1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * DA9150 Fuel-Gauge Driver
4 *
5 * Copyright (c) 2015 Dialog Semiconductor
6 *
7 * Author: Adam Thomson <Adam.Thomson.Opensource@diasemi.com>
8 */
9
10#include <linux/kernel.h>
11#include <linux/module.h>
12#include <linux/platform_device.h>
13#include <linux/of.h>
14#include <linux/slab.h>
15#include <linux/interrupt.h>
16#include <linux/delay.h>
17#include <linux/power_supply.h>
18#include <linux/list.h>
19#include <asm/div64.h>
20#include <linux/mfd/da9150/core.h>
21#include <linux/mfd/da9150/registers.h>
22#include <linux/devm-helpers.h>
23
24/* Core2Wire */
25#define DA9150_QIF_READ		(0x0 << 7)
26#define DA9150_QIF_WRITE	(0x1 << 7)
27#define DA9150_QIF_CODE_MASK	0x7F
28
29#define DA9150_QIF_BYTE_SIZE	8
30#define DA9150_QIF_BYTE_MASK	0xFF
31#define DA9150_QIF_SHORT_SIZE	2
32#define DA9150_QIF_LONG_SIZE	4
33
34/* QIF Codes */
35#define DA9150_QIF_UAVG			6
36#define DA9150_QIF_UAVG_SIZE		DA9150_QIF_LONG_SIZE
37#define DA9150_QIF_IAVG			8
38#define DA9150_QIF_IAVG_SIZE		DA9150_QIF_LONG_SIZE
39#define DA9150_QIF_NTCAVG		12
40#define DA9150_QIF_NTCAVG_SIZE		DA9150_QIF_LONG_SIZE
41#define DA9150_QIF_SHUNT_VAL		36
42#define DA9150_QIF_SHUNT_VAL_SIZE	DA9150_QIF_SHORT_SIZE
43#define DA9150_QIF_SD_GAIN		38
44#define DA9150_QIF_SD_GAIN_SIZE		DA9150_QIF_LONG_SIZE
45#define DA9150_QIF_FCC_MAH		40
46#define DA9150_QIF_FCC_MAH_SIZE		DA9150_QIF_SHORT_SIZE
47#define DA9150_QIF_SOC_PCT		43
48#define DA9150_QIF_SOC_PCT_SIZE		DA9150_QIF_SHORT_SIZE
49#define DA9150_QIF_CHARGE_LIMIT		44
50#define DA9150_QIF_CHARGE_LIMIT_SIZE	DA9150_QIF_SHORT_SIZE
51#define DA9150_QIF_DISCHARGE_LIMIT	45
52#define DA9150_QIF_DISCHARGE_LIMIT_SIZE	DA9150_QIF_SHORT_SIZE
53#define DA9150_QIF_FW_MAIN_VER		118
54#define DA9150_QIF_FW_MAIN_VER_SIZE	DA9150_QIF_SHORT_SIZE
55#define DA9150_QIF_E_FG_STATUS		126
56#define DA9150_QIF_E_FG_STATUS_SIZE	DA9150_QIF_SHORT_SIZE
57#define DA9150_QIF_SYNC			127
58#define DA9150_QIF_SYNC_SIZE		DA9150_QIF_SHORT_SIZE
59#define DA9150_QIF_MAX_CODES		128
60
61/* QIF Sync Timeout */
62#define DA9150_QIF_SYNC_TIMEOUT		1000
63#define DA9150_QIF_SYNC_RETRIES		10
64
65/* QIF E_FG_STATUS */
66#define DA9150_FG_IRQ_LOW_SOC_MASK	(1 << 0)
67#define DA9150_FG_IRQ_HIGH_SOC_MASK	(1 << 1)
68#define DA9150_FG_IRQ_SOC_MASK	\
69	(DA9150_FG_IRQ_LOW_SOC_MASK | DA9150_FG_IRQ_HIGH_SOC_MASK)
70
71/* Private data */
72struct da9150_fg {
73	struct da9150 *da9150;
74	struct device *dev;
75
76	struct mutex io_lock;
77
78	struct power_supply *battery;
79	struct delayed_work work;
80	u32 interval;
81
82	int warn_soc;
83	int crit_soc;
84	int soc;
85};
86
87/* Battery Properties */
88static u32 da9150_fg_read_attr(struct da9150_fg *fg, u8 code, u8 size)
89
90{
91	u8 buf[DA9150_QIF_LONG_SIZE];
92	u8 read_addr;
93	u32 res = 0;
94	int i;
95
96	/* Set QIF code (READ mode) */
97	read_addr = (code & DA9150_QIF_CODE_MASK) | DA9150_QIF_READ;
98
99	da9150_read_qif(fg->da9150, read_addr, size, buf);
100	for (i = 0; i < size; ++i)
101		res |= (buf[i] << (i * DA9150_QIF_BYTE_SIZE));
102
103	return res;
104}
105
106static void da9150_fg_write_attr(struct da9150_fg *fg, u8 code, u8 size,
107				 u32 val)
108
109{
110	u8 buf[DA9150_QIF_LONG_SIZE];
111	u8 write_addr;
112	int i;
113
114	/* Set QIF code (WRITE mode) */
115	write_addr = (code & DA9150_QIF_CODE_MASK) | DA9150_QIF_WRITE;
116
117	for (i = 0; i < size; ++i) {
118		buf[i] = (val >> (i * DA9150_QIF_BYTE_SIZE)) &
119			 DA9150_QIF_BYTE_MASK;
120	}
121	da9150_write_qif(fg->da9150, write_addr, size, buf);
122}
123
124/* Trigger QIF Sync to update QIF readable data */
125static void da9150_fg_read_sync_start(struct da9150_fg *fg)
126{
127	int i = 0;
128	u32 res = 0;
129
130	mutex_lock(&fg->io_lock);
131
132	/* Check if QIF sync already requested, and write to sync if not */
133	res = da9150_fg_read_attr(fg, DA9150_QIF_SYNC,
134				  DA9150_QIF_SYNC_SIZE);
135	if (res > 0)
136		da9150_fg_write_attr(fg, DA9150_QIF_SYNC,
137				     DA9150_QIF_SYNC_SIZE, 0);
138
139	/* Wait for sync to complete */
140	res = 0;
141	while ((res == 0) && (i++ < DA9150_QIF_SYNC_RETRIES)) {
142		usleep_range(DA9150_QIF_SYNC_TIMEOUT,
143			     DA9150_QIF_SYNC_TIMEOUT * 2);
144		res = da9150_fg_read_attr(fg, DA9150_QIF_SYNC,
145					  DA9150_QIF_SYNC_SIZE);
146	}
147
148	/* Check if sync completed */
149	if (res == 0)
150		dev_err(fg->dev, "Failed to perform QIF read sync!\n");
151}
152
153/*
154 * Should always be called after QIF sync read has been performed, and all
155 * attributes required have been accessed.
156 */
157static inline void da9150_fg_read_sync_end(struct da9150_fg *fg)
158{
159	mutex_unlock(&fg->io_lock);
160}
161
162/* Sync read of single QIF attribute */
163static u32 da9150_fg_read_attr_sync(struct da9150_fg *fg, u8 code, u8 size)
164{
165	u32 val;
166
167	da9150_fg_read_sync_start(fg);
168	val = da9150_fg_read_attr(fg, code, size);
169	da9150_fg_read_sync_end(fg);
170
171	return val;
172}
173
174/* Wait for QIF Sync, write QIF data and wait for ack */
175static void da9150_fg_write_attr_sync(struct da9150_fg *fg, u8 code, u8 size,
176				      u32 val)
177{
178	int i = 0;
179	u32 res = 0, sync_val;
180
181	mutex_lock(&fg->io_lock);
182
183	/* Check if QIF sync already requested */
184	res = da9150_fg_read_attr(fg, DA9150_QIF_SYNC,
185				  DA9150_QIF_SYNC_SIZE);
186
187	/* Wait for an existing sync to complete */
188	while ((res == 0) && (i++ < DA9150_QIF_SYNC_RETRIES)) {
189		usleep_range(DA9150_QIF_SYNC_TIMEOUT,
190			     DA9150_QIF_SYNC_TIMEOUT * 2);
191		res = da9150_fg_read_attr(fg, DA9150_QIF_SYNC,
192					  DA9150_QIF_SYNC_SIZE);
193	}
194
195	if (res == 0) {
196		dev_err(fg->dev, "Timeout waiting for existing QIF sync!\n");
197		mutex_unlock(&fg->io_lock);
198		return;
199	}
200
201	/* Write value for QIF code */
202	da9150_fg_write_attr(fg, code, size, val);
203
204	/* Wait for write acknowledgment */
205	i = 0;
206	sync_val = res;
207	while ((res == sync_val) && (i++ < DA9150_QIF_SYNC_RETRIES)) {
208		usleep_range(DA9150_QIF_SYNC_TIMEOUT,
209			     DA9150_QIF_SYNC_TIMEOUT * 2);
210		res = da9150_fg_read_attr(fg, DA9150_QIF_SYNC,
211					  DA9150_QIF_SYNC_SIZE);
212	}
213
214	mutex_unlock(&fg->io_lock);
215
216	/* Check write was actually successful */
217	if (res != (sync_val + 1))
218		dev_err(fg->dev, "Error performing QIF sync write for code %d\n",
219			code);
220}
221
222/* Power Supply attributes */
223static int da9150_fg_capacity(struct da9150_fg *fg,
224			      union power_supply_propval *val)
225{
226	val->intval = da9150_fg_read_attr_sync(fg, DA9150_QIF_SOC_PCT,
227					       DA9150_QIF_SOC_PCT_SIZE);
228
229	if (val->intval > 100)
230		val->intval = 100;
231
232	return 0;
233}
234
235static int da9150_fg_current_avg(struct da9150_fg *fg,
236				 union power_supply_propval *val)
237{
238	u32 iavg, sd_gain, shunt_val;
239	u64 div, res;
240
241	da9150_fg_read_sync_start(fg);
242	iavg = da9150_fg_read_attr(fg, DA9150_QIF_IAVG,
243				   DA9150_QIF_IAVG_SIZE);
244	shunt_val = da9150_fg_read_attr(fg, DA9150_QIF_SHUNT_VAL,
245					DA9150_QIF_SHUNT_VAL_SIZE);
246	sd_gain = da9150_fg_read_attr(fg, DA9150_QIF_SD_GAIN,
247				      DA9150_QIF_SD_GAIN_SIZE);
248	da9150_fg_read_sync_end(fg);
249
250	div = (u64) (sd_gain * shunt_val * 65536ULL);
251	do_div(div, 1000000);
252	res = (u64) (iavg * 1000000ULL);
253	do_div(res, div);
254
255	val->intval = (int) res;
256
257	return 0;
258}
259
260static int da9150_fg_voltage_avg(struct da9150_fg *fg,
261				 union power_supply_propval *val)
262{
263	u64 res;
264
265	val->intval = da9150_fg_read_attr_sync(fg, DA9150_QIF_UAVG,
266					       DA9150_QIF_UAVG_SIZE);
267
268	res = (u64) (val->intval * 186ULL);
269	do_div(res, 10000);
270	val->intval = (int) res;
271
272	return 0;
273}
274
275static int da9150_fg_charge_full(struct da9150_fg *fg,
276				 union power_supply_propval *val)
277{
278	val->intval = da9150_fg_read_attr_sync(fg, DA9150_QIF_FCC_MAH,
279					       DA9150_QIF_FCC_MAH_SIZE);
280
281	val->intval = val->intval * 1000;
282
283	return 0;
284}
285
286/*
287 * Temperature reading from device is only valid if battery/system provides
288 * valid NTC to associated pin of DA9150 chip.
289 */
290static int da9150_fg_temp(struct da9150_fg *fg,
291			  union power_supply_propval *val)
292{
293	val->intval = da9150_fg_read_attr_sync(fg, DA9150_QIF_NTCAVG,
294					       DA9150_QIF_NTCAVG_SIZE);
295
296	val->intval = (val->intval * 10) / 1048576;
297
298	return 0;
299}
300
301static enum power_supply_property da9150_fg_props[] = {
302	POWER_SUPPLY_PROP_CAPACITY,
303	POWER_SUPPLY_PROP_CURRENT_AVG,
304	POWER_SUPPLY_PROP_VOLTAGE_AVG,
305	POWER_SUPPLY_PROP_CHARGE_FULL,
306	POWER_SUPPLY_PROP_TEMP,
307};
308
309static int da9150_fg_get_prop(struct power_supply *psy,
310			      enum power_supply_property psp,
311			      union power_supply_propval *val)
312{
313	struct da9150_fg *fg = dev_get_drvdata(psy->dev.parent);
314	int ret;
315
316	switch (psp) {
317	case POWER_SUPPLY_PROP_CAPACITY:
318		ret = da9150_fg_capacity(fg, val);
319		break;
320	case POWER_SUPPLY_PROP_CURRENT_AVG:
321		ret = da9150_fg_current_avg(fg, val);
322		break;
323	case POWER_SUPPLY_PROP_VOLTAGE_AVG:
324		ret = da9150_fg_voltage_avg(fg, val);
325		break;
326	case POWER_SUPPLY_PROP_CHARGE_FULL:
327		ret = da9150_fg_charge_full(fg, val);
328		break;
329	case POWER_SUPPLY_PROP_TEMP:
330		ret = da9150_fg_temp(fg, val);
331		break;
332	default:
333		ret = -EINVAL;
334		break;
335	}
336
337	return ret;
338}
339
340/* Repeated SOC check */
341static bool da9150_fg_soc_changed(struct da9150_fg *fg)
342{
343	union power_supply_propval val;
344
345	da9150_fg_capacity(fg, &val);
346	if (val.intval != fg->soc) {
347		fg->soc = val.intval;
348		return true;
349	}
350
351	return false;
352}
353
354static void da9150_fg_work(struct work_struct *work)
355{
356	struct da9150_fg *fg = container_of(work, struct da9150_fg, work.work);
357
358	/* Report if SOC has changed */
359	if (da9150_fg_soc_changed(fg))
360		power_supply_changed(fg->battery);
361
362	schedule_delayed_work(&fg->work, msecs_to_jiffies(fg->interval));
363}
364
365/* SOC level event configuration */
366static void da9150_fg_soc_event_config(struct da9150_fg *fg)
367{
368	int soc;
369
370	soc = da9150_fg_read_attr_sync(fg, DA9150_QIF_SOC_PCT,
371				       DA9150_QIF_SOC_PCT_SIZE);
372
373	if (soc > fg->warn_soc) {
374		/* If SOC > warn level, set discharge warn level event */
375		da9150_fg_write_attr_sync(fg, DA9150_QIF_DISCHARGE_LIMIT,
376					  DA9150_QIF_DISCHARGE_LIMIT_SIZE,
377					  fg->warn_soc + 1);
378	} else if ((soc <= fg->warn_soc) && (soc > fg->crit_soc)) {
379		/*
380		 * If SOC <= warn level, set discharge crit level event,
381		 * and set charge warn level event.
382		 */
383		da9150_fg_write_attr_sync(fg, DA9150_QIF_DISCHARGE_LIMIT,
384					  DA9150_QIF_DISCHARGE_LIMIT_SIZE,
385					  fg->crit_soc + 1);
386
387		da9150_fg_write_attr_sync(fg, DA9150_QIF_CHARGE_LIMIT,
388					  DA9150_QIF_CHARGE_LIMIT_SIZE,
389					  fg->warn_soc);
390	} else if (soc <= fg->crit_soc) {
391		/* If SOC <= crit level, set charge crit level event */
392		da9150_fg_write_attr_sync(fg, DA9150_QIF_CHARGE_LIMIT,
393					  DA9150_QIF_CHARGE_LIMIT_SIZE,
394					  fg->crit_soc);
395	}
396}
397
398static irqreturn_t da9150_fg_irq(int irq, void *data)
399{
400	struct da9150_fg *fg = data;
401	u32 e_fg_status;
402
403	/* Read FG IRQ status info */
404	e_fg_status = da9150_fg_read_attr(fg, DA9150_QIF_E_FG_STATUS,
405					  DA9150_QIF_E_FG_STATUS_SIZE);
406
407	/* Handle warning/critical threhold events */
408	if (e_fg_status & DA9150_FG_IRQ_SOC_MASK)
409		da9150_fg_soc_event_config(fg);
410
411	/* Clear any FG IRQs */
412	da9150_fg_write_attr(fg, DA9150_QIF_E_FG_STATUS,
413			     DA9150_QIF_E_FG_STATUS_SIZE, e_fg_status);
414
415	return IRQ_HANDLED;
416}
417
418static struct da9150_fg_pdata *da9150_fg_dt_pdata(struct device *dev)
419{
420	struct device_node *fg_node = dev->of_node;
421	struct da9150_fg_pdata *pdata;
422
423	pdata = devm_kzalloc(dev, sizeof(struct da9150_fg_pdata), GFP_KERNEL);
424	if (!pdata)
425		return NULL;
426
427	of_property_read_u32(fg_node, "dlg,update-interval",
428			     &pdata->update_interval);
429	of_property_read_u8(fg_node, "dlg,warn-soc-level",
430			    &pdata->warn_soc_lvl);
431	of_property_read_u8(fg_node, "dlg,crit-soc-level",
432			    &pdata->crit_soc_lvl);
433
434	return pdata;
435}
436
437static const struct power_supply_desc fg_desc = {
438	.name		= "da9150-fg",
439	.type		= POWER_SUPPLY_TYPE_BATTERY,
440	.properties	= da9150_fg_props,
441	.num_properties	= ARRAY_SIZE(da9150_fg_props),
442	.get_property	= da9150_fg_get_prop,
443};
444
445static int da9150_fg_probe(struct platform_device *pdev)
446{
447	struct device *dev = &pdev->dev;
448	struct da9150 *da9150 = dev_get_drvdata(dev->parent);
449	struct da9150_fg_pdata *fg_pdata = dev_get_platdata(dev);
450	struct da9150_fg *fg;
451	int ver, irq, ret = 0;
452
453	fg = devm_kzalloc(dev, sizeof(*fg), GFP_KERNEL);
454	if (fg == NULL)
455		return -ENOMEM;
456
457	platform_set_drvdata(pdev, fg);
458	fg->da9150 = da9150;
459	fg->dev = dev;
460
461	mutex_init(&fg->io_lock);
462
463	/* Enable QIF */
464	da9150_set_bits(da9150, DA9150_CORE2WIRE_CTRL_A, DA9150_FG_QIF_EN_MASK,
465			DA9150_FG_QIF_EN_MASK);
466
467	fg->battery = devm_power_supply_register(dev, &fg_desc, NULL);
468	if (IS_ERR(fg->battery)) {
469		ret = PTR_ERR(fg->battery);
470		return ret;
471	}
472
473	ver = da9150_fg_read_attr(fg, DA9150_QIF_FW_MAIN_VER,
474				  DA9150_QIF_FW_MAIN_VER_SIZE);
475	dev_info(dev, "Version: 0x%x\n", ver);
476
477	/* Handle DT data if provided */
478	if (dev->of_node) {
479		fg_pdata = da9150_fg_dt_pdata(dev);
480		dev->platform_data = fg_pdata;
481	}
482
483	/* Handle any pdata provided */
484	if (fg_pdata) {
485		fg->interval = fg_pdata->update_interval;
486
487		if (fg_pdata->warn_soc_lvl > 100)
488			dev_warn(dev, "Invalid SOC warning level provided, Ignoring");
489		else
490			fg->warn_soc = fg_pdata->warn_soc_lvl;
491
492		if ((fg_pdata->crit_soc_lvl > 100) ||
493		    (fg_pdata->crit_soc_lvl >= fg_pdata->warn_soc_lvl))
494			dev_warn(dev, "Invalid SOC critical level provided, Ignoring");
495		else
496			fg->crit_soc = fg_pdata->crit_soc_lvl;
497
498
499	}
500
501	/* Configure initial SOC level events */
502	da9150_fg_soc_event_config(fg);
503
504	/*
505	 * If an interval period has been provided then setup repeating
506	 * work for reporting data updates.
507	 */
508	if (fg->interval) {
509		ret = devm_delayed_work_autocancel(dev, &fg->work,
510						   da9150_fg_work);
511		if (ret) {
512			dev_err(dev, "Failed to init work\n");
513			return ret;
514		}
515
516		schedule_delayed_work(&fg->work,
517				      msecs_to_jiffies(fg->interval));
518	}
519
520	/* Register IRQ */
521	irq = platform_get_irq_byname(pdev, "FG");
522	if (irq < 0)
523		return irq;
524
525	ret = devm_request_threaded_irq(dev, irq, NULL, da9150_fg_irq,
526					IRQF_ONESHOT, "FG", fg);
527	if (ret) {
528		dev_err(dev, "Failed to request IRQ %d: %d\n", irq, ret);
529		return ret;
530	}
531
532	return 0;
533}
534
535static int da9150_fg_resume(struct platform_device *pdev)
536{
537	struct da9150_fg *fg = platform_get_drvdata(pdev);
538
539	/*
540	 * Trigger SOC check to happen now so as to indicate any value change
541	 * since last check before suspend.
542	 */
543	if (fg->interval)
544		flush_delayed_work(&fg->work);
545
546	return 0;
547}
548
549static struct platform_driver da9150_fg_driver = {
550	.driver = {
551		.name = "da9150-fuel-gauge",
552	},
553	.probe = da9150_fg_probe,
554	.resume = da9150_fg_resume,
555};
556
557module_platform_driver(da9150_fg_driver);
558
559MODULE_DESCRIPTION("Fuel-Gauge Driver for DA9150");
560MODULE_AUTHOR("Adam Thomson <Adam.Thomson.Opensource@diasemi.com>");
561MODULE_LICENSE("GPL");
562