1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2013-2015, The Linux Foundation. All rights reserved.
4 * Copyright (c) 2019, Linaro Limited
5 */
6
7#include <linux/module.h>
8#include <linux/err.h>
9#include <linux/debugfs.h>
10#include <linux/string.h>
11#include <linux/kernel.h>
12#include <linux/list.h>
13#include <linux/init.h>
14#include <linux/io.h>
15#include <linux/bitops.h>
16#include <linux/slab.h>
17#include <linux/of.h>
18#include <linux/platform_device.h>
19#include <linux/pm_domain.h>
20#include <linux/pm_opp.h>
21#include <linux/interrupt.h>
22#include <linux/regmap.h>
23#include <linux/mfd/syscon.h>
24#include <linux/regulator/consumer.h>
25#include <linux/clk.h>
26#include <linux/nvmem-consumer.h>
27
28/* Register Offsets for RB-CPR and Bit Definitions */
29
30/* RBCPR Version Register */
31#define REG_RBCPR_VERSION		0
32#define RBCPR_VER_2			0x02
33#define FLAGS_IGNORE_1ST_IRQ_STATUS	BIT(0)
34
35/* RBCPR Gate Count and Target Registers */
36#define REG_RBCPR_GCNT_TARGET(n)	(0x60 + 4 * (n))
37
38#define RBCPR_GCNT_TARGET_TARGET_SHIFT	0
39#define RBCPR_GCNT_TARGET_TARGET_MASK	GENMASK(11, 0)
40#define RBCPR_GCNT_TARGET_GCNT_SHIFT	12
41#define RBCPR_GCNT_TARGET_GCNT_MASK	GENMASK(9, 0)
42
43/* RBCPR Timer Control */
44#define REG_RBCPR_TIMER_INTERVAL	0x44
45#define REG_RBIF_TIMER_ADJUST		0x4c
46
47#define RBIF_TIMER_ADJ_CONS_UP_MASK	GENMASK(3, 0)
48#define RBIF_TIMER_ADJ_CONS_UP_SHIFT	0
49#define RBIF_TIMER_ADJ_CONS_DOWN_MASK	GENMASK(3, 0)
50#define RBIF_TIMER_ADJ_CONS_DOWN_SHIFT	4
51#define RBIF_TIMER_ADJ_CLAMP_INT_MASK	GENMASK(7, 0)
52#define RBIF_TIMER_ADJ_CLAMP_INT_SHIFT	8
53
54/* RBCPR Config Register */
55#define REG_RBIF_LIMIT			0x48
56#define RBIF_LIMIT_CEILING_MASK		GENMASK(5, 0)
57#define RBIF_LIMIT_CEILING_SHIFT	6
58#define RBIF_LIMIT_FLOOR_BITS		6
59#define RBIF_LIMIT_FLOOR_MASK		GENMASK(5, 0)
60
61#define RBIF_LIMIT_CEILING_DEFAULT	RBIF_LIMIT_CEILING_MASK
62#define RBIF_LIMIT_FLOOR_DEFAULT	0
63
64#define REG_RBIF_SW_VLEVEL		0x94
65#define RBIF_SW_VLEVEL_DEFAULT		0x20
66
67#define REG_RBCPR_STEP_QUOT		0x80
68#define RBCPR_STEP_QUOT_STEPQUOT_MASK	GENMASK(7, 0)
69#define RBCPR_STEP_QUOT_IDLE_CLK_MASK	GENMASK(3, 0)
70#define RBCPR_STEP_QUOT_IDLE_CLK_SHIFT	8
71
72/* RBCPR Control Register */
73#define REG_RBCPR_CTL			0x90
74
75#define RBCPR_CTL_LOOP_EN			BIT(0)
76#define RBCPR_CTL_TIMER_EN			BIT(3)
77#define RBCPR_CTL_SW_AUTO_CONT_ACK_EN		BIT(5)
78#define RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN	BIT(6)
79#define RBCPR_CTL_COUNT_MODE			BIT(10)
80#define RBCPR_CTL_UP_THRESHOLD_MASK	GENMASK(3, 0)
81#define RBCPR_CTL_UP_THRESHOLD_SHIFT	24
82#define RBCPR_CTL_DN_THRESHOLD_MASK	GENMASK(3, 0)
83#define RBCPR_CTL_DN_THRESHOLD_SHIFT	28
84
85/* RBCPR Ack/Nack Response */
86#define REG_RBIF_CONT_ACK_CMD		0x98
87#define REG_RBIF_CONT_NACK_CMD		0x9c
88
89/* RBCPR Result status Register */
90#define REG_RBCPR_RESULT_0		0xa0
91
92#define RBCPR_RESULT0_BUSY_SHIFT	19
93#define RBCPR_RESULT0_BUSY_MASK		BIT(RBCPR_RESULT0_BUSY_SHIFT)
94#define RBCPR_RESULT0_ERROR_LT0_SHIFT	18
95#define RBCPR_RESULT0_ERROR_SHIFT	6
96#define RBCPR_RESULT0_ERROR_MASK	GENMASK(11, 0)
97#define RBCPR_RESULT0_ERROR_STEPS_SHIFT	2
98#define RBCPR_RESULT0_ERROR_STEPS_MASK	GENMASK(3, 0)
99#define RBCPR_RESULT0_STEP_UP_SHIFT	1
100
101/* RBCPR Interrupt Control Register */
102#define REG_RBIF_IRQ_EN(n)		(0x100 + 4 * (n))
103#define REG_RBIF_IRQ_CLEAR		0x110
104#define REG_RBIF_IRQ_STATUS		0x114
105
106#define CPR_INT_DONE		BIT(0)
107#define CPR_INT_MIN		BIT(1)
108#define CPR_INT_DOWN		BIT(2)
109#define CPR_INT_MID		BIT(3)
110#define CPR_INT_UP		BIT(4)
111#define CPR_INT_MAX		BIT(5)
112#define CPR_INT_CLAMP		BIT(6)
113#define CPR_INT_ALL	(CPR_INT_DONE | CPR_INT_MIN | CPR_INT_DOWN | \
114			CPR_INT_MID | CPR_INT_UP | CPR_INT_MAX | CPR_INT_CLAMP)
115#define CPR_INT_DEFAULT	(CPR_INT_UP | CPR_INT_DOWN)
116
117#define CPR_NUM_RING_OSC	8
118
119/* CPR eFuse parameters */
120#define CPR_FUSE_TARGET_QUOT_BITS_MASK	GENMASK(11, 0)
121
122#define CPR_FUSE_MIN_QUOT_DIFF		50
123
124#define FUSE_REVISION_UNKNOWN		(-1)
125
126enum voltage_change_dir {
127	NO_CHANGE,
128	DOWN,
129	UP,
130};
131
132struct cpr_fuse {
133	char *ring_osc;
134	char *init_voltage;
135	char *quotient;
136	char *quotient_offset;
137};
138
139struct fuse_corner_data {
140	int ref_uV;
141	int max_uV;
142	int min_uV;
143	int max_volt_scale;
144	int max_quot_scale;
145	/* fuse quot */
146	int quot_offset;
147	int quot_scale;
148	int quot_adjust;
149	/* fuse quot_offset */
150	int quot_offset_scale;
151	int quot_offset_adjust;
152};
153
154struct cpr_fuses {
155	int init_voltage_step;
156	int init_voltage_width;
157	struct fuse_corner_data *fuse_corner_data;
158};
159
160struct corner_data {
161	unsigned int fuse_corner;
162	unsigned long freq;
163};
164
165struct cpr_desc {
166	unsigned int num_fuse_corners;
167	int min_diff_quot;
168	int *step_quot;
169
170	unsigned int		timer_delay_us;
171	unsigned int		timer_cons_up;
172	unsigned int		timer_cons_down;
173	unsigned int		up_threshold;
174	unsigned int		down_threshold;
175	unsigned int		idle_clocks;
176	unsigned int		gcnt_us;
177	unsigned int		vdd_apc_step_up_limit;
178	unsigned int		vdd_apc_step_down_limit;
179	unsigned int		clamp_timer_interval;
180
181	struct cpr_fuses cpr_fuses;
182	bool reduce_to_fuse_uV;
183	bool reduce_to_corner_uV;
184};
185
186struct acc_desc {
187	unsigned int	enable_reg;
188	u32		enable_mask;
189
190	struct reg_sequence	*config;
191	struct reg_sequence	*settings;
192	int			num_regs_per_fuse;
193};
194
195struct cpr_acc_desc {
196	const struct cpr_desc *cpr_desc;
197	const struct acc_desc *acc_desc;
198};
199
200struct fuse_corner {
201	int min_uV;
202	int max_uV;
203	int uV;
204	int quot;
205	int step_quot;
206	const struct reg_sequence *accs;
207	int num_accs;
208	unsigned long max_freq;
209	u8 ring_osc_idx;
210};
211
212struct corner {
213	int min_uV;
214	int max_uV;
215	int uV;
216	int last_uV;
217	int quot_adjust;
218	u32 save_ctl;
219	u32 save_irq;
220	unsigned long freq;
221	struct fuse_corner *fuse_corner;
222};
223
224struct cpr_drv {
225	unsigned int		num_corners;
226	unsigned int		ref_clk_khz;
227
228	struct generic_pm_domain pd;
229	struct device		*dev;
230	struct device		*attached_cpu_dev;
231	struct mutex		lock;
232	void __iomem		*base;
233	struct corner		*corner;
234	struct regulator	*vdd_apc;
235	struct clk		*cpu_clk;
236	struct regmap		*tcsr;
237	bool			loop_disabled;
238	u32			gcnt;
239	unsigned long		flags;
240
241	struct fuse_corner	*fuse_corners;
242	struct corner		*corners;
243
244	const struct cpr_desc *desc;
245	const struct acc_desc *acc_desc;
246	const struct cpr_fuse *cpr_fuses;
247
248	struct dentry *debugfs;
249};
250
251static bool cpr_is_allowed(struct cpr_drv *drv)
252{
253	return !drv->loop_disabled;
254}
255
256static void cpr_write(struct cpr_drv *drv, u32 offset, u32 value)
257{
258	writel_relaxed(value, drv->base + offset);
259}
260
261static u32 cpr_read(struct cpr_drv *drv, u32 offset)
262{
263	return readl_relaxed(drv->base + offset);
264}
265
266static void
267cpr_masked_write(struct cpr_drv *drv, u32 offset, u32 mask, u32 value)
268{
269	u32 val;
270
271	val = readl_relaxed(drv->base + offset);
272	val &= ~mask;
273	val |= value & mask;
274	writel_relaxed(val, drv->base + offset);
275}
276
277static void cpr_irq_clr(struct cpr_drv *drv)
278{
279	cpr_write(drv, REG_RBIF_IRQ_CLEAR, CPR_INT_ALL);
280}
281
282static void cpr_irq_clr_nack(struct cpr_drv *drv)
283{
284	cpr_irq_clr(drv);
285	cpr_write(drv, REG_RBIF_CONT_NACK_CMD, 1);
286}
287
288static void cpr_irq_clr_ack(struct cpr_drv *drv)
289{
290	cpr_irq_clr(drv);
291	cpr_write(drv, REG_RBIF_CONT_ACK_CMD, 1);
292}
293
294static void cpr_irq_set(struct cpr_drv *drv, u32 int_bits)
295{
296	cpr_write(drv, REG_RBIF_IRQ_EN(0), int_bits);
297}
298
299static void cpr_ctl_modify(struct cpr_drv *drv, u32 mask, u32 value)
300{
301	cpr_masked_write(drv, REG_RBCPR_CTL, mask, value);
302}
303
304static void cpr_ctl_enable(struct cpr_drv *drv, struct corner *corner)
305{
306	u32 val, mask;
307	const struct cpr_desc *desc = drv->desc;
308
309	/* Program Consecutive Up & Down */
310	val = desc->timer_cons_down << RBIF_TIMER_ADJ_CONS_DOWN_SHIFT;
311	val |= desc->timer_cons_up << RBIF_TIMER_ADJ_CONS_UP_SHIFT;
312	mask = RBIF_TIMER_ADJ_CONS_UP_MASK | RBIF_TIMER_ADJ_CONS_DOWN_MASK;
313	cpr_masked_write(drv, REG_RBIF_TIMER_ADJUST, mask, val);
314	cpr_masked_write(drv, REG_RBCPR_CTL,
315			 RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN |
316			 RBCPR_CTL_SW_AUTO_CONT_ACK_EN,
317			 corner->save_ctl);
318	cpr_irq_set(drv, corner->save_irq);
319
320	if (cpr_is_allowed(drv) && corner->max_uV > corner->min_uV)
321		val = RBCPR_CTL_LOOP_EN;
322	else
323		val = 0;
324	cpr_ctl_modify(drv, RBCPR_CTL_LOOP_EN, val);
325}
326
327static void cpr_ctl_disable(struct cpr_drv *drv)
328{
329	cpr_irq_set(drv, 0);
330	cpr_ctl_modify(drv, RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN |
331		       RBCPR_CTL_SW_AUTO_CONT_ACK_EN, 0);
332	cpr_masked_write(drv, REG_RBIF_TIMER_ADJUST,
333			 RBIF_TIMER_ADJ_CONS_UP_MASK |
334			 RBIF_TIMER_ADJ_CONS_DOWN_MASK, 0);
335	cpr_irq_clr(drv);
336	cpr_write(drv, REG_RBIF_CONT_ACK_CMD, 1);
337	cpr_write(drv, REG_RBIF_CONT_NACK_CMD, 1);
338	cpr_ctl_modify(drv, RBCPR_CTL_LOOP_EN, 0);
339}
340
341static bool cpr_ctl_is_enabled(struct cpr_drv *drv)
342{
343	u32 reg_val;
344
345	reg_val = cpr_read(drv, REG_RBCPR_CTL);
346	return reg_val & RBCPR_CTL_LOOP_EN;
347}
348
349static bool cpr_ctl_is_busy(struct cpr_drv *drv)
350{
351	u32 reg_val;
352
353	reg_val = cpr_read(drv, REG_RBCPR_RESULT_0);
354	return reg_val & RBCPR_RESULT0_BUSY_MASK;
355}
356
357static void cpr_corner_save(struct cpr_drv *drv, struct corner *corner)
358{
359	corner->save_ctl = cpr_read(drv, REG_RBCPR_CTL);
360	corner->save_irq = cpr_read(drv, REG_RBIF_IRQ_EN(0));
361}
362
363static void cpr_corner_restore(struct cpr_drv *drv, struct corner *corner)
364{
365	u32 gcnt, ctl, irq, ro_sel, step_quot;
366	struct fuse_corner *fuse = corner->fuse_corner;
367	const struct cpr_desc *desc = drv->desc;
368	int i;
369
370	ro_sel = fuse->ring_osc_idx;
371	gcnt = drv->gcnt;
372	gcnt |= fuse->quot - corner->quot_adjust;
373
374	/* Program the step quotient and idle clocks */
375	step_quot = desc->idle_clocks << RBCPR_STEP_QUOT_IDLE_CLK_SHIFT;
376	step_quot |= fuse->step_quot & RBCPR_STEP_QUOT_STEPQUOT_MASK;
377	cpr_write(drv, REG_RBCPR_STEP_QUOT, step_quot);
378
379	/* Clear the target quotient value and gate count of all ROs */
380	for (i = 0; i < CPR_NUM_RING_OSC; i++)
381		cpr_write(drv, REG_RBCPR_GCNT_TARGET(i), 0);
382
383	cpr_write(drv, REG_RBCPR_GCNT_TARGET(ro_sel), gcnt);
384	ctl = corner->save_ctl;
385	cpr_write(drv, REG_RBCPR_CTL, ctl);
386	irq = corner->save_irq;
387	cpr_irq_set(drv, irq);
388	dev_dbg(drv->dev, "gcnt = %#08x, ctl = %#08x, irq = %#08x\n", gcnt,
389		ctl, irq);
390}
391
392static void cpr_set_acc(struct regmap *tcsr, struct fuse_corner *f,
393			struct fuse_corner *end)
394{
395	if (f == end)
396		return;
397
398	if (f < end) {
399		for (f += 1; f <= end; f++)
400			regmap_multi_reg_write(tcsr, f->accs, f->num_accs);
401	} else {
402		for (f -= 1; f >= end; f--)
403			regmap_multi_reg_write(tcsr, f->accs, f->num_accs);
404	}
405}
406
407static int cpr_pre_voltage(struct cpr_drv *drv,
408			   struct fuse_corner *fuse_corner,
409			   enum voltage_change_dir dir)
410{
411	struct fuse_corner *prev_fuse_corner = drv->corner->fuse_corner;
412
413	if (drv->tcsr && dir == DOWN)
414		cpr_set_acc(drv->tcsr, prev_fuse_corner, fuse_corner);
415
416	return 0;
417}
418
419static int cpr_post_voltage(struct cpr_drv *drv,
420			    struct fuse_corner *fuse_corner,
421			    enum voltage_change_dir dir)
422{
423	struct fuse_corner *prev_fuse_corner = drv->corner->fuse_corner;
424
425	if (drv->tcsr && dir == UP)
426		cpr_set_acc(drv->tcsr, prev_fuse_corner, fuse_corner);
427
428	return 0;
429}
430
431static int cpr_scale_voltage(struct cpr_drv *drv, struct corner *corner,
432			     int new_uV, enum voltage_change_dir dir)
433{
434	int ret;
435	struct fuse_corner *fuse_corner = corner->fuse_corner;
436
437	ret = cpr_pre_voltage(drv, fuse_corner, dir);
438	if (ret)
439		return ret;
440
441	ret = regulator_set_voltage(drv->vdd_apc, new_uV, new_uV);
442	if (ret) {
443		dev_err_ratelimited(drv->dev, "failed to set apc voltage %d\n",
444				    new_uV);
445		return ret;
446	}
447
448	ret = cpr_post_voltage(drv, fuse_corner, dir);
449	if (ret)
450		return ret;
451
452	return 0;
453}
454
455static unsigned int cpr_get_cur_perf_state(struct cpr_drv *drv)
456{
457	return drv->corner ? drv->corner - drv->corners + 1 : 0;
458}
459
460static int cpr_scale(struct cpr_drv *drv, enum voltage_change_dir dir)
461{
462	u32 val, error_steps, reg_mask;
463	int last_uV, new_uV, step_uV, ret;
464	struct corner *corner;
465	const struct cpr_desc *desc = drv->desc;
466
467	if (dir != UP && dir != DOWN)
468		return 0;
469
470	step_uV = regulator_get_linear_step(drv->vdd_apc);
471	if (!step_uV)
472		return -EINVAL;
473
474	corner = drv->corner;
475
476	val = cpr_read(drv, REG_RBCPR_RESULT_0);
477
478	error_steps = val >> RBCPR_RESULT0_ERROR_STEPS_SHIFT;
479	error_steps &= RBCPR_RESULT0_ERROR_STEPS_MASK;
480	last_uV = corner->last_uV;
481
482	if (dir == UP) {
483		if (desc->clamp_timer_interval &&
484		    error_steps < desc->up_threshold) {
485			/*
486			 * Handle the case where another measurement started
487			 * after the interrupt was triggered due to a core
488			 * exiting from power collapse.
489			 */
490			error_steps = max(desc->up_threshold,
491					  desc->vdd_apc_step_up_limit);
492		}
493
494		if (last_uV >= corner->max_uV) {
495			cpr_irq_clr_nack(drv);
496
497			/* Maximize the UP threshold */
498			reg_mask = RBCPR_CTL_UP_THRESHOLD_MASK;
499			reg_mask <<= RBCPR_CTL_UP_THRESHOLD_SHIFT;
500			val = reg_mask;
501			cpr_ctl_modify(drv, reg_mask, val);
502
503			/* Disable UP interrupt */
504			cpr_irq_set(drv, CPR_INT_DEFAULT & ~CPR_INT_UP);
505
506			return 0;
507		}
508
509		if (error_steps > desc->vdd_apc_step_up_limit)
510			error_steps = desc->vdd_apc_step_up_limit;
511
512		/* Calculate new voltage */
513		new_uV = last_uV + error_steps * step_uV;
514		new_uV = min(new_uV, corner->max_uV);
515
516		dev_dbg(drv->dev,
517			"UP: -> new_uV: %d last_uV: %d perf state: %u\n",
518			new_uV, last_uV, cpr_get_cur_perf_state(drv));
519	} else {
520		if (desc->clamp_timer_interval &&
521		    error_steps < desc->down_threshold) {
522			/*
523			 * Handle the case where another measurement started
524			 * after the interrupt was triggered due to a core
525			 * exiting from power collapse.
526			 */
527			error_steps = max(desc->down_threshold,
528					  desc->vdd_apc_step_down_limit);
529		}
530
531		if (last_uV <= corner->min_uV) {
532			cpr_irq_clr_nack(drv);
533
534			/* Enable auto nack down */
535			reg_mask = RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN;
536			val = RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN;
537
538			cpr_ctl_modify(drv, reg_mask, val);
539
540			/* Disable DOWN interrupt */
541			cpr_irq_set(drv, CPR_INT_DEFAULT & ~CPR_INT_DOWN);
542
543			return 0;
544		}
545
546		if (error_steps > desc->vdd_apc_step_down_limit)
547			error_steps = desc->vdd_apc_step_down_limit;
548
549		/* Calculate new voltage */
550		new_uV = last_uV - error_steps * step_uV;
551		new_uV = max(new_uV, corner->min_uV);
552
553		dev_dbg(drv->dev,
554			"DOWN: -> new_uV: %d last_uV: %d perf state: %u\n",
555			new_uV, last_uV, cpr_get_cur_perf_state(drv));
556	}
557
558	ret = cpr_scale_voltage(drv, corner, new_uV, dir);
559	if (ret) {
560		cpr_irq_clr_nack(drv);
561		return ret;
562	}
563	drv->corner->last_uV = new_uV;
564
565	if (dir == UP) {
566		/* Disable auto nack down */
567		reg_mask = RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN;
568		val = 0;
569	} else {
570		/* Restore default threshold for UP */
571		reg_mask = RBCPR_CTL_UP_THRESHOLD_MASK;
572		reg_mask <<= RBCPR_CTL_UP_THRESHOLD_SHIFT;
573		val = desc->up_threshold;
574		val <<= RBCPR_CTL_UP_THRESHOLD_SHIFT;
575	}
576
577	cpr_ctl_modify(drv, reg_mask, val);
578
579	/* Re-enable default interrupts */
580	cpr_irq_set(drv, CPR_INT_DEFAULT);
581
582	/* Ack */
583	cpr_irq_clr_ack(drv);
584
585	return 0;
586}
587
588static irqreturn_t cpr_irq_handler(int irq, void *dev)
589{
590	struct cpr_drv *drv = dev;
591	const struct cpr_desc *desc = drv->desc;
592	irqreturn_t ret = IRQ_HANDLED;
593	u32 val;
594
595	mutex_lock(&drv->lock);
596
597	val = cpr_read(drv, REG_RBIF_IRQ_STATUS);
598	if (drv->flags & FLAGS_IGNORE_1ST_IRQ_STATUS)
599		val = cpr_read(drv, REG_RBIF_IRQ_STATUS);
600
601	dev_dbg(drv->dev, "IRQ_STATUS = %#02x\n", val);
602
603	if (!cpr_ctl_is_enabled(drv)) {
604		dev_dbg(drv->dev, "CPR is disabled\n");
605		ret = IRQ_NONE;
606	} else if (cpr_ctl_is_busy(drv) && !desc->clamp_timer_interval) {
607		dev_dbg(drv->dev, "CPR measurement is not ready\n");
608	} else if (!cpr_is_allowed(drv)) {
609		val = cpr_read(drv, REG_RBCPR_CTL);
610		dev_err_ratelimited(drv->dev,
611				    "Interrupt broken? RBCPR_CTL = %#02x\n",
612				    val);
613		ret = IRQ_NONE;
614	} else {
615		/*
616		 * Following sequence of handling is as per each IRQ's
617		 * priority
618		 */
619		if (val & CPR_INT_UP) {
620			cpr_scale(drv, UP);
621		} else if (val & CPR_INT_DOWN) {
622			cpr_scale(drv, DOWN);
623		} else if (val & CPR_INT_MIN) {
624			cpr_irq_clr_nack(drv);
625		} else if (val & CPR_INT_MAX) {
626			cpr_irq_clr_nack(drv);
627		} else if (val & CPR_INT_MID) {
628			/* RBCPR_CTL_SW_AUTO_CONT_ACK_EN is enabled */
629			dev_dbg(drv->dev, "IRQ occurred for Mid Flag\n");
630		} else {
631			dev_dbg(drv->dev,
632				"IRQ occurred for unknown flag (%#08x)\n", val);
633		}
634
635		/* Save register values for the corner */
636		cpr_corner_save(drv, drv->corner);
637	}
638
639	mutex_unlock(&drv->lock);
640
641	return ret;
642}
643
644static int cpr_enable(struct cpr_drv *drv)
645{
646	int ret;
647
648	ret = regulator_enable(drv->vdd_apc);
649	if (ret)
650		return ret;
651
652	mutex_lock(&drv->lock);
653
654	if (cpr_is_allowed(drv) && drv->corner) {
655		cpr_irq_clr(drv);
656		cpr_corner_restore(drv, drv->corner);
657		cpr_ctl_enable(drv, drv->corner);
658	}
659
660	mutex_unlock(&drv->lock);
661
662	return 0;
663}
664
665static int cpr_disable(struct cpr_drv *drv)
666{
667	mutex_lock(&drv->lock);
668
669	if (cpr_is_allowed(drv)) {
670		cpr_ctl_disable(drv);
671		cpr_irq_clr(drv);
672	}
673
674	mutex_unlock(&drv->lock);
675
676	return regulator_disable(drv->vdd_apc);
677}
678
679static int cpr_config(struct cpr_drv *drv)
680{
681	int i;
682	u32 val, gcnt;
683	struct corner *corner;
684	const struct cpr_desc *desc = drv->desc;
685
686	/* Disable interrupt and CPR */
687	cpr_write(drv, REG_RBIF_IRQ_EN(0), 0);
688	cpr_write(drv, REG_RBCPR_CTL, 0);
689
690	/* Program the default HW ceiling, floor and vlevel */
691	val = (RBIF_LIMIT_CEILING_DEFAULT & RBIF_LIMIT_CEILING_MASK)
692		<< RBIF_LIMIT_CEILING_SHIFT;
693	val |= RBIF_LIMIT_FLOOR_DEFAULT & RBIF_LIMIT_FLOOR_MASK;
694	cpr_write(drv, REG_RBIF_LIMIT, val);
695	cpr_write(drv, REG_RBIF_SW_VLEVEL, RBIF_SW_VLEVEL_DEFAULT);
696
697	/*
698	 * Clear the target quotient value and gate count of all
699	 * ring oscillators
700	 */
701	for (i = 0; i < CPR_NUM_RING_OSC; i++)
702		cpr_write(drv, REG_RBCPR_GCNT_TARGET(i), 0);
703
704	/* Init and save gcnt */
705	gcnt = (drv->ref_clk_khz * desc->gcnt_us) / 1000;
706	gcnt = gcnt & RBCPR_GCNT_TARGET_GCNT_MASK;
707	gcnt <<= RBCPR_GCNT_TARGET_GCNT_SHIFT;
708	drv->gcnt = gcnt;
709
710	/* Program the delay count for the timer */
711	val = (drv->ref_clk_khz * desc->timer_delay_us) / 1000;
712	cpr_write(drv, REG_RBCPR_TIMER_INTERVAL, val);
713	dev_dbg(drv->dev, "Timer count: %#0x (for %d us)\n", val,
714		desc->timer_delay_us);
715
716	/* Program Consecutive Up & Down */
717	val = desc->timer_cons_down << RBIF_TIMER_ADJ_CONS_DOWN_SHIFT;
718	val |= desc->timer_cons_up << RBIF_TIMER_ADJ_CONS_UP_SHIFT;
719	val |= desc->clamp_timer_interval << RBIF_TIMER_ADJ_CLAMP_INT_SHIFT;
720	cpr_write(drv, REG_RBIF_TIMER_ADJUST, val);
721
722	/* Program the control register */
723	val = desc->up_threshold << RBCPR_CTL_UP_THRESHOLD_SHIFT;
724	val |= desc->down_threshold << RBCPR_CTL_DN_THRESHOLD_SHIFT;
725	val |= RBCPR_CTL_TIMER_EN | RBCPR_CTL_COUNT_MODE;
726	val |= RBCPR_CTL_SW_AUTO_CONT_ACK_EN;
727	cpr_write(drv, REG_RBCPR_CTL, val);
728
729	for (i = 0; i < drv->num_corners; i++) {
730		corner = &drv->corners[i];
731		corner->save_ctl = val;
732		corner->save_irq = CPR_INT_DEFAULT;
733	}
734
735	cpr_irq_set(drv, CPR_INT_DEFAULT);
736
737	val = cpr_read(drv, REG_RBCPR_VERSION);
738	if (val <= RBCPR_VER_2)
739		drv->flags |= FLAGS_IGNORE_1ST_IRQ_STATUS;
740
741	return 0;
742}
743
744static int cpr_set_performance_state(struct generic_pm_domain *domain,
745				     unsigned int state)
746{
747	struct cpr_drv *drv = container_of(domain, struct cpr_drv, pd);
748	struct corner *corner, *end;
749	enum voltage_change_dir dir;
750	int ret = 0, new_uV;
751
752	mutex_lock(&drv->lock);
753
754	dev_dbg(drv->dev, "%s: setting perf state: %u (prev state: %u)\n",
755		__func__, state, cpr_get_cur_perf_state(drv));
756
757	/*
758	 * Determine new corner we're going to.
759	 * Remove one since lowest performance state is 1.
760	 */
761	corner = drv->corners + state - 1;
762	end = &drv->corners[drv->num_corners - 1];
763	if (corner > end || corner < drv->corners) {
764		ret = -EINVAL;
765		goto unlock;
766	}
767
768	/* Determine direction */
769	if (drv->corner > corner)
770		dir = DOWN;
771	else if (drv->corner < corner)
772		dir = UP;
773	else
774		dir = NO_CHANGE;
775
776	if (cpr_is_allowed(drv))
777		new_uV = corner->last_uV;
778	else
779		new_uV = corner->uV;
780
781	if (cpr_is_allowed(drv))
782		cpr_ctl_disable(drv);
783
784	ret = cpr_scale_voltage(drv, corner, new_uV, dir);
785	if (ret)
786		goto unlock;
787
788	if (cpr_is_allowed(drv)) {
789		cpr_irq_clr(drv);
790		if (drv->corner != corner)
791			cpr_corner_restore(drv, corner);
792		cpr_ctl_enable(drv, corner);
793	}
794
795	drv->corner = corner;
796
797unlock:
798	mutex_unlock(&drv->lock);
799
800	return ret;
801}
802
803static int
804cpr_populate_ring_osc_idx(struct cpr_drv *drv)
805{
806	struct fuse_corner *fuse = drv->fuse_corners;
807	struct fuse_corner *end = fuse + drv->desc->num_fuse_corners;
808	const struct cpr_fuse *fuses = drv->cpr_fuses;
809	u32 data;
810	int ret;
811
812	for (; fuse < end; fuse++, fuses++) {
813		ret = nvmem_cell_read_variable_le_u32(drv->dev, fuses->ring_osc, &data);
814		if (ret)
815			return ret;
816		fuse->ring_osc_idx = data;
817	}
818
819	return 0;
820}
821
822static int cpr_read_fuse_uV(const struct cpr_desc *desc,
823			    const struct fuse_corner_data *fdata,
824			    const char *init_v_efuse,
825			    int step_volt,
826			    struct cpr_drv *drv)
827{
828	int step_size_uV, steps, uV;
829	u32 bits = 0;
830	int ret;
831
832	ret = nvmem_cell_read_variable_le_u32(drv->dev, init_v_efuse, &bits);
833	if (ret)
834		return ret;
835
836	steps = bits & ~BIT(desc->cpr_fuses.init_voltage_width - 1);
837	/* Not two's complement.. instead highest bit is sign bit */
838	if (bits & BIT(desc->cpr_fuses.init_voltage_width - 1))
839		steps = -steps;
840
841	step_size_uV = desc->cpr_fuses.init_voltage_step;
842
843	uV = fdata->ref_uV + steps * step_size_uV;
844	return DIV_ROUND_UP(uV, step_volt) * step_volt;
845}
846
847static int cpr_fuse_corner_init(struct cpr_drv *drv)
848{
849	const struct cpr_desc *desc = drv->desc;
850	const struct cpr_fuse *fuses = drv->cpr_fuses;
851	const struct acc_desc *acc_desc = drv->acc_desc;
852	int i;
853	unsigned int step_volt;
854	struct fuse_corner_data *fdata;
855	struct fuse_corner *fuse, *end;
856	int uV;
857	const struct reg_sequence *accs;
858	int ret;
859
860	accs = acc_desc->settings;
861
862	step_volt = regulator_get_linear_step(drv->vdd_apc);
863	if (!step_volt)
864		return -EINVAL;
865
866	/* Populate fuse_corner members */
867	fuse = drv->fuse_corners;
868	end = &fuse[desc->num_fuse_corners - 1];
869	fdata = desc->cpr_fuses.fuse_corner_data;
870
871	for (i = 0; fuse <= end; fuse++, fuses++, i++, fdata++) {
872		/*
873		 * Update SoC voltages: platforms might choose a different
874		 * regulators than the one used to characterize the algorithms
875		 * (ie, init_voltage_step).
876		 */
877		fdata->min_uV = roundup(fdata->min_uV, step_volt);
878		fdata->max_uV = roundup(fdata->max_uV, step_volt);
879
880		/* Populate uV */
881		uV = cpr_read_fuse_uV(desc, fdata, fuses->init_voltage,
882				      step_volt, drv);
883		if (uV < 0)
884			return uV;
885
886		fuse->min_uV = fdata->min_uV;
887		fuse->max_uV = fdata->max_uV;
888		fuse->uV = clamp(uV, fuse->min_uV, fuse->max_uV);
889
890		if (fuse == end) {
891			/*
892			 * Allow the highest fuse corner's PVS voltage to
893			 * define the ceiling voltage for that corner in order
894			 * to support SoC's in which variable ceiling values
895			 * are required.
896			 */
897			end->max_uV = max(end->max_uV, end->uV);
898		}
899
900		/* Populate target quotient by scaling */
901		ret = nvmem_cell_read_variable_le_u32(drv->dev, fuses->quotient, &fuse->quot);
902		if (ret)
903			return ret;
904
905		fuse->quot *= fdata->quot_scale;
906		fuse->quot += fdata->quot_offset;
907		fuse->quot += fdata->quot_adjust;
908		fuse->step_quot = desc->step_quot[fuse->ring_osc_idx];
909
910		/* Populate acc settings */
911		fuse->accs = accs;
912		fuse->num_accs = acc_desc->num_regs_per_fuse;
913		accs += acc_desc->num_regs_per_fuse;
914	}
915
916	/*
917	 * Restrict all fuse corner PVS voltages based upon per corner
918	 * ceiling and floor voltages.
919	 */
920	for (fuse = drv->fuse_corners, i = 0; fuse <= end; fuse++, i++) {
921		if (fuse->uV > fuse->max_uV)
922			fuse->uV = fuse->max_uV;
923		else if (fuse->uV < fuse->min_uV)
924			fuse->uV = fuse->min_uV;
925
926		ret = regulator_is_supported_voltage(drv->vdd_apc,
927						     fuse->min_uV,
928						     fuse->min_uV);
929		if (!ret) {
930			dev_err(drv->dev,
931				"min uV: %d (fuse corner: %d) not supported by regulator\n",
932				fuse->min_uV, i);
933			return -EINVAL;
934		}
935
936		ret = regulator_is_supported_voltage(drv->vdd_apc,
937						     fuse->max_uV,
938						     fuse->max_uV);
939		if (!ret) {
940			dev_err(drv->dev,
941				"max uV: %d (fuse corner: %d) not supported by regulator\n",
942				fuse->max_uV, i);
943			return -EINVAL;
944		}
945
946		dev_dbg(drv->dev,
947			"fuse corner %d: [%d %d %d] RO%hhu quot %d squot %d\n",
948			i, fuse->min_uV, fuse->uV, fuse->max_uV,
949			fuse->ring_osc_idx, fuse->quot, fuse->step_quot);
950	}
951
952	return 0;
953}
954
955static int cpr_calculate_scaling(const char *quot_offset,
956				 struct cpr_drv *drv,
957				 const struct fuse_corner_data *fdata,
958				 const struct corner *corner)
959{
960	u32 quot_diff = 0;
961	unsigned long freq_diff;
962	int scaling;
963	const struct fuse_corner *fuse, *prev_fuse;
964	int ret;
965
966	fuse = corner->fuse_corner;
967	prev_fuse = fuse - 1;
968
969	if (quot_offset) {
970		ret = nvmem_cell_read_variable_le_u32(drv->dev, quot_offset, &quot_diff);
971		if (ret)
972			return ret;
973
974		quot_diff *= fdata->quot_offset_scale;
975		quot_diff += fdata->quot_offset_adjust;
976	} else {
977		quot_diff = fuse->quot - prev_fuse->quot;
978	}
979
980	freq_diff = fuse->max_freq - prev_fuse->max_freq;
981	freq_diff /= 1000000; /* Convert to MHz */
982	scaling = 1000 * quot_diff / freq_diff;
983	return min(scaling, fdata->max_quot_scale);
984}
985
986static int cpr_interpolate(const struct corner *corner, int step_volt,
987			   const struct fuse_corner_data *fdata)
988{
989	unsigned long f_high, f_low, f_diff;
990	int uV_high, uV_low, uV;
991	u64 temp, temp_limit;
992	const struct fuse_corner *fuse, *prev_fuse;
993
994	fuse = corner->fuse_corner;
995	prev_fuse = fuse - 1;
996
997	f_high = fuse->max_freq;
998	f_low = prev_fuse->max_freq;
999	uV_high = fuse->uV;
1000	uV_low = prev_fuse->uV;
1001	f_diff = fuse->max_freq - corner->freq;
1002
1003	/*
1004	 * Don't interpolate in the wrong direction. This could happen
1005	 * if the adjusted fuse voltage overlaps with the previous fuse's
1006	 * adjusted voltage.
1007	 */
1008	if (f_high <= f_low || uV_high <= uV_low || f_high <= corner->freq)
1009		return corner->uV;
1010
1011	temp = f_diff * (uV_high - uV_low);
1012	temp = div64_ul(temp, f_high - f_low);
1013
1014	/*
1015	 * max_volt_scale has units of uV/MHz while freq values
1016	 * have units of Hz.  Divide by 1000000 to convert to.
1017	 */
1018	temp_limit = f_diff * fdata->max_volt_scale;
1019	do_div(temp_limit, 1000000);
1020
1021	uV = uV_high - min(temp, temp_limit);
1022	return roundup(uV, step_volt);
1023}
1024
1025static unsigned int cpr_get_fuse_corner(struct dev_pm_opp *opp)
1026{
1027	struct device_node *np;
1028	unsigned int fuse_corner = 0;
1029
1030	np = dev_pm_opp_get_of_node(opp);
1031	if (of_property_read_u32(np, "qcom,opp-fuse-level", &fuse_corner))
1032		pr_err("%s: missing 'qcom,opp-fuse-level' property\n",
1033		       __func__);
1034
1035	of_node_put(np);
1036
1037	return fuse_corner;
1038}
1039
1040static unsigned long cpr_get_opp_hz_for_req(struct dev_pm_opp *ref,
1041					    struct device *cpu_dev)
1042{
1043	u64 rate = 0;
1044	struct device_node *ref_np;
1045	struct device_node *desc_np;
1046	struct device_node *child_np = NULL;
1047	struct device_node *child_req_np = NULL;
1048
1049	desc_np = dev_pm_opp_of_get_opp_desc_node(cpu_dev);
1050	if (!desc_np)
1051		return 0;
1052
1053	ref_np = dev_pm_opp_get_of_node(ref);
1054	if (!ref_np)
1055		goto out_ref;
1056
1057	do {
1058		of_node_put(child_req_np);
1059		child_np = of_get_next_available_child(desc_np, child_np);
1060		child_req_np = of_parse_phandle(child_np, "required-opps", 0);
1061	} while (child_np && child_req_np != ref_np);
1062
1063	if (child_np && child_req_np == ref_np)
1064		of_property_read_u64(child_np, "opp-hz", &rate);
1065
1066	of_node_put(child_req_np);
1067	of_node_put(child_np);
1068	of_node_put(ref_np);
1069out_ref:
1070	of_node_put(desc_np);
1071
1072	return (unsigned long) rate;
1073}
1074
1075static int cpr_corner_init(struct cpr_drv *drv)
1076{
1077	const struct cpr_desc *desc = drv->desc;
1078	const struct cpr_fuse *fuses = drv->cpr_fuses;
1079	int i, level, scaling = 0;
1080	unsigned int fnum, fc;
1081	const char *quot_offset;
1082	struct fuse_corner *fuse, *prev_fuse;
1083	struct corner *corner, *end;
1084	struct corner_data *cdata;
1085	const struct fuse_corner_data *fdata;
1086	bool apply_scaling;
1087	unsigned long freq_diff, freq_diff_mhz;
1088	unsigned long freq;
1089	int step_volt = regulator_get_linear_step(drv->vdd_apc);
1090	struct dev_pm_opp *opp;
1091
1092	if (!step_volt)
1093		return -EINVAL;
1094
1095	corner = drv->corners;
1096	end = &corner[drv->num_corners - 1];
1097
1098	cdata = devm_kcalloc(drv->dev, drv->num_corners,
1099			     sizeof(struct corner_data),
1100			     GFP_KERNEL);
1101	if (!cdata)
1102		return -ENOMEM;
1103
1104	/*
1105	 * Store maximum frequency for each fuse corner based on the frequency
1106	 * plan
1107	 */
1108	for (level = 1; level <= drv->num_corners; level++) {
1109		opp = dev_pm_opp_find_level_exact(&drv->pd.dev, level);
1110		if (IS_ERR(opp))
1111			return -EINVAL;
1112		fc = cpr_get_fuse_corner(opp);
1113		if (!fc) {
1114			dev_pm_opp_put(opp);
1115			return -EINVAL;
1116		}
1117		fnum = fc - 1;
1118		freq = cpr_get_opp_hz_for_req(opp, drv->attached_cpu_dev);
1119		if (!freq) {
1120			dev_pm_opp_put(opp);
1121			return -EINVAL;
1122		}
1123		cdata[level - 1].fuse_corner = fnum;
1124		cdata[level - 1].freq = freq;
1125
1126		fuse = &drv->fuse_corners[fnum];
1127		dev_dbg(drv->dev, "freq: %lu level: %u fuse level: %u\n",
1128			freq, dev_pm_opp_get_level(opp) - 1, fnum);
1129		if (freq > fuse->max_freq)
1130			fuse->max_freq = freq;
1131		dev_pm_opp_put(opp);
1132	}
1133
1134	/*
1135	 * Get the quotient adjustment scaling factor, according to:
1136	 *
1137	 * scaling = min(1000 * (QUOT(corner_N) - QUOT(corner_N-1))
1138	 *		/ (freq(corner_N) - freq(corner_N-1)), max_factor)
1139	 *
1140	 * QUOT(corner_N):	quotient read from fuse for fuse corner N
1141	 * QUOT(corner_N-1):	quotient read from fuse for fuse corner (N - 1)
1142	 * freq(corner_N):	max frequency in MHz supported by fuse corner N
1143	 * freq(corner_N-1):	max frequency in MHz supported by fuse corner
1144	 *			 (N - 1)
1145	 *
1146	 * Then walk through the corners mapped to each fuse corner
1147	 * and calculate the quotient adjustment for each one using the
1148	 * following formula:
1149	 *
1150	 * quot_adjust = (freq_max - freq_corner) * scaling / 1000
1151	 *
1152	 * freq_max: max frequency in MHz supported by the fuse corner
1153	 * freq_corner: frequency in MHz corresponding to the corner
1154	 * scaling: calculated from above equation
1155	 *
1156	 *
1157	 *     +                           +
1158	 *     |                         v |
1159	 *   q |           f c           o |           f c
1160	 *   u |         c               l |         c
1161	 *   o |       f                 t |       f
1162	 *   t |     c                   a |     c
1163	 *     | c f                     g | c f
1164	 *     |                         e |
1165	 *     +---------------            +----------------
1166	 *       0 1 2 3 4 5 6               0 1 2 3 4 5 6
1167	 *          corner                      corner
1168	 *
1169	 *    c = corner
1170	 *    f = fuse corner
1171	 *
1172	 */
1173	for (apply_scaling = false, i = 0; corner <= end; corner++, i++) {
1174		fnum = cdata[i].fuse_corner;
1175		fdata = &desc->cpr_fuses.fuse_corner_data[fnum];
1176		quot_offset = fuses[fnum].quotient_offset;
1177		fuse = &drv->fuse_corners[fnum];
1178		if (fnum)
1179			prev_fuse = &drv->fuse_corners[fnum - 1];
1180		else
1181			prev_fuse = NULL;
1182
1183		corner->fuse_corner = fuse;
1184		corner->freq = cdata[i].freq;
1185		corner->uV = fuse->uV;
1186
1187		if (prev_fuse && cdata[i - 1].freq == prev_fuse->max_freq) {
1188			scaling = cpr_calculate_scaling(quot_offset, drv,
1189							fdata, corner);
1190			if (scaling < 0)
1191				return scaling;
1192
1193			apply_scaling = true;
1194		} else if (corner->freq == fuse->max_freq) {
1195			/* This is a fuse corner; don't scale anything */
1196			apply_scaling = false;
1197		}
1198
1199		if (apply_scaling) {
1200			freq_diff = fuse->max_freq - corner->freq;
1201			freq_diff_mhz = freq_diff / 1000000;
1202			corner->quot_adjust = scaling * freq_diff_mhz / 1000;
1203
1204			corner->uV = cpr_interpolate(corner, step_volt, fdata);
1205		}
1206
1207		corner->max_uV = fuse->max_uV;
1208		corner->min_uV = fuse->min_uV;
1209		corner->uV = clamp(corner->uV, corner->min_uV, corner->max_uV);
1210		corner->last_uV = corner->uV;
1211
1212		/* Reduce the ceiling voltage if needed */
1213		if (desc->reduce_to_corner_uV && corner->uV < corner->max_uV)
1214			corner->max_uV = corner->uV;
1215		else if (desc->reduce_to_fuse_uV && fuse->uV < corner->max_uV)
1216			corner->max_uV = max(corner->min_uV, fuse->uV);
1217
1218		dev_dbg(drv->dev, "corner %d: [%d %d %d] quot %d\n", i,
1219			corner->min_uV, corner->uV, corner->max_uV,
1220			fuse->quot - corner->quot_adjust);
1221	}
1222
1223	return 0;
1224}
1225
1226static const struct cpr_fuse *cpr_get_fuses(struct cpr_drv *drv)
1227{
1228	const struct cpr_desc *desc = drv->desc;
1229	struct cpr_fuse *fuses;
1230	int i;
1231
1232	fuses = devm_kcalloc(drv->dev, desc->num_fuse_corners,
1233			     sizeof(struct cpr_fuse),
1234			     GFP_KERNEL);
1235	if (!fuses)
1236		return ERR_PTR(-ENOMEM);
1237
1238	for (i = 0; i < desc->num_fuse_corners; i++) {
1239		char tbuf[32];
1240
1241		snprintf(tbuf, 32, "cpr_ring_osc%d", i + 1);
1242		fuses[i].ring_osc = devm_kstrdup(drv->dev, tbuf, GFP_KERNEL);
1243		if (!fuses[i].ring_osc)
1244			return ERR_PTR(-ENOMEM);
1245
1246		snprintf(tbuf, 32, "cpr_init_voltage%d", i + 1);
1247		fuses[i].init_voltage = devm_kstrdup(drv->dev, tbuf,
1248						     GFP_KERNEL);
1249		if (!fuses[i].init_voltage)
1250			return ERR_PTR(-ENOMEM);
1251
1252		snprintf(tbuf, 32, "cpr_quotient%d", i + 1);
1253		fuses[i].quotient = devm_kstrdup(drv->dev, tbuf, GFP_KERNEL);
1254		if (!fuses[i].quotient)
1255			return ERR_PTR(-ENOMEM);
1256
1257		snprintf(tbuf, 32, "cpr_quotient_offset%d", i + 1);
1258		fuses[i].quotient_offset = devm_kstrdup(drv->dev, tbuf,
1259							GFP_KERNEL);
1260		if (!fuses[i].quotient_offset)
1261			return ERR_PTR(-ENOMEM);
1262	}
1263
1264	return fuses;
1265}
1266
1267static void cpr_set_loop_allowed(struct cpr_drv *drv)
1268{
1269	drv->loop_disabled = false;
1270}
1271
1272static int cpr_init_parameters(struct cpr_drv *drv)
1273{
1274	const struct cpr_desc *desc = drv->desc;
1275	struct clk *clk;
1276
1277	clk = clk_get(drv->dev, "ref");
1278	if (IS_ERR(clk))
1279		return PTR_ERR(clk);
1280
1281	drv->ref_clk_khz = clk_get_rate(clk) / 1000;
1282	clk_put(clk);
1283
1284	if (desc->timer_cons_up > RBIF_TIMER_ADJ_CONS_UP_MASK ||
1285	    desc->timer_cons_down > RBIF_TIMER_ADJ_CONS_DOWN_MASK ||
1286	    desc->up_threshold > RBCPR_CTL_UP_THRESHOLD_MASK ||
1287	    desc->down_threshold > RBCPR_CTL_DN_THRESHOLD_MASK ||
1288	    desc->idle_clocks > RBCPR_STEP_QUOT_IDLE_CLK_MASK ||
1289	    desc->clamp_timer_interval > RBIF_TIMER_ADJ_CLAMP_INT_MASK)
1290		return -EINVAL;
1291
1292	dev_dbg(drv->dev, "up threshold = %u, down threshold = %u\n",
1293		desc->up_threshold, desc->down_threshold);
1294
1295	return 0;
1296}
1297
1298static int cpr_find_initial_corner(struct cpr_drv *drv)
1299{
1300	unsigned long rate;
1301	const struct corner *end;
1302	struct corner *iter;
1303	unsigned int i = 0;
1304
1305	if (!drv->cpu_clk) {
1306		dev_err(drv->dev, "cannot get rate from NULL clk\n");
1307		return -EINVAL;
1308	}
1309
1310	end = &drv->corners[drv->num_corners - 1];
1311	rate = clk_get_rate(drv->cpu_clk);
1312
1313	/*
1314	 * Some bootloaders set a CPU clock frequency that is not defined
1315	 * in the OPP table. When running at an unlisted frequency,
1316	 * cpufreq_online() will change to the OPP which has the lowest
1317	 * frequency, at or above the unlisted frequency.
1318	 * Since cpufreq_online() always "rounds up" in the case of an
1319	 * unlisted frequency, this function always "rounds down" in case
1320	 * of an unlisted frequency. That way, when cpufreq_online()
1321	 * triggers the first ever call to cpr_set_performance_state(),
1322	 * it will correctly determine the direction as UP.
1323	 */
1324	for (iter = drv->corners; iter <= end; iter++) {
1325		if (iter->freq > rate)
1326			break;
1327		i++;
1328		if (iter->freq == rate) {
1329			drv->corner = iter;
1330			break;
1331		}
1332		if (iter->freq < rate)
1333			drv->corner = iter;
1334	}
1335
1336	if (!drv->corner) {
1337		dev_err(drv->dev, "boot up corner not found\n");
1338		return -EINVAL;
1339	}
1340
1341	dev_dbg(drv->dev, "boot up perf state: %u\n", i);
1342
1343	return 0;
1344}
1345
1346static const struct cpr_desc qcs404_cpr_desc = {
1347	.num_fuse_corners = 3,
1348	.min_diff_quot = CPR_FUSE_MIN_QUOT_DIFF,
1349	.step_quot = (int []){ 25, 25, 25, },
1350	.timer_delay_us = 5000,
1351	.timer_cons_up = 0,
1352	.timer_cons_down = 2,
1353	.up_threshold = 1,
1354	.down_threshold = 3,
1355	.idle_clocks = 15,
1356	.gcnt_us = 1,
1357	.vdd_apc_step_up_limit = 1,
1358	.vdd_apc_step_down_limit = 1,
1359	.cpr_fuses = {
1360		.init_voltage_step = 8000,
1361		.init_voltage_width = 6,
1362		.fuse_corner_data = (struct fuse_corner_data[]){
1363			/* fuse corner 0 */
1364			{
1365				.ref_uV = 1224000,
1366				.max_uV = 1224000,
1367				.min_uV = 1048000,
1368				.max_volt_scale = 0,
1369				.max_quot_scale = 0,
1370				.quot_offset = 0,
1371				.quot_scale = 1,
1372				.quot_adjust = 0,
1373				.quot_offset_scale = 5,
1374				.quot_offset_adjust = 0,
1375			},
1376			/* fuse corner 1 */
1377			{
1378				.ref_uV = 1288000,
1379				.max_uV = 1288000,
1380				.min_uV = 1048000,
1381				.max_volt_scale = 2000,
1382				.max_quot_scale = 1400,
1383				.quot_offset = 0,
1384				.quot_scale = 1,
1385				.quot_adjust = -20,
1386				.quot_offset_scale = 5,
1387				.quot_offset_adjust = 0,
1388			},
1389			/* fuse corner 2 */
1390			{
1391				.ref_uV = 1352000,
1392				.max_uV = 1384000,
1393				.min_uV = 1088000,
1394				.max_volt_scale = 2000,
1395				.max_quot_scale = 1400,
1396				.quot_offset = 0,
1397				.quot_scale = 1,
1398				.quot_adjust = 0,
1399				.quot_offset_scale = 5,
1400				.quot_offset_adjust = 0,
1401			},
1402		},
1403	},
1404};
1405
1406static const struct acc_desc qcs404_acc_desc = {
1407	.settings = (struct reg_sequence[]){
1408		{ 0xb120, 0x1041040 },
1409		{ 0xb124, 0x41 },
1410		{ 0xb120, 0x0 },
1411		{ 0xb124, 0x0 },
1412		{ 0xb120, 0x0 },
1413		{ 0xb124, 0x0 },
1414	},
1415	.config = (struct reg_sequence[]){
1416		{ 0xb138, 0xff },
1417		{ 0xb130, 0x5555 },
1418	},
1419	.num_regs_per_fuse = 2,
1420};
1421
1422static const struct cpr_acc_desc qcs404_cpr_acc_desc = {
1423	.cpr_desc = &qcs404_cpr_desc,
1424	.acc_desc = &qcs404_acc_desc,
1425};
1426
1427static unsigned int cpr_get_performance_state(struct generic_pm_domain *genpd,
1428					      struct dev_pm_opp *opp)
1429{
1430	return dev_pm_opp_get_level(opp);
1431}
1432
1433static int cpr_power_off(struct generic_pm_domain *domain)
1434{
1435	struct cpr_drv *drv = container_of(domain, struct cpr_drv, pd);
1436
1437	return cpr_disable(drv);
1438}
1439
1440static int cpr_power_on(struct generic_pm_domain *domain)
1441{
1442	struct cpr_drv *drv = container_of(domain, struct cpr_drv, pd);
1443
1444	return cpr_enable(drv);
1445}
1446
1447static int cpr_pd_attach_dev(struct generic_pm_domain *domain,
1448			     struct device *dev)
1449{
1450	struct cpr_drv *drv = container_of(domain, struct cpr_drv, pd);
1451	const struct acc_desc *acc_desc = drv->acc_desc;
1452	int ret = 0;
1453
1454	mutex_lock(&drv->lock);
1455
1456	dev_dbg(drv->dev, "attach callback for: %s\n", dev_name(dev));
1457
1458	/*
1459	 * This driver only supports scaling voltage for a CPU cluster
1460	 * where all CPUs in the cluster share a single regulator.
1461	 * Therefore, save the struct device pointer only for the first
1462	 * CPU device that gets attached. There is no need to do any
1463	 * additional initialization when further CPUs get attached.
1464	 */
1465	if (drv->attached_cpu_dev)
1466		goto unlock;
1467
1468	/*
1469	 * cpr_scale_voltage() requires the direction (if we are changing
1470	 * to a higher or lower OPP). The first time
1471	 * cpr_set_performance_state() is called, there is no previous
1472	 * performance state defined. Therefore, we call
1473	 * cpr_find_initial_corner() that gets the CPU clock frequency
1474	 * set by the bootloader, so that we can determine the direction
1475	 * the first time cpr_set_performance_state() is called.
1476	 */
1477	drv->cpu_clk = devm_clk_get(dev, NULL);
1478	if (IS_ERR(drv->cpu_clk)) {
1479		ret = PTR_ERR(drv->cpu_clk);
1480		if (ret != -EPROBE_DEFER)
1481			dev_err(drv->dev, "could not get cpu clk: %d\n", ret);
1482		goto unlock;
1483	}
1484	drv->attached_cpu_dev = dev;
1485
1486	dev_dbg(drv->dev, "using cpu clk from: %s\n",
1487		dev_name(drv->attached_cpu_dev));
1488
1489	/*
1490	 * Everything related to (virtual) corners has to be initialized
1491	 * here, when attaching to the power domain, since we need to know
1492	 * the maximum frequency for each fuse corner, and this is only
1493	 * available after the cpufreq driver has attached to us.
1494	 * The reason for this is that we need to know the highest
1495	 * frequency associated with each fuse corner.
1496	 */
1497	ret = dev_pm_opp_get_opp_count(&drv->pd.dev);
1498	if (ret < 0) {
1499		dev_err(drv->dev, "could not get OPP count\n");
1500		goto unlock;
1501	}
1502	drv->num_corners = ret;
1503
1504	if (drv->num_corners < 2) {
1505		dev_err(drv->dev, "need at least 2 OPPs to use CPR\n");
1506		ret = -EINVAL;
1507		goto unlock;
1508	}
1509
1510	drv->corners = devm_kcalloc(drv->dev, drv->num_corners,
1511				    sizeof(*drv->corners),
1512				    GFP_KERNEL);
1513	if (!drv->corners) {
1514		ret = -ENOMEM;
1515		goto unlock;
1516	}
1517
1518	ret = cpr_corner_init(drv);
1519	if (ret)
1520		goto unlock;
1521
1522	cpr_set_loop_allowed(drv);
1523
1524	ret = cpr_init_parameters(drv);
1525	if (ret)
1526		goto unlock;
1527
1528	/* Configure CPR HW but keep it disabled */
1529	ret = cpr_config(drv);
1530	if (ret)
1531		goto unlock;
1532
1533	ret = cpr_find_initial_corner(drv);
1534	if (ret)
1535		goto unlock;
1536
1537	if (acc_desc->config)
1538		regmap_multi_reg_write(drv->tcsr, acc_desc->config,
1539				       acc_desc->num_regs_per_fuse);
1540
1541	/* Enable ACC if required */
1542	if (acc_desc->enable_mask)
1543		regmap_update_bits(drv->tcsr, acc_desc->enable_reg,
1544				   acc_desc->enable_mask,
1545				   acc_desc->enable_mask);
1546
1547	dev_info(drv->dev, "driver initialized with %u OPPs\n",
1548		 drv->num_corners);
1549
1550unlock:
1551	mutex_unlock(&drv->lock);
1552
1553	return ret;
1554}
1555
1556static int cpr_debug_info_show(struct seq_file *s, void *unused)
1557{
1558	u32 gcnt, ro_sel, ctl, irq_status, reg, error_steps;
1559	u32 step_dn, step_up, error, error_lt0, busy;
1560	struct cpr_drv *drv = s->private;
1561	struct fuse_corner *fuse_corner;
1562	struct corner *corner;
1563
1564	corner = drv->corner;
1565	fuse_corner = corner->fuse_corner;
1566
1567	seq_printf(s, "corner, current_volt = %d uV\n",
1568		       corner->last_uV);
1569
1570	ro_sel = fuse_corner->ring_osc_idx;
1571	gcnt = cpr_read(drv, REG_RBCPR_GCNT_TARGET(ro_sel));
1572	seq_printf(s, "rbcpr_gcnt_target (%u) = %#02X\n", ro_sel, gcnt);
1573
1574	ctl = cpr_read(drv, REG_RBCPR_CTL);
1575	seq_printf(s, "rbcpr_ctl = %#02X\n", ctl);
1576
1577	irq_status = cpr_read(drv, REG_RBIF_IRQ_STATUS);
1578	seq_printf(s, "rbcpr_irq_status = %#02X\n", irq_status);
1579
1580	reg = cpr_read(drv, REG_RBCPR_RESULT_0);
1581	seq_printf(s, "rbcpr_result_0 = %#02X\n", reg);
1582
1583	step_dn = reg & 0x01;
1584	step_up = (reg >> RBCPR_RESULT0_STEP_UP_SHIFT) & 0x01;
1585	seq_printf(s, "  [step_dn = %u", step_dn);
1586
1587	seq_printf(s, ", step_up = %u", step_up);
1588
1589	error_steps = (reg >> RBCPR_RESULT0_ERROR_STEPS_SHIFT)
1590				& RBCPR_RESULT0_ERROR_STEPS_MASK;
1591	seq_printf(s, ", error_steps = %u", error_steps);
1592
1593	error = (reg >> RBCPR_RESULT0_ERROR_SHIFT) & RBCPR_RESULT0_ERROR_MASK;
1594	seq_printf(s, ", error = %u", error);
1595
1596	error_lt0 = (reg >> RBCPR_RESULT0_ERROR_LT0_SHIFT) & 0x01;
1597	seq_printf(s, ", error_lt_0 = %u", error_lt0);
1598
1599	busy = (reg >> RBCPR_RESULT0_BUSY_SHIFT) & 0x01;
1600	seq_printf(s, ", busy = %u]\n", busy);
1601
1602	return 0;
1603}
1604DEFINE_SHOW_ATTRIBUTE(cpr_debug_info);
1605
1606static void cpr_debugfs_init(struct cpr_drv *drv)
1607{
1608	drv->debugfs = debugfs_create_dir("qcom_cpr", NULL);
1609
1610	debugfs_create_file("debug_info", 0444, drv->debugfs,
1611			    drv, &cpr_debug_info_fops);
1612}
1613
1614static int cpr_probe(struct platform_device *pdev)
1615{
1616	struct device *dev = &pdev->dev;
1617	struct cpr_drv *drv;
1618	int irq, ret;
1619	const struct cpr_acc_desc *data;
1620	struct device_node *np;
1621	u32 cpr_rev = FUSE_REVISION_UNKNOWN;
1622
1623	data = of_device_get_match_data(dev);
1624	if (!data || !data->cpr_desc || !data->acc_desc)
1625		return -EINVAL;
1626
1627	drv = devm_kzalloc(dev, sizeof(*drv), GFP_KERNEL);
1628	if (!drv)
1629		return -ENOMEM;
1630	drv->dev = dev;
1631	drv->desc = data->cpr_desc;
1632	drv->acc_desc = data->acc_desc;
1633
1634	drv->fuse_corners = devm_kcalloc(dev, drv->desc->num_fuse_corners,
1635					 sizeof(*drv->fuse_corners),
1636					 GFP_KERNEL);
1637	if (!drv->fuse_corners)
1638		return -ENOMEM;
1639
1640	np = of_parse_phandle(dev->of_node, "acc-syscon", 0);
1641	if (!np)
1642		return -ENODEV;
1643
1644	drv->tcsr = syscon_node_to_regmap(np);
1645	of_node_put(np);
1646	if (IS_ERR(drv->tcsr))
1647		return PTR_ERR(drv->tcsr);
1648
1649	drv->base = devm_platform_ioremap_resource(pdev, 0);
1650	if (IS_ERR(drv->base))
1651		return PTR_ERR(drv->base);
1652
1653	irq = platform_get_irq(pdev, 0);
1654	if (irq < 0)
1655		return -EINVAL;
1656
1657	drv->vdd_apc = devm_regulator_get(dev, "vdd-apc");
1658	if (IS_ERR(drv->vdd_apc))
1659		return PTR_ERR(drv->vdd_apc);
1660
1661	/*
1662	 * Initialize fuse corners, since it simply depends
1663	 * on data in efuses.
1664	 * Everything related to (virtual) corners has to be
1665	 * initialized after attaching to the power domain,
1666	 * since it depends on the CPU's OPP table.
1667	 */
1668	ret = nvmem_cell_read_variable_le_u32(dev, "cpr_fuse_revision", &cpr_rev);
1669	if (ret)
1670		return ret;
1671
1672	drv->cpr_fuses = cpr_get_fuses(drv);
1673	if (IS_ERR(drv->cpr_fuses))
1674		return PTR_ERR(drv->cpr_fuses);
1675
1676	ret = cpr_populate_ring_osc_idx(drv);
1677	if (ret)
1678		return ret;
1679
1680	ret = cpr_fuse_corner_init(drv);
1681	if (ret)
1682		return ret;
1683
1684	mutex_init(&drv->lock);
1685
1686	ret = devm_request_threaded_irq(dev, irq, NULL,
1687					cpr_irq_handler,
1688					IRQF_ONESHOT | IRQF_TRIGGER_RISING,
1689					"cpr", drv);
1690	if (ret)
1691		return ret;
1692
1693	drv->pd.name = devm_kstrdup_const(dev, dev->of_node->full_name,
1694					  GFP_KERNEL);
1695	if (!drv->pd.name)
1696		return -EINVAL;
1697
1698	drv->pd.power_off = cpr_power_off;
1699	drv->pd.power_on = cpr_power_on;
1700	drv->pd.set_performance_state = cpr_set_performance_state;
1701	drv->pd.opp_to_performance_state = cpr_get_performance_state;
1702	drv->pd.attach_dev = cpr_pd_attach_dev;
1703
1704	ret = pm_genpd_init(&drv->pd, NULL, true);
1705	if (ret)
1706		return ret;
1707
1708	ret = of_genpd_add_provider_simple(dev->of_node, &drv->pd);
1709	if (ret)
1710		goto err_remove_genpd;
1711
1712	platform_set_drvdata(pdev, drv);
1713	cpr_debugfs_init(drv);
1714
1715	return 0;
1716
1717err_remove_genpd:
1718	pm_genpd_remove(&drv->pd);
1719	return ret;
1720}
1721
1722static int cpr_remove(struct platform_device *pdev)
1723{
1724	struct cpr_drv *drv = platform_get_drvdata(pdev);
1725
1726	if (cpr_is_allowed(drv)) {
1727		cpr_ctl_disable(drv);
1728		cpr_irq_set(drv, 0);
1729	}
1730
1731	of_genpd_del_provider(pdev->dev.of_node);
1732	pm_genpd_remove(&drv->pd);
1733
1734	debugfs_remove_recursive(drv->debugfs);
1735
1736	return 0;
1737}
1738
1739static const struct of_device_id cpr_match_table[] = {
1740	{ .compatible = "qcom,qcs404-cpr", .data = &qcs404_cpr_acc_desc },
1741	{ }
1742};
1743MODULE_DEVICE_TABLE(of, cpr_match_table);
1744
1745static struct platform_driver cpr_driver = {
1746	.probe		= cpr_probe,
1747	.remove		= cpr_remove,
1748	.driver		= {
1749		.name	= "qcom-cpr",
1750		.of_match_table = cpr_match_table,
1751	},
1752};
1753module_platform_driver(cpr_driver);
1754
1755MODULE_DESCRIPTION("Core Power Reduction (CPR) driver");
1756MODULE_LICENSE("GPL v2");
1757