pwmchip_sysfs_unexport(chip);
320
321	if (IS_ENABLED(CONFIG_OF))
322		of_pwmchip_remove(chip);
323
324	mutex_lock(&pwm_lock);
325
326	list_del_init(&chip->list);
327
328	free_pwms(chip);
329
330	mutex_unlock(&pwm_lock);
331}
332EXPORT_SYMBOL_GPL(pwmchip_remove);
333
334static void devm_pwmchip_remove(void *data)
335{
336	struct pwm_chip *chip = data;
337
338	pwmchip_remove(chip);
339}
340
341int devm_pwmchip_add(struct device *dev, struct pwm_chip *chip)
342{
343	int ret;
344
345	ret = pwmchip_add(chip);
346	if (ret)
347		return ret;
348
349	return devm_add_action_or_reset(dev, devm_pwmchip_remove, chip);
350}
351EXPORT_SYMBOL_GPL(devm_pwmchip_add);
352
353/**
354 * pwm_request_from_chip() - request a PWM device relative to a PWM chip
355 * @chip: PWM chip
356 * @index: per-chip index of the PWM to request
357 * @label: a literal description string of this PWM
358 *
359 * Returns: A pointer to the PWM device at the given index of the given PWM
360 * chip. A negative error code is returned if the index is not valid for the
361 * specified PWM chip or if the PWM device cannot be requested.
362 */
363struct pwm_device *pwm_request_from_chip(struct pwm_chip *chip,
364					 unsigned int index,
365					 const char *label)
366{
367	struct pwm_device *pwm;
368	int err;
369
370	if (!chip || index >= chip->npwm)
371		return ERR_PTR(-EINVAL);
372
373	mutex_lock(&pwm_lock);
374	pwm = &chip->pwms[index];
375
376	err = pwm_device_request(pwm, label);
377	if (err < 0)
378		pwm = ERR_PTR(err);
379
380	mutex_unlock(&pwm_lock);
381	return pwm;
382}
383EXPORT_SYMBOL_GPL(pwm_request_from_chip);
384
385static void pwm_apply_state_debug(struct pwm_device *pwm,
386				  const struct pwm_state *state)
387{
388	struct pwm_state *last = &pwm->last;
389	struct pwm_chip *chip = pwm->chip;
390	struct pwm_state s1 = { 0 }, s2 = { 0 };
391	int err;
392
393	if (!IS_ENABLED(CONFIG_PWM_DEBUG))
394		return;
395
396	/* No reasonable diagnosis possible without .get_state() */
397	if (!chip->ops->get_state)
398		return;
399
400	/*
401	 * *state was just applied. Read out the hardware state and do some
402	 * checks.
403	 */
404
405	err = chip->ops->get_state(chip, pwm, &s1);
406	trace_pwm_get(pwm, &s1, err);
407	if (err)
408		/* If that failed there isn't much to debug */
409		return;
410
411	/*
412	 * The lowlevel driver either ignored .polarity (which is a bug) or as
413	 * best effort inverted .polarity and fixed .duty_cycle respectively.
414	 * Undo this inversion and fixup for further tests.
415	 */
416	if (s1.enabled && s1.polarity != state->polarity) {
417		s2.polarity = state->polarity;
418		s2.duty_cycle = s1.period - s1.duty_cycle;
419		s2.period = s1.period;
420		s2.enabled = s1.enabled;
421	} else {
422		s2 = s1;
423	}
424
425	if (s2.polarity != state->polarity &&
426	    state->duty_cycle < state->period)
427		dev_warn(chip->dev, ".apply ignored .polarity\n");
428
429	if (state->enabled &&
430	    last->polarity == state->polarity &&
431	    last->period > s2.period &&
432	    last->period <= state->period)
433		dev_warn(chip->dev,
434			 ".apply didn't pick the best available period (requested: %llu, applied: %llu, possible: %llu)\n",
435			 state->period, s2.period, last->period);
436
437	if (state->enabled && state->period < s2.period)
438		dev_warn(chip->dev,
439			 ".apply is supposed to round down period (requested: %llu, applied: %llu)\n",
440			 state->period, s2.period);
441
442	if (state->enabled &&
443	    last->polarity == state->polarity &&
444	    last->period == s2.period &&
445	    last->duty_cycle > s2.duty_cycle &&
446	    last->duty_cycle <= state->duty_cycle)
447		dev_warn(chip->dev,
448			 ".apply didn't pick the best available duty cycle (requested: %llu/%llu, applied: %llu/%llu, possible: %llu/%llu)\n",
449			 state->duty_cycle, state->period,
450			 s2.duty_cycle, s2.period,
451			 last->duty_cycle, last->period);
452
453	if (state->enabled && state->duty_cycle < s2.duty_cycle)
454		dev_warn(chip->dev,
455			 ".apply is supposed to round down duty_cycle (requested: %llu/%llu, applied: %llu/%llu)\n",
456			 state->duty_cycle, state->period,
457			 s2.duty_cycle, s2.period);
458
459	if (!state->enabled && s2.enabled && s2.duty_cycle > 0)
460		dev_warn(chip->dev,
461			 "requested disabled, but yielded enabled with duty > 0\n");
462
463	/* reapply the state that the driver reported being configured. */
464	err = chip->ops->apply(chip, pwm, &s1);
465	trace_pwm_apply(pwm, &s1, err);
466	if (err) {
467		*last = s1;
468		dev_err(chip->dev, "failed to reapply current setting\n");
469		return;
470	}
471
472	*last = (struct pwm_state){ 0 };
473	err = chip->ops->get_state(chip, pwm, last);
474	trace_pwm_get(pwm, last, err);
475	if (err)
476		return;
477
478	/* reapplication of the current state should give an exact match */
479	if (s1.enabled != last->enabled ||
480	    s1.polarity != last->polarity ||
481	    (s1.enabled && s1.period != last->period) ||
482	    (s1.enabled && s1.duty_cycle != last->duty_cycle)) {
483		dev_err(chip->dev,
484			".apply is not idempotent (ena=%d pol=%d %llu/%llu) -> (ena=%d pol=%d %llu/%llu)\n",
485			s1.enabled, s1.polarity, s1.duty_cycle, s1.period,
486			last->enabled, last->polarity, last->duty_cycle,
487			last->period);
488	}
489}
490
491/**
492 * pwm_apply_state() - atomically apply a new state to a PWM device
493 * @pwm: PWM device
494 * @state: new state to apply
495 */
496int pwm_apply_state(struct pwm_device *pwm, const struct pwm_state *state)
497{
498	struct pwm_chip *chip;
499	int err;
500
501	/*
502	 * Some lowlevel driver's implementations of .apply() make use of
503	 * mutexes, also with some drivers only returning when the new
504	 * configuration is active calling pwm_apply_state() from atomic context
505	 * is a bad idea. So make it explicit that calling this function might
506	 * sleep.
507	 */
508	might_sleep();
509
510	if (!pwm || !state || !state->period ||
511	    state->duty_cycle > state->period)
512		return -EINVAL;
513
514	chip = pwm->chip;
515
516	if (state->period == pwm->state.period &&
517	    state->duty_cycle == pwm->state.duty_cycle &&
518	    state->polarity == pwm->state.polarity &&
519	    state->enabled == pwm->state.enabled &&
520	    state->usage_power == pwm->state.usage_power)
521		return 0;
522
523	err = chip->ops->apply(chip, pwm, state);
524	trace_pwm_apply(pwm, state, err);
525	if (err)
526		return err;
527
528	pwm->state = *state;
529
530	/*
531	 * only do this after pwm->state was applied as some
532	 * implementations of .get_state depend on this
533	 */
534	pwm_apply_state_debug(pwm, state);
535
536	return 0;
537}
538EXPORT_SYMBOL_GPL(pwm_apply_state);
539
540/**
541 * pwm_capture() - capture and report a PWM signal
542 * @pwm: PWM device
543 * @result: structure to fill with capture result
544 * @timeout: time to wait, in milliseconds, before giving up on capture
545 *
546 * Returns: 0 on success or a negative error code on failure.
547 */
548int pwm_capture(struct pwm_device *pwm, struct pwm_capture *result,
549		unsigned long timeout)
550{
551	int err;
552
553	if (!pwm || !pwm->chip->ops)
554		return -EINVAL;
555
556	if (!pwm->chip->ops->capture)
557		return -ENOSYS;
558
559	mutex_lock(&pwm_lock);
560	err = pwm->chip->ops->capture(pwm->chip, pwm, result, timeout);
561	mutex_unlock(&pwm_lock);
562
563	return err;
564}
565EXPORT_SYMBOL_GPL(pwm_capture);
566
567/**
568 * pwm_adjust_config() - adjust the current PWM config to the PWM arguments
569 * @pwm: PWM device
570 *
571 * This function will adjust the PWM config to the PWM arguments provided
572 * by the DT or PWM lookup table. This is particularly useful to adapt
573 * the bootloader config to the Linux one.
574 */
575int pwm_adjust_config(struct pwm_device *pwm)
576{
577	struct pwm_state state;
578	struct pwm_args pargs;
579
580	pwm_get_args(pwm, &pargs);
581	pwm_get_state(pwm, &state);
582
583	/*
584	 * If the current period is zero it means that either the PWM driver
585	 * does not support initial state retrieval or the PWM has not yet
586	 * been configured.
587	 *
588	 * In either case, we setup the new period and polarity, and assign a
589	 * duty cycle of 0.
590	 */
591	if (!state.period) {
592		state.duty_cycle = 0;
593		state.period = pargs.period;
594		state.polarity = pargs.polarity;
595
596		return pwm_apply_state(pwm, &state);
597	}
598
599	/*
600	 * Adjust the PWM duty cycle/period based on the period value provided
601	 * in PWM args.
602	 */
603	if (pargs.period != state.period) {
604		u64 dutycycle = (u64)state.duty_cycle * pargs.period;
605
606		do_div(dutycycle, state.period);
607		state.duty_cycle = dutycycle;
608		state.period = pargs.period;
609	}
610
611	/*
612	 * If the polarity changed, we should also change the duty cycle.
613	 */
614	if (pargs.polarity != state.polarity) {
615		state.polarity = pargs.polarity;
616		state.duty_cycle = state.period - state.duty_cycle;
617	}
618
619	return pwm_apply_state(pwm, &state);
620}
621EXPORT_SYMBOL_GPL(pwm_adjust_config);
622
623static struct pwm_chip *fwnode_to_pwmchip(struct fwnode_handle *fwnode)
624{
625	struct pwm_chip *chip;
626
627	mutex_lock(&pwm_lock);
628
629	list_for_each_entry(chip, &pwm_chips, list)
630		if (chip->dev && device_match_fwnode(chip->dev, fwnode)) {
631			mutex_unlock(&pwm_lock);
632			return chip;
633		}
634
635	mutex_unlock(&pwm_lock);
636
637	return ERR_PTR(-EPROBE_DEFER);
638}
639
640static struct device_link *pwm_device_link_add(struct device *dev,
641					       struct pwm_device *pwm)
642{
643	struct device_link *dl;
644
645	if (!dev) {
646		/*
647		 * No device for the PWM consumer has been provided. It may
648		 * impact the PM sequence ordering: the PWM supplier may get
649		 * suspended before the consumer.
650		 */
651		dev_warn(pwm->chip->dev,
652			 "No consumer device specified to create a link to\n");
653		return NULL;
654	}
655
656	dl = device_link_add(dev, pwm->chip->dev, DL_FLAG_AUTOREMOVE_CONSUMER);
657	if (!dl) {
658		dev_err(dev, "failed to create device link to %s\n",
659			dev_name(pwm->chip->dev));
660		return ERR_PTR(-EINVAL);
661	}
662
663	return dl;
664}
665
666/**
667 * of_pwm_get() - request a PWM via the PWM framework
668 * @dev: device for PWM consumer
669 * @np: device node to get the PWM from
670 * @con_id: consumer name
671 *
672 * Returns the PWM device parsed from the phandle and index specified in the
673 * "pwms" property of a device tree node or a negative error-code on failure.
674 * Values parsed from the device tree are stored in the returned PWM device
675 * object.
676 *
677 * If con_id is NULL, the first PWM device listed in the "pwms" property will
678 * be requested. Otherwise the "pwm-names" property is used to do a reverse
679 * lookup of the PWM index. This also means that the "pwm-names" property
680 * becomes mandatory for devices that look up the PWM device via the con_id
681 * parameter.
682 *
683 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
684 * error code on failure.
685 */
686static struct pwm_device *of_pwm_get(struct device *dev, struct device_node *np,
687				     const char *con_id)
688{
689	struct pwm_device *pwm = NULL;
690	struct of_phandle_args args;
691	struct device_link *dl;
692	struct pwm_chip *chip;
693	int index = 0;
694	int err;
695
696	if (con_id) {
697		index = of_property_match_string(np, "pwm-names", con_id);
698		if (index < 0)
699			return ERR_PTR(index);
700	}
701
702	err = of_parse_phandle_with_args(np, "pwms", "#pwm-cells", index,
703					 &args);
704	if (err) {
705		pr_err("%s(): can't parse \"pwms\" property\n", __func__);
706		return ERR_PTR(err);
707	}
708
709	chip = fwnode_to_pwmchip(of_fwnode_handle(args.np));
710	if (IS_ERR(chip)) {
711		if (PTR_ERR(chip) != -EPROBE_DEFER)
712			pr_err("%s(): PWM chip not found\n", __func__);
713
714		pwm = ERR_CAST(chip);
715		goto put;
716	}
717
718	pwm = chip->of_xlate(chip, &args);
719	if (IS_ERR(pwm))
720		goto put;
721
722	dl = pwm_device_link_add(dev, pwm);
723	if (IS_ERR(dl)) {
724		/* of_xlate ended up calling pwm_request_from_chip() */
725		pwm_put(pwm);
726		pwm = ERR_CAST(dl);
727		goto put;
728	}
729
730	/*
731	 * If a consumer name was not given, try to look it up from the
732	 * "pwm-names" property if it exists. Otherwise use the name of
733	 * the user device node.
734	 */
735	if (!con_id) {
736		err = of_property_read_string_index(np, "pwm-names", index,
737						    &con_id);
738		if (err < 0)
739			con_id = np->name;
740	}
741
742	pwm->label = con_id;
743
744put:
745	of_node_put(args.np);
746
747	return pwm;
748}
749
750/**
751 * acpi_pwm_get() - request a PWM via parsing "pwms" property in ACPI
752 * @fwnode: firmware node to get the "pwms" property from
753 *
754 * Returns the PWM device parsed from the fwnode and index specified in the
755 * "pwms" property or a negative error-code on failure.
756 * Values parsed from the device tree are stored in the returned PWM device
757 * object.
758 *
759 * This is analogous to of_pwm_get() except con_id is not yet supported.
760 * ACPI entries must look like
761 * Package () {"pwms", Package ()
762 *     { <PWM device reference>, <PWM index>, <PWM period> [, <PWM flags>]}}
763 *
764 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
765 * error code on failure.
766 */
767static struct pwm_device *acpi_pwm_get(const struct fwnode_handle *fwnode)
768{
769	struct pwm_device *pwm;
770	struct fwnode_reference_args args;
771	struct pwm_chip *chip;
772	int ret;
773
774	memset(&args, 0, sizeof(args));
775
776	ret = __acpi_node_get_property_reference(fwnode, "pwms", 0, 3, &args);
777	if (ret < 0)
778		return ERR_PTR(ret);
779
780	if (args.nargs < 2)
781		return ERR_PTR(-EPROTO);
782
783	chip = fwnode_to_pwmchip(args.fwnode);
784	if (IS_ERR(chip))
785		return ERR_CAST(chip);
786
787	pwm = pwm_request_from_chip(chip, args.args[0], NULL);
788	if (IS_ERR(pwm))
789		return pwm;
790
791	pwm->args.period = args.args[1];
792	pwm->args.polarity = PWM_POLARITY_NORMAL;
793
794	if (args.nargs > 2 && args.args[2] & PWM_POLARITY_INVERTED)
795		pwm->args.polarity = PWM_POLARITY_INVERSED;
796
797	return pwm;
798}
799
800/**
801 * pwm_add_table() - register PWM device consumers
802 * @table: array of consumers to register
803 * @num: number of consumers in table
804 */
805void pwm_add_table(struct pwm_lookup *table, size_t num)
806{
807	mutex_lock(&pwm_lookup_lock);
808
809	while (num--) {
810		list_add_tail(&table->list, &pwm_lookup_list);
811		table++;
812	}
813
814	mutex_unlock(&pwm_lookup_lock);
815}
816
817/**
818 * pwm_remove_table() - unregister PWM device consumers
819 * @table: array of consumers to unregister
820 * @num: number of consumers in table
821 */
822void pwm_remove_table(struct pwm_lookup *table, size_t num)
823{
824	mutex_lock(&pwm_lookup_lock);
825
826	while (num--) {
827		list_del(&table->list);
828		table++;
829	}
830
831	mutex_unlock(&pwm_lookup_lock);
832}
833
834/**
835 * pwm_get() - look up and request a PWM device
836 * @dev: device for PWM consumer
837 * @con_id: consumer name
838 *
839 * Lookup is first attempted using DT. If the device was not instantiated from
840 * a device tree, a PWM chip and a relative index is looked up via a table
841 * supplied by board setup code (see pwm_add_table()).
842 *
843 * Once a PWM chip has been found the specified PWM device will be requested
844 * and is ready to be used.
845 *
846 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
847 * error code on failure.
848 */
849struct pwm_device *pwm_get(struct device *dev, const char *con_id)
850{
851	const struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
852	const char *dev_id = dev ? dev_name(dev) : NULL;
853	struct pwm_device *pwm;
854	struct pwm_chip *chip;
855	struct device_link *dl;
856	unsigned int best = 0;
857	struct pwm_lookup *p, *chosen = NULL;
858	unsigned int match;
859	int err;
860
861	/* look up via DT first */
862	if (is_of_node(fwnode))
863		return of_pwm_get(dev, to_of_node(fwnode), con_id);
864
865	/* then lookup via ACPI */
866	if (is_acpi_node(fwnode)) {
867		pwm = acpi_pwm_get(fwnode);
868		if (!IS_ERR(pwm) || PTR_ERR(pwm) != -ENOENT)
869			return pwm;
870	}
871
872	/*
873	 * We look up the provider in the static table typically provided by
874	 * board setup code. We first try to lookup the consumer device by
875	 * name. If the consumer device was passed in as NULL or if no match
876	 * was found, we try to find the consumer by directly looking it up
877	 * by name.
878	 *
879	 * If a match is found, the provider PWM chip is looked up by name
880	 * and a PWM device is requested using the PWM device per-chip index.
881	 *
882	 * The lookup algorithm was shamelessly taken from the clock
883	 * framework:
884	 *
885	 * We do slightly fuzzy matching here:
886	 *  An entry with a NULL ID is assumed to be a wildcard.
887	 *  If an entry has a device ID, it must match
888	 *  If an entry has a connection ID, it must match
889	 * Then we take the most specific entry - with the following order
890	 * of precedence: dev+con > dev only > con only.
891	 */
892	mutex_lock(&pwm_lookup_lock);
893
894	list_for_each_entry(p, &pwm_lookup_list, list) {
895		match = 0;
896
897		if (p->dev_id) {
898			if (!dev_id || strcmp(p->dev_id, dev_id))
899				continue;
900
901			match += 2;
902		}
903
904		if (p->con_id) {
905			if (!con_id || strcmp(p->con_id, con_id))
906				continue;
907
908			match += 1;
909		}
910
911		if (match > best) {
912			chosen = p;
913
914			if (match != 3)
915				best = match;
916			else
917				break;
918		}
919	}
920
921	mutex_unlock(&pwm_lookup_lock);
922
923	if (!chosen)
924		return ERR_PTR(-ENODEV);
925
926	chip = pwmchip_find_by_name(chosen->provider);
927
928	/*
929	 * If the lookup entry specifies a module, load the module and retry
930	 * the PWM chip lookup. This can be used to work around driver load
931	 * ordering issues if driver's can't be made to properly support the
932	 * deferred probe mechanism.
933	 */
934	if (!chip && chosen->module) {
935		err = request_module(chosen->module);
936		if (err == 0)
937			chip = pwmchip_find_by_name(chosen->provider);
938	}
939
940	if (!chip)
941		return ERR_PTR(-EPROBE_DEFER);
942
943	pwm = pwm_request_from_chip(chip, chosen->index, con_id ?: dev_id);
944	if (IS_ERR(pwm))
945		return pwm;
946
947	dl = pwm_device_link_add(dev, pwm);
948	if (IS_ERR(dl)) {
949		pwm_put(pwm);
950		return ERR_CAST(dl);
951	}
952
953	pwm->args.period = chosen->period;
954	pwm->args.polarity = chosen->polarity;
955
956	return pwm;
957}
958EXPORT_SYMBOL_GPL(pwm_get);
959
960/**
961 * pwm_put() - release a PWM device
962 * @pwm: PWM device
963 */
964void pwm_put(struct pwm_device *pwm)
965{
966	if (!pwm)
967		return;
968
969	mutex_lock(&pwm_lock);
970
971	if (!test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) {
972		pr_warn("PWM device already freed\n");
973		goto out;
974	}
975
976	if (pwm->chip->ops->free)
977		pwm->chip->ops->free(pwm->chip, pwm);
978
979	pwm_set_chip_data(pwm, NULL);
980	pwm->label = NULL;
981
982	module_put(pwm->chip->ops->owner);
983out:
984	mutex_unlock(&pwm_lock);
985}
986EXPORT_SYMBOL_GPL(pwm_put);
987
988static void devm_pwm_release(void *pwm)
989{
990	pwm_put(pwm);
991}
992
993/**
994 * devm_pwm_get() - resource managed pwm_get()
995 * @dev: device for PWM consumer
996 * @con_id: consumer name
997 *
998 * This function performs like pwm_get() but the acquired PWM device will
999 * automatically be released on driver detach.
1000 *
1001 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1002 * error code on failure.
1003 */
1004struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id)
1005{
1006	struct pwm_device *pwm;
1007	int ret;
1008
1009	pwm = pwm_get(dev, con_id);
1010	if (IS_ERR(pwm))
1011		return pwm;
1012
1013	ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm);
1014	if (ret)
1015		return ERR_PTR(ret);
1016
1017	return pwm;
1018}
1019EXPORT_SYMBOL_GPL(devm_pwm_get);
1020
1021/**
1022 * devm_fwnode_pwm_get() - request a resource managed PWM from firmware node
1023 * @dev: device for PWM consumer
1024 * @fwnode: firmware node to get the PWM from
1025 * @con_id: consumer name
1026 *
1027 * Returns the PWM device parsed from the firmware node. See of_pwm_get() and
1028 * acpi_pwm_get() for a detailed description.
1029 *
1030 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1031 * error code on failure.
1032 */
1033struct pwm_device *devm_fwnode_pwm_get(struct device *dev,
1034				       struct fwnode_handle *fwnode,
1035				       const char *con_id)
1036{
1037	struct pwm_device *pwm = ERR_PTR(-ENODEV);
1038	int ret;
1039
1040	if (is_of_node(fwnode))
1041		pwm = of_pwm_get(dev, to_of_node(fwnode), con_id);
1042	else if (is_acpi_node(fwnode))
1043		pwm = acpi_pwm_get(fwnode);
1044	if (IS_ERR(pwm))
1045		return pwm;
1046
1047	ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm);
1048	if (ret)
1049		return ERR_PTR(ret);
1050
1051	return pwm;
1052}
1053EXPORT_SYMBOL_GPL(devm_fwnode_pwm_get);
1054
1055#ifdef CONFIG_DEBUG_FS
1056static void pwm_dbg_show(struct pwm_chip *chip, struct seq_file *s)
1057{
1058	unsigned int i;
1059
1060	for (i = 0; i < chip->npwm; i++) {
1061		struct pwm_device *pwm = &chip->pwms[i];
1062		struct pwm_state state;
1063
1064		pwm_get_state(pwm, &state);
1065
1066		seq_printf(s, " pwm-%-3d (%-20.20s):", i, pwm->label);
1067
1068		if (test_bit(PWMF_REQUESTED, &pwm->flags))
1069			seq_puts(s, " requested");
1070
1071		if (state.enabled)
1072			seq_puts(s, " enabled");
1073
1074		seq_printf(s, " period: %llu ns", state.period);
1075		seq_printf(s, " duty: %llu ns", state.duty_cycle);
1076		seq_printf(s, " polarity: %s",
1077			   state.polarity ? "inverse" : "normal");
1078
1079		if (state.usage_power)
1080			seq_puts(s, " usage_power");
1081
1082		seq_puts(s, "\n");
1083	}
1084}
1085
1086static void *pwm_seq_start(struct seq_file *s, loff_t *pos)
1087{
1088	mutex_lock(&pwm_lock);
1089	s->private = "";
1090
1091	return seq_list_start(&pwm_chips, *pos);
1092}
1093
1094static void *pwm_seq_next(struct seq_file *s, void *v, loff_t *pos)
1095{
1096	s->private = "\n";
1097
1098	return seq_list_next(v, &pwm_chips, pos);
1099}
1100
1101static void pwm_seq_stop(struct seq_file *s, void *v)
1102{
1103	mutex_unlock(&pwm_lock);
1104}
1105
1106static int pwm_seq_show(struct seq_file *s, void *v)
1107{
1108	struct pwm_chip *chip = list_entry(v, struct pwm_chip, list);
1109
1110	seq_printf(s, "%s%s/%s, %d PWM device%s\n", (char *)s->private,
1111		   chip->dev->bus ? chip->dev->bus->name : "no-bus",
1112		   dev_name(chip->dev), chip->npwm,
1113		   (chip->npwm != 1) ? "s" : "");
1114
1115	pwm_dbg_show(chip, s);
1116
1117	return 0;
1118}
1119
1120static const struct seq_operations pwm_debugfs_sops = {
1121	.start = pwm_seq_start,
1122	.next = pwm_seq_next,
1123	.stop = pwm_seq_stop,
1124	.show = pwm_seq_show,
1125};
1126
1127DEFINE_SEQ_ATTRIBUTE(pwm_debugfs);
1128
1129static int __init pwm_debugfs_init(void)
1130{
1131	debugfs_create_file("pwm", 0444, NULL, NULL, &pwm_debugfs_fops);
1132
1133	return 0;
1134}
1135subsys_initcall(pwm_debugfs_init);
1136#endif /* CONFIG_DEBUG_FS */
1137