1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * ARMv8 PMUv3 Performance Events handling code.
4 *
5 * Copyright (C) 2012 ARM Limited
6 * Author: Will Deacon <will.deacon@arm.com>
7 *
8 * This code is based heavily on the ARMv7 perf event code.
9 */
10
11#include <asm/irq_regs.h>
12#include <asm/perf_event.h>
13#include <asm/virt.h>
14
15#include <clocksource/arm_arch_timer.h>
16
17#include <linux/acpi.h>
18#include <linux/clocksource.h>
19#include <linux/of.h>
20#include <linux/perf/arm_pmu.h>
21#include <linux/perf/arm_pmuv3.h>
22#include <linux/platform_device.h>
23#include <linux/sched_clock.h>
24#include <linux/smp.h>
25#include <linux/nmi.h>
26
27#include <asm/arm_pmuv3.h>
28
29/* ARMv8 Cortex-A53 specific event types. */
30#define ARMV8_A53_PERFCTR_PREF_LINEFILL				0xC2
31
32/* ARMv8 Cavium ThunderX specific event types. */
33#define ARMV8_THUNDER_PERFCTR_L1D_CACHE_MISS_ST			0xE9
34#define ARMV8_THUNDER_PERFCTR_L1D_CACHE_PREF_ACCESS		0xEA
35#define ARMV8_THUNDER_PERFCTR_L1D_CACHE_PREF_MISS		0xEB
36#define ARMV8_THUNDER_PERFCTR_L1I_CACHE_PREF_ACCESS		0xEC
37#define ARMV8_THUNDER_PERFCTR_L1I_CACHE_PREF_MISS		0xED
38
39/*
40 * ARMv8 Architectural defined events, not all of these may
41 * be supported on any given implementation. Unsupported events will
42 * be disabled at run-time based on the PMCEID registers.
43 */
44static const unsigned armv8_pmuv3_perf_map[PERF_COUNT_HW_MAX] = {
45	PERF_MAP_ALL_UNSUPPORTED,
46	[PERF_COUNT_HW_CPU_CYCLES]		= ARMV8_PMUV3_PERFCTR_CPU_CYCLES,
47	[PERF_COUNT_HW_INSTRUCTIONS]		= ARMV8_PMUV3_PERFCTR_INST_RETIRED,
48	[PERF_COUNT_HW_CACHE_REFERENCES]	= ARMV8_PMUV3_PERFCTR_L1D_CACHE,
49	[PERF_COUNT_HW_CACHE_MISSES]		= ARMV8_PMUV3_PERFCTR_L1D_CACHE_REFILL,
50	[PERF_COUNT_HW_BRANCH_MISSES]		= ARMV8_PMUV3_PERFCTR_BR_MIS_PRED,
51	[PERF_COUNT_HW_BUS_CYCLES]		= ARMV8_PMUV3_PERFCTR_BUS_CYCLES,
52	[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND]	= ARMV8_PMUV3_PERFCTR_STALL_FRONTEND,
53	[PERF_COUNT_HW_STALLED_CYCLES_BACKEND]	= ARMV8_PMUV3_PERFCTR_STALL_BACKEND,
54};
55
56static const unsigned armv8_pmuv3_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
57						[PERF_COUNT_HW_CACHE_OP_MAX]
58						[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
59	PERF_CACHE_MAP_ALL_UNSUPPORTED,
60
61	[C(L1D)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_PMUV3_PERFCTR_L1D_CACHE,
62	[C(L1D)][C(OP_READ)][C(RESULT_MISS)]	= ARMV8_PMUV3_PERFCTR_L1D_CACHE_REFILL,
63
64	[C(L1I)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_PMUV3_PERFCTR_L1I_CACHE,
65	[C(L1I)][C(OP_READ)][C(RESULT_MISS)]	= ARMV8_PMUV3_PERFCTR_L1I_CACHE_REFILL,
66
67	[C(DTLB)][C(OP_READ)][C(RESULT_MISS)]	= ARMV8_PMUV3_PERFCTR_L1D_TLB_REFILL,
68	[C(DTLB)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_PMUV3_PERFCTR_L1D_TLB,
69
70	[C(ITLB)][C(OP_READ)][C(RESULT_MISS)]	= ARMV8_PMUV3_PERFCTR_L1I_TLB_REFILL,
71	[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_PMUV3_PERFCTR_L1I_TLB,
72
73	[C(LL)][C(OP_READ)][C(RESULT_MISS)]	= ARMV8_PMUV3_PERFCTR_LL_CACHE_MISS_RD,
74	[C(LL)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_PMUV3_PERFCTR_LL_CACHE_RD,
75
76	[C(BPU)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_PMUV3_PERFCTR_BR_PRED,
77	[C(BPU)][C(OP_READ)][C(RESULT_MISS)]	= ARMV8_PMUV3_PERFCTR_BR_MIS_PRED,
78};
79
80static const unsigned armv8_a53_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
81					      [PERF_COUNT_HW_CACHE_OP_MAX]
82					      [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
83	PERF_CACHE_MAP_ALL_UNSUPPORTED,
84
85	[C(L1D)][C(OP_PREFETCH)][C(RESULT_MISS)] = ARMV8_A53_PERFCTR_PREF_LINEFILL,
86
87	[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_IMPDEF_PERFCTR_BUS_ACCESS_RD,
88	[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_BUS_ACCESS_WR,
89};
90
91static const unsigned armv8_a57_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
92					      [PERF_COUNT_HW_CACHE_OP_MAX]
93					      [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
94	PERF_CACHE_MAP_ALL_UNSUPPORTED,
95
96	[C(L1D)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_IMPDEF_PERFCTR_L1D_CACHE_RD,
97	[C(L1D)][C(OP_READ)][C(RESULT_MISS)]	= ARMV8_IMPDEF_PERFCTR_L1D_CACHE_REFILL_RD,
98	[C(L1D)][C(OP_WRITE)][C(RESULT_ACCESS)]	= ARMV8_IMPDEF_PERFCTR_L1D_CACHE_WR,
99	[C(L1D)][C(OP_WRITE)][C(RESULT_MISS)]	= ARMV8_IMPDEF_PERFCTR_L1D_CACHE_REFILL_WR,
100
101	[C(DTLB)][C(OP_READ)][C(RESULT_MISS)]	= ARMV8_IMPDEF_PERFCTR_L1D_TLB_REFILL_RD,
102	[C(DTLB)][C(OP_WRITE)][C(RESULT_MISS)]	= ARMV8_IMPDEF_PERFCTR_L1D_TLB_REFILL_WR,
103
104	[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_IMPDEF_PERFCTR_BUS_ACCESS_RD,
105	[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_BUS_ACCESS_WR,
106};
107
108static const unsigned armv8_a73_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
109					      [PERF_COUNT_HW_CACHE_OP_MAX]
110					      [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
111	PERF_CACHE_MAP_ALL_UNSUPPORTED,
112
113	[C(L1D)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_IMPDEF_PERFCTR_L1D_CACHE_RD,
114	[C(L1D)][C(OP_WRITE)][C(RESULT_ACCESS)]	= ARMV8_IMPDEF_PERFCTR_L1D_CACHE_WR,
115};
116
117static const unsigned armv8_thunder_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
118						   [PERF_COUNT_HW_CACHE_OP_MAX]
119						   [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
120	PERF_CACHE_MAP_ALL_UNSUPPORTED,
121
122	[C(L1D)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_IMPDEF_PERFCTR_L1D_CACHE_RD,
123	[C(L1D)][C(OP_READ)][C(RESULT_MISS)]	= ARMV8_IMPDEF_PERFCTR_L1D_CACHE_REFILL_RD,
124	[C(L1D)][C(OP_WRITE)][C(RESULT_ACCESS)]	= ARMV8_IMPDEF_PERFCTR_L1D_CACHE_WR,
125	[C(L1D)][C(OP_WRITE)][C(RESULT_MISS)]	= ARMV8_THUNDER_PERFCTR_L1D_CACHE_MISS_ST,
126	[C(L1D)][C(OP_PREFETCH)][C(RESULT_ACCESS)] = ARMV8_THUNDER_PERFCTR_L1D_CACHE_PREF_ACCESS,
127	[C(L1D)][C(OP_PREFETCH)][C(RESULT_MISS)] = ARMV8_THUNDER_PERFCTR_L1D_CACHE_PREF_MISS,
128
129	[C(L1I)][C(OP_PREFETCH)][C(RESULT_ACCESS)] = ARMV8_THUNDER_PERFCTR_L1I_CACHE_PREF_ACCESS,
130	[C(L1I)][C(OP_PREFETCH)][C(RESULT_MISS)] = ARMV8_THUNDER_PERFCTR_L1I_CACHE_PREF_MISS,
131
132	[C(DTLB)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_IMPDEF_PERFCTR_L1D_TLB_RD,
133	[C(DTLB)][C(OP_READ)][C(RESULT_MISS)]	= ARMV8_IMPDEF_PERFCTR_L1D_TLB_REFILL_RD,
134	[C(DTLB)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_TLB_WR,
135	[C(DTLB)][C(OP_WRITE)][C(RESULT_MISS)]	= ARMV8_IMPDEF_PERFCTR_L1D_TLB_REFILL_WR,
136};
137
138static const unsigned armv8_vulcan_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
139					      [PERF_COUNT_HW_CACHE_OP_MAX]
140					      [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
141	PERF_CACHE_MAP_ALL_UNSUPPORTED,
142
143	[C(L1D)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_IMPDEF_PERFCTR_L1D_CACHE_RD,
144	[C(L1D)][C(OP_READ)][C(RESULT_MISS)]	= ARMV8_IMPDEF_PERFCTR_L1D_CACHE_REFILL_RD,
145	[C(L1D)][C(OP_WRITE)][C(RESULT_ACCESS)]	= ARMV8_IMPDEF_PERFCTR_L1D_CACHE_WR,
146	[C(L1D)][C(OP_WRITE)][C(RESULT_MISS)]	= ARMV8_IMPDEF_PERFCTR_L1D_CACHE_REFILL_WR,
147
148	[C(DTLB)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_IMPDEF_PERFCTR_L1D_TLB_RD,
149	[C(DTLB)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_TLB_WR,
150	[C(DTLB)][C(OP_READ)][C(RESULT_MISS)]	= ARMV8_IMPDEF_PERFCTR_L1D_TLB_REFILL_RD,
151	[C(DTLB)][C(OP_WRITE)][C(RESULT_MISS)]	= ARMV8_IMPDEF_PERFCTR_L1D_TLB_REFILL_WR,
152
153	[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_IMPDEF_PERFCTR_BUS_ACCESS_RD,
154	[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_BUS_ACCESS_WR,
155};
156
157static ssize_t
158armv8pmu_events_sysfs_show(struct device *dev,
159			   struct device_attribute *attr, char *page)
160{
161	struct perf_pmu_events_attr *pmu_attr;
162
163	pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);
164
165	return sprintf(page, "event=0x%04llx\n", pmu_attr->id);
166}
167
168#define ARMV8_EVENT_ATTR(name, config)						\
169	PMU_EVENT_ATTR_ID(name, armv8pmu_events_sysfs_show, config)
170
171static struct attribute *armv8_pmuv3_event_attrs[] = {
172	/*
173	 * Don't expose the sw_incr event in /sys. It's not usable as writes to
174	 * PMSWINC_EL0 will trap as PMUSERENR.{SW,EN}=={0,0} and event rotation
175	 * means we don't have a fixed event<->counter relationship regardless.
176	 */
177	ARMV8_EVENT_ATTR(l1i_cache_refill, ARMV8_PMUV3_PERFCTR_L1I_CACHE_REFILL),
178	ARMV8_EVENT_ATTR(l1i_tlb_refill, ARMV8_PMUV3_PERFCTR_L1I_TLB_REFILL),
179	ARMV8_EVENT_ATTR(l1d_cache_refill, ARMV8_PMUV3_PERFCTR_L1D_CACHE_REFILL),
180	ARMV8_EVENT_ATTR(l1d_cache, ARMV8_PMUV3_PERFCTR_L1D_CACHE),
181	ARMV8_EVENT_ATTR(l1d_tlb_refill, ARMV8_PMUV3_PERFCTR_L1D_TLB_REFILL),
182	ARMV8_EVENT_ATTR(ld_retired, ARMV8_PMUV3_PERFCTR_LD_RETIRED),
183	ARMV8_EVENT_ATTR(st_retired, ARMV8_PMUV3_PERFCTR_ST_RETIRED),
184	ARMV8_EVENT_ATTR(inst_retired, ARMV8_PMUV3_PERFCTR_INST_RETIRED),
185	ARMV8_EVENT_ATTR(exc_taken, ARMV8_PMUV3_PERFCTR_EXC_TAKEN),
186	ARMV8_EVENT_ATTR(exc_return, ARMV8_PMUV3_PERFCTR_EXC_RETURN),
187	ARMV8_EVENT_ATTR(cid_write_retired, ARMV8_PMUV3_PERFCTR_CID_WRITE_RETIRED),
188	ARMV8_EVENT_ATTR(pc_write_retired, ARMV8_PMUV3_PERFCTR_PC_WRITE_RETIRED),
189	ARMV8_EVENT_ATTR(br_immed_retired, ARMV8_PMUV3_PERFCTR_BR_IMMED_RETIRED),
190	ARMV8_EVENT_ATTR(br_return_retired, ARMV8_PMUV3_PERFCTR_BR_RETURN_RETIRED),
191	ARMV8_EVENT_ATTR(unaligned_ldst_retired, ARMV8_PMUV3_PERFCTR_UNALIGNED_LDST_RETIRED),
192	ARMV8_EVENT_ATTR(br_mis_pred, ARMV8_PMUV3_PERFCTR_BR_MIS_PRED),
193	ARMV8_EVENT_ATTR(cpu_cycles, ARMV8_PMUV3_PERFCTR_CPU_CYCLES),
194	ARMV8_EVENT_ATTR(br_pred, ARMV8_PMUV3_PERFCTR_BR_PRED),
195	ARMV8_EVENT_ATTR(mem_access, ARMV8_PMUV3_PERFCTR_MEM_ACCESS),
196	ARMV8_EVENT_ATTR(l1i_cache, ARMV8_PMUV3_PERFCTR_L1I_CACHE),
197	ARMV8_EVENT_ATTR(l1d_cache_wb, ARMV8_PMUV3_PERFCTR_L1D_CACHE_WB),
198	ARMV8_EVENT_ATTR(l2d_cache, ARMV8_PMUV3_PERFCTR_L2D_CACHE),
199	ARMV8_EVENT_ATTR(l2d_cache_refill, ARMV8_PMUV3_PERFCTR_L2D_CACHE_REFILL),
200	ARMV8_EVENT_ATTR(l2d_cache_wb, ARMV8_PMUV3_PERFCTR_L2D_CACHE_WB),
201	ARMV8_EVENT_ATTR(bus_access, ARMV8_PMUV3_PERFCTR_BUS_ACCESS),
202	ARMV8_EVENT_ATTR(memory_error, ARMV8_PMUV3_PERFCTR_MEMORY_ERROR),
203	ARMV8_EVENT_ATTR(inst_spec, ARMV8_PMUV3_PERFCTR_INST_SPEC),
204	ARMV8_EVENT_ATTR(ttbr_write_retired, ARMV8_PMUV3_PERFCTR_TTBR_WRITE_RETIRED),
205	ARMV8_EVENT_ATTR(bus_cycles, ARMV8_PMUV3_PERFCTR_BUS_CYCLES),
206	/* Don't expose the chain event in /sys, since it's useless in isolation */
207	ARMV8_EVENT_ATTR(l1d_cache_allocate, ARMV8_PMUV3_PERFCTR_L1D_CACHE_ALLOCATE),
208	ARMV8_EVENT_ATTR(l2d_cache_allocate, ARMV8_PMUV3_PERFCTR_L2D_CACHE_ALLOCATE),
209	ARMV8_EVENT_ATTR(br_retired, ARMV8_PMUV3_PERFCTR_BR_RETIRED),
210	ARMV8_EVENT_ATTR(br_mis_pred_retired, ARMV8_PMUV3_PERFCTR_BR_MIS_PRED_RETIRED),
211	ARMV8_EVENT_ATTR(stall_frontend, ARMV8_PMUV3_PERFCTR_STALL_FRONTEND),
212	ARMV8_EVENT_ATTR(stall_backend, ARMV8_PMUV3_PERFCTR_STALL_BACKEND),
213	ARMV8_EVENT_ATTR(l1d_tlb, ARMV8_PMUV3_PERFCTR_L1D_TLB),
214	ARMV8_EVENT_ATTR(l1i_tlb, ARMV8_PMUV3_PERFCTR_L1I_TLB),
215	ARMV8_EVENT_ATTR(l2i_cache, ARMV8_PMUV3_PERFCTR_L2I_CACHE),
216	ARMV8_EVENT_ATTR(l2i_cache_refill, ARMV8_PMUV3_PERFCTR_L2I_CACHE_REFILL),
217	ARMV8_EVENT_ATTR(l3d_cache_allocate, ARMV8_PMUV3_PERFCTR_L3D_CACHE_ALLOCATE),
218	ARMV8_EVENT_ATTR(l3d_cache_refill, ARMV8_PMUV3_PERFCTR_L3D_CACHE_REFILL),
219	ARMV8_EVENT_ATTR(l3d_cache, ARMV8_PMUV3_PERFCTR_L3D_CACHE),
220	ARMV8_EVENT_ATTR(l3d_cache_wb, ARMV8_PMUV3_PERFCTR_L3D_CACHE_WB),
221	ARMV8_EVENT_ATTR(l2d_tlb_refill, ARMV8_PMUV3_PERFCTR_L2D_TLB_REFILL),
222	ARMV8_EVENT_ATTR(l2i_tlb_refill, ARMV8_PMUV3_PERFCTR_L2I_TLB_REFILL),
223	ARMV8_EVENT_ATTR(l2d_tlb, ARMV8_PMUV3_PERFCTR_L2D_TLB),
224	ARMV8_EVENT_ATTR(l2i_tlb, ARMV8_PMUV3_PERFCTR_L2I_TLB),
225	ARMV8_EVENT_ATTR(remote_access, ARMV8_PMUV3_PERFCTR_REMOTE_ACCESS),
226	ARMV8_EVENT_ATTR(ll_cache, ARMV8_PMUV3_PERFCTR_LL_CACHE),
227	ARMV8_EVENT_ATTR(ll_cache_miss, ARMV8_PMUV3_PERFCTR_LL_CACHE_MISS),
228	ARMV8_EVENT_ATTR(dtlb_walk, ARMV8_PMUV3_PERFCTR_DTLB_WALK),
229	ARMV8_EVENT_ATTR(itlb_walk, ARMV8_PMUV3_PERFCTR_ITLB_WALK),
230	ARMV8_EVENT_ATTR(ll_cache_rd, ARMV8_PMUV3_PERFCTR_LL_CACHE_RD),
231	ARMV8_EVENT_ATTR(ll_cache_miss_rd, ARMV8_PMUV3_PERFCTR_LL_CACHE_MISS_RD),
232	ARMV8_EVENT_ATTR(remote_access_rd, ARMV8_PMUV3_PERFCTR_REMOTE_ACCESS_RD),
233	ARMV8_EVENT_ATTR(l1d_cache_lmiss_rd, ARMV8_PMUV3_PERFCTR_L1D_CACHE_LMISS_RD),
234	ARMV8_EVENT_ATTR(op_retired, ARMV8_PMUV3_PERFCTR_OP_RETIRED),
235	ARMV8_EVENT_ATTR(op_spec, ARMV8_PMUV3_PERFCTR_OP_SPEC),
236	ARMV8_EVENT_ATTR(stall, ARMV8_PMUV3_PERFCTR_STALL),
237	ARMV8_EVENT_ATTR(stall_slot_backend, ARMV8_PMUV3_PERFCTR_STALL_SLOT_BACKEND),
238	ARMV8_EVENT_ATTR(stall_slot_frontend, ARMV8_PMUV3_PERFCTR_STALL_SLOT_FRONTEND),
239	ARMV8_EVENT_ATTR(stall_slot, ARMV8_PMUV3_PERFCTR_STALL_SLOT),
240	ARMV8_EVENT_ATTR(sample_pop, ARMV8_SPE_PERFCTR_SAMPLE_POP),
241	ARMV8_EVENT_ATTR(sample_feed, ARMV8_SPE_PERFCTR_SAMPLE_FEED),
242	ARMV8_EVENT_ATTR(sample_filtrate, ARMV8_SPE_PERFCTR_SAMPLE_FILTRATE),
243	ARMV8_EVENT_ATTR(sample_collision, ARMV8_SPE_PERFCTR_SAMPLE_COLLISION),
244	ARMV8_EVENT_ATTR(cnt_cycles, ARMV8_AMU_PERFCTR_CNT_CYCLES),
245	ARMV8_EVENT_ATTR(stall_backend_mem, ARMV8_AMU_PERFCTR_STALL_BACKEND_MEM),
246	ARMV8_EVENT_ATTR(l1i_cache_lmiss, ARMV8_PMUV3_PERFCTR_L1I_CACHE_LMISS),
247	ARMV8_EVENT_ATTR(l2d_cache_lmiss_rd, ARMV8_PMUV3_PERFCTR_L2D_CACHE_LMISS_RD),
248	ARMV8_EVENT_ATTR(l2i_cache_lmiss, ARMV8_PMUV3_PERFCTR_L2I_CACHE_LMISS),
249	ARMV8_EVENT_ATTR(l3d_cache_lmiss_rd, ARMV8_PMUV3_PERFCTR_L3D_CACHE_LMISS_RD),
250	ARMV8_EVENT_ATTR(trb_wrap, ARMV8_PMUV3_PERFCTR_TRB_WRAP),
251	ARMV8_EVENT_ATTR(trb_trig, ARMV8_PMUV3_PERFCTR_TRB_TRIG),
252	ARMV8_EVENT_ATTR(trcextout0, ARMV8_PMUV3_PERFCTR_TRCEXTOUT0),
253	ARMV8_EVENT_ATTR(trcextout1, ARMV8_PMUV3_PERFCTR_TRCEXTOUT1),
254	ARMV8_EVENT_ATTR(trcextout2, ARMV8_PMUV3_PERFCTR_TRCEXTOUT2),
255	ARMV8_EVENT_ATTR(trcextout3, ARMV8_PMUV3_PERFCTR_TRCEXTOUT3),
256	ARMV8_EVENT_ATTR(cti_trigout4, ARMV8_PMUV3_PERFCTR_CTI_TRIGOUT4),
257	ARMV8_EVENT_ATTR(cti_trigout5, ARMV8_PMUV3_PERFCTR_CTI_TRIGOUT5),
258	ARMV8_EVENT_ATTR(cti_trigout6, ARMV8_PMUV3_PERFCTR_CTI_TRIGOUT6),
259	ARMV8_EVENT_ATTR(cti_trigout7, ARMV8_PMUV3_PERFCTR_CTI_TRIGOUT7),
260	ARMV8_EVENT_ATTR(ldst_align_lat, ARMV8_PMUV3_PERFCTR_LDST_ALIGN_LAT),
261	ARMV8_EVENT_ATTR(ld_align_lat, ARMV8_PMUV3_PERFCTR_LD_ALIGN_LAT),
262	ARMV8_EVENT_ATTR(st_align_lat, ARMV8_PMUV3_PERFCTR_ST_ALIGN_LAT),
263	ARMV8_EVENT_ATTR(mem_access_checked, ARMV8_MTE_PERFCTR_MEM_ACCESS_CHECKED),
264	ARMV8_EVENT_ATTR(mem_access_checked_rd, ARMV8_MTE_PERFCTR_MEM_ACCESS_CHECKED_RD),
265	ARMV8_EVENT_ATTR(mem_access_checked_wr, ARMV8_MTE_PERFCTR_MEM_ACCESS_CHECKED_WR),
266	NULL,
267};
268
269static umode_t
270armv8pmu_event_attr_is_visible(struct kobject *kobj,
271			       struct attribute *attr, int unused)
272{
273	struct device *dev = kobj_to_dev(kobj);
274	struct pmu *pmu = dev_get_drvdata(dev);
275	struct arm_pmu *cpu_pmu = container_of(pmu, struct arm_pmu, pmu);
276	struct perf_pmu_events_attr *pmu_attr;
277
278	pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr.attr);
279
280	if (pmu_attr->id < ARMV8_PMUV3_MAX_COMMON_EVENTS &&
281	    test_bit(pmu_attr->id, cpu_pmu->pmceid_bitmap))
282		return attr->mode;
283
284	if (pmu_attr->id >= ARMV8_PMUV3_EXT_COMMON_EVENT_BASE) {
285		u64 id = pmu_attr->id - ARMV8_PMUV3_EXT_COMMON_EVENT_BASE;
286
287		if (id < ARMV8_PMUV3_MAX_COMMON_EVENTS &&
288		    test_bit(id, cpu_pmu->pmceid_ext_bitmap))
289			return attr->mode;
290	}
291
292	return 0;
293}
294
295static const struct attribute_group armv8_pmuv3_events_attr_group = {
296	.name = "events",
297	.attrs = armv8_pmuv3_event_attrs,
298	.is_visible = armv8pmu_event_attr_is_visible,
299};
300
301PMU_FORMAT_ATTR(event, "config:0-15");
302PMU_FORMAT_ATTR(long, "config1:0");
303PMU_FORMAT_ATTR(rdpmc, "config1:1");
304
305static int sysctl_perf_user_access __read_mostly;
306
307static inline bool armv8pmu_event_is_64bit(struct perf_event *event)
308{
309	return event->attr.config1 & 0x1;
310}
311
312static inline bool armv8pmu_event_want_user_access(struct perf_event *event)
313{
314	return event->attr.config1 & 0x2;
315}
316
317static struct attribute *armv8_pmuv3_format_attrs[] = {
318	&format_attr_event.attr,
319	&format_attr_long.attr,
320	&format_attr_rdpmc.attr,
321	NULL,
322};
323
324static const struct attribute_group armv8_pmuv3_format_attr_group = {
325	.name = "format",
326	.attrs = armv8_pmuv3_format_attrs,
327};
328
329static ssize_t slots_show(struct device *dev, struct device_attribute *attr,
330			  char *page)
331{
332	struct pmu *pmu = dev_get_drvdata(dev);
333	struct arm_pmu *cpu_pmu = container_of(pmu, struct arm_pmu, pmu);
334	u32 slots = cpu_pmu->reg_pmmir & ARMV8_PMU_SLOTS_MASK;
335
336	return sysfs_emit(page, "0x%08x\n", slots);
337}
338
339static DEVICE_ATTR_RO(slots);
340
341static ssize_t bus_slots_show(struct device *dev, struct device_attribute *attr,
342			      char *page)
343{
344	struct pmu *pmu = dev_get_drvdata(dev);
345	struct arm_pmu *cpu_pmu = container_of(pmu, struct arm_pmu, pmu);
346	u32 bus_slots = (cpu_pmu->reg_pmmir >> ARMV8_PMU_BUS_SLOTS_SHIFT)
347			& ARMV8_PMU_BUS_SLOTS_MASK;
348
349	return sysfs_emit(page, "0x%08x\n", bus_slots);
350}
351
352static DEVICE_ATTR_RO(bus_slots);
353
354static ssize_t bus_width_show(struct device *dev, struct device_attribute *attr,
355			      char *page)
356{
357	struct pmu *pmu = dev_get_drvdata(dev);
358	struct arm_pmu *cpu_pmu = container_of(pmu, struct arm_pmu, pmu);
359	u32 bus_width = (cpu_pmu->reg_pmmir >> ARMV8_PMU_BUS_WIDTH_SHIFT)
360			& ARMV8_PMU_BUS_WIDTH_MASK;
361	u32 val = 0;
362
363	/* Encoded as Log2(number of bytes), plus one */
364	if (bus_width > 2 && bus_width < 13)
365		val = 1 << (bus_width - 1);
366
367	return sysfs_emit(page, "0x%08x\n", val);
368}
369
370static DEVICE_ATTR_RO(bus_width);
371
372static struct attribute *armv8_pmuv3_caps_attrs[] = {
373	&dev_attr_slots.attr,
374	&dev_attr_bus_slots.attr,
375	&dev_attr_bus_width.attr,
376	NULL,
377};
378
379static const struct attribute_group armv8_pmuv3_caps_attr_group = {
380	.name = "caps",
381	.attrs = armv8_pmuv3_caps_attrs,
382};
383
384/*
385 * Perf Events' indices
386 */
387#define	ARMV8_IDX_CYCLE_COUNTER	0
388#define	ARMV8_IDX_COUNTER0	1
389#define	ARMV8_IDX_CYCLE_COUNTER_USER	32
390
391/*
392 * We unconditionally enable ARMv8.5-PMU long event counter support
393 * (64-bit events) where supported. Indicate if this arm_pmu has long
394 * event counter support.
395 *
396 * On AArch32, long counters make no sense (you can't access the top
397 * bits), so we only enable this on AArch64.
398 */
399static bool armv8pmu_has_long_event(struct arm_pmu *cpu_pmu)
400{
401	return (IS_ENABLED(CONFIG_ARM64) && is_pmuv3p5(cpu_pmu->pmuver));
402}
403
404static inline bool armv8pmu_event_has_user_read(struct perf_event *event)
405{
406	return event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT;
407}
408
409/*
410 * We must chain two programmable counters for 64 bit events,
411 * except when we have allocated the 64bit cycle counter (for CPU
412 * cycles event) or when user space counter access is enabled.
413 */
414static inline bool armv8pmu_event_is_chained(struct perf_event *event)
415{
416	int idx = event->hw.idx;
417	struct arm_pmu *cpu_pmu = to_arm_pmu(event->pmu);
418
419	return !armv8pmu_event_has_user_read(event) &&
420	       armv8pmu_event_is_64bit(event) &&
421	       !armv8pmu_has_long_event(cpu_pmu) &&
422	       (idx != ARMV8_IDX_CYCLE_COUNTER);
423}
424
425/*
426 * ARMv8 low level PMU access
427 */
428
429/*
430 * Perf Event to low level counters mapping
431 */
432#define	ARMV8_IDX_TO_COUNTER(x)	\
433	(((x) - ARMV8_IDX_COUNTER0) & ARMV8_PMU_COUNTER_MASK)
434
435static inline u64 armv8pmu_pmcr_read(void)
436{
437	return read_pmcr();
438}
439
440static inline void armv8pmu_pmcr_write(u64 val)
441{
442	val &= ARMV8_PMU_PMCR_MASK;
443	isb();
444	write_pmcr(val);
445}
446
447static inline int armv8pmu_has_overflowed(u32 pmovsr)
448{
449	return pmovsr & ARMV8_PMU_OVERFLOWED_MASK;
450}
451
452static inline int armv8pmu_counter_has_overflowed(u32 pmnc, int idx)
453{
454	return pmnc & BIT(ARMV8_IDX_TO_COUNTER(idx));
455}
456
457static inline u64 armv8pmu_read_evcntr(int idx)
458{
459	u32 counter = ARMV8_IDX_TO_COUNTER(idx);
460
461	return read_pmevcntrn(counter);
462}
463
464static inline u64 armv8pmu_read_hw_counter(struct perf_event *event)
465{
466	int idx = event->hw.idx;
467	u64 val = armv8pmu_read_evcntr(idx);
468
469	if (armv8pmu_event_is_chained(event))
470		val = (val << 32) | armv8pmu_read_evcntr(idx - 1);
471	return val;
472}
473
474/*
475 * The cycle counter is always a 64-bit counter. When ARMV8_PMU_PMCR_LP
476 * is set the event counters also become 64-bit counters. Unless the
477 * user has requested a long counter (attr.config1) then we want to
478 * interrupt upon 32-bit overflow - we achieve this by applying a bias.
479 */
480static bool armv8pmu_event_needs_bias(struct perf_event *event)
481{
482	struct arm_pmu *cpu_pmu = to_arm_pmu(event->pmu);
483	struct hw_perf_event *hwc = &event->hw;
484	int idx = hwc->idx;
485
486	if (armv8pmu_event_is_64bit(event))
487		return false;
488
489	if (armv8pmu_has_long_event(cpu_pmu) ||
490	    idx == ARMV8_IDX_CYCLE_COUNTER)
491		return true;
492
493	return false;
494}
495
496static u64 armv8pmu_bias_long_counter(struct perf_event *event, u64 value)
497{
498	if (armv8pmu_event_needs_bias(event))
499		value |= GENMASK_ULL(63, 32);
500
501	return value;
502}
503
504static u64 armv8pmu_unbias_long_counter(struct perf_event *event, u64 value)
505{
506	if (armv8pmu_event_needs_bias(event))
507		value &= ~GENMASK_ULL(63, 32);
508
509	return value;
510}
511
512static u64 armv8pmu_read_counter(struct perf_event *event)
513{
514	struct hw_perf_event *hwc = &event->hw;
515	int idx = hwc->idx;
516	u64 value;
517
518	if (idx == ARMV8_IDX_CYCLE_COUNTER)
519		value = read_pmccntr();
520	else
521		value = armv8pmu_read_hw_counter(event);
522
523	return  armv8pmu_unbias_long_counter(event, value);
524}
525
526static inline void armv8pmu_write_evcntr(int idx, u64 value)
527{
528	u32 counter = ARMV8_IDX_TO_COUNTER(idx);
529
530	write_pmevcntrn(counter, value);
531}
532
533static inline void armv8pmu_write_hw_counter(struct perf_event *event,
534					     u64 value)
535{
536	int idx = event->hw.idx;
537
538	if (armv8pmu_event_is_chained(event)) {
539		armv8pmu_write_evcntr(idx, upper_32_bits(value));
540		armv8pmu_write_evcntr(idx - 1, lower_32_bits(value));
541	} else {
542		armv8pmu_write_evcntr(idx, value);
543	}
544}
545
546static void armv8pmu_write_counter(struct perf_event *event, u64 value)
547{
548	struct hw_perf_event *hwc = &event->hw;
549	int idx = hwc->idx;
550
551	value = armv8pmu_bias_long_counter(event, value);
552
553	if (idx == ARMV8_IDX_CYCLE_COUNTER)
554		write_pmccntr(value);
555	else
556		armv8pmu_write_hw_counter(event, value);
557}
558
559static inline void armv8pmu_write_evtype(int idx, u32 val)
560{
561	u32 counter = ARMV8_IDX_TO_COUNTER(idx);
562
563	val &= ARMV8_PMU_EVTYPE_MASK;
564	write_pmevtypern(counter, val);
565}
566
567static inline void armv8pmu_write_event_type(struct perf_event *event)
568{
569	struct hw_perf_event *hwc = &event->hw;
570	int idx = hwc->idx;
571
572	/*
573	 * For chained events, the low counter is programmed to count
574	 * the event of interest and the high counter is programmed
575	 * with CHAIN event code with filters set to count at all ELs.
576	 */
577	if (armv8pmu_event_is_chained(event)) {
578		u32 chain_evt = ARMV8_PMUV3_PERFCTR_CHAIN |
579				ARMV8_PMU_INCLUDE_EL2;
580
581		armv8pmu_write_evtype(idx - 1, hwc->config_base);
582		armv8pmu_write_evtype(idx, chain_evt);
583	} else {
584		if (idx == ARMV8_IDX_CYCLE_COUNTER)
585			write_pmccfiltr(hwc->config_base);
586		else
587			armv8pmu_write_evtype(idx, hwc->config_base);
588	}
589}
590
591static u32 armv8pmu_event_cnten_mask(struct perf_event *event)
592{
593	int counter = ARMV8_IDX_TO_COUNTER(event->hw.idx);
594	u32 mask = BIT(counter);
595
596	if (armv8pmu_event_is_chained(event))
597		mask |= BIT(counter - 1);
598	return mask;
599}
600
601static inline void armv8pmu_enable_counter(u32 mask)
602{
603	/*
604	 * Make sure event configuration register writes are visible before we
605	 * enable the counter.
606	 * */
607	isb();
608	write_pmcntenset(mask);
609}
610
611static inline void armv8pmu_enable_event_counter(struct perf_event *event)
612{
613	struct perf_event_attr *attr = &event->attr;
614	u32 mask = armv8pmu_event_cnten_mask(event);
615
616	kvm_set_pmu_events(mask, attr);
617
618	/* We rely on the hypervisor switch code to enable guest counters */
619	if (!kvm_pmu_counter_deferred(attr))
620		armv8pmu_enable_counter(mask);
621}
622
623static inline void armv8pmu_disable_counter(u32 mask)
624{
625	write_pmcntenclr(mask);
626	/*
627	 * Make sure the effects of disabling the counter are visible before we
628	 * start configuring the event.
629	 */
630	isb();
631}
632
633static inline void armv8pmu_disable_event_counter(struct perf_event *event)
634{
635	struct perf_event_attr *attr = &event->attr;
636	u32 mask = armv8pmu_event_cnten_mask(event);
637
638	kvm_clr_pmu_events(mask);
639
640	/* We rely on the hypervisor switch code to disable guest counters */
641	if (!kvm_pmu_counter_deferred(attr))
642		armv8pmu_disable_counter(mask);
643}
644
645static inline void armv8pmu_enable_intens(u32 mask)
646{
647	write_pmintenset(mask);
648}
649
650static inline void armv8pmu_enable_event_irq(struct perf_event *event)
651{
652	u32 counter = ARMV8_IDX_TO_COUNTER(event->hw.idx);
653	armv8pmu_enable_intens(BIT(counter));
654}
655
656static inline void armv8pmu_disable_intens(u32 mask)
657{
658	write_pmintenclr(mask);
659	isb();
660	/* Clear the overflow flag in case an interrupt is pending. */
661	write_pmovsclr(mask);
662	isb();
663}
664
665static inline void armv8pmu_disable_event_irq(struct perf_event *event)
666{
667	u32 counter = ARMV8_IDX_TO_COUNTER(event->hw.idx);
668	armv8pmu_disable_intens(BIT(counter));
669}
670
671static inline u32 armv8pmu_getreset_flags(void)
672{
673	u32 value;
674
675	/* Read */
676	value = read_pmovsclr();
677
678	/* Write to clear flags */
679	value &= ARMV8_PMU_OVSR_MASK;
680	write_pmovsclr(value);
681
682	return value;
683}
684
685static void update_pmuserenr(u64 val)
686{
687	lockdep_assert_irqs_disabled();
688
689	/*
690	 * The current PMUSERENR_EL0 value might be the value for the guest.
691	 * If that's the case, have KVM keep tracking of the register value
692	 * for the host EL0 so that KVM can restore it before returning to
693	 * the host EL0. Otherwise, update the register now.
694	 */
695	if (kvm_set_pmuserenr(val))
696		return;
697
698	write_pmuserenr(val);
699}
700
701static void armv8pmu_disable_user_access(void)
702{
703	update_pmuserenr(0);
704}
705
706static void armv8pmu_enable_user_access(struct arm_pmu *cpu_pmu)
707{
708	int i;
709	struct pmu_hw_events *cpuc = this_cpu_ptr(cpu_pmu->hw_events);
710
711	/* Clear any unused counters to avoid leaking their contents */
712	for_each_clear_bit(i, cpuc->used_mask, cpu_pmu->num_events) {
713		if (i == ARMV8_IDX_CYCLE_COUNTER)
714			write_pmccntr(0);
715		else
716			armv8pmu_write_evcntr(i, 0);
717	}
718
719	update_pmuserenr(ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_CR);
720}
721
722static void armv8pmu_enable_event(struct perf_event *event)
723{
724	/*
725	 * Enable counter and interrupt, and set the counter to count
726	 * the event that we're interested in.
727	 */
728	armv8pmu_disable_event_counter(event);
729	armv8pmu_write_event_type(event);
730	armv8pmu_enable_event_irq(event);
731	armv8pmu_enable_event_counter(event);
732}
733
734static void armv8pmu_disable_event(struct perf_event *event)
735{
736	armv8pmu_disable_event_counter(event);
737	armv8pmu_disable_event_irq(event);
738}
739
740static void armv8pmu_start(struct arm_pmu *cpu_pmu)
741{
742	struct perf_event_context *ctx;
743	int nr_user = 0;
744
745	ctx = perf_cpu_task_ctx();
746	if (ctx)
747		nr_user = ctx->nr_user;
748
749	if (sysctl_perf_user_access && nr_user)
750		armv8pmu_enable_user_access(cpu_pmu);
751	else
752		armv8pmu_disable_user_access();
753
754	/* Enable all counters */
755	armv8pmu_pmcr_write(armv8pmu_pmcr_read() | ARMV8_PMU_PMCR_E);
756
757	kvm_vcpu_pmu_resync_el0();
758}
759
760static void armv8pmu_stop(struct arm_pmu *cpu_pmu)
761{
762	/* Disable all counters */
763	armv8pmu_pmcr_write(armv8pmu_pmcr_read() & ~ARMV8_PMU_PMCR_E);
764}
765
766static irqreturn_t armv8pmu_handle_irq(struct arm_pmu *cpu_pmu)
767{
768	u32 pmovsr;
769	struct perf_sample_data data;
770	struct pmu_hw_events *cpuc = this_cpu_ptr(cpu_pmu->hw_events);
771	struct pt_regs *regs;
772	int idx;
773
774	/*
775	 * Get and reset the IRQ flags
776	 */
777	pmovsr = armv8pmu_getreset_flags();
778
779	/*
780	 * Did an overflow occur?
781	 */
782	if (!armv8pmu_has_overflowed(pmovsr))
783		return IRQ_NONE;
784
785	/*
786	 * Handle the counter(s) overflow(s)
787	 */
788	regs = get_irq_regs();
789
790	/*
791	 * Stop the PMU while processing the counter overflows
792	 * to prevent skews in group events.
793	 */
794	armv8pmu_stop(cpu_pmu);
795	for (idx = 0; idx < cpu_pmu->num_events; ++idx) {
796		struct perf_event *event = cpuc->events[idx];
797		struct hw_perf_event *hwc;
798
799		/* Ignore if we don't have an event. */
800		if (!event)
801			continue;
802
803		/*
804		 * We have a single interrupt for all counters. Check that
805		 * each counter has overflowed before we process it.
806		 */
807		if (!armv8pmu_counter_has_overflowed(pmovsr, idx))
808			continue;
809
810		hwc = &event->hw;
811		armpmu_event_update(event);
812		perf_sample_data_init(&data, 0, hwc->last_period);
813		if (!armpmu_event_set_period(event))
814			continue;
815
816		/*
817		 * Perf event overflow will queue the processing of the event as
818		 * an irq_work which will be taken care of in the handling of
819		 * IPI_IRQ_WORK.
820		 */
821		if (perf_event_overflow(event, &data, regs))
822			cpu_pmu->disable(event);
823	}
824	armv8pmu_start(cpu_pmu);
825
826	return IRQ_HANDLED;
827}
828
829static int armv8pmu_get_single_idx(struct pmu_hw_events *cpuc,
830				    struct arm_pmu *cpu_pmu)
831{
832	int idx;
833
834	for (idx = ARMV8_IDX_COUNTER0; idx < cpu_pmu->num_events; idx++) {
835		if (!test_and_set_bit(idx, cpuc->used_mask))
836			return idx;
837	}
838	return -EAGAIN;
839}
840
841static int armv8pmu_get_chain_idx(struct pmu_hw_events *cpuc,
842				   struct arm_pmu *cpu_pmu)
843{
844	int idx;
845
846	/*
847	 * Chaining requires two consecutive event counters, where
848	 * the lower idx must be even.
849	 */
850	for (idx = ARMV8_IDX_COUNTER0 + 1; idx < cpu_pmu->num_events; idx += 2) {
851		if (!test_and_set_bit(idx, cpuc->used_mask)) {
852			/* Check if the preceding even counter is available */
853			if (!test_and_set_bit(idx - 1, cpuc->used_mask))
854				return idx;
855			/* Release the Odd counter */
856			clear_bit(idx, cpuc->used_mask);
857		}
858	}
859	return -EAGAIN;
860}
861
862static int armv8pmu_get_event_idx(struct pmu_hw_events *cpuc,
863				  struct perf_event *event)
864{
865	struct arm_pmu *cpu_pmu = to_arm_pmu(event->pmu);
866	struct hw_perf_event *hwc = &event->hw;
867	unsigned long evtype = hwc->config_base & ARMV8_PMU_EVTYPE_EVENT;
868
869	/* Always prefer to place a cycle counter into the cycle counter. */
870	if (evtype == ARMV8_PMUV3_PERFCTR_CPU_CYCLES) {
871		if (!test_and_set_bit(ARMV8_IDX_CYCLE_COUNTER, cpuc->used_mask))
872			return ARMV8_IDX_CYCLE_COUNTER;
873		else if (armv8pmu_event_is_64bit(event) &&
874			   armv8pmu_event_want_user_access(event) &&
875			   !armv8pmu_has_long_event(cpu_pmu))
876				return -EAGAIN;
877	}
878
879	/*
880	 * Otherwise use events counters
881	 */
882	if (armv8pmu_event_is_chained(event))
883		return	armv8pmu_get_chain_idx(cpuc, cpu_pmu);
884	else
885		return armv8pmu_get_single_idx(cpuc, cpu_pmu);
886}
887
888static void armv8pmu_clear_event_idx(struct pmu_hw_events *cpuc,
889				     struct perf_event *event)
890{
891	int idx = event->hw.idx;
892
893	clear_bit(idx, cpuc->used_mask);
894	if (armv8pmu_event_is_chained(event))
895		clear_bit(idx - 1, cpuc->used_mask);
896}
897
898static int armv8pmu_user_event_idx(struct perf_event *event)
899{
900	if (!sysctl_perf_user_access || !armv8pmu_event_has_user_read(event))
901		return 0;
902
903	/*
904	 * We remap the cycle counter index to 32 to
905	 * match the offset applied to the rest of
906	 * the counter indices.
907	 */
908	if (event->hw.idx == ARMV8_IDX_CYCLE_COUNTER)
909		return ARMV8_IDX_CYCLE_COUNTER_USER;
910
911	return event->hw.idx;
912}
913
914/*
915 * Add an event filter to a given event.
916 */
917static int armv8pmu_set_event_filter(struct hw_perf_event *event,
918				     struct perf_event_attr *attr)
919{
920	unsigned long config_base = 0;
921
922	if (attr->exclude_idle)
923		return -EPERM;
924
925	/*
926	 * If we're running in hyp mode, then we *are* the hypervisor.
927	 * Therefore we ignore exclude_hv in this configuration, since
928	 * there's no hypervisor to sample anyway. This is consistent
929	 * with other architectures (x86 and Power).
930	 */
931	if (is_kernel_in_hyp_mode()) {
932		if (!attr->exclude_kernel && !attr->exclude_host)
933			config_base |= ARMV8_PMU_INCLUDE_EL2;
934		if (attr->exclude_guest)
935			config_base |= ARMV8_PMU_EXCLUDE_EL1;
936		if (attr->exclude_host)
937			config_base |= ARMV8_PMU_EXCLUDE_EL0;
938	} else {
939		if (!attr->exclude_hv && !attr->exclude_host)
940			config_base |= ARMV8_PMU_INCLUDE_EL2;
941	}
942
943	/*
944	 * Filter out !VHE kernels and guest kernels
945	 */
946	if (attr->exclude_kernel)
947		config_base |= ARMV8_PMU_EXCLUDE_EL1;
948
949	if (attr->exclude_user)
950		config_base |= ARMV8_PMU_EXCLUDE_EL0;
951
952	/*
953	 * Install the filter into config_base as this is used to
954	 * construct the event type.
955	 */
956	event->config_base = config_base;
957
958	return 0;
959}
960
961static void armv8pmu_reset(void *info)
962{
963	struct arm_pmu *cpu_pmu = (struct arm_pmu *)info;
964	u64 pmcr;
965
966	/* The counter and interrupt enable registers are unknown at reset. */
967	armv8pmu_disable_counter(U32_MAX);
968	armv8pmu_disable_intens(U32_MAX);
969
970	/* Clear the counters we flip at guest entry/exit */
971	kvm_clr_pmu_events(U32_MAX);
972
973	/*
974	 * Initialize & Reset PMNC. Request overflow interrupt for
975	 * 64 bit cycle counter but cheat in armv8pmu_write_counter().
976	 */
977	pmcr = ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C | ARMV8_PMU_PMCR_LC;
978
979	/* Enable long event counter support where available */
980	if (armv8pmu_has_long_event(cpu_pmu))
981		pmcr |= ARMV8_PMU_PMCR_LP;
982
983	armv8pmu_pmcr_write(pmcr);
984}
985
986static int __armv8_pmuv3_map_event_id(struct arm_pmu *armpmu,
987				      struct perf_event *event)
988{
989	if (event->attr.type == PERF_TYPE_HARDWARE &&
990	    event->attr.config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS) {
991
992		if (test_bit(ARMV8_PMUV3_PERFCTR_PC_WRITE_RETIRED,
993			     armpmu->pmceid_bitmap))
994			return ARMV8_PMUV3_PERFCTR_PC_WRITE_RETIRED;
995
996		if (test_bit(ARMV8_PMUV3_PERFCTR_BR_RETIRED,
997			     armpmu->pmceid_bitmap))
998			return ARMV8_PMUV3_PERFCTR_BR_RETIRED;
999
1000		return HW_OP_UNSUPPORTED;
1001	}
1002
1003	return armpmu_map_event(event, &armv8_pmuv3_perf_map,
1004				&armv8_pmuv3_perf_cache_map,
1005				ARMV8_PMU_EVTYPE_EVENT);
1006}
1007
1008static int __armv8_pmuv3_map_event(struct perf_event *event,
1009				   const unsigned (*extra_event_map)
1010						  [PERF_COUNT_HW_MAX],
1011				   const unsigned (*extra_cache_map)
1012						  [PERF_COUNT_HW_CACHE_MAX]
1013						  [PERF_COUNT_HW_CACHE_OP_MAX]
1014						  [PERF_COUNT_HW_CACHE_RESULT_MAX])
1015{
1016	int hw_event_id;
1017	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
1018
1019	hw_event_id = __armv8_pmuv3_map_event_id(armpmu, event);
1020
1021	/*
1022	 * CHAIN events only work when paired with an adjacent counter, and it
1023	 * never makes sense for a user to open one in isolation, as they'll be
1024	 * rotated arbitrarily.
1025	 */
1026	if (hw_event_id == ARMV8_PMUV3_PERFCTR_CHAIN)
1027		return -EINVAL;
1028
1029	if (armv8pmu_event_is_64bit(event))
1030		event->hw.flags |= ARMPMU_EVT_64BIT;
1031
1032	/*
1033	 * User events must be allocated into a single counter, and so
1034	 * must not be chained.
1035	 *
1036	 * Most 64-bit events require long counter support, but 64-bit
1037	 * CPU_CYCLES events can be placed into the dedicated cycle
1038	 * counter when this is free.
1039	 */
1040	if (armv8pmu_event_want_user_access(event)) {
1041		if (!(event->attach_state & PERF_ATTACH_TASK))
1042			return -EINVAL;
1043		if (armv8pmu_event_is_64bit(event) &&
1044		    (hw_event_id != ARMV8_PMUV3_PERFCTR_CPU_CYCLES) &&
1045		    !armv8pmu_has_long_event(armpmu))
1046			return -EOPNOTSUPP;
1047
1048		event->hw.flags |= PERF_EVENT_FLAG_USER_READ_CNT;
1049	}
1050
1051	/* Only expose micro/arch events supported by this PMU */
1052	if ((hw_event_id > 0) && (hw_event_id < ARMV8_PMUV3_MAX_COMMON_EVENTS)
1053	    && test_bit(hw_event_id, armpmu->pmceid_bitmap)) {
1054		return hw_event_id;
1055	}
1056
1057	return armpmu_map_event(event, extra_event_map, extra_cache_map,
1058				ARMV8_PMU_EVTYPE_EVENT);
1059}
1060
1061static int armv8_pmuv3_map_event(struct perf_event *event)
1062{
1063	return __armv8_pmuv3_map_event(event, NULL, NULL);
1064}
1065
1066static int armv8_a53_map_event(struct perf_event *event)
1067{
1068	return __armv8_pmuv3_map_event(event, NULL, &armv8_a53_perf_cache_map);
1069}
1070
1071static int armv8_a57_map_event(struct perf_event *event)
1072{
1073	return __armv8_pmuv3_map_event(event, NULL, &armv8_a57_perf_cache_map);
1074}
1075
1076static int armv8_a73_map_event(struct perf_event *event)
1077{
1078	return __armv8_pmuv3_map_event(event, NULL, &armv8_a73_perf_cache_map);
1079}
1080
1081static int armv8_thunder_map_event(struct perf_event *event)
1082{
1083	return __armv8_pmuv3_map_event(event, NULL,
1084				       &armv8_thunder_perf_cache_map);
1085}
1086
1087static int armv8_vulcan_map_event(struct perf_event *event)
1088{
1089	return __armv8_pmuv3_map_event(event, NULL,
1090				       &armv8_vulcan_perf_cache_map);
1091}
1092
1093struct armv8pmu_probe_info {
1094	struct arm_pmu *pmu;
1095	bool present;
1096};
1097
1098static void __armv8pmu_probe_pmu(void *info)
1099{
1100	struct armv8pmu_probe_info *probe = info;
1101	struct arm_pmu *cpu_pmu = probe->pmu;
1102	u64 pmceid_raw[2];
1103	u32 pmceid[2];
1104	int pmuver;
1105
1106	pmuver = read_pmuver();
1107	if (!pmuv3_implemented(pmuver))
1108		return;
1109
1110	cpu_pmu->pmuver = pmuver;
1111	probe->present = true;
1112
1113	/* Read the nb of CNTx counters supported from PMNC */
1114	cpu_pmu->num_events = (armv8pmu_pmcr_read() >> ARMV8_PMU_PMCR_N_SHIFT)
1115		& ARMV8_PMU_PMCR_N_MASK;
1116
1117	/* Add the CPU cycles counter */
1118	cpu_pmu->num_events += 1;
1119
1120	pmceid[0] = pmceid_raw[0] = read_pmceid0();
1121	pmceid[1] = pmceid_raw[1] = read_pmceid1();
1122
1123	bitmap_from_arr32(cpu_pmu->pmceid_bitmap,
1124			     pmceid, ARMV8_PMUV3_MAX_COMMON_EVENTS);
1125
1126	pmceid[0] = pmceid_raw[0] >> 32;
1127	pmceid[1] = pmceid_raw[1] >> 32;
1128
1129	bitmap_from_arr32(cpu_pmu->pmceid_ext_bitmap,
1130			     pmceid, ARMV8_PMUV3_MAX_COMMON_EVENTS);
1131
1132	/* store PMMIR register for sysfs */
1133	if (is_pmuv3p4(pmuver) && (pmceid_raw[1] & BIT(31)))
1134		cpu_pmu->reg_pmmir = read_pmmir();
1135	else
1136		cpu_pmu->reg_pmmir = 0;
1137}
1138
1139static int armv8pmu_probe_pmu(struct arm_pmu *cpu_pmu)
1140{
1141	struct armv8pmu_probe_info probe = {
1142		.pmu = cpu_pmu,
1143		.present = false,
1144	};
1145	int ret;
1146
1147	ret = smp_call_function_any(&cpu_pmu->supported_cpus,
1148				    __armv8pmu_probe_pmu,
1149				    &probe, 1);
1150	if (ret)
1151		return ret;
1152
1153	return probe.present ? 0 : -ENODEV;
1154}
1155
1156static void armv8pmu_disable_user_access_ipi(void *unused)
1157{
1158	armv8pmu_disable_user_access();
1159}
1160
1161static int armv8pmu_proc_user_access_handler(struct ctl_table *table, int write,
1162		void *buffer, size_t *lenp, loff_t *ppos)
1163{
1164	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
1165	if (ret || !write || sysctl_perf_user_access)
1166		return ret;
1167
1168	on_each_cpu(armv8pmu_disable_user_access_ipi, NULL, 1);
1169	return 0;
1170}
1171
1172static struct ctl_table armv8_pmu_sysctl_table[] = {
1173	{
1174		.procname       = "perf_user_access",
1175		.data		= &sysctl_perf_user_access,
1176		.maxlen		= sizeof(unsigned int),
1177		.mode           = 0644,
1178		.proc_handler	= armv8pmu_proc_user_access_handler,
1179		.extra1		= SYSCTL_ZERO,
1180		.extra2		= SYSCTL_ONE,
1181	},
1182	{ }
1183};
1184
1185static void armv8_pmu_register_sysctl_table(void)
1186{
1187	static u32 tbl_registered = 0;
1188
1189	if (!cmpxchg_relaxed(&tbl_registered, 0, 1))
1190		register_sysctl("kernel", armv8_pmu_sysctl_table);
1191}
1192
1193static int armv8_pmu_init(struct arm_pmu *cpu_pmu, char *name,
1194			  int (*map_event)(struct perf_event *event),
1195			  const struct attribute_group *events,
1196			  const struct attribute_group *format,
1197			  const struct attribute_group *caps)
1198{
1199	int ret = armv8pmu_probe_pmu(cpu_pmu);
1200	if (ret)
1201		return ret;
1202
1203	cpu_pmu->handle_irq		= armv8pmu_handle_irq;
1204	cpu_pmu->enable			= armv8pmu_enable_event;
1205	cpu_pmu->disable		= armv8pmu_disable_event;
1206	cpu_pmu->read_counter		= armv8pmu_read_counter;
1207	cpu_pmu->write_counter		= armv8pmu_write_counter;
1208	cpu_pmu->get_event_idx		= armv8pmu_get_event_idx;
1209	cpu_pmu->clear_event_idx	= armv8pmu_clear_event_idx;
1210	cpu_pmu->start			= armv8pmu_start;
1211	cpu_pmu->stop			= armv8pmu_stop;
1212	cpu_pmu->reset			= armv8pmu_reset;
1213	cpu_pmu->set_event_filter	= armv8pmu_set_event_filter;
1214
1215	cpu_pmu->pmu.event_idx		= armv8pmu_user_event_idx;
1216
1217	cpu_pmu->name			= name;
1218	cpu_pmu->map_event		= map_event;
1219	cpu_pmu->attr_groups[ARMPMU_ATTR_GROUP_EVENTS] = events ?
1220			events : &armv8_pmuv3_events_attr_group;
1221	cpu_pmu->attr_groups[ARMPMU_ATTR_GROUP_FORMATS] = format ?
1222			format : &armv8_pmuv3_format_attr_group;
1223	cpu_pmu->attr_groups[ARMPMU_ATTR_GROUP_CAPS] = caps ?
1224			caps : &armv8_pmuv3_caps_attr_group;
1225
1226	armv8_pmu_register_sysctl_table();
1227	return 0;
1228}
1229
1230static int armv8_pmu_init_nogroups(struct arm_pmu *cpu_pmu, char *name,
1231				   int (*map_event)(struct perf_event *event))
1232{
1233	return armv8_pmu_init(cpu_pmu, name, map_event, NULL, NULL, NULL);
1234}
1235
1236#define PMUV3_INIT_SIMPLE(name)						\
1237static int name##_pmu_init(struct arm_pmu *cpu_pmu)			\
1238{									\
1239	return armv8_pmu_init_nogroups(cpu_pmu, #name, armv8_pmuv3_map_event);\
1240}
1241
1242PMUV3_INIT_SIMPLE(armv8_pmuv3)
1243
1244PMUV3_INIT_SIMPLE(armv8_cortex_a34)
1245PMUV3_INIT_SIMPLE(armv8_cortex_a55)
1246PMUV3_INIT_SIMPLE(armv8_cortex_a65)
1247PMUV3_INIT_SIMPLE(armv8_cortex_a75)
1248PMUV3_INIT_SIMPLE(armv8_cortex_a76)
1249PMUV3_INIT_SIMPLE(armv8_cortex_a77)
1250PMUV3_INIT_SIMPLE(armv8_cortex_a78)
1251PMUV3_INIT_SIMPLE(armv9_cortex_a510)
1252PMUV3_INIT_SIMPLE(armv9_cortex_a520)
1253PMUV3_INIT_SIMPLE(armv9_cortex_a710)
1254PMUV3_INIT_SIMPLE(armv9_cortex_a715)
1255PMUV3_INIT_SIMPLE(armv9_cortex_a720)
1256PMUV3_INIT_SIMPLE(armv8_cortex_x1)
1257PMUV3_INIT_SIMPLE(armv9_cortex_x2)
1258PMUV3_INIT_SIMPLE(armv9_cortex_x3)
1259PMUV3_INIT_SIMPLE(armv9_cortex_x4)
1260PMUV3_INIT_SIMPLE(armv8_neoverse_e1)
1261PMUV3_INIT_SIMPLE(armv8_neoverse_n1)
1262PMUV3_INIT_SIMPLE(armv9_neoverse_n2)
1263PMUV3_INIT_SIMPLE(armv8_neoverse_v1)
1264
1265PMUV3_INIT_SIMPLE(armv8_nvidia_carmel)
1266PMUV3_INIT_SIMPLE(armv8_nvidia_denver)
1267
1268static int armv8_a35_pmu_init(struct arm_pmu *cpu_pmu)
1269{
1270	return armv8_pmu_init_nogroups(cpu_pmu, "armv8_cortex_a35",
1271				       armv8_a53_map_event);
1272}
1273
1274static int armv8_a53_pmu_init(struct arm_pmu *cpu_pmu)
1275{
1276	return armv8_pmu_init_nogroups(cpu_pmu, "armv8_cortex_a53",
1277				       armv8_a53_map_event);
1278}
1279
1280static int armv8_a57_pmu_init(struct arm_pmu *cpu_pmu)
1281{
1282	return armv8_pmu_init_nogroups(cpu_pmu, "armv8_cortex_a57",
1283				       armv8_a57_map_event);
1284}
1285
1286static int armv8_a72_pmu_init(struct arm_pmu *cpu_pmu)
1287{
1288	return armv8_pmu_init_nogroups(cpu_pmu, "armv8_cortex_a72",
1289				       armv8_a57_map_event);
1290}
1291
1292static int armv8_a73_pmu_init(struct arm_pmu *cpu_pmu)
1293{
1294	return armv8_pmu_init_nogroups(cpu_pmu, "armv8_cortex_a73",
1295				       armv8_a73_map_event);
1296}
1297
1298static int armv8_thunder_pmu_init(struct arm_pmu *cpu_pmu)
1299{
1300	return armv8_pmu_init_nogroups(cpu_pmu, "armv8_cavium_thunder",
1301				       armv8_thunder_map_event);
1302}
1303
1304static int armv8_vulcan_pmu_init(struct arm_pmu *cpu_pmu)
1305{
1306	return armv8_pmu_init_nogroups(cpu_pmu, "armv8_brcm_vulcan",
1307				       armv8_vulcan_map_event);
1308}
1309
1310static const struct of_device_id armv8_pmu_of_device_ids[] = {
1311	{.compatible = "arm,armv8-pmuv3",	.data = armv8_pmuv3_pmu_init},
1312	{.compatible = "arm,cortex-a34-pmu",	.data = armv8_cortex_a34_pmu_init},
1313	{.compatible = "arm,cortex-a35-pmu",	.data = armv8_a35_pmu_init},
1314	{.compatible = "arm,cortex-a53-pmu",	.data = armv8_a53_pmu_init},
1315	{.compatible = "arm,cortex-a55-pmu",	.data = armv8_cortex_a55_pmu_init},
1316	{.compatible = "arm,cortex-a57-pmu",	.data = armv8_a57_pmu_init},
1317	{.compatible = "arm,cortex-a65-pmu",	.data = armv8_cortex_a65_pmu_init},
1318	{.compatible = "arm,cortex-a72-pmu",	.data = armv8_a72_pmu_init},
1319	{.compatible = "arm,cortex-a73-pmu",	.data = armv8_a73_pmu_init},
1320	{.compatible = "arm,cortex-a75-pmu",	.data = armv8_cortex_a75_pmu_init},
1321	{.compatible = "arm,cortex-a76-pmu",	.data = armv8_cortex_a76_pmu_init},
1322	{.compatible = "arm,cortex-a77-pmu",	.data = armv8_cortex_a77_pmu_init},
1323	{.compatible = "arm,cortex-a78-pmu",	.data = armv8_cortex_a78_pmu_init},
1324	{.compatible = "arm,cortex-a510-pmu",	.data = armv9_cortex_a510_pmu_init},
1325	{.compatible = "arm,cortex-a520-pmu",	.data = armv9_cortex_a520_pmu_init},
1326	{.compatible = "arm,cortex-a710-pmu",	.data = armv9_cortex_a710_pmu_init},
1327	{.compatible = "arm,cortex-a715-pmu",	.data = armv9_cortex_a715_pmu_init},
1328	{.compatible = "arm,cortex-a720-pmu",	.data = armv9_cortex_a720_pmu_init},
1329	{.compatible = "arm,cortex-x1-pmu",	.data = armv8_cortex_x1_pmu_init},
1330	{.compatible = "arm,cortex-x2-pmu",	.data = armv9_cortex_x2_pmu_init},
1331	{.compatible = "arm,cortex-x3-pmu",	.data = armv9_cortex_x3_pmu_init},
1332	{.compatible = "arm,cortex-x4-pmu",	.data = armv9_cortex_x4_pmu_init},
1333	{.compatible = "arm,neoverse-e1-pmu",	.data = armv8_neoverse_e1_pmu_init},
1334	{.compatible = "arm,neoverse-n1-pmu",	.data = armv8_neoverse_n1_pmu_init},
1335	{.compatible = "arm,neoverse-n2-pmu",	.data = armv9_neoverse_n2_pmu_init},
1336	{.compatible = "arm,neoverse-v1-pmu",	.data = armv8_neoverse_v1_pmu_init},
1337	{.compatible = "cavium,thunder-pmu",	.data = armv8_thunder_pmu_init},
1338	{.compatible = "brcm,vulcan-pmu",	.data = armv8_vulcan_pmu_init},
1339	{.compatible = "nvidia,carmel-pmu",	.data = armv8_nvidia_carmel_pmu_init},
1340	{.compatible = "nvidia,denver-pmu",	.data = armv8_nvidia_denver_pmu_init},
1341	{},
1342};
1343
1344static int armv8_pmu_device_probe(struct platform_device *pdev)
1345{
1346	return arm_pmu_device_probe(pdev, armv8_pmu_of_device_ids, NULL);
1347}
1348
1349static struct platform_driver armv8_pmu_driver = {
1350	.driver		= {
1351		.name	= ARMV8_PMU_PDEV_NAME,
1352		.of_match_table = armv8_pmu_of_device_ids,
1353		.suppress_bind_attrs = true,
1354	},
1355	.probe		= armv8_pmu_device_probe,
1356};
1357
1358static int __init armv8_pmu_driver_init(void)
1359{
1360	int ret;
1361
1362	if (acpi_disabled)
1363		ret = platform_driver_register(&armv8_pmu_driver);
1364	else
1365		ret = arm_pmu_acpi_probe(armv8_pmuv3_pmu_init);
1366
1367	if (!ret)
1368		lockup_detector_retry_init();
1369
1370	return ret;
1371}
1372device_initcall(armv8_pmu_driver_init)
1373
1374void arch_perf_update_userpage(struct perf_event *event,
1375			       struct perf_event_mmap_page *userpg, u64 now)
1376{
1377	struct clock_read_data *rd;
1378	unsigned int seq;
1379	u64 ns;
1380
1381	userpg->cap_user_time = 0;
1382	userpg->cap_user_time_zero = 0;
1383	userpg->cap_user_time_short = 0;
1384	userpg->cap_user_rdpmc = armv8pmu_event_has_user_read(event);
1385
1386	if (userpg->cap_user_rdpmc) {
1387		if (event->hw.flags & ARMPMU_EVT_64BIT)
1388			userpg->pmc_width = 64;
1389		else
1390			userpg->pmc_width = 32;
1391	}
1392
1393	do {
1394		rd = sched_clock_read_begin(&seq);
1395
1396		if (rd->read_sched_clock != arch_timer_read_counter)
1397			return;
1398
1399		userpg->time_mult = rd->mult;
1400		userpg->time_shift = rd->shift;
1401		userpg->time_zero = rd->epoch_ns;
1402		userpg->time_cycles = rd->epoch_cyc;
1403		userpg->time_mask = rd->sched_clock_mask;
1404
1405		/*
1406		 * Subtract the cycle base, such that software that
1407		 * doesn't know about cap_user_time_short still 'works'
1408		 * assuming no wraps.
1409		 */
1410		ns = mul_u64_u32_shr(rd->epoch_cyc, rd->mult, rd->shift);
1411		userpg->time_zero -= ns;
1412
1413	} while (sched_clock_read_retry(seq));
1414
1415	userpg->time_offset = userpg->time_zero - now;
1416
1417	/*
1418	 * time_shift is not expected to be greater than 31 due to
1419	 * the original published conversion algorithm shifting a
1420	 * 32-bit value (now specifies a 64-bit value) - refer
1421	 * perf_event_mmap_page documentation in perf_event.h.
1422	 */
1423	if (userpg->time_shift == 32) {
1424		userpg->time_shift = 31;
1425		userpg->time_mult >>= 1;
1426	}
1427
1428	/*
1429	 * Internal timekeeping for enabled/running/stopped times
1430	 * is always computed with the sched_clock.
1431	 */
1432	userpg->cap_user_time = 1;
1433	userpg->cap_user_time_zero = 1;
1434	userpg->cap_user_time_short = 1;
1435}
1436