1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * ROHM BD99954 charger driver
4 *
5 * Copyright (C) 2020 Rohm Semiconductors
6 *	Originally written by:
7 *		Mikko Mutanen <mikko.mutanen@fi.rohmeurope.com>
8 *		Markus Laine <markus.laine@fi.rohmeurope.com>
9 *	Bugs added by:
10 *		Matti Vaittinen <matti.vaittinen@fi.rohmeurope.com>
11 */
12
13/*
14 *   The battery charging profile of BD99954.
15 *
16 *   Curve (1) represents charging current.
17 *   Curve (2) represents battery voltage.
18 *
19 *   The BD99954 data sheet divides charging to three phases.
20 *   a) Trickle-charge with constant current (8).
21 *   b) pre-charge with constant current (6)
22 *   c) fast-charge, first with constant current (5) phase. After
23 *      the battery voltage has reached target level (4) we have constant
24 *      voltage phase until charging current has dropped to termination
25 *      level (7)
26 *
27 *    V ^                                                        ^ I
28 *      .                                                        .
29 *      .                                                        .
30 *(4)` `.` ` ` ` ` ` ` ` ` ` ` ` ` ` ----------------------------.
31 *      .                           :/                           .
32 *      .                     o----+/:/ ` ` ` ` ` ` ` ` ` ` ` ` `.` ` (5)
33 *      .                     +   ::  +                          .
34 *      .                     +  /-   --                         .
35 *      .                     +`/-     +                         .
36 *      .                     o/-      -:                        .
37 *      .                    .s.        +`                       .
38 *      .                  .--+         `/                       .
39 *      .               ..``  +          .:                      .
40 *      .             -`      +           --                     .
41 *      .    (2)  ...``       +            :-                    .
42 *      .    ...``            +             -:                   .
43 *(3)` `.`.""  ` ` ` `+-------- ` ` ` ` ` ` `.:` ` ` ` ` ` ` ` ` .` ` (6)
44 *      .             +                       `:.                .
45 *      .             +                         -:               .
46 *      .             +                           -:.            .
47 *      .             +                             .--.         .
48 *      .   (1)       +                                `.+` ` ` `.` ` (7)
49 *      -..............` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` + ` ` ` .` ` (8)
50 *      .                                                +       -
51 *      -------------------------------------------------+++++++++-->
52 *      |   trickle   |  pre  |          fast            |
53 *
54 * Details of DT properties for different limits can be found from BD99954
55 * device tree binding documentation.
56 */
57
58#include <linux/delay.h>
59#include <linux/gpio/consumer.h>
60#include <linux/interrupt.h>
61#include <linux/i2c.h>
62#include <linux/kernel.h>
63#include <linux/linear_range.h>
64#include <linux/module.h>
65#include <linux/mod_devicetable.h>
66#include <linux/power_supply.h>
67#include <linux/property.h>
68#include <linux/regmap.h>
69#include <linux/types.h>
70
71#include "bd99954-charger.h"
72
73struct battery_data {
74	u16 precharge_current;	/* Trickle-charge Current */
75	u16 fc_reg_voltage;	/* Fast Charging Regulation Voltage */
76	u16 voltage_min;
77	u16 voltage_max;
78};
79
80/* Initial field values, converted to initial register values */
81struct bd9995x_init_data {
82	u16 vsysreg_set;	/* VSYS Regulation Setting */
83	u16 ibus_lim_set;	/* VBUS input current limitation */
84	u16 icc_lim_set;	/* VCC/VACP Input Current Limit Setting */
85	u16 itrich_set;		/* Trickle-charge Current Setting */
86	u16 iprech_set;		/* Pre-Charge Current Setting */
87	u16 ichg_set;		/* Fast-Charge constant current */
88	u16 vfastchg_reg_set1;	/* Fast Charging Regulation Voltage */
89	u16 vprechg_th_set;	/* Pre-charge Voltage Threshold Setting */
90	u16 vrechg_set;		/* Re-charge Battery Voltage Setting */
91	u16 vbatovp_set;	/* Battery Over Voltage Threshold Setting */
92	u16 iterm_set;		/* Charging termination current */
93};
94
95struct bd9995x_state {
96	u8 online;
97	u16 chgstm_status;
98	u16 vbat_vsys_status;
99	u16 vbus_vcc_status;
100};
101
102struct bd9995x_device {
103	struct i2c_client *client;
104	struct device *dev;
105	struct power_supply *charger;
106
107	struct regmap *rmap;
108	struct regmap_field *rmap_fields[F_MAX_FIELDS];
109
110	int chip_id;
111	int chip_rev;
112	struct bd9995x_init_data init_data;
113	struct bd9995x_state state;
114
115	struct mutex lock; /* Protect state data */
116};
117
118static const struct regmap_range bd9995x_readonly_reg_ranges[] = {
119	regmap_reg_range(CHGSTM_STATUS, SEL_ILIM_VAL),
120	regmap_reg_range(IOUT_DACIN_VAL, IOUT_DACIN_VAL),
121	regmap_reg_range(VCC_UCD_STATUS, VCC_IDD_STATUS),
122	regmap_reg_range(VBUS_UCD_STATUS, VBUS_IDD_STATUS),
123	regmap_reg_range(CHIP_ID, CHIP_REV),
124	regmap_reg_range(SYSTEM_STATUS, SYSTEM_STATUS),
125	regmap_reg_range(IBATP_VAL, VBAT_AVE_VAL),
126	regmap_reg_range(VTH_VAL, EXTIADP_AVE_VAL),
127};
128
129static const struct regmap_access_table bd9995x_writeable_regs = {
130	.no_ranges = bd9995x_readonly_reg_ranges,
131	.n_no_ranges = ARRAY_SIZE(bd9995x_readonly_reg_ranges),
132};
133
134static const struct regmap_range bd9995x_volatile_reg_ranges[] = {
135	regmap_reg_range(CHGSTM_STATUS, WDT_STATUS),
136	regmap_reg_range(VCC_UCD_STATUS, VCC_IDD_STATUS),
137	regmap_reg_range(VBUS_UCD_STATUS, VBUS_IDD_STATUS),
138	regmap_reg_range(INT0_STATUS, INT7_STATUS),
139	regmap_reg_range(SYSTEM_STATUS, SYSTEM_CTRL_SET),
140	regmap_reg_range(IBATP_VAL, EXTIADP_AVE_VAL), /* Measurement regs */
141};
142
143static const struct regmap_access_table bd9995x_volatile_regs = {
144	.yes_ranges = bd9995x_volatile_reg_ranges,
145	.n_yes_ranges = ARRAY_SIZE(bd9995x_volatile_reg_ranges),
146};
147
148static const struct regmap_range_cfg regmap_range_cfg[] = {
149	{
150	.selector_reg     = MAP_SET,
151	.selector_mask    = 0xFFFF,
152	.selector_shift   = 0,
153	.window_start     = 0,
154	.window_len       = 0x100,
155	.range_min        = 0 * 0x100,
156	.range_max        = 3 * 0x100,
157	},
158};
159
160static const struct regmap_config bd9995x_regmap_config = {
161	.reg_bits = 8,
162	.val_bits = 16,
163	.reg_stride = 1,
164
165	.max_register = 3 * 0x100,
166	.cache_type = REGCACHE_RBTREE,
167
168	.ranges = regmap_range_cfg,
169	.num_ranges = ARRAY_SIZE(regmap_range_cfg),
170	.val_format_endian = REGMAP_ENDIAN_LITTLE,
171	.wr_table = &bd9995x_writeable_regs,
172	.volatile_table = &bd9995x_volatile_regs,
173};
174
175enum bd9995x_chrg_fault {
176	CHRG_FAULT_NORMAL,
177	CHRG_FAULT_INPUT,
178	CHRG_FAULT_THERMAL_SHUTDOWN,
179	CHRG_FAULT_TIMER_EXPIRED,
180};
181
182static int bd9995x_get_prop_batt_health(struct bd9995x_device *bd)
183{
184	int ret, tmp;
185
186	ret = regmap_field_read(bd->rmap_fields[F_BATTEMP], &tmp);
187	if (ret)
188		return POWER_SUPPLY_HEALTH_UNKNOWN;
189
190	/* TODO: Check these against datasheet page 34 */
191
192	switch (tmp) {
193	case ROOM:
194		return POWER_SUPPLY_HEALTH_GOOD;
195	case HOT1:
196	case HOT2:
197	case HOT3:
198		return POWER_SUPPLY_HEALTH_OVERHEAT;
199	case COLD1:
200	case COLD2:
201		return POWER_SUPPLY_HEALTH_COLD;
202	case TEMP_DIS:
203	case BATT_OPEN:
204	default:
205		return POWER_SUPPLY_HEALTH_UNKNOWN;
206	}
207}
208
209static int bd9995x_get_prop_charge_type(struct bd9995x_device *bd)
210{
211	int ret, tmp;
212
213	ret = regmap_field_read(bd->rmap_fields[F_CHGSTM_STATE], &tmp);
214	if (ret)
215		return POWER_SUPPLY_CHARGE_TYPE_UNKNOWN;
216
217	switch (tmp) {
218	case CHGSTM_TRICKLE_CHARGE:
219	case CHGSTM_PRE_CHARGE:
220		return POWER_SUPPLY_CHARGE_TYPE_TRICKLE;
221	case CHGSTM_FAST_CHARGE:
222		return POWER_SUPPLY_CHARGE_TYPE_FAST;
223	case CHGSTM_TOP_OFF:
224	case CHGSTM_DONE:
225	case CHGSTM_SUSPEND:
226		return POWER_SUPPLY_CHARGE_TYPE_NONE;
227	default: /* Rest of the states are error related, no charging */
228		return POWER_SUPPLY_CHARGE_TYPE_NONE;
229	}
230}
231
232static bool bd9995x_get_prop_batt_present(struct bd9995x_device *bd)
233{
234	int ret, tmp;
235
236	ret = regmap_field_read(bd->rmap_fields[F_BATTEMP], &tmp);
237	if (ret)
238		return false;
239
240	return tmp != BATT_OPEN;
241}
242
243static int bd9995x_get_prop_batt_voltage(struct bd9995x_device *bd)
244{
245	int ret, tmp;
246
247	ret = regmap_field_read(bd->rmap_fields[F_VBAT_VAL], &tmp);
248	if (ret)
249		return 0;
250
251	tmp = min(tmp, 19200);
252
253	return tmp * 1000;
254}
255
256static int bd9995x_get_prop_batt_current(struct bd9995x_device *bd)
257{
258	int ret, tmp;
259
260	ret = regmap_field_read(bd->rmap_fields[F_IBATP_VAL], &tmp);
261	if (ret)
262		return 0;
263
264	return tmp * 1000;
265}
266
267#define DEFAULT_BATTERY_TEMPERATURE 250
268
269static int bd9995x_get_prop_batt_temp(struct bd9995x_device *bd)
270{
271	int ret, tmp;
272
273	ret = regmap_field_read(bd->rmap_fields[F_THERM_VAL], &tmp);
274	if (ret)
275		return DEFAULT_BATTERY_TEMPERATURE;
276
277	return (200 - tmp) * 10;
278}
279
280static int bd9995x_power_supply_get_property(struct power_supply *psy,
281					     enum power_supply_property psp,
282					     union power_supply_propval *val)
283{
284	int ret, tmp;
285	struct bd9995x_device *bd = power_supply_get_drvdata(psy);
286	struct bd9995x_state state;
287
288	mutex_lock(&bd->lock);
289	state = bd->state;
290	mutex_unlock(&bd->lock);
291
292	switch (psp) {
293	case POWER_SUPPLY_PROP_STATUS:
294		switch (state.chgstm_status) {
295		case CHGSTM_TRICKLE_CHARGE:
296		case CHGSTM_PRE_CHARGE:
297		case CHGSTM_FAST_CHARGE:
298		case CHGSTM_TOP_OFF:
299			val->intval = POWER_SUPPLY_STATUS_CHARGING;
300			break;
301
302		case CHGSTM_DONE:
303			val->intval = POWER_SUPPLY_STATUS_FULL;
304			break;
305
306		case CHGSTM_SUSPEND:
307		case CHGSTM_TEMPERATURE_ERROR_1:
308		case CHGSTM_TEMPERATURE_ERROR_2:
309		case CHGSTM_TEMPERATURE_ERROR_3:
310		case CHGSTM_TEMPERATURE_ERROR_4:
311		case CHGSTM_TEMPERATURE_ERROR_5:
312		case CHGSTM_TEMPERATURE_ERROR_6:
313		case CHGSTM_TEMPERATURE_ERROR_7:
314		case CHGSTM_THERMAL_SHUT_DOWN_1:
315		case CHGSTM_THERMAL_SHUT_DOWN_2:
316		case CHGSTM_THERMAL_SHUT_DOWN_3:
317		case CHGSTM_THERMAL_SHUT_DOWN_4:
318		case CHGSTM_THERMAL_SHUT_DOWN_5:
319		case CHGSTM_THERMAL_SHUT_DOWN_6:
320		case CHGSTM_THERMAL_SHUT_DOWN_7:
321		case CHGSTM_BATTERY_ERROR:
322			val->intval = POWER_SUPPLY_STATUS_NOT_CHARGING;
323			break;
324
325		default:
326			val->intval = POWER_SUPPLY_STATUS_UNKNOWN;
327			break;
328		}
329		break;
330
331	case POWER_SUPPLY_PROP_MANUFACTURER:
332		val->strval = BD9995X_MANUFACTURER;
333		break;
334
335	case POWER_SUPPLY_PROP_ONLINE:
336		val->intval = state.online;
337		break;
338
339	case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT:
340		ret = regmap_field_read(bd->rmap_fields[F_IBATP_VAL], &tmp);
341		if (ret)
342			return ret;
343		val->intval = tmp * 1000;
344		break;
345
346	case POWER_SUPPLY_PROP_CHARGE_AVG:
347		ret = regmap_field_read(bd->rmap_fields[F_IBATP_AVE_VAL], &tmp);
348		if (ret)
349			return ret;
350		val->intval = tmp * 1000;
351		break;
352
353	case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX:
354		/*
355		 * Currently the DT uses this property to give the
356		 * target current for fast-charging constant current phase.
357		 * I think it is correct in a sense.
358		 *
359		 * Yet, this prop we read and return here is the programmed
360		 * safety limit for combined input currents. This feels
361		 * also correct in a sense.
362		 *
363		 * However, this results a mismatch to DT value and value
364		 * read from sysfs.
365		 */
366		ret = regmap_field_read(bd->rmap_fields[F_SEL_ILIM_VAL], &tmp);
367		if (ret)
368			return ret;
369		val->intval = tmp * 1000;
370		break;
371
372	case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE:
373		if (!state.online) {
374			val->intval = 0;
375			break;
376		}
377
378		ret = regmap_field_read(bd->rmap_fields[F_VFASTCHG_REG_SET1],
379					&tmp);
380		if (ret)
381			return ret;
382
383		/*
384		 * The actual range : 2560 to 19200 mV. No matter what the
385		 * register says
386		 */
387		val->intval = clamp_val(tmp << 4, 2560, 19200);
388		val->intval *= 1000;
389		break;
390
391	case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT:
392		ret = regmap_field_read(bd->rmap_fields[F_ITERM_SET], &tmp);
393		if (ret)
394			return ret;
395		/* Start step is 64 mA */
396		val->intval = tmp << 6;
397		/* Maximum is 1024 mA - no matter what register says */
398		val->intval = min(val->intval, 1024);
399		val->intval *= 1000;
400		break;
401
402	/* Battery properties which we access through charger */
403	case POWER_SUPPLY_PROP_PRESENT:
404		val->intval = bd9995x_get_prop_batt_present(bd);
405		break;
406
407	case POWER_SUPPLY_PROP_VOLTAGE_NOW:
408		val->intval = bd9995x_get_prop_batt_voltage(bd);
409		break;
410
411	case POWER_SUPPLY_PROP_CURRENT_NOW:
412		val->intval = bd9995x_get_prop_batt_current(bd);
413		break;
414
415	case POWER_SUPPLY_PROP_CHARGE_TYPE:
416		val->intval = bd9995x_get_prop_charge_type(bd);
417		break;
418
419	case POWER_SUPPLY_PROP_HEALTH:
420		val->intval = bd9995x_get_prop_batt_health(bd);
421		break;
422
423	case POWER_SUPPLY_PROP_TEMP:
424		val->intval = bd9995x_get_prop_batt_temp(bd);
425		break;
426
427	case POWER_SUPPLY_PROP_TECHNOLOGY:
428		val->intval = POWER_SUPPLY_TECHNOLOGY_LION;
429		break;
430
431	case POWER_SUPPLY_PROP_MODEL_NAME:
432		val->strval = "bd99954";
433		break;
434
435	default:
436		return -EINVAL;
437
438	}
439
440	return 0;
441}
442
443static int bd9995x_get_chip_state(struct bd9995x_device *bd,
444				  struct bd9995x_state *state)
445{
446	int i, ret, tmp;
447	struct {
448		struct regmap_field *id;
449		u16 *data;
450	} state_fields[] = {
451		{
452			bd->rmap_fields[F_CHGSTM_STATE], &state->chgstm_status,
453		}, {
454			bd->rmap_fields[F_VBAT_VSYS_STATUS],
455			&state->vbat_vsys_status,
456		}, {
457			bd->rmap_fields[F_VBUS_VCC_STATUS],
458			&state->vbus_vcc_status,
459		},
460	};
461
462
463	for (i = 0; i < ARRAY_SIZE(state_fields); i++) {
464		ret = regmap_field_read(state_fields[i].id, &tmp);
465		if (ret)
466			return ret;
467
468		*state_fields[i].data = tmp;
469	}
470
471	if (state->vbus_vcc_status & STATUS_VCC_DET ||
472	    state->vbus_vcc_status & STATUS_VBUS_DET)
473		state->online = 1;
474	else
475		state->online = 0;
476
477	return 0;
478}
479
480static irqreturn_t bd9995x_irq_handler_thread(int irq, void *private)
481{
482	struct bd9995x_device *bd = private;
483	int ret, status, mask, i;
484	unsigned long tmp;
485	struct bd9995x_state state;
486
487	/*
488	 * The bd9995x does not seem to generate big amount of interrupts.
489	 * The logic regarding which interrupts can cause relevant
490	 * status changes seem to be pretty complex.
491	 *
492	 * So lets implement really simple and hopefully bullet-proof handler:
493	 * It does not really matter which IRQ we handle, we just go and
494	 * re-read all interesting statuses + give the framework a nudge.
495	 *
496	 * Other option would be building a _complex_ and error prone logic
497	 * trying to decide what could have been changed (resulting this IRQ
498	 * we are now handling). During the normal operation the BD99954 does
499	 * not seem to be generating much of interrupts so benefit from such
500	 * logic would probably be minimal.
501	 */
502
503	ret = regmap_read(bd->rmap, INT0_STATUS, &status);
504	if (ret) {
505		dev_err(bd->dev, "Failed to read IRQ status\n");
506		return IRQ_NONE;
507	}
508
509	ret = regmap_field_read(bd->rmap_fields[F_INT0_SET], &mask);
510	if (ret) {
511		dev_err(bd->dev, "Failed to read IRQ mask\n");
512		return IRQ_NONE;
513	}
514
515	/* Handle only IRQs that are not masked */
516	status &= mask;
517	tmp = status;
518
519	/* Lowest bit does not represent any sub-registers */
520	tmp >>= 1;
521
522	/*
523	 * Mask and ack IRQs we will handle (+ the idiot bit)
524	 */
525	ret = regmap_field_write(bd->rmap_fields[F_INT0_SET], 0);
526	if (ret) {
527		dev_err(bd->dev, "Failed to mask F_INT0\n");
528		return IRQ_NONE;
529	}
530
531	ret = regmap_write(bd->rmap, INT0_STATUS, status);
532	if (ret) {
533		dev_err(bd->dev, "Failed to ack F_INT0\n");
534		goto err_umask;
535	}
536
537	for_each_set_bit(i, &tmp, 7) {
538		int sub_status, sub_mask;
539		static const int sub_status_reg[] = {
540			INT1_STATUS, INT2_STATUS, INT3_STATUS, INT4_STATUS,
541			INT5_STATUS, INT6_STATUS, INT7_STATUS,
542		};
543		struct regmap_field *sub_mask_f[] = {
544			bd->rmap_fields[F_INT1_SET],
545			bd->rmap_fields[F_INT2_SET],
546			bd->rmap_fields[F_INT3_SET],
547			bd->rmap_fields[F_INT4_SET],
548			bd->rmap_fields[F_INT5_SET],
549			bd->rmap_fields[F_INT6_SET],
550			bd->rmap_fields[F_INT7_SET],
551		};
552
553		/* Clear sub IRQs */
554		ret = regmap_read(bd->rmap, sub_status_reg[i], &sub_status);
555		if (ret) {
556			dev_err(bd->dev, "Failed to read IRQ sub-status\n");
557			goto err_umask;
558		}
559
560		ret = regmap_field_read(sub_mask_f[i], &sub_mask);
561		if (ret) {
562			dev_err(bd->dev, "Failed to read IRQ sub-mask\n");
563			goto err_umask;
564		}
565
566		/* Ack active sub-statuses */
567		sub_status &= sub_mask;
568
569		ret = regmap_write(bd->rmap, sub_status_reg[i], sub_status);
570		if (ret) {
571			dev_err(bd->dev, "Failed to ack sub-IRQ\n");
572			goto err_umask;
573		}
574	}
575
576	ret = regmap_field_write(bd->rmap_fields[F_INT0_SET], mask);
577	if (ret)
578		/* May as well retry once */
579		goto err_umask;
580
581	/* Read whole chip state */
582	ret = bd9995x_get_chip_state(bd, &state);
583	if (ret < 0) {
584		dev_err(bd->dev, "Failed to read chip state\n");
585	} else {
586		mutex_lock(&bd->lock);
587		bd->state = state;
588		mutex_unlock(&bd->lock);
589
590		power_supply_changed(bd->charger);
591	}
592
593	return IRQ_HANDLED;
594
595err_umask:
596	ret = regmap_field_write(bd->rmap_fields[F_INT0_SET], mask);
597	if (ret)
598		dev_err(bd->dev,
599		"Failed to un-mask F_INT0 - IRQ permanently disabled\n");
600
601	return IRQ_NONE;
602}
603
604static int __bd9995x_chip_reset(struct bd9995x_device *bd)
605{
606	int ret, state;
607	int rst_check_counter = 10;
608	u16 tmp = ALLRST | OTPLD;
609
610	ret = regmap_raw_write(bd->rmap, SYSTEM_CTRL_SET, &tmp, 2);
611	if (ret < 0)
612		return ret;
613
614	do {
615		ret = regmap_field_read(bd->rmap_fields[F_OTPLD_STATE], &state);
616		if (ret)
617			return ret;
618
619		msleep(10);
620	} while (state == 0 && --rst_check_counter);
621
622	if (!rst_check_counter) {
623		dev_err(bd->dev, "chip reset not completed\n");
624		return -ETIMEDOUT;
625	}
626
627	tmp = 0;
628	ret = regmap_raw_write(bd->rmap, SYSTEM_CTRL_SET, &tmp, 2);
629
630	return ret;
631}
632
633static int bd9995x_hw_init(struct bd9995x_device *bd)
634{
635	int ret;
636	int i;
637	struct bd9995x_state state;
638	struct bd9995x_init_data *id = &bd->init_data;
639
640	const struct {
641		enum bd9995x_fields id;
642		u16 value;
643	} init_data[] = {
644		/* Enable the charging trigger after SDP charger attached */
645		{F_SDP_CHG_TRIG_EN,	1},
646		/* Enable charging trigger after SDP charger attached */
647		{F_SDP_CHG_TRIG,	1},
648		/* Disable charging trigger by BC1.2 detection */
649		{F_VBUS_BC_DISEN,	1},
650		/* Disable charging trigger by BC1.2 detection */
651		{F_VCC_BC_DISEN,	1},
652		/* Disable automatic limitation of the input current */
653		{F_ILIM_AUTO_DISEN,	1},
654		/* Select current limitation when SDP charger attached*/
655		{F_SDP_500_SEL,		1},
656		/* Select current limitation when DCP charger attached */
657		{F_DCP_2500_SEL,	1},
658		{F_VSYSREG_SET,		id->vsysreg_set},
659		/* Activate USB charging and DC/DC converter */
660		{F_USB_SUS,		0},
661		/* DCDC clock: 1200 kHz*/
662		{F_DCDC_CLK_SEL,	3},
663		/* Enable charging */
664		{F_CHG_EN,		1},
665		/* Disable Input current Limit setting voltage measurement */
666		{F_EXTIADPEN,		0},
667		/* Disable input current limiting */
668		{F_VSYS_PRIORITY,	1},
669		{F_IBUS_LIM_SET,	id->ibus_lim_set},
670		{F_ICC_LIM_SET,		id->icc_lim_set},
671		/* Charge Termination Current Setting to 0*/
672		{F_ITERM_SET,		id->iterm_set},
673		/* Trickle-charge Current Setting */
674		{F_ITRICH_SET,		id->itrich_set},
675		/* Pre-charge Current setting */
676		{F_IPRECH_SET,		id->iprech_set},
677		/* Fast Charge Current for constant current phase */
678		{F_ICHG_SET,		id->ichg_set},
679		/* Fast Charge Voltage Regulation Setting */
680		{F_VFASTCHG_REG_SET1,	id->vfastchg_reg_set1},
681		/* Set Pre-charge Voltage Threshold for trickle charging. */
682		{F_VPRECHG_TH_SET,	id->vprechg_th_set},
683		{F_VRECHG_SET,		id->vrechg_set},
684		{F_VBATOVP_SET,		id->vbatovp_set},
685		/* Reverse buck boost voltage Setting */
686		{F_VRBOOST_SET,		0},
687		/* Disable fast-charging watchdog */
688		{F_WDT_FST,		0},
689		/* Disable pre-charging watchdog */
690		{F_WDT_PRE,		0},
691		/* Power save off */
692		{F_POWER_SAVE_MODE,	0},
693		{F_INT1_SET,		INT1_ALL},
694		{F_INT2_SET,		INT2_ALL},
695		{F_INT3_SET,		INT3_ALL},
696		{F_INT4_SET,		INT4_ALL},
697		{F_INT5_SET,		INT5_ALL},
698		{F_INT6_SET,		INT6_ALL},
699		{F_INT7_SET,		INT7_ALL},
700	};
701
702	/*
703	 * Currently we initialize charger to a known state at startup.
704	 * If we want to allow for example the boot code to initialize
705	 * charger we should get rid of this.
706	 */
707	ret = __bd9995x_chip_reset(bd);
708	if (ret < 0)
709		return ret;
710
711	/* Initialize currents/voltages and other parameters */
712	for (i = 0; i < ARRAY_SIZE(init_data); i++) {
713		ret = regmap_field_write(bd->rmap_fields[init_data[i].id],
714					 init_data[i].value);
715		if (ret) {
716			dev_err(bd->dev, "failed to initialize charger (%d)\n",
717				ret);
718			return ret;
719		}
720	}
721
722	ret = bd9995x_get_chip_state(bd, &state);
723	if (ret < 0)
724		return ret;
725
726	mutex_lock(&bd->lock);
727	bd->state = state;
728	mutex_unlock(&bd->lock);
729
730	return 0;
731}
732
733static enum power_supply_property bd9995x_power_supply_props[] = {
734	POWER_SUPPLY_PROP_MANUFACTURER,
735	POWER_SUPPLY_PROP_STATUS,
736	POWER_SUPPLY_PROP_ONLINE,
737	POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT,
738	POWER_SUPPLY_PROP_CHARGE_AVG,
739	POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX,
740	POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE,
741	POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT,
742	/* Battery props we access through charger */
743	POWER_SUPPLY_PROP_PRESENT,
744	POWER_SUPPLY_PROP_VOLTAGE_NOW,
745	POWER_SUPPLY_PROP_CURRENT_NOW,
746	POWER_SUPPLY_PROP_CHARGE_TYPE,
747	POWER_SUPPLY_PROP_HEALTH,
748	POWER_SUPPLY_PROP_TEMP,
749	POWER_SUPPLY_PROP_TECHNOLOGY,
750	POWER_SUPPLY_PROP_MODEL_NAME,
751};
752
753static const struct power_supply_desc bd9995x_power_supply_desc = {
754	.name = "bd9995x-charger",
755	.type = POWER_SUPPLY_TYPE_USB,
756	.properties = bd9995x_power_supply_props,
757	.num_properties = ARRAY_SIZE(bd9995x_power_supply_props),
758	.get_property = bd9995x_power_supply_get_property,
759};
760
761/*
762 * Limit configurations for vbus-input-current and vcc-vacp-input-current
763 * Minimum limit is 0 uA. Max is 511 * 32000 uA = 16352000 uA. This is
764 * configured by writing a register so that each increment in register
765 * value equals to 32000 uA limit increment.
766 *
767 * Eg, value 0x0 is limit 0, value 0x1 is limit 32000, ...
768 * Describe the setting in linear_range table.
769 */
770static const struct linear_range input_current_limit_ranges[] = {
771	LINEAR_RANGE(0, 0x0, 0x1ff, 32000),
772};
773
774/* Possible trickle, pre-charging and termination current values */
775static const struct linear_range charging_current_ranges[] = {
776	LINEAR_RANGE(0, 0x0, 0x10, 64000),
777	LINEAR_RANGE(1024000, 0x11, 0x1f, 0),
778};
779
780/*
781 * Fast charging voltage regulation, starting re-charging limit
782 * and battery over voltage protection have same possible values
783 */
784static const struct linear_range charge_voltage_regulation_ranges[] = {
785	LINEAR_RANGE(2560000, 0, 0xA0, 0),
786	LINEAR_RANGE(2560000, 0xA0, 0x4B0, 16000),
787	LINEAR_RANGE(19200000, 0x4B0, 0x7FF, 0),
788};
789
790/* Possible VSYS voltage regulation values */
791static const struct linear_range vsys_voltage_regulation_ranges[] = {
792	LINEAR_RANGE(2560000, 0, 0x28, 0),
793	LINEAR_RANGE(2560000, 0x28, 0x12C, 64000),
794	LINEAR_RANGE(19200000, 0x12C, 0x1FF, 0),
795};
796
797/* Possible settings for switching from trickle to pre-charging limits */
798static const struct linear_range trickle_to_pre_threshold_ranges[] = {
799	LINEAR_RANGE(2048000, 0, 0x20, 0),
800	LINEAR_RANGE(2048000, 0x20, 0x12C, 64000),
801	LINEAR_RANGE(19200000, 0x12C, 0x1FF, 0),
802};
803
804/* Possible current values for fast-charging constant current phase */
805static const struct linear_range fast_charge_current_ranges[] = {
806	LINEAR_RANGE(0, 0, 0xFF, 64000),
807};
808
809struct battery_init {
810	const char *name;
811	int *info_data;
812	const struct linear_range *range;
813	int ranges;
814	u16 *data;
815};
816
817struct dt_init {
818	char *prop;
819	const struct linear_range *range;
820	int ranges;
821	u16 *data;
822};
823
824static int bd9995x_fw_probe(struct bd9995x_device *bd)
825{
826	int ret;
827	struct power_supply_battery_info *info;
828	u32 property;
829	int i;
830	int regval;
831	bool found;
832	struct bd9995x_init_data *init = &bd->init_data;
833	struct battery_init battery_inits[] = {
834		{
835			.name = "trickle-charging current",
836			.range = &charging_current_ranges[0],
837			.ranges = 2,
838			.data = &init->itrich_set,
839		}, {
840			.name = "pre-charging current",
841			.range = &charging_current_ranges[0],
842			.ranges = 2,
843			.data = &init->iprech_set,
844		}, {
845			.name = "pre-to-trickle charge voltage threshold",
846			.range = &trickle_to_pre_threshold_ranges[0],
847			.ranges = 2,
848			.data = &init->vprechg_th_set,
849		}, {
850			.name = "charging termination current",
851			.range = &charging_current_ranges[0],
852			.ranges = 2,
853			.data = &init->iterm_set,
854		}, {
855			.name = "charging re-start voltage",
856			.range = &charge_voltage_regulation_ranges[0],
857			.ranges = 2,
858			.data = &init->vrechg_set,
859		}, {
860			.name = "battery overvoltage limit",
861			.range = &charge_voltage_regulation_ranges[0],
862			.ranges = 2,
863			.data = &init->vbatovp_set,
864		}, {
865			.name = "fast-charging max current",
866			.range = &fast_charge_current_ranges[0],
867			.ranges = 1,
868			.data = &init->ichg_set,
869		}, {
870			.name = "fast-charging voltage",
871			.range = &charge_voltage_regulation_ranges[0],
872			.ranges = 2,
873			.data = &init->vfastchg_reg_set1,
874		},
875	};
876	struct dt_init props[] = {
877		{
878			.prop = "rohm,vsys-regulation-microvolt",
879			.range = &vsys_voltage_regulation_ranges[0],
880			.ranges = 2,
881			.data = &init->vsysreg_set,
882		}, {
883			.prop = "rohm,vbus-input-current-limit-microamp",
884			.range = &input_current_limit_ranges[0],
885			.ranges = 1,
886			.data = &init->ibus_lim_set,
887		}, {
888			.prop = "rohm,vcc-input-current-limit-microamp",
889			.range = &input_current_limit_ranges[0],
890			.ranges = 1,
891			.data = &init->icc_lim_set,
892		},
893	};
894
895	/*
896	 * The power_supply_get_battery_info() does not support getting values
897	 * from ACPI. Let's fix it if ACPI is required here.
898	 */
899	ret = power_supply_get_battery_info(bd->charger, &info);
900	if (ret < 0)
901		return ret;
902
903	/* Put pointers to the generic battery info */
904	battery_inits[0].info_data = &info->tricklecharge_current_ua;
905	battery_inits[1].info_data = &info->precharge_current_ua;
906	battery_inits[2].info_data = &info->precharge_voltage_max_uv;
907	battery_inits[3].info_data = &info->charge_term_current_ua;
908	battery_inits[4].info_data = &info->charge_restart_voltage_uv;
909	battery_inits[5].info_data = &info->overvoltage_limit_uv;
910	battery_inits[6].info_data = &info->constant_charge_current_max_ua;
911	battery_inits[7].info_data = &info->constant_charge_voltage_max_uv;
912
913	for (i = 0; i < ARRAY_SIZE(battery_inits); i++) {
914		int val = *battery_inits[i].info_data;
915		const struct linear_range *range = battery_inits[i].range;
916		int ranges = battery_inits[i].ranges;
917
918		if (val == -EINVAL)
919			continue;
920
921		ret = linear_range_get_selector_low_array(range, ranges, val,
922							  &regval, &found);
923		if (ret) {
924			dev_err(bd->dev, "Unsupported value for %s\n",
925				battery_inits[i].name);
926
927			power_supply_put_battery_info(bd->charger, info);
928			return -EINVAL;
929		}
930		if (!found) {
931			dev_warn(bd->dev,
932				 "Unsupported value for %s - using smaller\n",
933				 battery_inits[i].name);
934		}
935		*(battery_inits[i].data) = regval;
936	}
937
938	power_supply_put_battery_info(bd->charger, info);
939
940	for (i = 0; i < ARRAY_SIZE(props); i++) {
941		ret = device_property_read_u32(bd->dev, props[i].prop,
942					       &property);
943		if (ret < 0) {
944			dev_err(bd->dev, "failed to read %s", props[i].prop);
945
946			return ret;
947		}
948
949		ret = linear_range_get_selector_low_array(props[i].range,
950							  props[i].ranges,
951							  property, &regval,
952							  &found);
953		if (ret) {
954			dev_err(bd->dev, "Unsupported value for '%s'\n",
955				props[i].prop);
956
957			return -EINVAL;
958		}
959
960		if (!found) {
961			dev_warn(bd->dev,
962				 "Unsupported value for '%s' - using smaller\n",
963				 props[i].prop);
964		}
965
966		*(props[i].data) = regval;
967	}
968
969	return 0;
970}
971
972static void bd9995x_chip_reset(void *bd)
973{
974	__bd9995x_chip_reset(bd);
975}
976
977static int bd9995x_probe(struct i2c_client *client)
978{
979	struct device *dev = &client->dev;
980	struct bd9995x_device *bd;
981	struct power_supply_config psy_cfg = {};
982	int ret;
983	int i;
984
985	bd = devm_kzalloc(dev, sizeof(*bd), GFP_KERNEL);
986	if (!bd)
987		return -ENOMEM;
988
989	bd->client = client;
990	bd->dev = dev;
991	psy_cfg.drv_data = bd;
992	psy_cfg.of_node = dev->of_node;
993
994	mutex_init(&bd->lock);
995
996	bd->rmap = devm_regmap_init_i2c(client, &bd9995x_regmap_config);
997	if (IS_ERR(bd->rmap)) {
998		dev_err(dev, "Failed to setup register access via i2c\n");
999		return PTR_ERR(bd->rmap);
1000	}
1001
1002	for (i = 0; i < ARRAY_SIZE(bd9995x_reg_fields); i++) {
1003		const struct reg_field *reg_fields = bd9995x_reg_fields;
1004
1005		bd->rmap_fields[i] = devm_regmap_field_alloc(dev, bd->rmap,
1006							     reg_fields[i]);
1007		if (IS_ERR(bd->rmap_fields[i])) {
1008			dev_err(dev, "cannot allocate regmap field\n");
1009			return PTR_ERR(bd->rmap_fields[i]);
1010		}
1011	}
1012
1013	i2c_set_clientdata(client, bd);
1014
1015	ret = regmap_field_read(bd->rmap_fields[F_CHIP_ID], &bd->chip_id);
1016	if (ret) {
1017		dev_err(dev, "Cannot read chip ID.\n");
1018		return ret;
1019	}
1020
1021	if (bd->chip_id != BD99954_ID) {
1022		dev_err(dev, "Chip with ID=0x%x, not supported!\n",
1023			bd->chip_id);
1024		return -ENODEV;
1025	}
1026
1027	ret = regmap_field_read(bd->rmap_fields[F_CHIP_REV], &bd->chip_rev);
1028	if (ret) {
1029		dev_err(dev, "Cannot read revision.\n");
1030		return ret;
1031	}
1032
1033	dev_info(bd->dev, "Found BD99954 chip rev %d\n", bd->chip_rev);
1034
1035	/*
1036	 * We need to init the psy before we can call
1037	 * power_supply_get_battery_info() for it
1038	 */
1039	bd->charger = devm_power_supply_register(bd->dev,
1040						 &bd9995x_power_supply_desc,
1041						&psy_cfg);
1042	if (IS_ERR(bd->charger)) {
1043		dev_err(dev, "Failed to register power supply\n");
1044		return PTR_ERR(bd->charger);
1045	}
1046
1047	ret = bd9995x_fw_probe(bd);
1048	if (ret < 0) {
1049		dev_err(dev, "Cannot read device properties.\n");
1050		return ret;
1051	}
1052
1053	ret = bd9995x_hw_init(bd);
1054	if (ret < 0) {
1055		dev_err(dev, "Cannot initialize the chip.\n");
1056		return ret;
1057	}
1058
1059	ret = devm_add_action_or_reset(dev, bd9995x_chip_reset, bd);
1060	if (ret)
1061		return ret;
1062
1063	return devm_request_threaded_irq(dev, client->irq, NULL,
1064					 bd9995x_irq_handler_thread,
1065					 IRQF_TRIGGER_LOW | IRQF_ONESHOT,
1066					 BD9995X_IRQ_PIN, bd);
1067}
1068
1069static const struct of_device_id bd9995x_of_match[] = {
1070	{ .compatible = "rohm,bd99954", },
1071	{ }
1072};
1073MODULE_DEVICE_TABLE(of, bd9995x_of_match);
1074
1075static struct i2c_driver bd9995x_driver = {
1076	.driver = {
1077		.name = "bd9995x-charger",
1078		.of_match_table = bd9995x_of_match,
1079	},
1080	.probe = bd9995x_probe,
1081};
1082module_i2c_driver(bd9995x_driver);
1083
1084MODULE_AUTHOR("Laine Markus <markus.laine@fi.rohmeurope.com>");
1085MODULE_DESCRIPTION("ROHM BD99954 charger driver");
1086MODULE_LICENSE("GPL");
1087