1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Common code for Intel Running Average Power Limit (RAPL) support.
4 * Copyright (c) 2019, Intel Corporation.
5 */
6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8#include <linux/cleanup.h>
9#include <linux/kernel.h>
10#include <linux/module.h>
11#include <linux/list.h>
12#include <linux/types.h>
13#include <linux/device.h>
14#include <linux/slab.h>
15#include <linux/log2.h>
16#include <linux/bitmap.h>
17#include <linux/delay.h>
18#include <linux/sysfs.h>
19#include <linux/cpu.h>
20#include <linux/powercap.h>
21#include <linux/suspend.h>
22#include <linux/intel_rapl.h>
23#include <linux/processor.h>
24#include <linux/platform_device.h>
25
26#include <asm/iosf_mbi.h>
27#include <asm/cpu_device_id.h>
28#include <asm/intel-family.h>
29
30/* bitmasks for RAPL MSRs, used by primitive access functions */
31#define ENERGY_STATUS_MASK      0xffffffff
32
33#define POWER_LIMIT1_MASK       0x7FFF
34#define POWER_LIMIT1_ENABLE     BIT(15)
35#define POWER_LIMIT1_CLAMP      BIT(16)
36
37#define POWER_LIMIT2_MASK       (0x7FFFULL<<32)
38#define POWER_LIMIT2_ENABLE     BIT_ULL(47)
39#define POWER_LIMIT2_CLAMP      BIT_ULL(48)
40#define POWER_HIGH_LOCK         BIT_ULL(63)
41#define POWER_LOW_LOCK          BIT(31)
42
43#define POWER_LIMIT4_MASK		0x1FFF
44
45#define TIME_WINDOW1_MASK       (0x7FULL<<17)
46#define TIME_WINDOW2_MASK       (0x7FULL<<49)
47
48#define POWER_UNIT_OFFSET	0
49#define POWER_UNIT_MASK		0x0F
50
51#define ENERGY_UNIT_OFFSET	0x08
52#define ENERGY_UNIT_MASK	0x1F00
53
54#define TIME_UNIT_OFFSET	0x10
55#define TIME_UNIT_MASK		0xF0000
56
57#define POWER_INFO_MAX_MASK     (0x7fffULL<<32)
58#define POWER_INFO_MIN_MASK     (0x7fffULL<<16)
59#define POWER_INFO_MAX_TIME_WIN_MASK     (0x3fULL<<48)
60#define POWER_INFO_THERMAL_SPEC_MASK     0x7fff
61
62#define PERF_STATUS_THROTTLE_TIME_MASK 0xffffffff
63#define PP_POLICY_MASK         0x1F
64
65/*
66 * SPR has different layout for Psys Domain PowerLimit registers.
67 * There are 17 bits of PL1 and PL2 instead of 15 bits.
68 * The Enable bits and TimeWindow bits are also shifted as a result.
69 */
70#define PSYS_POWER_LIMIT1_MASK       0x1FFFF
71#define PSYS_POWER_LIMIT1_ENABLE     BIT(17)
72
73#define PSYS_POWER_LIMIT2_MASK       (0x1FFFFULL<<32)
74#define PSYS_POWER_LIMIT2_ENABLE     BIT_ULL(49)
75
76#define PSYS_TIME_WINDOW1_MASK       (0x7FULL<<19)
77#define PSYS_TIME_WINDOW2_MASK       (0x7FULL<<51)
78
79/* bitmasks for RAPL TPMI, used by primitive access functions */
80#define TPMI_POWER_LIMIT_MASK	0x3FFFF
81#define TPMI_POWER_LIMIT_ENABLE	BIT_ULL(62)
82#define TPMI_TIME_WINDOW_MASK	(0x7FULL<<18)
83#define TPMI_INFO_SPEC_MASK	0x3FFFF
84#define TPMI_INFO_MIN_MASK	(0x3FFFFULL << 18)
85#define TPMI_INFO_MAX_MASK	(0x3FFFFULL << 36)
86#define TPMI_INFO_MAX_TIME_WIN_MASK	(0x7FULL << 54)
87
88/* Non HW constants */
89#define RAPL_PRIMITIVE_DERIVED       BIT(1)	/* not from raw data */
90#define RAPL_PRIMITIVE_DUMMY         BIT(2)
91
92#define TIME_WINDOW_MAX_MSEC 40000
93#define TIME_WINDOW_MIN_MSEC 250
94#define ENERGY_UNIT_SCALE    1000	/* scale from driver unit to powercap unit */
95enum unit_type {
96	ARBITRARY_UNIT,		/* no translation */
97	POWER_UNIT,
98	ENERGY_UNIT,
99	TIME_UNIT,
100};
101
102/* per domain data, some are optional */
103#define NR_RAW_PRIMITIVES (NR_RAPL_PRIMITIVES - 2)
104
105#define	DOMAIN_STATE_INACTIVE           BIT(0)
106#define	DOMAIN_STATE_POWER_LIMIT_SET    BIT(1)
107
108static const char *pl_names[NR_POWER_LIMITS] = {
109	[POWER_LIMIT1] = "long_term",
110	[POWER_LIMIT2] = "short_term",
111	[POWER_LIMIT4] = "peak_power",
112};
113
114enum pl_prims {
115	PL_ENABLE,
116	PL_CLAMP,
117	PL_LIMIT,
118	PL_TIME_WINDOW,
119	PL_MAX_POWER,
120	PL_LOCK,
121};
122
123static bool is_pl_valid(struct rapl_domain *rd, int pl)
124{
125	if (pl < POWER_LIMIT1 || pl > POWER_LIMIT4)
126		return false;
127	return rd->rpl[pl].name ? true : false;
128}
129
130static int get_pl_lock_prim(struct rapl_domain *rd, int pl)
131{
132	if (rd->rp->priv->type == RAPL_IF_TPMI) {
133		if (pl == POWER_LIMIT1)
134			return PL1_LOCK;
135		if (pl == POWER_LIMIT2)
136			return PL2_LOCK;
137		if (pl == POWER_LIMIT4)
138			return PL4_LOCK;
139	}
140
141	/* MSR/MMIO Interface doesn't have Lock bit for PL4 */
142	if (pl == POWER_LIMIT4)
143		return -EINVAL;
144
145	/*
146	 * Power Limit register that supports two power limits has a different
147	 * bit position for the Lock bit.
148	 */
149	if (rd->rp->priv->limits[rd->id] & BIT(POWER_LIMIT2))
150		return FW_HIGH_LOCK;
151	return FW_LOCK;
152}
153
154static int get_pl_prim(struct rapl_domain *rd, int pl, enum pl_prims prim)
155{
156	switch (pl) {
157	case POWER_LIMIT1:
158		if (prim == PL_ENABLE)
159			return PL1_ENABLE;
160		if (prim == PL_CLAMP && rd->rp->priv->type != RAPL_IF_TPMI)
161			return PL1_CLAMP;
162		if (prim == PL_LIMIT)
163			return POWER_LIMIT1;
164		if (prim == PL_TIME_WINDOW)
165			return TIME_WINDOW1;
166		if (prim == PL_MAX_POWER)
167			return THERMAL_SPEC_POWER;
168		if (prim == PL_LOCK)
169			return get_pl_lock_prim(rd, pl);
170		return -EINVAL;
171	case POWER_LIMIT2:
172		if (prim == PL_ENABLE)
173			return PL2_ENABLE;
174		if (prim == PL_CLAMP && rd->rp->priv->type != RAPL_IF_TPMI)
175			return PL2_CLAMP;
176		if (prim == PL_LIMIT)
177			return POWER_LIMIT2;
178		if (prim == PL_TIME_WINDOW)
179			return TIME_WINDOW2;
180		if (prim == PL_MAX_POWER)
181			return MAX_POWER;
182		if (prim == PL_LOCK)
183			return get_pl_lock_prim(rd, pl);
184		return -EINVAL;
185	case POWER_LIMIT4:
186		if (prim == PL_LIMIT)
187			return POWER_LIMIT4;
188		if (prim == PL_ENABLE)
189			return PL4_ENABLE;
190		/* PL4 would be around two times PL2, use same prim as PL2. */
191		if (prim == PL_MAX_POWER)
192			return MAX_POWER;
193		if (prim == PL_LOCK)
194			return get_pl_lock_prim(rd, pl);
195		return -EINVAL;
196	default:
197		return -EINVAL;
198	}
199}
200
201#define power_zone_to_rapl_domain(_zone) \
202	container_of(_zone, struct rapl_domain, power_zone)
203
204struct rapl_defaults {
205	u8 floor_freq_reg_addr;
206	int (*check_unit)(struct rapl_domain *rd);
207	void (*set_floor_freq)(struct rapl_domain *rd, bool mode);
208	u64 (*compute_time_window)(struct rapl_domain *rd, u64 val,
209				    bool to_raw);
210	unsigned int dram_domain_energy_unit;
211	unsigned int psys_domain_energy_unit;
212	bool spr_psys_bits;
213};
214static struct rapl_defaults *defaults_msr;
215static const struct rapl_defaults defaults_tpmi;
216
217static struct rapl_defaults *get_defaults(struct rapl_package *rp)
218{
219	return rp->priv->defaults;
220}
221
222/* Sideband MBI registers */
223#define IOSF_CPU_POWER_BUDGET_CTL_BYT (0x2)
224#define IOSF_CPU_POWER_BUDGET_CTL_TNG (0xdf)
225
226#define PACKAGE_PLN_INT_SAVED   BIT(0)
227#define MAX_PRIM_NAME (32)
228
229/* per domain data. used to describe individual knobs such that access function
230 * can be consolidated into one instead of many inline functions.
231 */
232struct rapl_primitive_info {
233	const char *name;
234	u64 mask;
235	int shift;
236	enum rapl_domain_reg_id id;
237	enum unit_type unit;
238	u32 flag;
239};
240
241#define PRIMITIVE_INFO_INIT(p, m, s, i, u, f) {	\
242		.name = #p,			\
243		.mask = m,			\
244		.shift = s,			\
245		.id = i,			\
246		.unit = u,			\
247		.flag = f			\
248	}
249
250static void rapl_init_domains(struct rapl_package *rp);
251static int rapl_read_data_raw(struct rapl_domain *rd,
252			      enum rapl_primitives prim,
253			      bool xlate, u64 *data);
254static int rapl_write_data_raw(struct rapl_domain *rd,
255			       enum rapl_primitives prim,
256			       unsigned long long value);
257static int rapl_read_pl_data(struct rapl_domain *rd, int pl,
258			      enum pl_prims pl_prim,
259			      bool xlate, u64 *data);
260static int rapl_write_pl_data(struct rapl_domain *rd, int pl,
261			       enum pl_prims pl_prim,
262			       unsigned long long value);
263static u64 rapl_unit_xlate(struct rapl_domain *rd,
264			   enum unit_type type, u64 value, int to_raw);
265static void package_power_limit_irq_save(struct rapl_package *rp);
266
267static LIST_HEAD(rapl_packages);	/* guarded by CPU hotplug lock */
268
269static const char *const rapl_domain_names[] = {
270	"package",
271	"core",
272	"uncore",
273	"dram",
274	"psys",
275};
276
277static int get_energy_counter(struct powercap_zone *power_zone,
278			      u64 *energy_raw)
279{
280	struct rapl_domain *rd;
281	u64 energy_now;
282
283	/* prevent CPU hotplug, make sure the RAPL domain does not go
284	 * away while reading the counter.
285	 */
286	cpus_read_lock();
287	rd = power_zone_to_rapl_domain(power_zone);
288
289	if (!rapl_read_data_raw(rd, ENERGY_COUNTER, true, &energy_now)) {
290		*energy_raw = energy_now;
291		cpus_read_unlock();
292
293		return 0;
294	}
295	cpus_read_unlock();
296
297	return -EIO;
298}
299
300static int get_max_energy_counter(struct powercap_zone *pcd_dev, u64 *energy)
301{
302	struct rapl_domain *rd = power_zone_to_rapl_domain(pcd_dev);
303
304	*energy = rapl_unit_xlate(rd, ENERGY_UNIT, ENERGY_STATUS_MASK, 0);
305	return 0;
306}
307
308static int release_zone(struct powercap_zone *power_zone)
309{
310	struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
311	struct rapl_package *rp = rd->rp;
312
313	/* package zone is the last zone of a package, we can free
314	 * memory here since all children has been unregistered.
315	 */
316	if (rd->id == RAPL_DOMAIN_PACKAGE) {
317		kfree(rd);
318		rp->domains = NULL;
319	}
320
321	return 0;
322
323}
324
325static int find_nr_power_limit(struct rapl_domain *rd)
326{
327	int i, nr_pl = 0;
328
329	for (i = 0; i < NR_POWER_LIMITS; i++) {
330		if (is_pl_valid(rd, i))
331			nr_pl++;
332	}
333
334	return nr_pl;
335}
336
337static int set_domain_enable(struct powercap_zone *power_zone, bool mode)
338{
339	struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
340	struct rapl_defaults *defaults = get_defaults(rd->rp);
341	int ret;
342
343	cpus_read_lock();
344	ret = rapl_write_pl_data(rd, POWER_LIMIT1, PL_ENABLE, mode);
345	if (!ret && defaults->set_floor_freq)
346		defaults->set_floor_freq(rd, mode);
347	cpus_read_unlock();
348
349	return ret;
350}
351
352static int get_domain_enable(struct powercap_zone *power_zone, bool *mode)
353{
354	struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
355	u64 val;
356	int ret;
357
358	if (rd->rpl[POWER_LIMIT1].locked) {
359		*mode = false;
360		return 0;
361	}
362	cpus_read_lock();
363	ret = rapl_read_pl_data(rd, POWER_LIMIT1, PL_ENABLE, true, &val);
364	if (!ret)
365		*mode = val;
366	cpus_read_unlock();
367
368	return ret;
369}
370
371/* per RAPL domain ops, in the order of rapl_domain_type */
372static const struct powercap_zone_ops zone_ops[] = {
373	/* RAPL_DOMAIN_PACKAGE */
374	{
375	 .get_energy_uj = get_energy_counter,
376	 .get_max_energy_range_uj = get_max_energy_counter,
377	 .release = release_zone,
378	 .set_enable = set_domain_enable,
379	 .get_enable = get_domain_enable,
380	 },
381	/* RAPL_DOMAIN_PP0 */
382	{
383	 .get_energy_uj = get_energy_counter,
384	 .get_max_energy_range_uj = get_max_energy_counter,
385	 .release = release_zone,
386	 .set_enable = set_domain_enable,
387	 .get_enable = get_domain_enable,
388	 },
389	/* RAPL_DOMAIN_PP1 */
390	{
391	 .get_energy_uj = get_energy_counter,
392	 .get_max_energy_range_uj = get_max_energy_counter,
393	 .release = release_zone,
394	 .set_enable = set_domain_enable,
395	 .get_enable = get_domain_enable,
396	 },
397	/* RAPL_DOMAIN_DRAM */
398	{
399	 .get_energy_uj = get_energy_counter,
400	 .get_max_energy_range_uj = get_max_energy_counter,
401	 .release = release_zone,
402	 .set_enable = set_domain_enable,
403	 .get_enable = get_domain_enable,
404	 },
405	/* RAPL_DOMAIN_PLATFORM */
406	{
407	 .get_energy_uj = get_energy_counter,
408	 .get_max_energy_range_uj = get_max_energy_counter,
409	 .release = release_zone,
410	 .set_enable = set_domain_enable,
411	 .get_enable = get_domain_enable,
412	 },
413};
414
415/*
416 * Constraint index used by powercap can be different than power limit (PL)
417 * index in that some  PLs maybe missing due to non-existent MSRs. So we
418 * need to convert here by finding the valid PLs only (name populated).
419 */
420static int contraint_to_pl(struct rapl_domain *rd, int cid)
421{
422	int i, j;
423
424	for (i = POWER_LIMIT1, j = 0; i < NR_POWER_LIMITS; i++) {
425		if (is_pl_valid(rd, i) && j++ == cid) {
426			pr_debug("%s: index %d\n", __func__, i);
427			return i;
428		}
429	}
430	pr_err("Cannot find matching power limit for constraint %d\n", cid);
431
432	return -EINVAL;
433}
434
435static int set_power_limit(struct powercap_zone *power_zone, int cid,
436			   u64 power_limit)
437{
438	struct rapl_domain *rd;
439	struct rapl_package *rp;
440	int ret = 0;
441	int id;
442
443	cpus_read_lock();
444	rd = power_zone_to_rapl_domain(power_zone);
445	id = contraint_to_pl(rd, cid);
446	rp = rd->rp;
447
448	ret = rapl_write_pl_data(rd, id, PL_LIMIT, power_limit);
449	if (!ret)
450		package_power_limit_irq_save(rp);
451	cpus_read_unlock();
452	return ret;
453}
454
455static int get_current_power_limit(struct powercap_zone *power_zone, int cid,
456				   u64 *data)
457{
458	struct rapl_domain *rd;
459	u64 val;
460	int ret = 0;
461	int id;
462
463	cpus_read_lock();
464	rd = power_zone_to_rapl_domain(power_zone);
465	id = contraint_to_pl(rd, cid);
466
467	ret = rapl_read_pl_data(rd, id, PL_LIMIT, true, &val);
468	if (!ret)
469		*data = val;
470
471	cpus_read_unlock();
472
473	return ret;
474}
475
476static int set_time_window(struct powercap_zone *power_zone, int cid,
477			   u64 window)
478{
479	struct rapl_domain *rd;
480	int ret = 0;
481	int id;
482
483	cpus_read_lock();
484	rd = power_zone_to_rapl_domain(power_zone);
485	id = contraint_to_pl(rd, cid);
486
487	ret = rapl_write_pl_data(rd, id, PL_TIME_WINDOW, window);
488
489	cpus_read_unlock();
490	return ret;
491}
492
493static int get_time_window(struct powercap_zone *power_zone, int cid,
494			   u64 *data)
495{
496	struct rapl_domain *rd;
497	u64 val;
498	int ret = 0;
499	int id;
500
501	cpus_read_lock();
502	rd = power_zone_to_rapl_domain(power_zone);
503	id = contraint_to_pl(rd, cid);
504
505	ret = rapl_read_pl_data(rd, id, PL_TIME_WINDOW, true, &val);
506	if (!ret)
507		*data = val;
508
509	cpus_read_unlock();
510
511	return ret;
512}
513
514static const char *get_constraint_name(struct powercap_zone *power_zone,
515				       int cid)
516{
517	struct rapl_domain *rd;
518	int id;
519
520	rd = power_zone_to_rapl_domain(power_zone);
521	id = contraint_to_pl(rd, cid);
522	if (id >= 0)
523		return rd->rpl[id].name;
524
525	return NULL;
526}
527
528static int get_max_power(struct powercap_zone *power_zone, int cid, u64 *data)
529{
530	struct rapl_domain *rd;
531	u64 val;
532	int ret = 0;
533	int id;
534
535	cpus_read_lock();
536	rd = power_zone_to_rapl_domain(power_zone);
537	id = contraint_to_pl(rd, cid);
538
539	ret = rapl_read_pl_data(rd, id, PL_MAX_POWER, true, &val);
540	if (!ret)
541		*data = val;
542
543	/* As a generalization rule, PL4 would be around two times PL2. */
544	if (id == POWER_LIMIT4)
545		*data = *data * 2;
546
547	cpus_read_unlock();
548
549	return ret;
550}
551
552static const struct powercap_zone_constraint_ops constraint_ops = {
553	.set_power_limit_uw = set_power_limit,
554	.get_power_limit_uw = get_current_power_limit,
555	.set_time_window_us = set_time_window,
556	.get_time_window_us = get_time_window,
557	.get_max_power_uw = get_max_power,
558	.get_name = get_constraint_name,
559};
560
561/* Return the id used for read_raw/write_raw callback */
562static int get_rid(struct rapl_package *rp)
563{
564	return rp->lead_cpu >= 0 ? rp->lead_cpu : rp->id;
565}
566
567/* called after domain detection and package level data are set */
568static void rapl_init_domains(struct rapl_package *rp)
569{
570	enum rapl_domain_type i;
571	enum rapl_domain_reg_id j;
572	struct rapl_domain *rd = rp->domains;
573
574	for (i = 0; i < RAPL_DOMAIN_MAX; i++) {
575		unsigned int mask = rp->domain_map & (1 << i);
576		int t;
577
578		if (!mask)
579			continue;
580
581		rd->rp = rp;
582
583		if (i == RAPL_DOMAIN_PLATFORM && rp->id > 0) {
584			snprintf(rd->name, RAPL_DOMAIN_NAME_LENGTH, "psys-%d",
585				rp->lead_cpu >= 0 ? topology_physical_package_id(rp->lead_cpu) :
586				rp->id);
587		} else {
588			snprintf(rd->name, RAPL_DOMAIN_NAME_LENGTH, "%s",
589				rapl_domain_names[i]);
590		}
591
592		rd->id = i;
593
594		/* PL1 is supported by default */
595		rp->priv->limits[i] |= BIT(POWER_LIMIT1);
596
597		for (t = POWER_LIMIT1; t < NR_POWER_LIMITS; t++) {
598			if (rp->priv->limits[i] & BIT(t))
599				rd->rpl[t].name = pl_names[t];
600		}
601
602		for (j = 0; j < RAPL_DOMAIN_REG_MAX; j++)
603			rd->regs[j] = rp->priv->regs[i][j];
604
605		rd++;
606	}
607}
608
609static u64 rapl_unit_xlate(struct rapl_domain *rd, enum unit_type type,
610			   u64 value, int to_raw)
611{
612	u64 units = 1;
613	struct rapl_defaults *defaults = get_defaults(rd->rp);
614	u64 scale = 1;
615
616	switch (type) {
617	case POWER_UNIT:
618		units = rd->power_unit;
619		break;
620	case ENERGY_UNIT:
621		scale = ENERGY_UNIT_SCALE;
622		units = rd->energy_unit;
623		break;
624	case TIME_UNIT:
625		return defaults->compute_time_window(rd, value, to_raw);
626	case ARBITRARY_UNIT:
627	default:
628		return value;
629	}
630
631	if (to_raw)
632		return div64_u64(value, units) * scale;
633
634	value *= units;
635
636	return div64_u64(value, scale);
637}
638
639/* RAPL primitives for MSR and MMIO I/F */
640static struct rapl_primitive_info rpi_msr[NR_RAPL_PRIMITIVES] = {
641	/* name, mask, shift, msr index, unit divisor */
642	[POWER_LIMIT1] = PRIMITIVE_INFO_INIT(POWER_LIMIT1, POWER_LIMIT1_MASK, 0,
643			    RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
644	[POWER_LIMIT2] = PRIMITIVE_INFO_INIT(POWER_LIMIT2, POWER_LIMIT2_MASK, 32,
645			    RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
646	[POWER_LIMIT4] = PRIMITIVE_INFO_INIT(POWER_LIMIT4, POWER_LIMIT4_MASK, 0,
647				RAPL_DOMAIN_REG_PL4, POWER_UNIT, 0),
648	[ENERGY_COUNTER] = PRIMITIVE_INFO_INIT(ENERGY_COUNTER, ENERGY_STATUS_MASK, 0,
649			    RAPL_DOMAIN_REG_STATUS, ENERGY_UNIT, 0),
650	[FW_LOCK] = PRIMITIVE_INFO_INIT(FW_LOCK, POWER_LOW_LOCK, 31,
651			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
652	[FW_HIGH_LOCK] = PRIMITIVE_INFO_INIT(FW_LOCK, POWER_HIGH_LOCK, 63,
653			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
654	[PL1_ENABLE] = PRIMITIVE_INFO_INIT(PL1_ENABLE, POWER_LIMIT1_ENABLE, 15,
655			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
656	[PL1_CLAMP] = PRIMITIVE_INFO_INIT(PL1_CLAMP, POWER_LIMIT1_CLAMP, 16,
657			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
658	[PL2_ENABLE] = PRIMITIVE_INFO_INIT(PL2_ENABLE, POWER_LIMIT2_ENABLE, 47,
659			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
660	[PL2_CLAMP] = PRIMITIVE_INFO_INIT(PL2_CLAMP, POWER_LIMIT2_CLAMP, 48,
661			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
662	[TIME_WINDOW1] = PRIMITIVE_INFO_INIT(TIME_WINDOW1, TIME_WINDOW1_MASK, 17,
663			    RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
664	[TIME_WINDOW2] = PRIMITIVE_INFO_INIT(TIME_WINDOW2, TIME_WINDOW2_MASK, 49,
665			    RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
666	[THERMAL_SPEC_POWER] = PRIMITIVE_INFO_INIT(THERMAL_SPEC_POWER, POWER_INFO_THERMAL_SPEC_MASK,
667			    0, RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
668	[MAX_POWER] = PRIMITIVE_INFO_INIT(MAX_POWER, POWER_INFO_MAX_MASK, 32,
669			    RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
670	[MIN_POWER] = PRIMITIVE_INFO_INIT(MIN_POWER, POWER_INFO_MIN_MASK, 16,
671			    RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
672	[MAX_TIME_WINDOW] = PRIMITIVE_INFO_INIT(MAX_TIME_WINDOW, POWER_INFO_MAX_TIME_WIN_MASK, 48,
673			    RAPL_DOMAIN_REG_INFO, TIME_UNIT, 0),
674	[THROTTLED_TIME] = PRIMITIVE_INFO_INIT(THROTTLED_TIME, PERF_STATUS_THROTTLE_TIME_MASK, 0,
675			    RAPL_DOMAIN_REG_PERF, TIME_UNIT, 0),
676	[PRIORITY_LEVEL] = PRIMITIVE_INFO_INIT(PRIORITY_LEVEL, PP_POLICY_MASK, 0,
677			    RAPL_DOMAIN_REG_POLICY, ARBITRARY_UNIT, 0),
678	[PSYS_POWER_LIMIT1] = PRIMITIVE_INFO_INIT(PSYS_POWER_LIMIT1, PSYS_POWER_LIMIT1_MASK, 0,
679			    RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
680	[PSYS_POWER_LIMIT2] = PRIMITIVE_INFO_INIT(PSYS_POWER_LIMIT2, PSYS_POWER_LIMIT2_MASK, 32,
681			    RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
682	[PSYS_PL1_ENABLE] = PRIMITIVE_INFO_INIT(PSYS_PL1_ENABLE, PSYS_POWER_LIMIT1_ENABLE, 17,
683			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
684	[PSYS_PL2_ENABLE] = PRIMITIVE_INFO_INIT(PSYS_PL2_ENABLE, PSYS_POWER_LIMIT2_ENABLE, 49,
685			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
686	[PSYS_TIME_WINDOW1] = PRIMITIVE_INFO_INIT(PSYS_TIME_WINDOW1, PSYS_TIME_WINDOW1_MASK, 19,
687			    RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
688	[PSYS_TIME_WINDOW2] = PRIMITIVE_INFO_INIT(PSYS_TIME_WINDOW2, PSYS_TIME_WINDOW2_MASK, 51,
689			    RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
690	/* non-hardware */
691	[AVERAGE_POWER] = PRIMITIVE_INFO_INIT(AVERAGE_POWER, 0, 0, 0, POWER_UNIT,
692			    RAPL_PRIMITIVE_DERIVED),
693};
694
695/* RAPL primitives for TPMI I/F */
696static struct rapl_primitive_info rpi_tpmi[NR_RAPL_PRIMITIVES] = {
697	/* name, mask, shift, msr index, unit divisor */
698	[POWER_LIMIT1] = PRIMITIVE_INFO_INIT(POWER_LIMIT1, TPMI_POWER_LIMIT_MASK, 0,
699		RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
700	[POWER_LIMIT2] = PRIMITIVE_INFO_INIT(POWER_LIMIT2, TPMI_POWER_LIMIT_MASK, 0,
701		RAPL_DOMAIN_REG_PL2, POWER_UNIT, 0),
702	[POWER_LIMIT4] = PRIMITIVE_INFO_INIT(POWER_LIMIT4, TPMI_POWER_LIMIT_MASK, 0,
703		RAPL_DOMAIN_REG_PL4, POWER_UNIT, 0),
704	[ENERGY_COUNTER] = PRIMITIVE_INFO_INIT(ENERGY_COUNTER, ENERGY_STATUS_MASK, 0,
705		RAPL_DOMAIN_REG_STATUS, ENERGY_UNIT, 0),
706	[PL1_LOCK] = PRIMITIVE_INFO_INIT(PL1_LOCK, POWER_HIGH_LOCK, 63,
707		RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
708	[PL2_LOCK] = PRIMITIVE_INFO_INIT(PL2_LOCK, POWER_HIGH_LOCK, 63,
709		RAPL_DOMAIN_REG_PL2, ARBITRARY_UNIT, 0),
710	[PL4_LOCK] = PRIMITIVE_INFO_INIT(PL4_LOCK, POWER_HIGH_LOCK, 63,
711		RAPL_DOMAIN_REG_PL4, ARBITRARY_UNIT, 0),
712	[PL1_ENABLE] = PRIMITIVE_INFO_INIT(PL1_ENABLE, TPMI_POWER_LIMIT_ENABLE, 62,
713		RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
714	[PL2_ENABLE] = PRIMITIVE_INFO_INIT(PL2_ENABLE, TPMI_POWER_LIMIT_ENABLE, 62,
715		RAPL_DOMAIN_REG_PL2, ARBITRARY_UNIT, 0),
716	[PL4_ENABLE] = PRIMITIVE_INFO_INIT(PL4_ENABLE, TPMI_POWER_LIMIT_ENABLE, 62,
717		RAPL_DOMAIN_REG_PL4, ARBITRARY_UNIT, 0),
718	[TIME_WINDOW1] = PRIMITIVE_INFO_INIT(TIME_WINDOW1, TPMI_TIME_WINDOW_MASK, 18,
719		RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
720	[TIME_WINDOW2] = PRIMITIVE_INFO_INIT(TIME_WINDOW2, TPMI_TIME_WINDOW_MASK, 18,
721		RAPL_DOMAIN_REG_PL2, TIME_UNIT, 0),
722	[THERMAL_SPEC_POWER] = PRIMITIVE_INFO_INIT(THERMAL_SPEC_POWER, TPMI_INFO_SPEC_MASK, 0,
723		RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
724	[MAX_POWER] = PRIMITIVE_INFO_INIT(MAX_POWER, TPMI_INFO_MAX_MASK, 36,
725		RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
726	[MIN_POWER] = PRIMITIVE_INFO_INIT(MIN_POWER, TPMI_INFO_MIN_MASK, 18,
727		RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
728	[MAX_TIME_WINDOW] = PRIMITIVE_INFO_INIT(MAX_TIME_WINDOW, TPMI_INFO_MAX_TIME_WIN_MASK, 54,
729		RAPL_DOMAIN_REG_INFO, TIME_UNIT, 0),
730	[THROTTLED_TIME] = PRIMITIVE_INFO_INIT(THROTTLED_TIME, PERF_STATUS_THROTTLE_TIME_MASK, 0,
731		RAPL_DOMAIN_REG_PERF, TIME_UNIT, 0),
732	/* non-hardware */
733	[AVERAGE_POWER] = PRIMITIVE_INFO_INIT(AVERAGE_POWER, 0, 0, 0,
734		POWER_UNIT, RAPL_PRIMITIVE_DERIVED),
735};
736
737static struct rapl_primitive_info *get_rpi(struct rapl_package *rp, int prim)
738{
739	struct rapl_primitive_info *rpi = rp->priv->rpi;
740
741	if (prim < 0 || prim > NR_RAPL_PRIMITIVES || !rpi)
742		return NULL;
743
744	return &rpi[prim];
745}
746
747static int rapl_config(struct rapl_package *rp)
748{
749	switch (rp->priv->type) {
750	/* MMIO I/F shares the same register layout as MSR registers */
751	case RAPL_IF_MMIO:
752	case RAPL_IF_MSR:
753		rp->priv->defaults = (void *)defaults_msr;
754		rp->priv->rpi = (void *)rpi_msr;
755		break;
756	case RAPL_IF_TPMI:
757		rp->priv->defaults = (void *)&defaults_tpmi;
758		rp->priv->rpi = (void *)rpi_tpmi;
759		break;
760	default:
761		return -EINVAL;
762	}
763
764	/* defaults_msr can be NULL on unsupported platforms */
765	if (!rp->priv->defaults || !rp->priv->rpi)
766		return -ENODEV;
767
768	return 0;
769}
770
771static enum rapl_primitives
772prim_fixups(struct rapl_domain *rd, enum rapl_primitives prim)
773{
774	struct rapl_defaults *defaults = get_defaults(rd->rp);
775
776	if (!defaults->spr_psys_bits)
777		return prim;
778
779	if (rd->id != RAPL_DOMAIN_PLATFORM)
780		return prim;
781
782	switch (prim) {
783	case POWER_LIMIT1:
784		return PSYS_POWER_LIMIT1;
785	case POWER_LIMIT2:
786		return PSYS_POWER_LIMIT2;
787	case PL1_ENABLE:
788		return PSYS_PL1_ENABLE;
789	case PL2_ENABLE:
790		return PSYS_PL2_ENABLE;
791	case TIME_WINDOW1:
792		return PSYS_TIME_WINDOW1;
793	case TIME_WINDOW2:
794		return PSYS_TIME_WINDOW2;
795	default:
796		return prim;
797	}
798}
799
800/* Read primitive data based on its related struct rapl_primitive_info.
801 * if xlate flag is set, return translated data based on data units, i.e.
802 * time, energy, and power.
803 * RAPL MSRs are non-architectual and are laid out not consistently across
804 * domains. Here we use primitive info to allow writing consolidated access
805 * functions.
806 * For a given primitive, it is processed by MSR mask and shift. Unit conversion
807 * is pre-assigned based on RAPL unit MSRs read at init time.
808 * 63-------------------------- 31--------------------------- 0
809 * |                           xxxxx (mask)                   |
810 * |                                |<- shift ----------------|
811 * 63-------------------------- 31--------------------------- 0
812 */
813static int rapl_read_data_raw(struct rapl_domain *rd,
814			      enum rapl_primitives prim, bool xlate, u64 *data)
815{
816	u64 value;
817	enum rapl_primitives prim_fixed = prim_fixups(rd, prim);
818	struct rapl_primitive_info *rpi = get_rpi(rd->rp, prim_fixed);
819	struct reg_action ra;
820
821	if (!rpi || !rpi->name || rpi->flag & RAPL_PRIMITIVE_DUMMY)
822		return -EINVAL;
823
824	ra.reg = rd->regs[rpi->id];
825	if (!ra.reg.val)
826		return -EINVAL;
827
828	/* non-hardware data are collected by the polling thread */
829	if (rpi->flag & RAPL_PRIMITIVE_DERIVED) {
830		*data = rd->rdd.primitives[prim];
831		return 0;
832	}
833
834	ra.mask = rpi->mask;
835
836	if (rd->rp->priv->read_raw(get_rid(rd->rp), &ra)) {
837		pr_debug("failed to read reg 0x%llx for %s:%s\n", ra.reg.val, rd->rp->name, rd->name);
838		return -EIO;
839	}
840
841	value = ra.value >> rpi->shift;
842
843	if (xlate)
844		*data = rapl_unit_xlate(rd, rpi->unit, value, 0);
845	else
846		*data = value;
847
848	return 0;
849}
850
851/* Similar use of primitive info in the read counterpart */
852static int rapl_write_data_raw(struct rapl_domain *rd,
853			       enum rapl_primitives prim,
854			       unsigned long long value)
855{
856	enum rapl_primitives prim_fixed = prim_fixups(rd, prim);
857	struct rapl_primitive_info *rpi = get_rpi(rd->rp, prim_fixed);
858	u64 bits;
859	struct reg_action ra;
860	int ret;
861
862	if (!rpi || !rpi->name || rpi->flag & RAPL_PRIMITIVE_DUMMY)
863		return -EINVAL;
864
865	bits = rapl_unit_xlate(rd, rpi->unit, value, 1);
866	bits <<= rpi->shift;
867	bits &= rpi->mask;
868
869	memset(&ra, 0, sizeof(ra));
870
871	ra.reg = rd->regs[rpi->id];
872	ra.mask = rpi->mask;
873	ra.value = bits;
874
875	ret = rd->rp->priv->write_raw(get_rid(rd->rp), &ra);
876
877	return ret;
878}
879
880static int rapl_read_pl_data(struct rapl_domain *rd, int pl,
881			      enum pl_prims pl_prim, bool xlate, u64 *data)
882{
883	enum rapl_primitives prim = get_pl_prim(rd, pl, pl_prim);
884
885	if (!is_pl_valid(rd, pl))
886		return -EINVAL;
887
888	return rapl_read_data_raw(rd, prim, xlate, data);
889}
890
891static int rapl_write_pl_data(struct rapl_domain *rd, int pl,
892			       enum pl_prims pl_prim,
893			       unsigned long long value)
894{
895	enum rapl_primitives prim = get_pl_prim(rd, pl, pl_prim);
896
897	if (!is_pl_valid(rd, pl))
898		return -EINVAL;
899
900	if (rd->rpl[pl].locked) {
901		pr_debug("%s:%s:%s locked by BIOS\n", rd->rp->name, rd->name, pl_names[pl]);
902		return -EACCES;
903	}
904
905	return rapl_write_data_raw(rd, prim, value);
906}
907/*
908 * Raw RAPL data stored in MSRs are in certain scales. We need to
909 * convert them into standard units based on the units reported in
910 * the RAPL unit MSRs. This is specific to CPUs as the method to
911 * calculate units differ on different CPUs.
912 * We convert the units to below format based on CPUs.
913 * i.e.
914 * energy unit: picoJoules  : Represented in picoJoules by default
915 * power unit : microWatts  : Represented in milliWatts by default
916 * time unit  : microseconds: Represented in seconds by default
917 */
918static int rapl_check_unit_core(struct rapl_domain *rd)
919{
920	struct reg_action ra;
921	u32 value;
922
923	ra.reg = rd->regs[RAPL_DOMAIN_REG_UNIT];
924	ra.mask = ~0;
925	if (rd->rp->priv->read_raw(get_rid(rd->rp), &ra)) {
926		pr_err("Failed to read power unit REG 0x%llx on %s:%s, exit.\n",
927			ra.reg.val, rd->rp->name, rd->name);
928		return -ENODEV;
929	}
930
931	value = (ra.value & ENERGY_UNIT_MASK) >> ENERGY_UNIT_OFFSET;
932	rd->energy_unit = ENERGY_UNIT_SCALE * 1000000 / (1 << value);
933
934	value = (ra.value & POWER_UNIT_MASK) >> POWER_UNIT_OFFSET;
935	rd->power_unit = 1000000 / (1 << value);
936
937	value = (ra.value & TIME_UNIT_MASK) >> TIME_UNIT_OFFSET;
938	rd->time_unit = 1000000 / (1 << value);
939
940	pr_debug("Core CPU %s:%s energy=%dpJ, time=%dus, power=%duW\n",
941		 rd->rp->name, rd->name, rd->energy_unit, rd->time_unit, rd->power_unit);
942
943	return 0;
944}
945
946static int rapl_check_unit_atom(struct rapl_domain *rd)
947{
948	struct reg_action ra;
949	u32 value;
950
951	ra.reg = rd->regs[RAPL_DOMAIN_REG_UNIT];
952	ra.mask = ~0;
953	if (rd->rp->priv->read_raw(get_rid(rd->rp), &ra)) {
954		pr_err("Failed to read power unit REG 0x%llx on %s:%s, exit.\n",
955			ra.reg.val, rd->rp->name, rd->name);
956		return -ENODEV;
957	}
958
959	value = (ra.value & ENERGY_UNIT_MASK) >> ENERGY_UNIT_OFFSET;
960	rd->energy_unit = ENERGY_UNIT_SCALE * 1 << value;
961
962	value = (ra.value & POWER_UNIT_MASK) >> POWER_UNIT_OFFSET;
963	rd->power_unit = (1 << value) * 1000;
964
965	value = (ra.value & TIME_UNIT_MASK) >> TIME_UNIT_OFFSET;
966	rd->time_unit = 1000000 / (1 << value);
967
968	pr_debug("Atom %s:%s energy=%dpJ, time=%dus, power=%duW\n",
969		 rd->rp->name, rd->name, rd->energy_unit, rd->time_unit, rd->power_unit);
970
971	return 0;
972}
973
974static void power_limit_irq_save_cpu(void *info)
975{
976	u32 l, h = 0;
977	struct rapl_package *rp = (struct rapl_package *)info;
978
979	/* save the state of PLN irq mask bit before disabling it */
980	rdmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, &l, &h);
981	if (!(rp->power_limit_irq & PACKAGE_PLN_INT_SAVED)) {
982		rp->power_limit_irq = l & PACKAGE_THERM_INT_PLN_ENABLE;
983		rp->power_limit_irq |= PACKAGE_PLN_INT_SAVED;
984	}
985	l &= ~PACKAGE_THERM_INT_PLN_ENABLE;
986	wrmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h);
987}
988
989/* REVISIT:
990 * When package power limit is set artificially low by RAPL, LVT
991 * thermal interrupt for package power limit should be ignored
992 * since we are not really exceeding the real limit. The intention
993 * is to avoid excessive interrupts while we are trying to save power.
994 * A useful feature might be routing the package_power_limit interrupt
995 * to userspace via eventfd. once we have a usecase, this is simple
996 * to do by adding an atomic notifier.
997 */
998
999static void package_power_limit_irq_save(struct rapl_package *rp)
1000{
1001	if (rp->lead_cpu < 0)
1002		return;
1003
1004	if (!boot_cpu_has(X86_FEATURE_PTS) || !boot_cpu_has(X86_FEATURE_PLN))
1005		return;
1006
1007	smp_call_function_single(rp->lead_cpu, power_limit_irq_save_cpu, rp, 1);
1008}
1009
1010/*
1011 * Restore per package power limit interrupt enable state. Called from cpu
1012 * hotplug code on package removal.
1013 */
1014static void package_power_limit_irq_restore(struct rapl_package *rp)
1015{
1016	u32 l, h;
1017
1018	if (rp->lead_cpu < 0)
1019		return;
1020
1021	if (!boot_cpu_has(X86_FEATURE_PTS) || !boot_cpu_has(X86_FEATURE_PLN))
1022		return;
1023
1024	/* irq enable state not saved, nothing to restore */
1025	if (!(rp->power_limit_irq & PACKAGE_PLN_INT_SAVED))
1026		return;
1027
1028	rdmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, &l, &h);
1029
1030	if (rp->power_limit_irq & PACKAGE_THERM_INT_PLN_ENABLE)
1031		l |= PACKAGE_THERM_INT_PLN_ENABLE;
1032	else
1033		l &= ~PACKAGE_THERM_INT_PLN_ENABLE;
1034
1035	wrmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h);
1036}
1037
1038static void set_floor_freq_default(struct rapl_domain *rd, bool mode)
1039{
1040	int i;
1041
1042	/* always enable clamp such that p-state can go below OS requested
1043	 * range. power capping priority over guranteed frequency.
1044	 */
1045	rapl_write_pl_data(rd, POWER_LIMIT1, PL_CLAMP, mode);
1046
1047	for (i = POWER_LIMIT2; i < NR_POWER_LIMITS; i++) {
1048		rapl_write_pl_data(rd, i, PL_ENABLE, mode);
1049		rapl_write_pl_data(rd, i, PL_CLAMP, mode);
1050	}
1051}
1052
1053static void set_floor_freq_atom(struct rapl_domain *rd, bool enable)
1054{
1055	static u32 power_ctrl_orig_val;
1056	struct rapl_defaults *defaults = get_defaults(rd->rp);
1057	u32 mdata;
1058
1059	if (!defaults->floor_freq_reg_addr) {
1060		pr_err("Invalid floor frequency config register\n");
1061		return;
1062	}
1063
1064	if (!power_ctrl_orig_val)
1065		iosf_mbi_read(BT_MBI_UNIT_PMC, MBI_CR_READ,
1066			      defaults->floor_freq_reg_addr,
1067			      &power_ctrl_orig_val);
1068	mdata = power_ctrl_orig_val;
1069	if (enable) {
1070		mdata &= ~(0x7f << 8);
1071		mdata |= 1 << 8;
1072	}
1073	iosf_mbi_write(BT_MBI_UNIT_PMC, MBI_CR_WRITE,
1074		       defaults->floor_freq_reg_addr, mdata);
1075}
1076
1077static u64 rapl_compute_time_window_core(struct rapl_domain *rd, u64 value,
1078					 bool to_raw)
1079{
1080	u64 f, y;		/* fraction and exp. used for time unit */
1081
1082	/*
1083	 * Special processing based on 2^Y*(1+F/4), refer
1084	 * to Intel Software Developer's manual Vol.3B: CH 14.9.3.
1085	 */
1086	if (!to_raw) {
1087		f = (value & 0x60) >> 5;
1088		y = value & 0x1f;
1089		value = (1 << y) * (4 + f) * rd->time_unit / 4;
1090	} else {
1091		if (value < rd->time_unit)
1092			return 0;
1093
1094		do_div(value, rd->time_unit);
1095		y = ilog2(value);
1096
1097		/*
1098		 * The target hardware field is 7 bits wide, so return all ones
1099		 * if the exponent is too large.
1100		 */
1101		if (y > 0x1f)
1102			return 0x7f;
1103
1104		f = div64_u64(4 * (value - (1ULL << y)), 1ULL << y);
1105		value = (y & 0x1f) | ((f & 0x3) << 5);
1106	}
1107	return value;
1108}
1109
1110static u64 rapl_compute_time_window_atom(struct rapl_domain *rd, u64 value,
1111					 bool to_raw)
1112{
1113	/*
1114	 * Atom time unit encoding is straight forward val * time_unit,
1115	 * where time_unit is default to 1 sec. Never 0.
1116	 */
1117	if (!to_raw)
1118		return (value) ? value * rd->time_unit : rd->time_unit;
1119
1120	value = div64_u64(value, rd->time_unit);
1121
1122	return value;
1123}
1124
1125/* TPMI Unit register has different layout */
1126#define TPMI_POWER_UNIT_OFFSET	POWER_UNIT_OFFSET
1127#define TPMI_POWER_UNIT_MASK	POWER_UNIT_MASK
1128#define TPMI_ENERGY_UNIT_OFFSET	0x06
1129#define TPMI_ENERGY_UNIT_MASK	0x7C0
1130#define TPMI_TIME_UNIT_OFFSET	0x0C
1131#define TPMI_TIME_UNIT_MASK	0xF000
1132
1133static int rapl_check_unit_tpmi(struct rapl_domain *rd)
1134{
1135	struct reg_action ra;
1136	u32 value;
1137
1138	ra.reg = rd->regs[RAPL_DOMAIN_REG_UNIT];
1139	ra.mask = ~0;
1140	if (rd->rp->priv->read_raw(get_rid(rd->rp), &ra)) {
1141		pr_err("Failed to read power unit REG 0x%llx on %s:%s, exit.\n",
1142			ra.reg.val, rd->rp->name, rd->name);
1143		return -ENODEV;
1144	}
1145
1146	value = (ra.value & TPMI_ENERGY_UNIT_MASK) >> TPMI_ENERGY_UNIT_OFFSET;
1147	rd->energy_unit = ENERGY_UNIT_SCALE * 1000000 / (1 << value);
1148
1149	value = (ra.value & TPMI_POWER_UNIT_MASK) >> TPMI_POWER_UNIT_OFFSET;
1150	rd->power_unit = 1000000 / (1 << value);
1151
1152	value = (ra.value & TPMI_TIME_UNIT_MASK) >> TPMI_TIME_UNIT_OFFSET;
1153	rd->time_unit = 1000000 / (1 << value);
1154
1155	pr_debug("Core CPU %s:%s energy=%dpJ, time=%dus, power=%duW\n",
1156		 rd->rp->name, rd->name, rd->energy_unit, rd->time_unit, rd->power_unit);
1157
1158	return 0;
1159}
1160
1161static const struct rapl_defaults defaults_tpmi = {
1162	.check_unit = rapl_check_unit_tpmi,
1163	/* Reuse existing logic, ignore the PL_CLAMP failures and enable all Power Limits */
1164	.set_floor_freq = set_floor_freq_default,
1165	.compute_time_window = rapl_compute_time_window_core,
1166};
1167
1168static const struct rapl_defaults rapl_defaults_core = {
1169	.floor_freq_reg_addr = 0,
1170	.check_unit = rapl_check_unit_core,
1171	.set_floor_freq = set_floor_freq_default,
1172	.compute_time_window = rapl_compute_time_window_core,
1173};
1174
1175static const struct rapl_defaults rapl_defaults_hsw_server = {
1176	.check_unit = rapl_check_unit_core,
1177	.set_floor_freq = set_floor_freq_default,
1178	.compute_time_window = rapl_compute_time_window_core,
1179	.dram_domain_energy_unit = 15300,
1180};
1181
1182static const struct rapl_defaults rapl_defaults_spr_server = {
1183	.check_unit = rapl_check_unit_core,
1184	.set_floor_freq = set_floor_freq_default,
1185	.compute_time_window = rapl_compute_time_window_core,
1186	.psys_domain_energy_unit = 1000000000,
1187	.spr_psys_bits = true,
1188};
1189
1190static const struct rapl_defaults rapl_defaults_byt = {
1191	.floor_freq_reg_addr = IOSF_CPU_POWER_BUDGET_CTL_BYT,
1192	.check_unit = rapl_check_unit_atom,
1193	.set_floor_freq = set_floor_freq_atom,
1194	.compute_time_window = rapl_compute_time_window_atom,
1195};
1196
1197static const struct rapl_defaults rapl_defaults_tng = {
1198	.floor_freq_reg_addr = IOSF_CPU_POWER_BUDGET_CTL_TNG,
1199	.check_unit = rapl_check_unit_atom,
1200	.set_floor_freq = set_floor_freq_atom,
1201	.compute_time_window = rapl_compute_time_window_atom,
1202};
1203
1204static const struct rapl_defaults rapl_defaults_ann = {
1205	.floor_freq_reg_addr = 0,
1206	.check_unit = rapl_check_unit_atom,
1207	.set_floor_freq = NULL,
1208	.compute_time_window = rapl_compute_time_window_atom,
1209};
1210
1211static const struct rapl_defaults rapl_defaults_cht = {
1212	.floor_freq_reg_addr = 0,
1213	.check_unit = rapl_check_unit_atom,
1214	.set_floor_freq = NULL,
1215	.compute_time_window = rapl_compute_time_window_atom,
1216};
1217
1218static const struct rapl_defaults rapl_defaults_amd = {
1219	.check_unit = rapl_check_unit_core,
1220};
1221
1222static const struct x86_cpu_id rapl_ids[] __initconst = {
1223	X86_MATCH_INTEL_FAM6_MODEL(SANDYBRIDGE,		&rapl_defaults_core),
1224	X86_MATCH_INTEL_FAM6_MODEL(SANDYBRIDGE_X,	&rapl_defaults_core),
1225
1226	X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE,		&rapl_defaults_core),
1227	X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE_X,		&rapl_defaults_core),
1228
1229	X86_MATCH_INTEL_FAM6_MODEL(HASWELL,		&rapl_defaults_core),
1230	X86_MATCH_INTEL_FAM6_MODEL(HASWELL_L,		&rapl_defaults_core),
1231	X86_MATCH_INTEL_FAM6_MODEL(HASWELL_G,		&rapl_defaults_core),
1232	X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X,		&rapl_defaults_hsw_server),
1233
1234	X86_MATCH_INTEL_FAM6_MODEL(BROADWELL,		&rapl_defaults_core),
1235	X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_G,		&rapl_defaults_core),
1236	X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_D,		&rapl_defaults_core),
1237	X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X,		&rapl_defaults_hsw_server),
1238
1239	X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE,		&rapl_defaults_core),
1240	X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_L,		&rapl_defaults_core),
1241	X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_X,		&rapl_defaults_hsw_server),
1242	X86_MATCH_INTEL_FAM6_MODEL(KABYLAKE_L,		&rapl_defaults_core),
1243	X86_MATCH_INTEL_FAM6_MODEL(KABYLAKE,		&rapl_defaults_core),
1244	X86_MATCH_INTEL_FAM6_MODEL(CANNONLAKE_L,	&rapl_defaults_core),
1245	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_L,		&rapl_defaults_core),
1246	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE,		&rapl_defaults_core),
1247	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_NNPI,	&rapl_defaults_core),
1248	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X,		&rapl_defaults_hsw_server),
1249	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D,		&rapl_defaults_hsw_server),
1250	X86_MATCH_INTEL_FAM6_MODEL(COMETLAKE_L,		&rapl_defaults_core),
1251	X86_MATCH_INTEL_FAM6_MODEL(COMETLAKE,		&rapl_defaults_core),
1252	X86_MATCH_INTEL_FAM6_MODEL(TIGERLAKE_L,		&rapl_defaults_core),
1253	X86_MATCH_INTEL_FAM6_MODEL(TIGERLAKE,		&rapl_defaults_core),
1254	X86_MATCH_INTEL_FAM6_MODEL(ROCKETLAKE,		&rapl_defaults_core),
1255	X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE,		&rapl_defaults_core),
1256	X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE_L,		&rapl_defaults_core),
1257	X86_MATCH_INTEL_FAM6_MODEL(ATOM_GRACEMONT,	&rapl_defaults_core),
1258	X86_MATCH_INTEL_FAM6_MODEL(RAPTORLAKE,		&rapl_defaults_core),
1259	X86_MATCH_INTEL_FAM6_MODEL(RAPTORLAKE_P,        &rapl_defaults_core),
1260	X86_MATCH_INTEL_FAM6_MODEL(RAPTORLAKE_S,	&rapl_defaults_core),
1261	X86_MATCH_INTEL_FAM6_MODEL(METEORLAKE,		&rapl_defaults_core),
1262	X86_MATCH_INTEL_FAM6_MODEL(METEORLAKE_L,	&rapl_defaults_core),
1263	X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X,	&rapl_defaults_spr_server),
1264	X86_MATCH_INTEL_FAM6_MODEL(EMERALDRAPIDS_X,	&rapl_defaults_spr_server),
1265	X86_MATCH_INTEL_FAM6_MODEL(LAKEFIELD,		&rapl_defaults_core),
1266
1267	X86_MATCH_INTEL_FAM6_MODEL(ATOM_SILVERMONT,	&rapl_defaults_byt),
1268	X86_MATCH_INTEL_FAM6_MODEL(ATOM_AIRMONT,	&rapl_defaults_cht),
1269	X86_MATCH_INTEL_FAM6_MODEL(ATOM_SILVERMONT_MID,	&rapl_defaults_tng),
1270	X86_MATCH_INTEL_FAM6_MODEL(ATOM_AIRMONT_MID,	&rapl_defaults_ann),
1271	X86_MATCH_INTEL_FAM6_MODEL(ATOM_GOLDMONT,	&rapl_defaults_core),
1272	X86_MATCH_INTEL_FAM6_MODEL(ATOM_GOLDMONT_PLUS,	&rapl_defaults_core),
1273	X86_MATCH_INTEL_FAM6_MODEL(ATOM_GOLDMONT_D,	&rapl_defaults_core),
1274	X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT,	&rapl_defaults_core),
1275	X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT_D,	&rapl_defaults_core),
1276	X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT_L,	&rapl_defaults_core),
1277
1278	X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNL,	&rapl_defaults_hsw_server),
1279	X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNM,	&rapl_defaults_hsw_server),
1280
1281	X86_MATCH_VENDOR_FAM(AMD, 0x17, &rapl_defaults_amd),
1282	X86_MATCH_VENDOR_FAM(AMD, 0x19, &rapl_defaults_amd),
1283	X86_MATCH_VENDOR_FAM(HYGON, 0x18, &rapl_defaults_amd),
1284	{}
1285};
1286MODULE_DEVICE_TABLE(x86cpu, rapl_ids);
1287
1288/* Read once for all raw primitive data for domains */
1289static void rapl_update_domain_data(struct rapl_package *rp)
1290{
1291	int dmn, prim;
1292	u64 val;
1293
1294	for (dmn = 0; dmn < rp->nr_domains; dmn++) {
1295		pr_debug("update %s domain %s data\n", rp->name,
1296			 rp->domains[dmn].name);
1297		/* exclude non-raw primitives */
1298		for (prim = 0; prim < NR_RAW_PRIMITIVES; prim++) {
1299			struct rapl_primitive_info *rpi = get_rpi(rp, prim);
1300
1301			if (!rapl_read_data_raw(&rp->domains[dmn], prim,
1302						rpi->unit, &val))
1303				rp->domains[dmn].rdd.primitives[prim] = val;
1304		}
1305	}
1306
1307}
1308
1309static int rapl_package_register_powercap(struct rapl_package *rp)
1310{
1311	struct rapl_domain *rd;
1312	struct powercap_zone *power_zone = NULL;
1313	int nr_pl, ret;
1314
1315	/* Update the domain data of the new package */
1316	rapl_update_domain_data(rp);
1317
1318	/* first we register package domain as the parent zone */
1319	for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1320		if (rd->id == RAPL_DOMAIN_PACKAGE) {
1321			nr_pl = find_nr_power_limit(rd);
1322			pr_debug("register package domain %s\n", rp->name);
1323			power_zone = powercap_register_zone(&rd->power_zone,
1324					    rp->priv->control_type, rp->name,
1325					    NULL, &zone_ops[rd->id], nr_pl,
1326					    &constraint_ops);
1327			if (IS_ERR(power_zone)) {
1328				pr_debug("failed to register power zone %s\n",
1329					 rp->name);
1330				return PTR_ERR(power_zone);
1331			}
1332			/* track parent zone in per package/socket data */
1333			rp->power_zone = power_zone;
1334			/* done, only one package domain per socket */
1335			break;
1336		}
1337	}
1338	if (!power_zone) {
1339		pr_err("no package domain found, unknown topology!\n");
1340		return -ENODEV;
1341	}
1342	/* now register domains as children of the socket/package */
1343	for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1344		struct powercap_zone *parent = rp->power_zone;
1345
1346		if (rd->id == RAPL_DOMAIN_PACKAGE)
1347			continue;
1348		if (rd->id == RAPL_DOMAIN_PLATFORM)
1349			parent = NULL;
1350		/* number of power limits per domain varies */
1351		nr_pl = find_nr_power_limit(rd);
1352		power_zone = powercap_register_zone(&rd->power_zone,
1353						    rp->priv->control_type,
1354						    rd->name, parent,
1355						    &zone_ops[rd->id], nr_pl,
1356						    &constraint_ops);
1357
1358		if (IS_ERR(power_zone)) {
1359			pr_debug("failed to register power_zone, %s:%s\n",
1360				 rp->name, rd->name);
1361			ret = PTR_ERR(power_zone);
1362			goto err_cleanup;
1363		}
1364	}
1365	return 0;
1366
1367err_cleanup:
1368	/*
1369	 * Clean up previously initialized domains within the package if we
1370	 * failed after the first domain setup.
1371	 */
1372	while (--rd >= rp->domains) {
1373		pr_debug("unregister %s domain %s\n", rp->name, rd->name);
1374		powercap_unregister_zone(rp->priv->control_type,
1375					 &rd->power_zone);
1376	}
1377
1378	return ret;
1379}
1380
1381static int rapl_check_domain(int domain, struct rapl_package *rp)
1382{
1383	struct reg_action ra;
1384
1385	switch (domain) {
1386	case RAPL_DOMAIN_PACKAGE:
1387	case RAPL_DOMAIN_PP0:
1388	case RAPL_DOMAIN_PP1:
1389	case RAPL_DOMAIN_DRAM:
1390	case RAPL_DOMAIN_PLATFORM:
1391		ra.reg = rp->priv->regs[domain][RAPL_DOMAIN_REG_STATUS];
1392		break;
1393	default:
1394		pr_err("invalid domain id %d\n", domain);
1395		return -EINVAL;
1396	}
1397	/* make sure domain counters are available and contains non-zero
1398	 * values, otherwise skip it.
1399	 */
1400
1401	ra.mask = ENERGY_STATUS_MASK;
1402	if (rp->priv->read_raw(get_rid(rp), &ra) || !ra.value)
1403		return -ENODEV;
1404
1405	return 0;
1406}
1407
1408/*
1409 * Get per domain energy/power/time unit.
1410 * RAPL Interfaces without per domain unit register will use the package
1411 * scope unit register to set per domain units.
1412 */
1413static int rapl_get_domain_unit(struct rapl_domain *rd)
1414{
1415	struct rapl_defaults *defaults = get_defaults(rd->rp);
1416	int ret;
1417
1418	if (!rd->regs[RAPL_DOMAIN_REG_UNIT].val) {
1419		if (!rd->rp->priv->reg_unit.val) {
1420			pr_err("No valid Unit register found\n");
1421			return -ENODEV;
1422		}
1423		rd->regs[RAPL_DOMAIN_REG_UNIT] = rd->rp->priv->reg_unit;
1424	}
1425
1426	if (!defaults->check_unit) {
1427		pr_err("missing .check_unit() callback\n");
1428		return -ENODEV;
1429	}
1430
1431	ret = defaults->check_unit(rd);
1432	if (ret)
1433		return ret;
1434
1435	if (rd->id == RAPL_DOMAIN_DRAM && defaults->dram_domain_energy_unit)
1436		rd->energy_unit = defaults->dram_domain_energy_unit;
1437	if (rd->id == RAPL_DOMAIN_PLATFORM && defaults->psys_domain_energy_unit)
1438		rd->energy_unit = defaults->psys_domain_energy_unit;
1439	return 0;
1440}
1441
1442/*
1443 * Check if power limits are available. Two cases when they are not available:
1444 * 1. Locked by BIOS, in this case we still provide read-only access so that
1445 *    users can see what limit is set by the BIOS.
1446 * 2. Some CPUs make some domains monitoring only which means PLx MSRs may not
1447 *    exist at all. In this case, we do not show the constraints in powercap.
1448 *
1449 * Called after domains are detected and initialized.
1450 */
1451static void rapl_detect_powerlimit(struct rapl_domain *rd)
1452{
1453	u64 val64;
1454	int i;
1455
1456	for (i = POWER_LIMIT1; i < NR_POWER_LIMITS; i++) {
1457		if (!rapl_read_pl_data(rd, i, PL_LOCK, false, &val64)) {
1458			if (val64) {
1459				rd->rpl[i].locked = true;
1460				pr_info("%s:%s:%s locked by BIOS\n",
1461					rd->rp->name, rd->name, pl_names[i]);
1462			}
1463		}
1464
1465		if (rapl_read_pl_data(rd, i, PL_LIMIT, false, &val64))
1466			rd->rpl[i].name = NULL;
1467	}
1468}
1469
1470/* Detect active and valid domains for the given CPU, caller must
1471 * ensure the CPU belongs to the targeted package and CPU hotlug is disabled.
1472 */
1473static int rapl_detect_domains(struct rapl_package *rp)
1474{
1475	struct rapl_domain *rd;
1476	int i;
1477
1478	for (i = 0; i < RAPL_DOMAIN_MAX; i++) {
1479		/* use physical package id to read counters */
1480		if (!rapl_check_domain(i, rp)) {
1481			rp->domain_map |= 1 << i;
1482			pr_info("Found RAPL domain %s\n", rapl_domain_names[i]);
1483		}
1484	}
1485	rp->nr_domains = bitmap_weight(&rp->domain_map, RAPL_DOMAIN_MAX);
1486	if (!rp->nr_domains) {
1487		pr_debug("no valid rapl domains found in %s\n", rp->name);
1488		return -ENODEV;
1489	}
1490	pr_debug("found %d domains on %s\n", rp->nr_domains, rp->name);
1491
1492	rp->domains = kcalloc(rp->nr_domains, sizeof(struct rapl_domain),
1493			      GFP_KERNEL);
1494	if (!rp->domains)
1495		return -ENOMEM;
1496
1497	rapl_init_domains(rp);
1498
1499	for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1500		rapl_get_domain_unit(rd);
1501		rapl_detect_powerlimit(rd);
1502	}
1503
1504	return 0;
1505}
1506
1507/* called from CPU hotplug notifier, hotplug lock held */
1508void rapl_remove_package_cpuslocked(struct rapl_package *rp)
1509{
1510	struct rapl_domain *rd, *rd_package = NULL;
1511
1512	package_power_limit_irq_restore(rp);
1513
1514	for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1515		int i;
1516
1517		for (i = POWER_LIMIT1; i < NR_POWER_LIMITS; i++) {
1518			rapl_write_pl_data(rd, i, PL_ENABLE, 0);
1519			rapl_write_pl_data(rd, i, PL_CLAMP, 0);
1520		}
1521
1522		if (rd->id == RAPL_DOMAIN_PACKAGE) {
1523			rd_package = rd;
1524			continue;
1525		}
1526		pr_debug("remove package, undo power limit on %s: %s\n",
1527			 rp->name, rd->name);
1528		powercap_unregister_zone(rp->priv->control_type,
1529					 &rd->power_zone);
1530	}
1531	/* do parent zone last */
1532	powercap_unregister_zone(rp->priv->control_type,
1533				 &rd_package->power_zone);
1534	list_del(&rp->plist);
1535	kfree(rp);
1536}
1537EXPORT_SYMBOL_GPL(rapl_remove_package_cpuslocked);
1538
1539void rapl_remove_package(struct rapl_package *rp)
1540{
1541	guard(cpus_read_lock)();
1542	rapl_remove_package_cpuslocked(rp);
1543}
1544EXPORT_SYMBOL_GPL(rapl_remove_package);
1545
1546/* caller to ensure CPU hotplug lock is held */
1547struct rapl_package *rapl_find_package_domain_cpuslocked(int id, struct rapl_if_priv *priv,
1548							 bool id_is_cpu)
1549{
1550	struct rapl_package *rp;
1551	int uid;
1552
1553	if (id_is_cpu)
1554		uid = topology_logical_die_id(id);
1555	else
1556		uid = id;
1557
1558	list_for_each_entry(rp, &rapl_packages, plist) {
1559		if (rp->id == uid
1560		    && rp->priv->control_type == priv->control_type)
1561			return rp;
1562	}
1563
1564	return NULL;
1565}
1566EXPORT_SYMBOL_GPL(rapl_find_package_domain_cpuslocked);
1567
1568struct rapl_package *rapl_find_package_domain(int id, struct rapl_if_priv *priv, bool id_is_cpu)
1569{
1570	guard(cpus_read_lock)();
1571	return rapl_find_package_domain_cpuslocked(id, priv, id_is_cpu);
1572}
1573EXPORT_SYMBOL_GPL(rapl_find_package_domain);
1574
1575/* called from CPU hotplug notifier, hotplug lock held */
1576struct rapl_package *rapl_add_package_cpuslocked(int id, struct rapl_if_priv *priv, bool id_is_cpu)
1577{
1578	struct rapl_package *rp;
1579	int ret;
1580
1581	rp = kzalloc(sizeof(struct rapl_package), GFP_KERNEL);
1582	if (!rp)
1583		return ERR_PTR(-ENOMEM);
1584
1585	if (id_is_cpu) {
1586		rp->id = topology_logical_die_id(id);
1587		rp->lead_cpu = id;
1588		if (topology_max_die_per_package() > 1)
1589			snprintf(rp->name, PACKAGE_DOMAIN_NAME_LENGTH, "package-%d-die-%d",
1590				 topology_physical_package_id(id), topology_die_id(id));
1591		else
1592			snprintf(rp->name, PACKAGE_DOMAIN_NAME_LENGTH, "package-%d",
1593				 topology_physical_package_id(id));
1594	} else {
1595		rp->id = id;
1596		rp->lead_cpu = -1;
1597		snprintf(rp->name, PACKAGE_DOMAIN_NAME_LENGTH, "package-%d", id);
1598	}
1599
1600	rp->priv = priv;
1601	ret = rapl_config(rp);
1602	if (ret)
1603		goto err_free_package;
1604
1605	/* check if the package contains valid domains */
1606	if (rapl_detect_domains(rp)) {
1607		ret = -ENODEV;
1608		goto err_free_package;
1609	}
1610	ret = rapl_package_register_powercap(rp);
1611	if (!ret) {
1612		INIT_LIST_HEAD(&rp->plist);
1613		list_add(&rp->plist, &rapl_packages);
1614		return rp;
1615	}
1616
1617err_free_package:
1618	kfree(rp->domains);
1619	kfree(rp);
1620	return ERR_PTR(ret);
1621}
1622EXPORT_SYMBOL_GPL(rapl_add_package_cpuslocked);
1623
1624struct rapl_package *rapl_add_package(int id, struct rapl_if_priv *priv, bool id_is_cpu)
1625{
1626	guard(cpus_read_lock)();
1627	return rapl_add_package_cpuslocked(id, priv, id_is_cpu);
1628}
1629EXPORT_SYMBOL_GPL(rapl_add_package);
1630
1631static void power_limit_state_save(void)
1632{
1633	struct rapl_package *rp;
1634	struct rapl_domain *rd;
1635	int ret, i;
1636
1637	cpus_read_lock();
1638	list_for_each_entry(rp, &rapl_packages, plist) {
1639		if (!rp->power_zone)
1640			continue;
1641		rd = power_zone_to_rapl_domain(rp->power_zone);
1642		for (i = POWER_LIMIT1; i < NR_POWER_LIMITS; i++) {
1643			ret = rapl_read_pl_data(rd, i, PL_LIMIT, true,
1644						 &rd->rpl[i].last_power_limit);
1645			if (ret)
1646				rd->rpl[i].last_power_limit = 0;
1647		}
1648	}
1649	cpus_read_unlock();
1650}
1651
1652static void power_limit_state_restore(void)
1653{
1654	struct rapl_package *rp;
1655	struct rapl_domain *rd;
1656	int i;
1657
1658	cpus_read_lock();
1659	list_for_each_entry(rp, &rapl_packages, plist) {
1660		if (!rp->power_zone)
1661			continue;
1662		rd = power_zone_to_rapl_domain(rp->power_zone);
1663		for (i = POWER_LIMIT1; i < NR_POWER_LIMITS; i++)
1664			if (rd->rpl[i].last_power_limit)
1665				rapl_write_pl_data(rd, i, PL_LIMIT,
1666					       rd->rpl[i].last_power_limit);
1667	}
1668	cpus_read_unlock();
1669}
1670
1671static int rapl_pm_callback(struct notifier_block *nb,
1672			    unsigned long mode, void *_unused)
1673{
1674	switch (mode) {
1675	case PM_SUSPEND_PREPARE:
1676		power_limit_state_save();
1677		break;
1678	case PM_POST_SUSPEND:
1679		power_limit_state_restore();
1680		break;
1681	}
1682	return NOTIFY_OK;
1683}
1684
1685static struct notifier_block rapl_pm_notifier = {
1686	.notifier_call = rapl_pm_callback,
1687};
1688
1689static struct platform_device *rapl_msr_platdev;
1690
1691static int __init rapl_init(void)
1692{
1693	const struct x86_cpu_id *id;
1694	int ret;
1695
1696	id = x86_match_cpu(rapl_ids);
1697	if (id) {
1698		defaults_msr = (struct rapl_defaults *)id->driver_data;
1699
1700		rapl_msr_platdev = platform_device_alloc("intel_rapl_msr", 0);
1701		if (!rapl_msr_platdev)
1702			return -ENOMEM;
1703
1704		ret = platform_device_add(rapl_msr_platdev);
1705		if (ret) {
1706			platform_device_put(rapl_msr_platdev);
1707			return ret;
1708		}
1709	}
1710
1711	ret = register_pm_notifier(&rapl_pm_notifier);
1712	if (ret && rapl_msr_platdev) {
1713		platform_device_del(rapl_msr_platdev);
1714		platform_device_put(rapl_msr_platdev);
1715	}
1716
1717	return ret;
1718}
1719
1720static void __exit rapl_exit(void)
1721{
1722	platform_device_unregister(rapl_msr_platdev);
1723	unregister_pm_notifier(&rapl_pm_notifier);
1724}
1725
1726fs_initcall(rapl_init);
1727module_exit(rapl_exit);
1728
1729MODULE_DESCRIPTION("Intel Runtime Average Power Limit (RAPL) common code");
1730MODULE_AUTHOR("Jacob Pan <jacob.jun.pan@intel.com>");
1731MODULE_LICENSE("GPL v2");
1732