xref: /kernel/linux/linux-6.6/drivers/pci/pci.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * PCI Bus Services, see include/linux/pci.h for further explanation.
4 *
5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6 * David Mosberger-Tang
7 *
8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9 */
10
11#include <linux/acpi.h>
12#include <linux/kernel.h>
13#include <linux/delay.h>
14#include <linux/dmi.h>
15#include <linux/init.h>
16#include <linux/msi.h>
17#include <linux/of.h>
18#include <linux/pci.h>
19#include <linux/pm.h>
20#include <linux/slab.h>
21#include <linux/module.h>
22#include <linux/spinlock.h>
23#include <linux/string.h>
24#include <linux/log2.h>
25#include <linux/logic_pio.h>
26#include <linux/pm_wakeup.h>
27#include <linux/interrupt.h>
28#include <linux/device.h>
29#include <linux/pm_runtime.h>
30#include <linux/pci_hotplug.h>
31#include <linux/vmalloc.h>
32#include <asm/dma.h>
33#include <linux/aer.h>
34#include <linux/bitfield.h>
35#include "pci.h"
36
37DEFINE_MUTEX(pci_slot_mutex);
38
39const char *pci_power_names[] = {
40	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
41};
42EXPORT_SYMBOL_GPL(pci_power_names);
43
44#ifdef CONFIG_X86_32
45int isa_dma_bridge_buggy;
46EXPORT_SYMBOL(isa_dma_bridge_buggy);
47#endif
48
49int pci_pci_problems;
50EXPORT_SYMBOL(pci_pci_problems);
51
52unsigned int pci_pm_d3hot_delay;
53
54static void pci_pme_list_scan(struct work_struct *work);
55
56static LIST_HEAD(pci_pme_list);
57static DEFINE_MUTEX(pci_pme_list_mutex);
58static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
59
60struct pci_pme_device {
61	struct list_head list;
62	struct pci_dev *dev;
63};
64
65#define PME_TIMEOUT 1000 /* How long between PME checks */
66
67/*
68 * Following exit from Conventional Reset, devices must be ready within 1 sec
69 * (PCIe r6.0 sec 6.6.1).  A D3cold to D0 transition implies a Conventional
70 * Reset (PCIe r6.0 sec 5.8).
71 */
72#define PCI_RESET_WAIT 1000 /* msec */
73
74/*
75 * Devices may extend the 1 sec period through Request Retry Status
76 * completions (PCIe r6.0 sec 2.3.1).  The spec does not provide an upper
77 * limit, but 60 sec ought to be enough for any device to become
78 * responsive.
79 */
80#define PCIE_RESET_READY_POLL_MS 60000 /* msec */
81
82static void pci_dev_d3_sleep(struct pci_dev *dev)
83{
84	unsigned int delay_ms = max(dev->d3hot_delay, pci_pm_d3hot_delay);
85	unsigned int upper;
86
87	if (delay_ms) {
88		/* Use a 20% upper bound, 1ms minimum */
89		upper = max(DIV_ROUND_CLOSEST(delay_ms, 5), 1U);
90		usleep_range(delay_ms * USEC_PER_MSEC,
91			     (delay_ms + upper) * USEC_PER_MSEC);
92	}
93}
94
95bool pci_reset_supported(struct pci_dev *dev)
96{
97	return dev->reset_methods[0] != 0;
98}
99
100#ifdef CONFIG_PCI_DOMAINS
101int pci_domains_supported = 1;
102#endif
103
104#define DEFAULT_CARDBUS_IO_SIZE		(256)
105#define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
106/* pci=cbmemsize=nnM,cbiosize=nn can override this */
107unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
108unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
109
110#define DEFAULT_HOTPLUG_IO_SIZE		(256)
111#define DEFAULT_HOTPLUG_MMIO_SIZE	(2*1024*1024)
112#define DEFAULT_HOTPLUG_MMIO_PREF_SIZE	(2*1024*1024)
113/* hpiosize=nn can override this */
114unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
115/*
116 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
117 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
118 * pci=hpmemsize=nnM overrides both
119 */
120unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
121unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
122
123#define DEFAULT_HOTPLUG_BUS_SIZE	1
124unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
125
126
127/* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
128#ifdef CONFIG_PCIE_BUS_TUNE_OFF
129enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
130#elif defined CONFIG_PCIE_BUS_SAFE
131enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
132#elif defined CONFIG_PCIE_BUS_PERFORMANCE
133enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
134#elif defined CONFIG_PCIE_BUS_PEER2PEER
135enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
136#else
137enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
138#endif
139
140/*
141 * The default CLS is used if arch didn't set CLS explicitly and not
142 * all pci devices agree on the same value.  Arch can override either
143 * the dfl or actual value as it sees fit.  Don't forget this is
144 * measured in 32-bit words, not bytes.
145 */
146u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
147u8 pci_cache_line_size;
148
149/*
150 * If we set up a device for bus mastering, we need to check the latency
151 * timer as certain BIOSes forget to set it properly.
152 */
153unsigned int pcibios_max_latency = 255;
154
155/* If set, the PCIe ARI capability will not be used. */
156static bool pcie_ari_disabled;
157
158/* If set, the PCIe ATS capability will not be used. */
159static bool pcie_ats_disabled;
160
161/* If set, the PCI config space of each device is printed during boot. */
162bool pci_early_dump;
163
164bool pci_ats_disabled(void)
165{
166	return pcie_ats_disabled;
167}
168EXPORT_SYMBOL_GPL(pci_ats_disabled);
169
170/* Disable bridge_d3 for all PCIe ports */
171static bool pci_bridge_d3_disable;
172/* Force bridge_d3 for all PCIe ports */
173static bool pci_bridge_d3_force;
174
175static int __init pcie_port_pm_setup(char *str)
176{
177	if (!strcmp(str, "off"))
178		pci_bridge_d3_disable = true;
179	else if (!strcmp(str, "force"))
180		pci_bridge_d3_force = true;
181	return 1;
182}
183__setup("pcie_port_pm=", pcie_port_pm_setup);
184
185/**
186 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
187 * @bus: pointer to PCI bus structure to search
188 *
189 * Given a PCI bus, returns the highest PCI bus number present in the set
190 * including the given PCI bus and its list of child PCI buses.
191 */
192unsigned char pci_bus_max_busnr(struct pci_bus *bus)
193{
194	struct pci_bus *tmp;
195	unsigned char max, n;
196
197	max = bus->busn_res.end;
198	list_for_each_entry(tmp, &bus->children, node) {
199		n = pci_bus_max_busnr(tmp);
200		if (n > max)
201			max = n;
202	}
203	return max;
204}
205EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
206
207/**
208 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
209 * @pdev: the PCI device
210 *
211 * Returns error bits set in PCI_STATUS and clears them.
212 */
213int pci_status_get_and_clear_errors(struct pci_dev *pdev)
214{
215	u16 status;
216	int ret;
217
218	ret = pci_read_config_word(pdev, PCI_STATUS, &status);
219	if (ret != PCIBIOS_SUCCESSFUL)
220		return -EIO;
221
222	status &= PCI_STATUS_ERROR_BITS;
223	if (status)
224		pci_write_config_word(pdev, PCI_STATUS, status);
225
226	return status;
227}
228EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
229
230#ifdef CONFIG_HAS_IOMEM
231static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar,
232					    bool write_combine)
233{
234	struct resource *res = &pdev->resource[bar];
235	resource_size_t start = res->start;
236	resource_size_t size = resource_size(res);
237
238	/*
239	 * Make sure the BAR is actually a memory resource, not an IO resource
240	 */
241	if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
242		pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
243		return NULL;
244	}
245
246	if (write_combine)
247		return ioremap_wc(start, size);
248
249	return ioremap(start, size);
250}
251
252void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
253{
254	return __pci_ioremap_resource(pdev, bar, false);
255}
256EXPORT_SYMBOL_GPL(pci_ioremap_bar);
257
258void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
259{
260	return __pci_ioremap_resource(pdev, bar, true);
261}
262EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
263#endif
264
265/**
266 * pci_dev_str_match_path - test if a path string matches a device
267 * @dev: the PCI device to test
268 * @path: string to match the device against
269 * @endptr: pointer to the string after the match
270 *
271 * Test if a string (typically from a kernel parameter) formatted as a
272 * path of device/function addresses matches a PCI device. The string must
273 * be of the form:
274 *
275 *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
276 *
277 * A path for a device can be obtained using 'lspci -t'.  Using a path
278 * is more robust against bus renumbering than using only a single bus,
279 * device and function address.
280 *
281 * Returns 1 if the string matches the device, 0 if it does not and
282 * a negative error code if it fails to parse the string.
283 */
284static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
285				  const char **endptr)
286{
287	int ret;
288	unsigned int seg, bus, slot, func;
289	char *wpath, *p;
290	char end;
291
292	*endptr = strchrnul(path, ';');
293
294	wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC);
295	if (!wpath)
296		return -ENOMEM;
297
298	while (1) {
299		p = strrchr(wpath, '/');
300		if (!p)
301			break;
302		ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
303		if (ret != 2) {
304			ret = -EINVAL;
305			goto free_and_exit;
306		}
307
308		if (dev->devfn != PCI_DEVFN(slot, func)) {
309			ret = 0;
310			goto free_and_exit;
311		}
312
313		/*
314		 * Note: we don't need to get a reference to the upstream
315		 * bridge because we hold a reference to the top level
316		 * device which should hold a reference to the bridge,
317		 * and so on.
318		 */
319		dev = pci_upstream_bridge(dev);
320		if (!dev) {
321			ret = 0;
322			goto free_and_exit;
323		}
324
325		*p = 0;
326	}
327
328	ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
329		     &func, &end);
330	if (ret != 4) {
331		seg = 0;
332		ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
333		if (ret != 3) {
334			ret = -EINVAL;
335			goto free_and_exit;
336		}
337	}
338
339	ret = (seg == pci_domain_nr(dev->bus) &&
340	       bus == dev->bus->number &&
341	       dev->devfn == PCI_DEVFN(slot, func));
342
343free_and_exit:
344	kfree(wpath);
345	return ret;
346}
347
348/**
349 * pci_dev_str_match - test if a string matches a device
350 * @dev: the PCI device to test
351 * @p: string to match the device against
352 * @endptr: pointer to the string after the match
353 *
354 * Test if a string (typically from a kernel parameter) matches a specified
355 * PCI device. The string may be of one of the following formats:
356 *
357 *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
358 *   pci:<vendor>:<device>[:<subvendor>:<subdevice>]
359 *
360 * The first format specifies a PCI bus/device/function address which
361 * may change if new hardware is inserted, if motherboard firmware changes,
362 * or due to changes caused in kernel parameters. If the domain is
363 * left unspecified, it is taken to be 0.  In order to be robust against
364 * bus renumbering issues, a path of PCI device/function numbers may be used
365 * to address the specific device.  The path for a device can be determined
366 * through the use of 'lspci -t'.
367 *
368 * The second format matches devices using IDs in the configuration
369 * space which may match multiple devices in the system. A value of 0
370 * for any field will match all devices. (Note: this differs from
371 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
372 * legacy reasons and convenience so users don't have to specify
373 * FFFFFFFFs on the command line.)
374 *
375 * Returns 1 if the string matches the device, 0 if it does not and
376 * a negative error code if the string cannot be parsed.
377 */
378static int pci_dev_str_match(struct pci_dev *dev, const char *p,
379			     const char **endptr)
380{
381	int ret;
382	int count;
383	unsigned short vendor, device, subsystem_vendor, subsystem_device;
384
385	if (strncmp(p, "pci:", 4) == 0) {
386		/* PCI vendor/device (subvendor/subdevice) IDs are specified */
387		p += 4;
388		ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
389			     &subsystem_vendor, &subsystem_device, &count);
390		if (ret != 4) {
391			ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
392			if (ret != 2)
393				return -EINVAL;
394
395			subsystem_vendor = 0;
396			subsystem_device = 0;
397		}
398
399		p += count;
400
401		if ((!vendor || vendor == dev->vendor) &&
402		    (!device || device == dev->device) &&
403		    (!subsystem_vendor ||
404			    subsystem_vendor == dev->subsystem_vendor) &&
405		    (!subsystem_device ||
406			    subsystem_device == dev->subsystem_device))
407			goto found;
408	} else {
409		/*
410		 * PCI Bus, Device, Function IDs are specified
411		 * (optionally, may include a path of devfns following it)
412		 */
413		ret = pci_dev_str_match_path(dev, p, &p);
414		if (ret < 0)
415			return ret;
416		else if (ret)
417			goto found;
418	}
419
420	*endptr = p;
421	return 0;
422
423found:
424	*endptr = p;
425	return 1;
426}
427
428static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
429				  u8 pos, int cap, int *ttl)
430{
431	u8 id;
432	u16 ent;
433
434	pci_bus_read_config_byte(bus, devfn, pos, &pos);
435
436	while ((*ttl)--) {
437		if (pos < 0x40)
438			break;
439		pos &= ~3;
440		pci_bus_read_config_word(bus, devfn, pos, &ent);
441
442		id = ent & 0xff;
443		if (id == 0xff)
444			break;
445		if (id == cap)
446			return pos;
447		pos = (ent >> 8);
448	}
449	return 0;
450}
451
452static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
453			      u8 pos, int cap)
454{
455	int ttl = PCI_FIND_CAP_TTL;
456
457	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
458}
459
460u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
461{
462	return __pci_find_next_cap(dev->bus, dev->devfn,
463				   pos + PCI_CAP_LIST_NEXT, cap);
464}
465EXPORT_SYMBOL_GPL(pci_find_next_capability);
466
467static u8 __pci_bus_find_cap_start(struct pci_bus *bus,
468				    unsigned int devfn, u8 hdr_type)
469{
470	u16 status;
471
472	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
473	if (!(status & PCI_STATUS_CAP_LIST))
474		return 0;
475
476	switch (hdr_type) {
477	case PCI_HEADER_TYPE_NORMAL:
478	case PCI_HEADER_TYPE_BRIDGE:
479		return PCI_CAPABILITY_LIST;
480	case PCI_HEADER_TYPE_CARDBUS:
481		return PCI_CB_CAPABILITY_LIST;
482	}
483
484	return 0;
485}
486
487/**
488 * pci_find_capability - query for devices' capabilities
489 * @dev: PCI device to query
490 * @cap: capability code
491 *
492 * Tell if a device supports a given PCI capability.
493 * Returns the address of the requested capability structure within the
494 * device's PCI configuration space or 0 in case the device does not
495 * support it.  Possible values for @cap include:
496 *
497 *  %PCI_CAP_ID_PM           Power Management
498 *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
499 *  %PCI_CAP_ID_VPD          Vital Product Data
500 *  %PCI_CAP_ID_SLOTID       Slot Identification
501 *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
502 *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
503 *  %PCI_CAP_ID_PCIX         PCI-X
504 *  %PCI_CAP_ID_EXP          PCI Express
505 */
506u8 pci_find_capability(struct pci_dev *dev, int cap)
507{
508	u8 pos;
509
510	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
511	if (pos)
512		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
513
514	return pos;
515}
516EXPORT_SYMBOL(pci_find_capability);
517
518/**
519 * pci_bus_find_capability - query for devices' capabilities
520 * @bus: the PCI bus to query
521 * @devfn: PCI device to query
522 * @cap: capability code
523 *
524 * Like pci_find_capability() but works for PCI devices that do not have a
525 * pci_dev structure set up yet.
526 *
527 * Returns the address of the requested capability structure within the
528 * device's PCI configuration space or 0 in case the device does not
529 * support it.
530 */
531u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
532{
533	u8 hdr_type, pos;
534
535	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
536
537	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
538	if (pos)
539		pos = __pci_find_next_cap(bus, devfn, pos, cap);
540
541	return pos;
542}
543EXPORT_SYMBOL(pci_bus_find_capability);
544
545/**
546 * pci_find_next_ext_capability - Find an extended capability
547 * @dev: PCI device to query
548 * @start: address at which to start looking (0 to start at beginning of list)
549 * @cap: capability code
550 *
551 * Returns the address of the next matching extended capability structure
552 * within the device's PCI configuration space or 0 if the device does
553 * not support it.  Some capabilities can occur several times, e.g., the
554 * vendor-specific capability, and this provides a way to find them all.
555 */
556u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap)
557{
558	u32 header;
559	int ttl;
560	u16 pos = PCI_CFG_SPACE_SIZE;
561
562	/* minimum 8 bytes per capability */
563	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
564
565	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
566		return 0;
567
568	if (start)
569		pos = start;
570
571	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
572		return 0;
573
574	/*
575	 * If we have no capabilities, this is indicated by cap ID,
576	 * cap version and next pointer all being 0.
577	 */
578	if (header == 0)
579		return 0;
580
581	while (ttl-- > 0) {
582		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
583			return pos;
584
585		pos = PCI_EXT_CAP_NEXT(header);
586		if (pos < PCI_CFG_SPACE_SIZE)
587			break;
588
589		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
590			break;
591	}
592
593	return 0;
594}
595EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
596
597/**
598 * pci_find_ext_capability - Find an extended capability
599 * @dev: PCI device to query
600 * @cap: capability code
601 *
602 * Returns the address of the requested extended capability structure
603 * within the device's PCI configuration space or 0 if the device does
604 * not support it.  Possible values for @cap include:
605 *
606 *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
607 *  %PCI_EXT_CAP_ID_VC		Virtual Channel
608 *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
609 *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
610 */
611u16 pci_find_ext_capability(struct pci_dev *dev, int cap)
612{
613	return pci_find_next_ext_capability(dev, 0, cap);
614}
615EXPORT_SYMBOL_GPL(pci_find_ext_capability);
616
617/**
618 * pci_get_dsn - Read and return the 8-byte Device Serial Number
619 * @dev: PCI device to query
620 *
621 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
622 * Number.
623 *
624 * Returns the DSN, or zero if the capability does not exist.
625 */
626u64 pci_get_dsn(struct pci_dev *dev)
627{
628	u32 dword;
629	u64 dsn;
630	int pos;
631
632	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
633	if (!pos)
634		return 0;
635
636	/*
637	 * The Device Serial Number is two dwords offset 4 bytes from the
638	 * capability position. The specification says that the first dword is
639	 * the lower half, and the second dword is the upper half.
640	 */
641	pos += 4;
642	pci_read_config_dword(dev, pos, &dword);
643	dsn = (u64)dword;
644	pci_read_config_dword(dev, pos + 4, &dword);
645	dsn |= ((u64)dword) << 32;
646
647	return dsn;
648}
649EXPORT_SYMBOL_GPL(pci_get_dsn);
650
651static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap)
652{
653	int rc, ttl = PCI_FIND_CAP_TTL;
654	u8 cap, mask;
655
656	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
657		mask = HT_3BIT_CAP_MASK;
658	else
659		mask = HT_5BIT_CAP_MASK;
660
661	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
662				      PCI_CAP_ID_HT, &ttl);
663	while (pos) {
664		rc = pci_read_config_byte(dev, pos + 3, &cap);
665		if (rc != PCIBIOS_SUCCESSFUL)
666			return 0;
667
668		if ((cap & mask) == ht_cap)
669			return pos;
670
671		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
672					      pos + PCI_CAP_LIST_NEXT,
673					      PCI_CAP_ID_HT, &ttl);
674	}
675
676	return 0;
677}
678
679/**
680 * pci_find_next_ht_capability - query a device's HyperTransport capabilities
681 * @dev: PCI device to query
682 * @pos: Position from which to continue searching
683 * @ht_cap: HyperTransport capability code
684 *
685 * To be used in conjunction with pci_find_ht_capability() to search for
686 * all capabilities matching @ht_cap. @pos should always be a value returned
687 * from pci_find_ht_capability().
688 *
689 * NB. To be 100% safe against broken PCI devices, the caller should take
690 * steps to avoid an infinite loop.
691 */
692u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap)
693{
694	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
695}
696EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
697
698/**
699 * pci_find_ht_capability - query a device's HyperTransport capabilities
700 * @dev: PCI device to query
701 * @ht_cap: HyperTransport capability code
702 *
703 * Tell if a device supports a given HyperTransport capability.
704 * Returns an address within the device's PCI configuration space
705 * or 0 in case the device does not support the request capability.
706 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
707 * which has a HyperTransport capability matching @ht_cap.
708 */
709u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
710{
711	u8 pos;
712
713	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
714	if (pos)
715		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
716
717	return pos;
718}
719EXPORT_SYMBOL_GPL(pci_find_ht_capability);
720
721/**
722 * pci_find_vsec_capability - Find a vendor-specific extended capability
723 * @dev: PCI device to query
724 * @vendor: Vendor ID for which capability is defined
725 * @cap: Vendor-specific capability ID
726 *
727 * If @dev has Vendor ID @vendor, search for a VSEC capability with
728 * VSEC ID @cap. If found, return the capability offset in
729 * config space; otherwise return 0.
730 */
731u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap)
732{
733	u16 vsec = 0;
734	u32 header;
735	int ret;
736
737	if (vendor != dev->vendor)
738		return 0;
739
740	while ((vsec = pci_find_next_ext_capability(dev, vsec,
741						     PCI_EXT_CAP_ID_VNDR))) {
742		ret = pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER, &header);
743		if (ret != PCIBIOS_SUCCESSFUL)
744			continue;
745
746		if (PCI_VNDR_HEADER_ID(header) == cap)
747			return vsec;
748	}
749
750	return 0;
751}
752EXPORT_SYMBOL_GPL(pci_find_vsec_capability);
753
754/**
755 * pci_find_dvsec_capability - Find DVSEC for vendor
756 * @dev: PCI device to query
757 * @vendor: Vendor ID to match for the DVSEC
758 * @dvsec: Designated Vendor-specific capability ID
759 *
760 * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability
761 * offset in config space; otherwise return 0.
762 */
763u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec)
764{
765	int pos;
766
767	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC);
768	if (!pos)
769		return 0;
770
771	while (pos) {
772		u16 v, id;
773
774		pci_read_config_word(dev, pos + PCI_DVSEC_HEADER1, &v);
775		pci_read_config_word(dev, pos + PCI_DVSEC_HEADER2, &id);
776		if (vendor == v && dvsec == id)
777			return pos;
778
779		pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC);
780	}
781
782	return 0;
783}
784EXPORT_SYMBOL_GPL(pci_find_dvsec_capability);
785
786/**
787 * pci_find_parent_resource - return resource region of parent bus of given
788 *			      region
789 * @dev: PCI device structure contains resources to be searched
790 * @res: child resource record for which parent is sought
791 *
792 * For given resource region of given device, return the resource region of
793 * parent bus the given region is contained in.
794 */
795struct resource *pci_find_parent_resource(const struct pci_dev *dev,
796					  struct resource *res)
797{
798	const struct pci_bus *bus = dev->bus;
799	struct resource *r;
800
801	pci_bus_for_each_resource(bus, r) {
802		if (!r)
803			continue;
804		if (resource_contains(r, res)) {
805
806			/*
807			 * If the window is prefetchable but the BAR is
808			 * not, the allocator made a mistake.
809			 */
810			if (r->flags & IORESOURCE_PREFETCH &&
811			    !(res->flags & IORESOURCE_PREFETCH))
812				return NULL;
813
814			/*
815			 * If we're below a transparent bridge, there may
816			 * be both a positively-decoded aperture and a
817			 * subtractively-decoded region that contain the BAR.
818			 * We want the positively-decoded one, so this depends
819			 * on pci_bus_for_each_resource() giving us those
820			 * first.
821			 */
822			return r;
823		}
824	}
825	return NULL;
826}
827EXPORT_SYMBOL(pci_find_parent_resource);
828
829/**
830 * pci_find_resource - Return matching PCI device resource
831 * @dev: PCI device to query
832 * @res: Resource to look for
833 *
834 * Goes over standard PCI resources (BARs) and checks if the given resource
835 * is partially or fully contained in any of them. In that case the
836 * matching resource is returned, %NULL otherwise.
837 */
838struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
839{
840	int i;
841
842	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
843		struct resource *r = &dev->resource[i];
844
845		if (r->start && resource_contains(r, res))
846			return r;
847	}
848
849	return NULL;
850}
851EXPORT_SYMBOL(pci_find_resource);
852
853/**
854 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
855 * @dev: the PCI device to operate on
856 * @pos: config space offset of status word
857 * @mask: mask of bit(s) to care about in status word
858 *
859 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
860 */
861int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
862{
863	int i;
864
865	/* Wait for Transaction Pending bit clean */
866	for (i = 0; i < 4; i++) {
867		u16 status;
868		if (i)
869			msleep((1 << (i - 1)) * 100);
870
871		pci_read_config_word(dev, pos, &status);
872		if (!(status & mask))
873			return 1;
874	}
875
876	return 0;
877}
878
879static int pci_acs_enable;
880
881/**
882 * pci_request_acs - ask for ACS to be enabled if supported
883 */
884void pci_request_acs(void)
885{
886	pci_acs_enable = 1;
887}
888
889static const char *disable_acs_redir_param;
890
891/**
892 * pci_disable_acs_redir - disable ACS redirect capabilities
893 * @dev: the PCI device
894 *
895 * For only devices specified in the disable_acs_redir parameter.
896 */
897static void pci_disable_acs_redir(struct pci_dev *dev)
898{
899	int ret = 0;
900	const char *p;
901	int pos;
902	u16 ctrl;
903
904	if (!disable_acs_redir_param)
905		return;
906
907	p = disable_acs_redir_param;
908	while (*p) {
909		ret = pci_dev_str_match(dev, p, &p);
910		if (ret < 0) {
911			pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
912				     disable_acs_redir_param);
913
914			break;
915		} else if (ret == 1) {
916			/* Found a match */
917			break;
918		}
919
920		if (*p != ';' && *p != ',') {
921			/* End of param or invalid format */
922			break;
923		}
924		p++;
925	}
926
927	if (ret != 1)
928		return;
929
930	if (!pci_dev_specific_disable_acs_redir(dev))
931		return;
932
933	pos = dev->acs_cap;
934	if (!pos) {
935		pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
936		return;
937	}
938
939	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
940
941	/* P2P Request & Completion Redirect */
942	ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
943
944	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
945
946	pci_info(dev, "disabled ACS redirect\n");
947}
948
949/**
950 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
951 * @dev: the PCI device
952 */
953static void pci_std_enable_acs(struct pci_dev *dev)
954{
955	int pos;
956	u16 cap;
957	u16 ctrl;
958
959	pos = dev->acs_cap;
960	if (!pos)
961		return;
962
963	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
964	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
965
966	/* Source Validation */
967	ctrl |= (cap & PCI_ACS_SV);
968
969	/* P2P Request Redirect */
970	ctrl |= (cap & PCI_ACS_RR);
971
972	/* P2P Completion Redirect */
973	ctrl |= (cap & PCI_ACS_CR);
974
975	/* Upstream Forwarding */
976	ctrl |= (cap & PCI_ACS_UF);
977
978	/* Enable Translation Blocking for external devices and noats */
979	if (pci_ats_disabled() || dev->external_facing || dev->untrusted)
980		ctrl |= (cap & PCI_ACS_TB);
981
982	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
983}
984
985/**
986 * pci_enable_acs - enable ACS if hardware support it
987 * @dev: the PCI device
988 */
989static void pci_enable_acs(struct pci_dev *dev)
990{
991	if (!pci_acs_enable)
992		goto disable_acs_redir;
993
994	if (!pci_dev_specific_enable_acs(dev))
995		goto disable_acs_redir;
996
997	pci_std_enable_acs(dev);
998
999disable_acs_redir:
1000	/*
1001	 * Note: pci_disable_acs_redir() must be called even if ACS was not
1002	 * enabled by the kernel because it may have been enabled by
1003	 * platform firmware.  So if we are told to disable it, we should
1004	 * always disable it after setting the kernel's default
1005	 * preferences.
1006	 */
1007	pci_disable_acs_redir(dev);
1008}
1009
1010/**
1011 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
1012 * @dev: PCI device to have its BARs restored
1013 *
1014 * Restore the BAR values for a given device, so as to make it
1015 * accessible by its driver.
1016 */
1017static void pci_restore_bars(struct pci_dev *dev)
1018{
1019	int i;
1020
1021	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
1022		pci_update_resource(dev, i);
1023}
1024
1025static inline bool platform_pci_power_manageable(struct pci_dev *dev)
1026{
1027	if (pci_use_mid_pm())
1028		return true;
1029
1030	return acpi_pci_power_manageable(dev);
1031}
1032
1033static inline int platform_pci_set_power_state(struct pci_dev *dev,
1034					       pci_power_t t)
1035{
1036	if (pci_use_mid_pm())
1037		return mid_pci_set_power_state(dev, t);
1038
1039	return acpi_pci_set_power_state(dev, t);
1040}
1041
1042static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
1043{
1044	if (pci_use_mid_pm())
1045		return mid_pci_get_power_state(dev);
1046
1047	return acpi_pci_get_power_state(dev);
1048}
1049
1050static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
1051{
1052	if (!pci_use_mid_pm())
1053		acpi_pci_refresh_power_state(dev);
1054}
1055
1056static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
1057{
1058	if (pci_use_mid_pm())
1059		return PCI_POWER_ERROR;
1060
1061	return acpi_pci_choose_state(dev);
1062}
1063
1064static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
1065{
1066	if (pci_use_mid_pm())
1067		return PCI_POWER_ERROR;
1068
1069	return acpi_pci_wakeup(dev, enable);
1070}
1071
1072static inline bool platform_pci_need_resume(struct pci_dev *dev)
1073{
1074	if (pci_use_mid_pm())
1075		return false;
1076
1077	return acpi_pci_need_resume(dev);
1078}
1079
1080static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
1081{
1082	if (pci_use_mid_pm())
1083		return false;
1084
1085	return acpi_pci_bridge_d3(dev);
1086}
1087
1088/**
1089 * pci_update_current_state - Read power state of given device and cache it
1090 * @dev: PCI device to handle.
1091 * @state: State to cache in case the device doesn't have the PM capability
1092 *
1093 * The power state is read from the PMCSR register, which however is
1094 * inaccessible in D3cold.  The platform firmware is therefore queried first
1095 * to detect accessibility of the register.  In case the platform firmware
1096 * reports an incorrect state or the device isn't power manageable by the
1097 * platform at all, we try to detect D3cold by testing accessibility of the
1098 * vendor ID in config space.
1099 */
1100void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1101{
1102	if (platform_pci_get_power_state(dev) == PCI_D3cold) {
1103		dev->current_state = PCI_D3cold;
1104	} else if (dev->pm_cap) {
1105		u16 pmcsr;
1106
1107		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1108		if (PCI_POSSIBLE_ERROR(pmcsr)) {
1109			dev->current_state = PCI_D3cold;
1110			return;
1111		}
1112		dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1113	} else {
1114		dev->current_state = state;
1115	}
1116}
1117
1118/**
1119 * pci_refresh_power_state - Refresh the given device's power state data
1120 * @dev: Target PCI device.
1121 *
1122 * Ask the platform to refresh the devices power state information and invoke
1123 * pci_update_current_state() to update its current PCI power state.
1124 */
1125void pci_refresh_power_state(struct pci_dev *dev)
1126{
1127	platform_pci_refresh_power_state(dev);
1128	pci_update_current_state(dev, dev->current_state);
1129}
1130
1131/**
1132 * pci_platform_power_transition - Use platform to change device power state
1133 * @dev: PCI device to handle.
1134 * @state: State to put the device into.
1135 */
1136int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1137{
1138	int error;
1139
1140	error = platform_pci_set_power_state(dev, state);
1141	if (!error)
1142		pci_update_current_state(dev, state);
1143	else if (!dev->pm_cap) /* Fall back to PCI_D0 */
1144		dev->current_state = PCI_D0;
1145
1146	return error;
1147}
1148EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1149
1150static int pci_resume_one(struct pci_dev *pci_dev, void *ign)
1151{
1152	pm_request_resume(&pci_dev->dev);
1153	return 0;
1154}
1155
1156/**
1157 * pci_resume_bus - Walk given bus and runtime resume devices on it
1158 * @bus: Top bus of the subtree to walk.
1159 */
1160void pci_resume_bus(struct pci_bus *bus)
1161{
1162	if (bus)
1163		pci_walk_bus(bus, pci_resume_one, NULL);
1164}
1165
1166static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1167{
1168	int delay = 1;
1169	bool retrain = false;
1170	struct pci_dev *bridge;
1171
1172	if (pci_is_pcie(dev)) {
1173		bridge = pci_upstream_bridge(dev);
1174		if (bridge)
1175			retrain = true;
1176	}
1177
1178	/*
1179	 * After reset, the device should not silently discard config
1180	 * requests, but it may still indicate that it needs more time by
1181	 * responding to them with CRS completions.  The Root Port will
1182	 * generally synthesize ~0 (PCI_ERROR_RESPONSE) data to complete
1183	 * the read (except when CRS SV is enabled and the read was for the
1184	 * Vendor ID; in that case it synthesizes 0x0001 data).
1185	 *
1186	 * Wait for the device to return a non-CRS completion.  Read the
1187	 * Command register instead of Vendor ID so we don't have to
1188	 * contend with the CRS SV value.
1189	 */
1190	for (;;) {
1191		u32 id;
1192
1193		pci_read_config_dword(dev, PCI_COMMAND, &id);
1194		if (!PCI_POSSIBLE_ERROR(id))
1195			break;
1196
1197		if (delay > timeout) {
1198			pci_warn(dev, "not ready %dms after %s; giving up\n",
1199				 delay - 1, reset_type);
1200			return -ENOTTY;
1201		}
1202
1203		if (delay > PCI_RESET_WAIT) {
1204			if (retrain) {
1205				retrain = false;
1206				if (pcie_failed_link_retrain(bridge)) {
1207					delay = 1;
1208					continue;
1209				}
1210			}
1211			pci_info(dev, "not ready %dms after %s; waiting\n",
1212				 delay - 1, reset_type);
1213		}
1214
1215		msleep(delay);
1216		delay *= 2;
1217	}
1218
1219	if (delay > PCI_RESET_WAIT)
1220		pci_info(dev, "ready %dms after %s\n", delay - 1,
1221			 reset_type);
1222
1223	return 0;
1224}
1225
1226/**
1227 * pci_power_up - Put the given device into D0
1228 * @dev: PCI device to power up
1229 *
1230 * On success, return 0 or 1, depending on whether or not it is necessary to
1231 * restore the device's BARs subsequently (1 is returned in that case).
1232 *
1233 * On failure, return a negative error code.  Always return failure if @dev
1234 * lacks a Power Management Capability, even if the platform was able to
1235 * put the device in D0 via non-PCI means.
1236 */
1237int pci_power_up(struct pci_dev *dev)
1238{
1239	bool need_restore;
1240	pci_power_t state;
1241	u16 pmcsr;
1242
1243	platform_pci_set_power_state(dev, PCI_D0);
1244
1245	if (!dev->pm_cap) {
1246		state = platform_pci_get_power_state(dev);
1247		if (state == PCI_UNKNOWN)
1248			dev->current_state = PCI_D0;
1249		else
1250			dev->current_state = state;
1251
1252		return -EIO;
1253	}
1254
1255	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1256	if (PCI_POSSIBLE_ERROR(pmcsr)) {
1257		pci_err(dev, "Unable to change power state from %s to D0, device inaccessible\n",
1258			pci_power_name(dev->current_state));
1259		dev->current_state = PCI_D3cold;
1260		return -EIO;
1261	}
1262
1263	state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1264
1265	need_restore = (state == PCI_D3hot || dev->current_state >= PCI_D3hot) &&
1266			!(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET);
1267
1268	if (state == PCI_D0)
1269		goto end;
1270
1271	/*
1272	 * Force the entire word to 0. This doesn't affect PME_Status, disables
1273	 * PME_En, and sets PowerState to 0.
1274	 */
1275	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, 0);
1276
1277	/* Mandatory transition delays; see PCI PM 1.2. */
1278	if (state == PCI_D3hot)
1279		pci_dev_d3_sleep(dev);
1280	else if (state == PCI_D2)
1281		udelay(PCI_PM_D2_DELAY);
1282
1283end:
1284	dev->current_state = PCI_D0;
1285	if (need_restore)
1286		return 1;
1287
1288	return 0;
1289}
1290
1291/**
1292 * pci_set_full_power_state - Put a PCI device into D0 and update its state
1293 * @dev: PCI device to power up
1294 *
1295 * Call pci_power_up() to put @dev into D0, read from its PCI_PM_CTRL register
1296 * to confirm the state change, restore its BARs if they might be lost and
1297 * reconfigure ASPM in accordance with the new power state.
1298 *
1299 * If pci_restore_state() is going to be called right after a power state change
1300 * to D0, it is more efficient to use pci_power_up() directly instead of this
1301 * function.
1302 */
1303static int pci_set_full_power_state(struct pci_dev *dev)
1304{
1305	u16 pmcsr;
1306	int ret;
1307
1308	ret = pci_power_up(dev);
1309	if (ret < 0) {
1310		if (dev->current_state == PCI_D0)
1311			return 0;
1312
1313		return ret;
1314	}
1315
1316	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1317	dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1318	if (dev->current_state != PCI_D0) {
1319		pci_info_ratelimited(dev, "Refused to change power state from %s to D0\n",
1320				     pci_power_name(dev->current_state));
1321	} else if (ret > 0) {
1322		/*
1323		 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1324		 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1325		 * from D3hot to D0 _may_ perform an internal reset, thereby
1326		 * going to "D0 Uninitialized" rather than "D0 Initialized".
1327		 * For example, at least some versions of the 3c905B and the
1328		 * 3c556B exhibit this behaviour.
1329		 *
1330		 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1331		 * devices in a D3hot state at boot.  Consequently, we need to
1332		 * restore at least the BARs so that the device will be
1333		 * accessible to its driver.
1334		 */
1335		pci_restore_bars(dev);
1336	}
1337
1338	if (dev->bus->self)
1339		pcie_aspm_pm_state_change(dev->bus->self);
1340
1341	return 0;
1342}
1343
1344/**
1345 * __pci_dev_set_current_state - Set current state of a PCI device
1346 * @dev: Device to handle
1347 * @data: pointer to state to be set
1348 */
1349static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1350{
1351	pci_power_t state = *(pci_power_t *)data;
1352
1353	dev->current_state = state;
1354	return 0;
1355}
1356
1357/**
1358 * pci_bus_set_current_state - Walk given bus and set current state of devices
1359 * @bus: Top bus of the subtree to walk.
1360 * @state: state to be set
1361 */
1362void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1363{
1364	if (bus)
1365		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1366}
1367
1368/**
1369 * pci_set_low_power_state - Put a PCI device into a low-power state.
1370 * @dev: PCI device to handle.
1371 * @state: PCI power state (D1, D2, D3hot) to put the device into.
1372 *
1373 * Use the device's PCI_PM_CTRL register to put it into a low-power state.
1374 *
1375 * RETURN VALUE:
1376 * -EINVAL if the requested state is invalid.
1377 * -EIO if device does not support PCI PM or its PM capabilities register has a
1378 * wrong version, or device doesn't support the requested state.
1379 * 0 if device already is in the requested state.
1380 * 0 if device's power state has been successfully changed.
1381 */
1382static int pci_set_low_power_state(struct pci_dev *dev, pci_power_t state)
1383{
1384	u16 pmcsr;
1385
1386	if (!dev->pm_cap)
1387		return -EIO;
1388
1389	/*
1390	 * Validate transition: We can enter D0 from any state, but if
1391	 * we're already in a low-power state, we can only go deeper.  E.g.,
1392	 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1393	 * we'd have to go from D3 to D0, then to D1.
1394	 */
1395	if (dev->current_state <= PCI_D3cold && dev->current_state > state) {
1396		pci_dbg(dev, "Invalid power transition (from %s to %s)\n",
1397			pci_power_name(dev->current_state),
1398			pci_power_name(state));
1399		return -EINVAL;
1400	}
1401
1402	/* Check if this device supports the desired state */
1403	if ((state == PCI_D1 && !dev->d1_support)
1404	   || (state == PCI_D2 && !dev->d2_support))
1405		return -EIO;
1406
1407	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1408	if (PCI_POSSIBLE_ERROR(pmcsr)) {
1409		pci_err(dev, "Unable to change power state from %s to %s, device inaccessible\n",
1410			pci_power_name(dev->current_state),
1411			pci_power_name(state));
1412		dev->current_state = PCI_D3cold;
1413		return -EIO;
1414	}
1415
1416	pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1417	pmcsr |= state;
1418
1419	/* Enter specified state */
1420	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1421
1422	/* Mandatory power management transition delays; see PCI PM 1.2. */
1423	if (state == PCI_D3hot)
1424		pci_dev_d3_sleep(dev);
1425	else if (state == PCI_D2)
1426		udelay(PCI_PM_D2_DELAY);
1427
1428	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1429	dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1430	if (dev->current_state != state)
1431		pci_info_ratelimited(dev, "Refused to change power state from %s to %s\n",
1432				     pci_power_name(dev->current_state),
1433				     pci_power_name(state));
1434
1435	if (dev->bus->self)
1436		pcie_aspm_pm_state_change(dev->bus->self);
1437
1438	return 0;
1439}
1440
1441/**
1442 * pci_set_power_state - Set the power state of a PCI device
1443 * @dev: PCI device to handle.
1444 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1445 *
1446 * Transition a device to a new power state, using the platform firmware and/or
1447 * the device's PCI PM registers.
1448 *
1449 * RETURN VALUE:
1450 * -EINVAL if the requested state is invalid.
1451 * -EIO if device does not support PCI PM or its PM capabilities register has a
1452 * wrong version, or device doesn't support the requested state.
1453 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1454 * 0 if device already is in the requested state.
1455 * 0 if the transition is to D3 but D3 is not supported.
1456 * 0 if device's power state has been successfully changed.
1457 */
1458int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1459{
1460	int error;
1461
1462	/* Bound the state we're entering */
1463	if (state > PCI_D3cold)
1464		state = PCI_D3cold;
1465	else if (state < PCI_D0)
1466		state = PCI_D0;
1467	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1468
1469		/*
1470		 * If the device or the parent bridge do not support PCI
1471		 * PM, ignore the request if we're doing anything other
1472		 * than putting it into D0 (which would only happen on
1473		 * boot).
1474		 */
1475		return 0;
1476
1477	/* Check if we're already there */
1478	if (dev->current_state == state)
1479		return 0;
1480
1481	if (state == PCI_D0)
1482		return pci_set_full_power_state(dev);
1483
1484	/*
1485	 * This device is quirked not to be put into D3, so don't put it in
1486	 * D3
1487	 */
1488	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1489		return 0;
1490
1491	if (state == PCI_D3cold) {
1492		/*
1493		 * To put the device in D3cold, put it into D3hot in the native
1494		 * way, then put it into D3cold using platform ops.
1495		 */
1496		error = pci_set_low_power_state(dev, PCI_D3hot);
1497
1498		if (pci_platform_power_transition(dev, PCI_D3cold))
1499			return error;
1500
1501		/* Powering off a bridge may power off the whole hierarchy */
1502		if (dev->current_state == PCI_D3cold)
1503			pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1504	} else {
1505		error = pci_set_low_power_state(dev, state);
1506
1507		if (pci_platform_power_transition(dev, state))
1508			return error;
1509	}
1510
1511	return 0;
1512}
1513EXPORT_SYMBOL(pci_set_power_state);
1514
1515#define PCI_EXP_SAVE_REGS	7
1516
1517static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1518						       u16 cap, bool extended)
1519{
1520	struct pci_cap_saved_state *tmp;
1521
1522	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1523		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1524			return tmp;
1525	}
1526	return NULL;
1527}
1528
1529struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1530{
1531	return _pci_find_saved_cap(dev, cap, false);
1532}
1533
1534struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1535{
1536	return _pci_find_saved_cap(dev, cap, true);
1537}
1538
1539static int pci_save_pcie_state(struct pci_dev *dev)
1540{
1541	int i = 0;
1542	struct pci_cap_saved_state *save_state;
1543	u16 *cap;
1544
1545	if (!pci_is_pcie(dev))
1546		return 0;
1547
1548	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1549	if (!save_state) {
1550		pci_err(dev, "buffer not found in %s\n", __func__);
1551		return -ENOMEM;
1552	}
1553
1554	cap = (u16 *)&save_state->cap.data[0];
1555	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1556	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1557	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1558	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
1559	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1560	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1561	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1562
1563	return 0;
1564}
1565
1566void pci_bridge_reconfigure_ltr(struct pci_dev *dev)
1567{
1568#ifdef CONFIG_PCIEASPM
1569	struct pci_dev *bridge;
1570	u32 ctl;
1571
1572	bridge = pci_upstream_bridge(dev);
1573	if (bridge && bridge->ltr_path) {
1574		pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, &ctl);
1575		if (!(ctl & PCI_EXP_DEVCTL2_LTR_EN)) {
1576			pci_dbg(bridge, "re-enabling LTR\n");
1577			pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
1578						 PCI_EXP_DEVCTL2_LTR_EN);
1579		}
1580	}
1581#endif
1582}
1583
1584static void pci_restore_pcie_state(struct pci_dev *dev)
1585{
1586	int i = 0;
1587	struct pci_cap_saved_state *save_state;
1588	u16 *cap;
1589
1590	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1591	if (!save_state)
1592		return;
1593
1594	/*
1595	 * Downstream ports reset the LTR enable bit when link goes down.
1596	 * Check and re-configure the bit here before restoring device.
1597	 * PCIe r5.0, sec 7.5.3.16.
1598	 */
1599	pci_bridge_reconfigure_ltr(dev);
1600
1601	cap = (u16 *)&save_state->cap.data[0];
1602	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1603	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1604	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1605	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1606	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1607	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1608	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1609}
1610
1611static int pci_save_pcix_state(struct pci_dev *dev)
1612{
1613	int pos;
1614	struct pci_cap_saved_state *save_state;
1615
1616	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1617	if (!pos)
1618		return 0;
1619
1620	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1621	if (!save_state) {
1622		pci_err(dev, "buffer not found in %s\n", __func__);
1623		return -ENOMEM;
1624	}
1625
1626	pci_read_config_word(dev, pos + PCI_X_CMD,
1627			     (u16 *)save_state->cap.data);
1628
1629	return 0;
1630}
1631
1632static void pci_restore_pcix_state(struct pci_dev *dev)
1633{
1634	int i = 0, pos;
1635	struct pci_cap_saved_state *save_state;
1636	u16 *cap;
1637
1638	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1639	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1640	if (!save_state || !pos)
1641		return;
1642	cap = (u16 *)&save_state->cap.data[0];
1643
1644	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1645}
1646
1647static void pci_save_ltr_state(struct pci_dev *dev)
1648{
1649	int ltr;
1650	struct pci_cap_saved_state *save_state;
1651	u32 *cap;
1652
1653	if (!pci_is_pcie(dev))
1654		return;
1655
1656	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1657	if (!ltr)
1658		return;
1659
1660	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1661	if (!save_state) {
1662		pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1663		return;
1664	}
1665
1666	/* Some broken devices only support dword access to LTR */
1667	cap = &save_state->cap.data[0];
1668	pci_read_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap);
1669}
1670
1671static void pci_restore_ltr_state(struct pci_dev *dev)
1672{
1673	struct pci_cap_saved_state *save_state;
1674	int ltr;
1675	u32 *cap;
1676
1677	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1678	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1679	if (!save_state || !ltr)
1680		return;
1681
1682	/* Some broken devices only support dword access to LTR */
1683	cap = &save_state->cap.data[0];
1684	pci_write_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap);
1685}
1686
1687/**
1688 * pci_save_state - save the PCI configuration space of a device before
1689 *		    suspending
1690 * @dev: PCI device that we're dealing with
1691 */
1692int pci_save_state(struct pci_dev *dev)
1693{
1694	int i;
1695	/* XXX: 100% dword access ok here? */
1696	for (i = 0; i < 16; i++) {
1697		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1698		pci_dbg(dev, "save config %#04x: %#010x\n",
1699			i * 4, dev->saved_config_space[i]);
1700	}
1701	dev->state_saved = true;
1702
1703	i = pci_save_pcie_state(dev);
1704	if (i != 0)
1705		return i;
1706
1707	i = pci_save_pcix_state(dev);
1708	if (i != 0)
1709		return i;
1710
1711	pci_save_ltr_state(dev);
1712	pci_save_dpc_state(dev);
1713	pci_save_aer_state(dev);
1714	pci_save_ptm_state(dev);
1715	return pci_save_vc_state(dev);
1716}
1717EXPORT_SYMBOL(pci_save_state);
1718
1719static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1720				     u32 saved_val, int retry, bool force)
1721{
1722	u32 val;
1723
1724	pci_read_config_dword(pdev, offset, &val);
1725	if (!force && val == saved_val)
1726		return;
1727
1728	for (;;) {
1729		pci_dbg(pdev, "restore config %#04x: %#010x -> %#010x\n",
1730			offset, val, saved_val);
1731		pci_write_config_dword(pdev, offset, saved_val);
1732		if (retry-- <= 0)
1733			return;
1734
1735		pci_read_config_dword(pdev, offset, &val);
1736		if (val == saved_val)
1737			return;
1738
1739		mdelay(1);
1740	}
1741}
1742
1743static void pci_restore_config_space_range(struct pci_dev *pdev,
1744					   int start, int end, int retry,
1745					   bool force)
1746{
1747	int index;
1748
1749	for (index = end; index >= start; index--)
1750		pci_restore_config_dword(pdev, 4 * index,
1751					 pdev->saved_config_space[index],
1752					 retry, force);
1753}
1754
1755static void pci_restore_config_space(struct pci_dev *pdev)
1756{
1757	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1758		pci_restore_config_space_range(pdev, 10, 15, 0, false);
1759		/* Restore BARs before the command register. */
1760		pci_restore_config_space_range(pdev, 4, 9, 10, false);
1761		pci_restore_config_space_range(pdev, 0, 3, 0, false);
1762	} else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1763		pci_restore_config_space_range(pdev, 12, 15, 0, false);
1764
1765		/*
1766		 * Force rewriting of prefetch registers to avoid S3 resume
1767		 * issues on Intel PCI bridges that occur when these
1768		 * registers are not explicitly written.
1769		 */
1770		pci_restore_config_space_range(pdev, 9, 11, 0, true);
1771		pci_restore_config_space_range(pdev, 0, 8, 0, false);
1772	} else {
1773		pci_restore_config_space_range(pdev, 0, 15, 0, false);
1774	}
1775}
1776
1777static void pci_restore_rebar_state(struct pci_dev *pdev)
1778{
1779	unsigned int pos, nbars, i;
1780	u32 ctrl;
1781
1782	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1783	if (!pos)
1784		return;
1785
1786	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1787	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1788		    PCI_REBAR_CTRL_NBAR_SHIFT;
1789
1790	for (i = 0; i < nbars; i++, pos += 8) {
1791		struct resource *res;
1792		int bar_idx, size;
1793
1794		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1795		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1796		res = pdev->resource + bar_idx;
1797		size = pci_rebar_bytes_to_size(resource_size(res));
1798		ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1799		ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1800		pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1801	}
1802}
1803
1804/**
1805 * pci_restore_state - Restore the saved state of a PCI device
1806 * @dev: PCI device that we're dealing with
1807 */
1808void pci_restore_state(struct pci_dev *dev)
1809{
1810	if (!dev->state_saved)
1811		return;
1812
1813	/*
1814	 * Restore max latencies (in the LTR capability) before enabling
1815	 * LTR itself (in the PCIe capability).
1816	 */
1817	pci_restore_ltr_state(dev);
1818
1819	pci_restore_pcie_state(dev);
1820	pci_restore_pasid_state(dev);
1821	pci_restore_pri_state(dev);
1822	pci_restore_ats_state(dev);
1823	pci_restore_vc_state(dev);
1824	pci_restore_rebar_state(dev);
1825	pci_restore_dpc_state(dev);
1826	pci_restore_ptm_state(dev);
1827
1828	pci_aer_clear_status(dev);
1829	pci_restore_aer_state(dev);
1830
1831	pci_restore_config_space(dev);
1832
1833	pci_restore_pcix_state(dev);
1834	pci_restore_msi_state(dev);
1835
1836	/* Restore ACS and IOV configuration state */
1837	pci_enable_acs(dev);
1838	pci_restore_iov_state(dev);
1839
1840	dev->state_saved = false;
1841}
1842EXPORT_SYMBOL(pci_restore_state);
1843
1844struct pci_saved_state {
1845	u32 config_space[16];
1846	struct pci_cap_saved_data cap[];
1847};
1848
1849/**
1850 * pci_store_saved_state - Allocate and return an opaque struct containing
1851 *			   the device saved state.
1852 * @dev: PCI device that we're dealing with
1853 *
1854 * Return NULL if no state or error.
1855 */
1856struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1857{
1858	struct pci_saved_state *state;
1859	struct pci_cap_saved_state *tmp;
1860	struct pci_cap_saved_data *cap;
1861	size_t size;
1862
1863	if (!dev->state_saved)
1864		return NULL;
1865
1866	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1867
1868	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1869		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1870
1871	state = kzalloc(size, GFP_KERNEL);
1872	if (!state)
1873		return NULL;
1874
1875	memcpy(state->config_space, dev->saved_config_space,
1876	       sizeof(state->config_space));
1877
1878	cap = state->cap;
1879	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1880		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1881		memcpy(cap, &tmp->cap, len);
1882		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1883	}
1884	/* Empty cap_save terminates list */
1885
1886	return state;
1887}
1888EXPORT_SYMBOL_GPL(pci_store_saved_state);
1889
1890/**
1891 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1892 * @dev: PCI device that we're dealing with
1893 * @state: Saved state returned from pci_store_saved_state()
1894 */
1895int pci_load_saved_state(struct pci_dev *dev,
1896			 struct pci_saved_state *state)
1897{
1898	struct pci_cap_saved_data *cap;
1899
1900	dev->state_saved = false;
1901
1902	if (!state)
1903		return 0;
1904
1905	memcpy(dev->saved_config_space, state->config_space,
1906	       sizeof(state->config_space));
1907
1908	cap = state->cap;
1909	while (cap->size) {
1910		struct pci_cap_saved_state *tmp;
1911
1912		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1913		if (!tmp || tmp->cap.size != cap->size)
1914			return -EINVAL;
1915
1916		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1917		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1918		       sizeof(struct pci_cap_saved_data) + cap->size);
1919	}
1920
1921	dev->state_saved = true;
1922	return 0;
1923}
1924EXPORT_SYMBOL_GPL(pci_load_saved_state);
1925
1926/**
1927 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1928 *				   and free the memory allocated for it.
1929 * @dev: PCI device that we're dealing with
1930 * @state: Pointer to saved state returned from pci_store_saved_state()
1931 */
1932int pci_load_and_free_saved_state(struct pci_dev *dev,
1933				  struct pci_saved_state **state)
1934{
1935	int ret = pci_load_saved_state(dev, *state);
1936	kfree(*state);
1937	*state = NULL;
1938	return ret;
1939}
1940EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1941
1942int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1943{
1944	return pci_enable_resources(dev, bars);
1945}
1946
1947static int do_pci_enable_device(struct pci_dev *dev, int bars)
1948{
1949	int err;
1950	struct pci_dev *bridge;
1951	u16 cmd;
1952	u8 pin;
1953
1954	err = pci_set_power_state(dev, PCI_D0);
1955	if (err < 0 && err != -EIO)
1956		return err;
1957
1958	bridge = pci_upstream_bridge(dev);
1959	if (bridge)
1960		pcie_aspm_powersave_config_link(bridge);
1961
1962	err = pcibios_enable_device(dev, bars);
1963	if (err < 0)
1964		return err;
1965	pci_fixup_device(pci_fixup_enable, dev);
1966
1967	if (dev->msi_enabled || dev->msix_enabled)
1968		return 0;
1969
1970	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1971	if (pin) {
1972		pci_read_config_word(dev, PCI_COMMAND, &cmd);
1973		if (cmd & PCI_COMMAND_INTX_DISABLE)
1974			pci_write_config_word(dev, PCI_COMMAND,
1975					      cmd & ~PCI_COMMAND_INTX_DISABLE);
1976	}
1977
1978	return 0;
1979}
1980
1981/**
1982 * pci_reenable_device - Resume abandoned device
1983 * @dev: PCI device to be resumed
1984 *
1985 * NOTE: This function is a backend of pci_default_resume() and is not supposed
1986 * to be called by normal code, write proper resume handler and use it instead.
1987 */
1988int pci_reenable_device(struct pci_dev *dev)
1989{
1990	if (pci_is_enabled(dev))
1991		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1992	return 0;
1993}
1994EXPORT_SYMBOL(pci_reenable_device);
1995
1996static void pci_enable_bridge(struct pci_dev *dev)
1997{
1998	struct pci_dev *bridge;
1999	int retval;
2000
2001	bridge = pci_upstream_bridge(dev);
2002	if (bridge)
2003		pci_enable_bridge(bridge);
2004
2005	if (pci_is_enabled(dev)) {
2006		if (!dev->is_busmaster)
2007			pci_set_master(dev);
2008		return;
2009	}
2010
2011	retval = pci_enable_device(dev);
2012	if (retval)
2013		pci_err(dev, "Error enabling bridge (%d), continuing\n",
2014			retval);
2015	pci_set_master(dev);
2016}
2017
2018static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
2019{
2020	struct pci_dev *bridge;
2021	int err;
2022	int i, bars = 0;
2023
2024	/*
2025	 * Power state could be unknown at this point, either due to a fresh
2026	 * boot or a device removal call.  So get the current power state
2027	 * so that things like MSI message writing will behave as expected
2028	 * (e.g. if the device really is in D0 at enable time).
2029	 */
2030	pci_update_current_state(dev, dev->current_state);
2031
2032	if (atomic_inc_return(&dev->enable_cnt) > 1)
2033		return 0;		/* already enabled */
2034
2035	bridge = pci_upstream_bridge(dev);
2036	if (bridge)
2037		pci_enable_bridge(bridge);
2038
2039	/* only skip sriov related */
2040	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
2041		if (dev->resource[i].flags & flags)
2042			bars |= (1 << i);
2043	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
2044		if (dev->resource[i].flags & flags)
2045			bars |= (1 << i);
2046
2047	err = do_pci_enable_device(dev, bars);
2048	if (err < 0)
2049		atomic_dec(&dev->enable_cnt);
2050	return err;
2051}
2052
2053/**
2054 * pci_enable_device_io - Initialize a device for use with IO space
2055 * @dev: PCI device to be initialized
2056 *
2057 * Initialize device before it's used by a driver. Ask low-level code
2058 * to enable I/O resources. Wake up the device if it was suspended.
2059 * Beware, this function can fail.
2060 */
2061int pci_enable_device_io(struct pci_dev *dev)
2062{
2063	return pci_enable_device_flags(dev, IORESOURCE_IO);
2064}
2065EXPORT_SYMBOL(pci_enable_device_io);
2066
2067/**
2068 * pci_enable_device_mem - Initialize a device for use with Memory space
2069 * @dev: PCI device to be initialized
2070 *
2071 * Initialize device before it's used by a driver. Ask low-level code
2072 * to enable Memory resources. Wake up the device if it was suspended.
2073 * Beware, this function can fail.
2074 */
2075int pci_enable_device_mem(struct pci_dev *dev)
2076{
2077	return pci_enable_device_flags(dev, IORESOURCE_MEM);
2078}
2079EXPORT_SYMBOL(pci_enable_device_mem);
2080
2081/**
2082 * pci_enable_device - Initialize device before it's used by a driver.
2083 * @dev: PCI device to be initialized
2084 *
2085 * Initialize device before it's used by a driver. Ask low-level code
2086 * to enable I/O and memory. Wake up the device if it was suspended.
2087 * Beware, this function can fail.
2088 *
2089 * Note we don't actually enable the device many times if we call
2090 * this function repeatedly (we just increment the count).
2091 */
2092int pci_enable_device(struct pci_dev *dev)
2093{
2094	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
2095}
2096EXPORT_SYMBOL(pci_enable_device);
2097
2098/*
2099 * Managed PCI resources.  This manages device on/off, INTx/MSI/MSI-X
2100 * on/off and BAR regions.  pci_dev itself records MSI/MSI-X status, so
2101 * there's no need to track it separately.  pci_devres is initialized
2102 * when a device is enabled using managed PCI device enable interface.
2103 */
2104struct pci_devres {
2105	unsigned int enabled:1;
2106	unsigned int pinned:1;
2107	unsigned int orig_intx:1;
2108	unsigned int restore_intx:1;
2109	unsigned int mwi:1;
2110	u32 region_mask;
2111};
2112
2113static void pcim_release(struct device *gendev, void *res)
2114{
2115	struct pci_dev *dev = to_pci_dev(gendev);
2116	struct pci_devres *this = res;
2117	int i;
2118
2119	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
2120		if (this->region_mask & (1 << i))
2121			pci_release_region(dev, i);
2122
2123	if (this->mwi)
2124		pci_clear_mwi(dev);
2125
2126	if (this->restore_intx)
2127		pci_intx(dev, this->orig_intx);
2128
2129	if (this->enabled && !this->pinned)
2130		pci_disable_device(dev);
2131}
2132
2133static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
2134{
2135	struct pci_devres *dr, *new_dr;
2136
2137	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
2138	if (dr)
2139		return dr;
2140
2141	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
2142	if (!new_dr)
2143		return NULL;
2144	return devres_get(&pdev->dev, new_dr, NULL, NULL);
2145}
2146
2147static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
2148{
2149	if (pci_is_managed(pdev))
2150		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
2151	return NULL;
2152}
2153
2154/**
2155 * pcim_enable_device - Managed pci_enable_device()
2156 * @pdev: PCI device to be initialized
2157 *
2158 * Managed pci_enable_device().
2159 */
2160int pcim_enable_device(struct pci_dev *pdev)
2161{
2162	struct pci_devres *dr;
2163	int rc;
2164
2165	dr = get_pci_dr(pdev);
2166	if (unlikely(!dr))
2167		return -ENOMEM;
2168	if (dr->enabled)
2169		return 0;
2170
2171	rc = pci_enable_device(pdev);
2172	if (!rc) {
2173		pdev->is_managed = 1;
2174		dr->enabled = 1;
2175	}
2176	return rc;
2177}
2178EXPORT_SYMBOL(pcim_enable_device);
2179
2180/**
2181 * pcim_pin_device - Pin managed PCI device
2182 * @pdev: PCI device to pin
2183 *
2184 * Pin managed PCI device @pdev.  Pinned device won't be disabled on
2185 * driver detach.  @pdev must have been enabled with
2186 * pcim_enable_device().
2187 */
2188void pcim_pin_device(struct pci_dev *pdev)
2189{
2190	struct pci_devres *dr;
2191
2192	dr = find_pci_dr(pdev);
2193	WARN_ON(!dr || !dr->enabled);
2194	if (dr)
2195		dr->pinned = 1;
2196}
2197EXPORT_SYMBOL(pcim_pin_device);
2198
2199/*
2200 * pcibios_device_add - provide arch specific hooks when adding device dev
2201 * @dev: the PCI device being added
2202 *
2203 * Permits the platform to provide architecture specific functionality when
2204 * devices are added. This is the default implementation. Architecture
2205 * implementations can override this.
2206 */
2207int __weak pcibios_device_add(struct pci_dev *dev)
2208{
2209	return 0;
2210}
2211
2212/**
2213 * pcibios_release_device - provide arch specific hooks when releasing
2214 *			    device dev
2215 * @dev: the PCI device being released
2216 *
2217 * Permits the platform to provide architecture specific functionality when
2218 * devices are released. This is the default implementation. Architecture
2219 * implementations can override this.
2220 */
2221void __weak pcibios_release_device(struct pci_dev *dev) {}
2222
2223/**
2224 * pcibios_disable_device - disable arch specific PCI resources for device dev
2225 * @dev: the PCI device to disable
2226 *
2227 * Disables architecture specific PCI resources for the device. This
2228 * is the default implementation. Architecture implementations can
2229 * override this.
2230 */
2231void __weak pcibios_disable_device(struct pci_dev *dev) {}
2232
2233/**
2234 * pcibios_penalize_isa_irq - penalize an ISA IRQ
2235 * @irq: ISA IRQ to penalize
2236 * @active: IRQ active or not
2237 *
2238 * Permits the platform to provide architecture-specific functionality when
2239 * penalizing ISA IRQs. This is the default implementation. Architecture
2240 * implementations can override this.
2241 */
2242void __weak pcibios_penalize_isa_irq(int irq, int active) {}
2243
2244static void do_pci_disable_device(struct pci_dev *dev)
2245{
2246	u16 pci_command;
2247
2248	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2249	if (pci_command & PCI_COMMAND_MASTER) {
2250		pci_command &= ~PCI_COMMAND_MASTER;
2251		pci_write_config_word(dev, PCI_COMMAND, pci_command);
2252	}
2253
2254	pcibios_disable_device(dev);
2255}
2256
2257/**
2258 * pci_disable_enabled_device - Disable device without updating enable_cnt
2259 * @dev: PCI device to disable
2260 *
2261 * NOTE: This function is a backend of PCI power management routines and is
2262 * not supposed to be called drivers.
2263 */
2264void pci_disable_enabled_device(struct pci_dev *dev)
2265{
2266	if (pci_is_enabled(dev))
2267		do_pci_disable_device(dev);
2268}
2269
2270/**
2271 * pci_disable_device - Disable PCI device after use
2272 * @dev: PCI device to be disabled
2273 *
2274 * Signal to the system that the PCI device is not in use by the system
2275 * anymore.  This only involves disabling PCI bus-mastering, if active.
2276 *
2277 * Note we don't actually disable the device until all callers of
2278 * pci_enable_device() have called pci_disable_device().
2279 */
2280void pci_disable_device(struct pci_dev *dev)
2281{
2282	struct pci_devres *dr;
2283
2284	dr = find_pci_dr(dev);
2285	if (dr)
2286		dr->enabled = 0;
2287
2288	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2289		      "disabling already-disabled device");
2290
2291	if (atomic_dec_return(&dev->enable_cnt) != 0)
2292		return;
2293
2294	do_pci_disable_device(dev);
2295
2296	dev->is_busmaster = 0;
2297}
2298EXPORT_SYMBOL(pci_disable_device);
2299
2300/**
2301 * pcibios_set_pcie_reset_state - set reset state for device dev
2302 * @dev: the PCIe device reset
2303 * @state: Reset state to enter into
2304 *
2305 * Set the PCIe reset state for the device. This is the default
2306 * implementation. Architecture implementations can override this.
2307 */
2308int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2309					enum pcie_reset_state state)
2310{
2311	return -EINVAL;
2312}
2313
2314/**
2315 * pci_set_pcie_reset_state - set reset state for device dev
2316 * @dev: the PCIe device reset
2317 * @state: Reset state to enter into
2318 *
2319 * Sets the PCI reset state for the device.
2320 */
2321int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2322{
2323	return pcibios_set_pcie_reset_state(dev, state);
2324}
2325EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2326
2327#ifdef CONFIG_PCIEAER
2328void pcie_clear_device_status(struct pci_dev *dev)
2329{
2330	u16 sta;
2331
2332	pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2333	pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2334}
2335#endif
2336
2337/**
2338 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2339 * @dev: PCIe root port or event collector.
2340 */
2341void pcie_clear_root_pme_status(struct pci_dev *dev)
2342{
2343	pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2344}
2345
2346/**
2347 * pci_check_pme_status - Check if given device has generated PME.
2348 * @dev: Device to check.
2349 *
2350 * Check the PME status of the device and if set, clear it and clear PME enable
2351 * (if set).  Return 'true' if PME status and PME enable were both set or
2352 * 'false' otherwise.
2353 */
2354bool pci_check_pme_status(struct pci_dev *dev)
2355{
2356	int pmcsr_pos;
2357	u16 pmcsr;
2358	bool ret = false;
2359
2360	if (!dev->pm_cap)
2361		return false;
2362
2363	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2364	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2365	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2366		return false;
2367
2368	/* Clear PME status. */
2369	pmcsr |= PCI_PM_CTRL_PME_STATUS;
2370	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2371		/* Disable PME to avoid interrupt flood. */
2372		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2373		ret = true;
2374	}
2375
2376	pci_write_config_word(dev, pmcsr_pos, pmcsr);
2377
2378	return ret;
2379}
2380
2381/**
2382 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2383 * @dev: Device to handle.
2384 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2385 *
2386 * Check if @dev has generated PME and queue a resume request for it in that
2387 * case.
2388 */
2389static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2390{
2391	if (pme_poll_reset && dev->pme_poll)
2392		dev->pme_poll = false;
2393
2394	if (pci_check_pme_status(dev)) {
2395		pci_wakeup_event(dev);
2396		pm_request_resume(&dev->dev);
2397	}
2398	return 0;
2399}
2400
2401/**
2402 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2403 * @bus: Top bus of the subtree to walk.
2404 */
2405void pci_pme_wakeup_bus(struct pci_bus *bus)
2406{
2407	if (bus)
2408		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2409}
2410
2411
2412/**
2413 * pci_pme_capable - check the capability of PCI device to generate PME#
2414 * @dev: PCI device to handle.
2415 * @state: PCI state from which device will issue PME#.
2416 */
2417bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2418{
2419	if (!dev->pm_cap)
2420		return false;
2421
2422	return !!(dev->pme_support & (1 << state));
2423}
2424EXPORT_SYMBOL(pci_pme_capable);
2425
2426static void pci_pme_list_scan(struct work_struct *work)
2427{
2428	struct pci_pme_device *pme_dev, *n;
2429
2430	mutex_lock(&pci_pme_list_mutex);
2431	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2432		struct pci_dev *pdev = pme_dev->dev;
2433
2434		if (pdev->pme_poll) {
2435			struct pci_dev *bridge = pdev->bus->self;
2436			struct device *dev = &pdev->dev;
2437			struct device *bdev = bridge ? &bridge->dev : NULL;
2438			int bref = 0;
2439
2440			/*
2441			 * If we have a bridge, it should be in an active/D0
2442			 * state or the configuration space of subordinate
2443			 * devices may not be accessible or stable over the
2444			 * course of the call.
2445			 */
2446			if (bdev) {
2447				bref = pm_runtime_get_if_active(bdev, true);
2448				if (!bref)
2449					continue;
2450
2451				if (bridge->current_state != PCI_D0)
2452					goto put_bridge;
2453			}
2454
2455			/*
2456			 * The device itself should be suspended but config
2457			 * space must be accessible, therefore it cannot be in
2458			 * D3cold.
2459			 */
2460			if (pm_runtime_suspended(dev) &&
2461			    pdev->current_state != PCI_D3cold)
2462				pci_pme_wakeup(pdev, NULL);
2463
2464put_bridge:
2465			if (bref > 0)
2466				pm_runtime_put(bdev);
2467		} else {
2468			list_del(&pme_dev->list);
2469			kfree(pme_dev);
2470		}
2471	}
2472	if (!list_empty(&pci_pme_list))
2473		queue_delayed_work(system_freezable_wq, &pci_pme_work,
2474				   msecs_to_jiffies(PME_TIMEOUT));
2475	mutex_unlock(&pci_pme_list_mutex);
2476}
2477
2478static void __pci_pme_active(struct pci_dev *dev, bool enable)
2479{
2480	u16 pmcsr;
2481
2482	if (!dev->pme_support)
2483		return;
2484
2485	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2486	/* Clear PME_Status by writing 1 to it and enable PME# */
2487	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2488	if (!enable)
2489		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2490
2491	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2492}
2493
2494/**
2495 * pci_pme_restore - Restore PME configuration after config space restore.
2496 * @dev: PCI device to update.
2497 */
2498void pci_pme_restore(struct pci_dev *dev)
2499{
2500	u16 pmcsr;
2501
2502	if (!dev->pme_support)
2503		return;
2504
2505	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2506	if (dev->wakeup_prepared) {
2507		pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2508		pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2509	} else {
2510		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2511		pmcsr |= PCI_PM_CTRL_PME_STATUS;
2512	}
2513	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2514}
2515
2516/**
2517 * pci_pme_active - enable or disable PCI device's PME# function
2518 * @dev: PCI device to handle.
2519 * @enable: 'true' to enable PME# generation; 'false' to disable it.
2520 *
2521 * The caller must verify that the device is capable of generating PME# before
2522 * calling this function with @enable equal to 'true'.
2523 */
2524void pci_pme_active(struct pci_dev *dev, bool enable)
2525{
2526	__pci_pme_active(dev, enable);
2527
2528	/*
2529	 * PCI (as opposed to PCIe) PME requires that the device have
2530	 * its PME# line hooked up correctly. Not all hardware vendors
2531	 * do this, so the PME never gets delivered and the device
2532	 * remains asleep. The easiest way around this is to
2533	 * periodically walk the list of suspended devices and check
2534	 * whether any have their PME flag set. The assumption is that
2535	 * we'll wake up often enough anyway that this won't be a huge
2536	 * hit, and the power savings from the devices will still be a
2537	 * win.
2538	 *
2539	 * Although PCIe uses in-band PME message instead of PME# line
2540	 * to report PME, PME does not work for some PCIe devices in
2541	 * reality.  For example, there are devices that set their PME
2542	 * status bits, but don't really bother to send a PME message;
2543	 * there are PCI Express Root Ports that don't bother to
2544	 * trigger interrupts when they receive PME messages from the
2545	 * devices below.  So PME poll is used for PCIe devices too.
2546	 */
2547
2548	if (dev->pme_poll) {
2549		struct pci_pme_device *pme_dev;
2550		if (enable) {
2551			pme_dev = kmalloc(sizeof(struct pci_pme_device),
2552					  GFP_KERNEL);
2553			if (!pme_dev) {
2554				pci_warn(dev, "can't enable PME#\n");
2555				return;
2556			}
2557			pme_dev->dev = dev;
2558			mutex_lock(&pci_pme_list_mutex);
2559			list_add(&pme_dev->list, &pci_pme_list);
2560			if (list_is_singular(&pci_pme_list))
2561				queue_delayed_work(system_freezable_wq,
2562						   &pci_pme_work,
2563						   msecs_to_jiffies(PME_TIMEOUT));
2564			mutex_unlock(&pci_pme_list_mutex);
2565		} else {
2566			mutex_lock(&pci_pme_list_mutex);
2567			list_for_each_entry(pme_dev, &pci_pme_list, list) {
2568				if (pme_dev->dev == dev) {
2569					list_del(&pme_dev->list);
2570					kfree(pme_dev);
2571					break;
2572				}
2573			}
2574			mutex_unlock(&pci_pme_list_mutex);
2575		}
2576	}
2577
2578	pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2579}
2580EXPORT_SYMBOL(pci_pme_active);
2581
2582/**
2583 * __pci_enable_wake - enable PCI device as wakeup event source
2584 * @dev: PCI device affected
2585 * @state: PCI state from which device will issue wakeup events
2586 * @enable: True to enable event generation; false to disable
2587 *
2588 * This enables the device as a wakeup event source, or disables it.
2589 * When such events involves platform-specific hooks, those hooks are
2590 * called automatically by this routine.
2591 *
2592 * Devices with legacy power management (no standard PCI PM capabilities)
2593 * always require such platform hooks.
2594 *
2595 * RETURN VALUE:
2596 * 0 is returned on success
2597 * -EINVAL is returned if device is not supposed to wake up the system
2598 * Error code depending on the platform is returned if both the platform and
2599 * the native mechanism fail to enable the generation of wake-up events
2600 */
2601static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2602{
2603	int ret = 0;
2604
2605	/*
2606	 * Bridges that are not power-manageable directly only signal
2607	 * wakeup on behalf of subordinate devices which is set up
2608	 * elsewhere, so skip them. However, bridges that are
2609	 * power-manageable may signal wakeup for themselves (for example,
2610	 * on a hotplug event) and they need to be covered here.
2611	 */
2612	if (!pci_power_manageable(dev))
2613		return 0;
2614
2615	/* Don't do the same thing twice in a row for one device. */
2616	if (!!enable == !!dev->wakeup_prepared)
2617		return 0;
2618
2619	/*
2620	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2621	 * Anderson we should be doing PME# wake enable followed by ACPI wake
2622	 * enable.  To disable wake-up we call the platform first, for symmetry.
2623	 */
2624
2625	if (enable) {
2626		int error;
2627
2628		/*
2629		 * Enable PME signaling if the device can signal PME from
2630		 * D3cold regardless of whether or not it can signal PME from
2631		 * the current target state, because that will allow it to
2632		 * signal PME when the hierarchy above it goes into D3cold and
2633		 * the device itself ends up in D3cold as a result of that.
2634		 */
2635		if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold))
2636			pci_pme_active(dev, true);
2637		else
2638			ret = 1;
2639		error = platform_pci_set_wakeup(dev, true);
2640		if (ret)
2641			ret = error;
2642		if (!ret)
2643			dev->wakeup_prepared = true;
2644	} else {
2645		platform_pci_set_wakeup(dev, false);
2646		pci_pme_active(dev, false);
2647		dev->wakeup_prepared = false;
2648	}
2649
2650	return ret;
2651}
2652
2653/**
2654 * pci_enable_wake - change wakeup settings for a PCI device
2655 * @pci_dev: Target device
2656 * @state: PCI state from which device will issue wakeup events
2657 * @enable: Whether or not to enable event generation
2658 *
2659 * If @enable is set, check device_may_wakeup() for the device before calling
2660 * __pci_enable_wake() for it.
2661 */
2662int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2663{
2664	if (enable && !device_may_wakeup(&pci_dev->dev))
2665		return -EINVAL;
2666
2667	return __pci_enable_wake(pci_dev, state, enable);
2668}
2669EXPORT_SYMBOL(pci_enable_wake);
2670
2671/**
2672 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2673 * @dev: PCI device to prepare
2674 * @enable: True to enable wake-up event generation; false to disable
2675 *
2676 * Many drivers want the device to wake up the system from D3_hot or D3_cold
2677 * and this function allows them to set that up cleanly - pci_enable_wake()
2678 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2679 * ordering constraints.
2680 *
2681 * This function only returns error code if the device is not allowed to wake
2682 * up the system from sleep or it is not capable of generating PME# from both
2683 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2684 */
2685int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2686{
2687	return pci_pme_capable(dev, PCI_D3cold) ?
2688			pci_enable_wake(dev, PCI_D3cold, enable) :
2689			pci_enable_wake(dev, PCI_D3hot, enable);
2690}
2691EXPORT_SYMBOL(pci_wake_from_d3);
2692
2693/**
2694 * pci_target_state - find an appropriate low power state for a given PCI dev
2695 * @dev: PCI device
2696 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2697 *
2698 * Use underlying platform code to find a supported low power state for @dev.
2699 * If the platform can't manage @dev, return the deepest state from which it
2700 * can generate wake events, based on any available PME info.
2701 */
2702static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2703{
2704	if (platform_pci_power_manageable(dev)) {
2705		/*
2706		 * Call the platform to find the target state for the device.
2707		 */
2708		pci_power_t state = platform_pci_choose_state(dev);
2709
2710		switch (state) {
2711		case PCI_POWER_ERROR:
2712		case PCI_UNKNOWN:
2713			return PCI_D3hot;
2714
2715		case PCI_D1:
2716		case PCI_D2:
2717			if (pci_no_d1d2(dev))
2718				return PCI_D3hot;
2719		}
2720
2721		return state;
2722	}
2723
2724	/*
2725	 * If the device is in D3cold even though it's not power-manageable by
2726	 * the platform, it may have been powered down by non-standard means.
2727	 * Best to let it slumber.
2728	 */
2729	if (dev->current_state == PCI_D3cold)
2730		return PCI_D3cold;
2731	else if (!dev->pm_cap)
2732		return PCI_D0;
2733
2734	if (wakeup && dev->pme_support) {
2735		pci_power_t state = PCI_D3hot;
2736
2737		/*
2738		 * Find the deepest state from which the device can generate
2739		 * PME#.
2740		 */
2741		while (state && !(dev->pme_support & (1 << state)))
2742			state--;
2743
2744		if (state)
2745			return state;
2746		else if (dev->pme_support & 1)
2747			return PCI_D0;
2748	}
2749
2750	return PCI_D3hot;
2751}
2752
2753/**
2754 * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2755 *			  into a sleep state
2756 * @dev: Device to handle.
2757 *
2758 * Choose the power state appropriate for the device depending on whether
2759 * it can wake up the system and/or is power manageable by the platform
2760 * (PCI_D3hot is the default) and put the device into that state.
2761 */
2762int pci_prepare_to_sleep(struct pci_dev *dev)
2763{
2764	bool wakeup = device_may_wakeup(&dev->dev);
2765	pci_power_t target_state = pci_target_state(dev, wakeup);
2766	int error;
2767
2768	if (target_state == PCI_POWER_ERROR)
2769		return -EIO;
2770
2771	pci_enable_wake(dev, target_state, wakeup);
2772
2773	error = pci_set_power_state(dev, target_state);
2774
2775	if (error)
2776		pci_enable_wake(dev, target_state, false);
2777
2778	return error;
2779}
2780EXPORT_SYMBOL(pci_prepare_to_sleep);
2781
2782/**
2783 * pci_back_from_sleep - turn PCI device on during system-wide transition
2784 *			 into working state
2785 * @dev: Device to handle.
2786 *
2787 * Disable device's system wake-up capability and put it into D0.
2788 */
2789int pci_back_from_sleep(struct pci_dev *dev)
2790{
2791	int ret = pci_set_power_state(dev, PCI_D0);
2792
2793	if (ret)
2794		return ret;
2795
2796	pci_enable_wake(dev, PCI_D0, false);
2797	return 0;
2798}
2799EXPORT_SYMBOL(pci_back_from_sleep);
2800
2801/**
2802 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2803 * @dev: PCI device being suspended.
2804 *
2805 * Prepare @dev to generate wake-up events at run time and put it into a low
2806 * power state.
2807 */
2808int pci_finish_runtime_suspend(struct pci_dev *dev)
2809{
2810	pci_power_t target_state;
2811	int error;
2812
2813	target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2814	if (target_state == PCI_POWER_ERROR)
2815		return -EIO;
2816
2817	__pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2818
2819	error = pci_set_power_state(dev, target_state);
2820
2821	if (error)
2822		pci_enable_wake(dev, target_state, false);
2823
2824	return error;
2825}
2826
2827/**
2828 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2829 * @dev: Device to check.
2830 *
2831 * Return true if the device itself is capable of generating wake-up events
2832 * (through the platform or using the native PCIe PME) or if the device supports
2833 * PME and one of its upstream bridges can generate wake-up events.
2834 */
2835bool pci_dev_run_wake(struct pci_dev *dev)
2836{
2837	struct pci_bus *bus = dev->bus;
2838
2839	if (!dev->pme_support)
2840		return false;
2841
2842	/* PME-capable in principle, but not from the target power state */
2843	if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2844		return false;
2845
2846	if (device_can_wakeup(&dev->dev))
2847		return true;
2848
2849	while (bus->parent) {
2850		struct pci_dev *bridge = bus->self;
2851
2852		if (device_can_wakeup(&bridge->dev))
2853			return true;
2854
2855		bus = bus->parent;
2856	}
2857
2858	/* We have reached the root bus. */
2859	if (bus->bridge)
2860		return device_can_wakeup(bus->bridge);
2861
2862	return false;
2863}
2864EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2865
2866/**
2867 * pci_dev_need_resume - Check if it is necessary to resume the device.
2868 * @pci_dev: Device to check.
2869 *
2870 * Return 'true' if the device is not runtime-suspended or it has to be
2871 * reconfigured due to wakeup settings difference between system and runtime
2872 * suspend, or the current power state of it is not suitable for the upcoming
2873 * (system-wide) transition.
2874 */
2875bool pci_dev_need_resume(struct pci_dev *pci_dev)
2876{
2877	struct device *dev = &pci_dev->dev;
2878	pci_power_t target_state;
2879
2880	if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2881		return true;
2882
2883	target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2884
2885	/*
2886	 * If the earlier platform check has not triggered, D3cold is just power
2887	 * removal on top of D3hot, so no need to resume the device in that
2888	 * case.
2889	 */
2890	return target_state != pci_dev->current_state &&
2891		target_state != PCI_D3cold &&
2892		pci_dev->current_state != PCI_D3hot;
2893}
2894
2895/**
2896 * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2897 * @pci_dev: Device to check.
2898 *
2899 * If the device is suspended and it is not configured for system wakeup,
2900 * disable PME for it to prevent it from waking up the system unnecessarily.
2901 *
2902 * Note that if the device's power state is D3cold and the platform check in
2903 * pci_dev_need_resume() has not triggered, the device's configuration need not
2904 * be changed.
2905 */
2906void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2907{
2908	struct device *dev = &pci_dev->dev;
2909
2910	spin_lock_irq(&dev->power.lock);
2911
2912	if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2913	    pci_dev->current_state < PCI_D3cold)
2914		__pci_pme_active(pci_dev, false);
2915
2916	spin_unlock_irq(&dev->power.lock);
2917}
2918
2919/**
2920 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2921 * @pci_dev: Device to handle.
2922 *
2923 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2924 * it might have been disabled during the prepare phase of system suspend if
2925 * the device was not configured for system wakeup.
2926 */
2927void pci_dev_complete_resume(struct pci_dev *pci_dev)
2928{
2929	struct device *dev = &pci_dev->dev;
2930
2931	if (!pci_dev_run_wake(pci_dev))
2932		return;
2933
2934	spin_lock_irq(&dev->power.lock);
2935
2936	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2937		__pci_pme_active(pci_dev, true);
2938
2939	spin_unlock_irq(&dev->power.lock);
2940}
2941
2942/**
2943 * pci_choose_state - Choose the power state of a PCI device.
2944 * @dev: Target PCI device.
2945 * @state: Target state for the whole system.
2946 *
2947 * Returns PCI power state suitable for @dev and @state.
2948 */
2949pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
2950{
2951	if (state.event == PM_EVENT_ON)
2952		return PCI_D0;
2953
2954	return pci_target_state(dev, false);
2955}
2956EXPORT_SYMBOL(pci_choose_state);
2957
2958void pci_config_pm_runtime_get(struct pci_dev *pdev)
2959{
2960	struct device *dev = &pdev->dev;
2961	struct device *parent = dev->parent;
2962
2963	if (parent)
2964		pm_runtime_get_sync(parent);
2965	pm_runtime_get_noresume(dev);
2966	/*
2967	 * pdev->current_state is set to PCI_D3cold during suspending,
2968	 * so wait until suspending completes
2969	 */
2970	pm_runtime_barrier(dev);
2971	/*
2972	 * Only need to resume devices in D3cold, because config
2973	 * registers are still accessible for devices suspended but
2974	 * not in D3cold.
2975	 */
2976	if (pdev->current_state == PCI_D3cold)
2977		pm_runtime_resume(dev);
2978}
2979
2980void pci_config_pm_runtime_put(struct pci_dev *pdev)
2981{
2982	struct device *dev = &pdev->dev;
2983	struct device *parent = dev->parent;
2984
2985	pm_runtime_put(dev);
2986	if (parent)
2987		pm_runtime_put_sync(parent);
2988}
2989
2990static const struct dmi_system_id bridge_d3_blacklist[] = {
2991#ifdef CONFIG_X86
2992	{
2993		/*
2994		 * Gigabyte X299 root port is not marked as hotplug capable
2995		 * which allows Linux to power manage it.  However, this
2996		 * confuses the BIOS SMI handler so don't power manage root
2997		 * ports on that system.
2998		 */
2999		.ident = "X299 DESIGNARE EX-CF",
3000		.matches = {
3001			DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
3002			DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
3003		},
3004	},
3005	{
3006		/*
3007		 * Downstream device is not accessible after putting a root port
3008		 * into D3cold and back into D0 on Elo Continental Z2 board
3009		 */
3010		.ident = "Elo Continental Z2",
3011		.matches = {
3012			DMI_MATCH(DMI_BOARD_VENDOR, "Elo Touch Solutions"),
3013			DMI_MATCH(DMI_BOARD_NAME, "Geminilake"),
3014			DMI_MATCH(DMI_BOARD_VERSION, "Continental Z2"),
3015		},
3016	},
3017#endif
3018	{ }
3019};
3020
3021/**
3022 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
3023 * @bridge: Bridge to check
3024 *
3025 * This function checks if it is possible to move the bridge to D3.
3026 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
3027 */
3028bool pci_bridge_d3_possible(struct pci_dev *bridge)
3029{
3030	if (!pci_is_pcie(bridge))
3031		return false;
3032
3033	switch (pci_pcie_type(bridge)) {
3034	case PCI_EXP_TYPE_ROOT_PORT:
3035	case PCI_EXP_TYPE_UPSTREAM:
3036	case PCI_EXP_TYPE_DOWNSTREAM:
3037		if (pci_bridge_d3_disable)
3038			return false;
3039
3040		/*
3041		 * Hotplug ports handled by firmware in System Management Mode
3042		 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
3043		 */
3044		if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
3045			return false;
3046
3047		if (pci_bridge_d3_force)
3048			return true;
3049
3050		/* Even the oldest 2010 Thunderbolt controller supports D3. */
3051		if (bridge->is_thunderbolt)
3052			return true;
3053
3054		/* Platform might know better if the bridge supports D3 */
3055		if (platform_pci_bridge_d3(bridge))
3056			return true;
3057
3058		/*
3059		 * Hotplug ports handled natively by the OS were not validated
3060		 * by vendors for runtime D3 at least until 2018 because there
3061		 * was no OS support.
3062		 */
3063		if (bridge->is_hotplug_bridge)
3064			return false;
3065
3066		if (dmi_check_system(bridge_d3_blacklist))
3067			return false;
3068
3069		/*
3070		 * It should be safe to put PCIe ports from 2015 or newer
3071		 * to D3.
3072		 */
3073		if (dmi_get_bios_year() >= 2015)
3074			return true;
3075		break;
3076	}
3077
3078	return false;
3079}
3080
3081static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
3082{
3083	bool *d3cold_ok = data;
3084
3085	if (/* The device needs to be allowed to go D3cold ... */
3086	    dev->no_d3cold || !dev->d3cold_allowed ||
3087
3088	    /* ... and if it is wakeup capable to do so from D3cold. */
3089	    (device_may_wakeup(&dev->dev) &&
3090	     !pci_pme_capable(dev, PCI_D3cold)) ||
3091
3092	    /* If it is a bridge it must be allowed to go to D3. */
3093	    !pci_power_manageable(dev))
3094
3095		*d3cold_ok = false;
3096
3097	return !*d3cold_ok;
3098}
3099
3100/*
3101 * pci_bridge_d3_update - Update bridge D3 capabilities
3102 * @dev: PCI device which is changed
3103 *
3104 * Update upstream bridge PM capabilities accordingly depending on if the
3105 * device PM configuration was changed or the device is being removed.  The
3106 * change is also propagated upstream.
3107 */
3108void pci_bridge_d3_update(struct pci_dev *dev)
3109{
3110	bool remove = !device_is_registered(&dev->dev);
3111	struct pci_dev *bridge;
3112	bool d3cold_ok = true;
3113
3114	bridge = pci_upstream_bridge(dev);
3115	if (!bridge || !pci_bridge_d3_possible(bridge))
3116		return;
3117
3118	/*
3119	 * If D3 is currently allowed for the bridge, removing one of its
3120	 * children won't change that.
3121	 */
3122	if (remove && bridge->bridge_d3)
3123		return;
3124
3125	/*
3126	 * If D3 is currently allowed for the bridge and a child is added or
3127	 * changed, disallowance of D3 can only be caused by that child, so
3128	 * we only need to check that single device, not any of its siblings.
3129	 *
3130	 * If D3 is currently not allowed for the bridge, checking the device
3131	 * first may allow us to skip checking its siblings.
3132	 */
3133	if (!remove)
3134		pci_dev_check_d3cold(dev, &d3cold_ok);
3135
3136	/*
3137	 * If D3 is currently not allowed for the bridge, this may be caused
3138	 * either by the device being changed/removed or any of its siblings,
3139	 * so we need to go through all children to find out if one of them
3140	 * continues to block D3.
3141	 */
3142	if (d3cold_ok && !bridge->bridge_d3)
3143		pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
3144			     &d3cold_ok);
3145
3146	if (bridge->bridge_d3 != d3cold_ok) {
3147		bridge->bridge_d3 = d3cold_ok;
3148		/* Propagate change to upstream bridges */
3149		pci_bridge_d3_update(bridge);
3150	}
3151}
3152
3153/**
3154 * pci_d3cold_enable - Enable D3cold for device
3155 * @dev: PCI device to handle
3156 *
3157 * This function can be used in drivers to enable D3cold from the device
3158 * they handle.  It also updates upstream PCI bridge PM capabilities
3159 * accordingly.
3160 */
3161void pci_d3cold_enable(struct pci_dev *dev)
3162{
3163	if (dev->no_d3cold) {
3164		dev->no_d3cold = false;
3165		pci_bridge_d3_update(dev);
3166	}
3167}
3168EXPORT_SYMBOL_GPL(pci_d3cold_enable);
3169
3170/**
3171 * pci_d3cold_disable - Disable D3cold for device
3172 * @dev: PCI device to handle
3173 *
3174 * This function can be used in drivers to disable D3cold from the device
3175 * they handle.  It also updates upstream PCI bridge PM capabilities
3176 * accordingly.
3177 */
3178void pci_d3cold_disable(struct pci_dev *dev)
3179{
3180	if (!dev->no_d3cold) {
3181		dev->no_d3cold = true;
3182		pci_bridge_d3_update(dev);
3183	}
3184}
3185EXPORT_SYMBOL_GPL(pci_d3cold_disable);
3186
3187/**
3188 * pci_pm_init - Initialize PM functions of given PCI device
3189 * @dev: PCI device to handle.
3190 */
3191void pci_pm_init(struct pci_dev *dev)
3192{
3193	int pm;
3194	u16 status;
3195	u16 pmc;
3196
3197	pm_runtime_forbid(&dev->dev);
3198	pm_runtime_set_active(&dev->dev);
3199	pm_runtime_enable(&dev->dev);
3200	device_enable_async_suspend(&dev->dev);
3201	dev->wakeup_prepared = false;
3202
3203	dev->pm_cap = 0;
3204	dev->pme_support = 0;
3205
3206	/* find PCI PM capability in list */
3207	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3208	if (!pm)
3209		return;
3210	/* Check device's ability to generate PME# */
3211	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3212
3213	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3214		pci_err(dev, "unsupported PM cap regs version (%u)\n",
3215			pmc & PCI_PM_CAP_VER_MASK);
3216		return;
3217	}
3218
3219	dev->pm_cap = pm;
3220	dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3221	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3222	dev->bridge_d3 = pci_bridge_d3_possible(dev);
3223	dev->d3cold_allowed = true;
3224
3225	dev->d1_support = false;
3226	dev->d2_support = false;
3227	if (!pci_no_d1d2(dev)) {
3228		if (pmc & PCI_PM_CAP_D1)
3229			dev->d1_support = true;
3230		if (pmc & PCI_PM_CAP_D2)
3231			dev->d2_support = true;
3232
3233		if (dev->d1_support || dev->d2_support)
3234			pci_info(dev, "supports%s%s\n",
3235				   dev->d1_support ? " D1" : "",
3236				   dev->d2_support ? " D2" : "");
3237	}
3238
3239	pmc &= PCI_PM_CAP_PME_MASK;
3240	if (pmc) {
3241		pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3242			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3243			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3244			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3245			 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3246			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3247		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
3248		dev->pme_poll = true;
3249		/*
3250		 * Make device's PM flags reflect the wake-up capability, but
3251		 * let the user space enable it to wake up the system as needed.
3252		 */
3253		device_set_wakeup_capable(&dev->dev, true);
3254		/* Disable the PME# generation functionality */
3255		pci_pme_active(dev, false);
3256	}
3257
3258	pci_read_config_word(dev, PCI_STATUS, &status);
3259	if (status & PCI_STATUS_IMM_READY)
3260		dev->imm_ready = 1;
3261}
3262
3263static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3264{
3265	unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3266
3267	switch (prop) {
3268	case PCI_EA_P_MEM:
3269	case PCI_EA_P_VF_MEM:
3270		flags |= IORESOURCE_MEM;
3271		break;
3272	case PCI_EA_P_MEM_PREFETCH:
3273	case PCI_EA_P_VF_MEM_PREFETCH:
3274		flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3275		break;
3276	case PCI_EA_P_IO:
3277		flags |= IORESOURCE_IO;
3278		break;
3279	default:
3280		return 0;
3281	}
3282
3283	return flags;
3284}
3285
3286static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3287					    u8 prop)
3288{
3289	if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3290		return &dev->resource[bei];
3291#ifdef CONFIG_PCI_IOV
3292	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3293		 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3294		return &dev->resource[PCI_IOV_RESOURCES +
3295				      bei - PCI_EA_BEI_VF_BAR0];
3296#endif
3297	else if (bei == PCI_EA_BEI_ROM)
3298		return &dev->resource[PCI_ROM_RESOURCE];
3299	else
3300		return NULL;
3301}
3302
3303/* Read an Enhanced Allocation (EA) entry */
3304static int pci_ea_read(struct pci_dev *dev, int offset)
3305{
3306	struct resource *res;
3307	int ent_size, ent_offset = offset;
3308	resource_size_t start, end;
3309	unsigned long flags;
3310	u32 dw0, bei, base, max_offset;
3311	u8 prop;
3312	bool support_64 = (sizeof(resource_size_t) >= 8);
3313
3314	pci_read_config_dword(dev, ent_offset, &dw0);
3315	ent_offset += 4;
3316
3317	/* Entry size field indicates DWORDs after 1st */
3318	ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
3319
3320	if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3321		goto out;
3322
3323	bei = (dw0 & PCI_EA_BEI) >> 4;
3324	prop = (dw0 & PCI_EA_PP) >> 8;
3325
3326	/*
3327	 * If the Property is in the reserved range, try the Secondary
3328	 * Property instead.
3329	 */
3330	if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3331		prop = (dw0 & PCI_EA_SP) >> 16;
3332	if (prop > PCI_EA_P_BRIDGE_IO)
3333		goto out;
3334
3335	res = pci_ea_get_resource(dev, bei, prop);
3336	if (!res) {
3337		pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3338		goto out;
3339	}
3340
3341	flags = pci_ea_flags(dev, prop);
3342	if (!flags) {
3343		pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3344		goto out;
3345	}
3346
3347	/* Read Base */
3348	pci_read_config_dword(dev, ent_offset, &base);
3349	start = (base & PCI_EA_FIELD_MASK);
3350	ent_offset += 4;
3351
3352	/* Read MaxOffset */
3353	pci_read_config_dword(dev, ent_offset, &max_offset);
3354	ent_offset += 4;
3355
3356	/* Read Base MSBs (if 64-bit entry) */
3357	if (base & PCI_EA_IS_64) {
3358		u32 base_upper;
3359
3360		pci_read_config_dword(dev, ent_offset, &base_upper);
3361		ent_offset += 4;
3362
3363		flags |= IORESOURCE_MEM_64;
3364
3365		/* entry starts above 32-bit boundary, can't use */
3366		if (!support_64 && base_upper)
3367			goto out;
3368
3369		if (support_64)
3370			start |= ((u64)base_upper << 32);
3371	}
3372
3373	end = start + (max_offset | 0x03);
3374
3375	/* Read MaxOffset MSBs (if 64-bit entry) */
3376	if (max_offset & PCI_EA_IS_64) {
3377		u32 max_offset_upper;
3378
3379		pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3380		ent_offset += 4;
3381
3382		flags |= IORESOURCE_MEM_64;
3383
3384		/* entry too big, can't use */
3385		if (!support_64 && max_offset_upper)
3386			goto out;
3387
3388		if (support_64)
3389			end += ((u64)max_offset_upper << 32);
3390	}
3391
3392	if (end < start) {
3393		pci_err(dev, "EA Entry crosses address boundary\n");
3394		goto out;
3395	}
3396
3397	if (ent_size != ent_offset - offset) {
3398		pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3399			ent_size, ent_offset - offset);
3400		goto out;
3401	}
3402
3403	res->name = pci_name(dev);
3404	res->start = start;
3405	res->end = end;
3406	res->flags = flags;
3407
3408	if (bei <= PCI_EA_BEI_BAR5)
3409		pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3410			   bei, res, prop);
3411	else if (bei == PCI_EA_BEI_ROM)
3412		pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3413			   res, prop);
3414	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3415		pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3416			   bei - PCI_EA_BEI_VF_BAR0, res, prop);
3417	else
3418		pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3419			   bei, res, prop);
3420
3421out:
3422	return offset + ent_size;
3423}
3424
3425/* Enhanced Allocation Initialization */
3426void pci_ea_init(struct pci_dev *dev)
3427{
3428	int ea;
3429	u8 num_ent;
3430	int offset;
3431	int i;
3432
3433	/* find PCI EA capability in list */
3434	ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3435	if (!ea)
3436		return;
3437
3438	/* determine the number of entries */
3439	pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3440					&num_ent);
3441	num_ent &= PCI_EA_NUM_ENT_MASK;
3442
3443	offset = ea + PCI_EA_FIRST_ENT;
3444
3445	/* Skip DWORD 2 for type 1 functions */
3446	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3447		offset += 4;
3448
3449	/* parse each EA entry */
3450	for (i = 0; i < num_ent; ++i)
3451		offset = pci_ea_read(dev, offset);
3452}
3453
3454static void pci_add_saved_cap(struct pci_dev *pci_dev,
3455	struct pci_cap_saved_state *new_cap)
3456{
3457	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3458}
3459
3460/**
3461 * _pci_add_cap_save_buffer - allocate buffer for saving given
3462 *			      capability registers
3463 * @dev: the PCI device
3464 * @cap: the capability to allocate the buffer for
3465 * @extended: Standard or Extended capability ID
3466 * @size: requested size of the buffer
3467 */
3468static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3469				    bool extended, unsigned int size)
3470{
3471	int pos;
3472	struct pci_cap_saved_state *save_state;
3473
3474	if (extended)
3475		pos = pci_find_ext_capability(dev, cap);
3476	else
3477		pos = pci_find_capability(dev, cap);
3478
3479	if (!pos)
3480		return 0;
3481
3482	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3483	if (!save_state)
3484		return -ENOMEM;
3485
3486	save_state->cap.cap_nr = cap;
3487	save_state->cap.cap_extended = extended;
3488	save_state->cap.size = size;
3489	pci_add_saved_cap(dev, save_state);
3490
3491	return 0;
3492}
3493
3494int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3495{
3496	return _pci_add_cap_save_buffer(dev, cap, false, size);
3497}
3498
3499int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3500{
3501	return _pci_add_cap_save_buffer(dev, cap, true, size);
3502}
3503
3504/**
3505 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3506 * @dev: the PCI device
3507 */
3508void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3509{
3510	int error;
3511
3512	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3513					PCI_EXP_SAVE_REGS * sizeof(u16));
3514	if (error)
3515		pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3516
3517	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3518	if (error)
3519		pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3520
3521	error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3522					    2 * sizeof(u16));
3523	if (error)
3524		pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3525
3526	pci_allocate_vc_save_buffers(dev);
3527}
3528
3529void pci_free_cap_save_buffers(struct pci_dev *dev)
3530{
3531	struct pci_cap_saved_state *tmp;
3532	struct hlist_node *n;
3533
3534	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3535		kfree(tmp);
3536}
3537
3538/**
3539 * pci_configure_ari - enable or disable ARI forwarding
3540 * @dev: the PCI device
3541 *
3542 * If @dev and its upstream bridge both support ARI, enable ARI in the
3543 * bridge.  Otherwise, disable ARI in the bridge.
3544 */
3545void pci_configure_ari(struct pci_dev *dev)
3546{
3547	u32 cap;
3548	struct pci_dev *bridge;
3549
3550	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3551		return;
3552
3553	bridge = dev->bus->self;
3554	if (!bridge)
3555		return;
3556
3557	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3558	if (!(cap & PCI_EXP_DEVCAP2_ARI))
3559		return;
3560
3561	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3562		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3563					 PCI_EXP_DEVCTL2_ARI);
3564		bridge->ari_enabled = 1;
3565	} else {
3566		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3567					   PCI_EXP_DEVCTL2_ARI);
3568		bridge->ari_enabled = 0;
3569	}
3570}
3571
3572static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3573{
3574	int pos;
3575	u16 cap, ctrl;
3576
3577	pos = pdev->acs_cap;
3578	if (!pos)
3579		return false;
3580
3581	/*
3582	 * Except for egress control, capabilities are either required
3583	 * or only required if controllable.  Features missing from the
3584	 * capability field can therefore be assumed as hard-wired enabled.
3585	 */
3586	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3587	acs_flags &= (cap | PCI_ACS_EC);
3588
3589	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3590	return (ctrl & acs_flags) == acs_flags;
3591}
3592
3593/**
3594 * pci_acs_enabled - test ACS against required flags for a given device
3595 * @pdev: device to test
3596 * @acs_flags: required PCI ACS flags
3597 *
3598 * Return true if the device supports the provided flags.  Automatically
3599 * filters out flags that are not implemented on multifunction devices.
3600 *
3601 * Note that this interface checks the effective ACS capabilities of the
3602 * device rather than the actual capabilities.  For instance, most single
3603 * function endpoints are not required to support ACS because they have no
3604 * opportunity for peer-to-peer access.  We therefore return 'true'
3605 * regardless of whether the device exposes an ACS capability.  This makes
3606 * it much easier for callers of this function to ignore the actual type
3607 * or topology of the device when testing ACS support.
3608 */
3609bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3610{
3611	int ret;
3612
3613	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3614	if (ret >= 0)
3615		return ret > 0;
3616
3617	/*
3618	 * Conventional PCI and PCI-X devices never support ACS, either
3619	 * effectively or actually.  The shared bus topology implies that
3620	 * any device on the bus can receive or snoop DMA.
3621	 */
3622	if (!pci_is_pcie(pdev))
3623		return false;
3624
3625	switch (pci_pcie_type(pdev)) {
3626	/*
3627	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3628	 * but since their primary interface is PCI/X, we conservatively
3629	 * handle them as we would a non-PCIe device.
3630	 */
3631	case PCI_EXP_TYPE_PCIE_BRIDGE:
3632	/*
3633	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
3634	 * applicable... must never implement an ACS Extended Capability...".
3635	 * This seems arbitrary, but we take a conservative interpretation
3636	 * of this statement.
3637	 */
3638	case PCI_EXP_TYPE_PCI_BRIDGE:
3639	case PCI_EXP_TYPE_RC_EC:
3640		return false;
3641	/*
3642	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3643	 * implement ACS in order to indicate their peer-to-peer capabilities,
3644	 * regardless of whether they are single- or multi-function devices.
3645	 */
3646	case PCI_EXP_TYPE_DOWNSTREAM:
3647	case PCI_EXP_TYPE_ROOT_PORT:
3648		return pci_acs_flags_enabled(pdev, acs_flags);
3649	/*
3650	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3651	 * implemented by the remaining PCIe types to indicate peer-to-peer
3652	 * capabilities, but only when they are part of a multifunction
3653	 * device.  The footnote for section 6.12 indicates the specific
3654	 * PCIe types included here.
3655	 */
3656	case PCI_EXP_TYPE_ENDPOINT:
3657	case PCI_EXP_TYPE_UPSTREAM:
3658	case PCI_EXP_TYPE_LEG_END:
3659	case PCI_EXP_TYPE_RC_END:
3660		if (!pdev->multifunction)
3661			break;
3662
3663		return pci_acs_flags_enabled(pdev, acs_flags);
3664	}
3665
3666	/*
3667	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3668	 * to single function devices with the exception of downstream ports.
3669	 */
3670	return true;
3671}
3672
3673/**
3674 * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy
3675 * @start: starting downstream device
3676 * @end: ending upstream device or NULL to search to the root bus
3677 * @acs_flags: required flags
3678 *
3679 * Walk up a device tree from start to end testing PCI ACS support.  If
3680 * any step along the way does not support the required flags, return false.
3681 */
3682bool pci_acs_path_enabled(struct pci_dev *start,
3683			  struct pci_dev *end, u16 acs_flags)
3684{
3685	struct pci_dev *pdev, *parent = start;
3686
3687	do {
3688		pdev = parent;
3689
3690		if (!pci_acs_enabled(pdev, acs_flags))
3691			return false;
3692
3693		if (pci_is_root_bus(pdev->bus))
3694			return (end == NULL);
3695
3696		parent = pdev->bus->self;
3697	} while (pdev != end);
3698
3699	return true;
3700}
3701
3702/**
3703 * pci_acs_init - Initialize ACS if hardware supports it
3704 * @dev: the PCI device
3705 */
3706void pci_acs_init(struct pci_dev *dev)
3707{
3708	dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3709
3710	/*
3711	 * Attempt to enable ACS regardless of capability because some Root
3712	 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3713	 * the standard ACS capability but still support ACS via those
3714	 * quirks.
3715	 */
3716	pci_enable_acs(dev);
3717}
3718
3719/**
3720 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3721 * @pdev: PCI device
3722 * @bar: BAR to find
3723 *
3724 * Helper to find the position of the ctrl register for a BAR.
3725 * Returns -ENOTSUPP if resizable BARs are not supported at all.
3726 * Returns -ENOENT if no ctrl register for the BAR could be found.
3727 */
3728static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3729{
3730	unsigned int pos, nbars, i;
3731	u32 ctrl;
3732
3733	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3734	if (!pos)
3735		return -ENOTSUPP;
3736
3737	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3738	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3739		    PCI_REBAR_CTRL_NBAR_SHIFT;
3740
3741	for (i = 0; i < nbars; i++, pos += 8) {
3742		int bar_idx;
3743
3744		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3745		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3746		if (bar_idx == bar)
3747			return pos;
3748	}
3749
3750	return -ENOENT;
3751}
3752
3753/**
3754 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3755 * @pdev: PCI device
3756 * @bar: BAR to query
3757 *
3758 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3759 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3760 */
3761u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3762{
3763	int pos;
3764	u32 cap;
3765
3766	pos = pci_rebar_find_pos(pdev, bar);
3767	if (pos < 0)
3768		return 0;
3769
3770	pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3771	cap = FIELD_GET(PCI_REBAR_CAP_SIZES, cap);
3772
3773	/* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
3774	if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f &&
3775	    bar == 0 && cap == 0x700)
3776		return 0x3f00;
3777
3778	return cap;
3779}
3780EXPORT_SYMBOL(pci_rebar_get_possible_sizes);
3781
3782/**
3783 * pci_rebar_get_current_size - get the current size of a BAR
3784 * @pdev: PCI device
3785 * @bar: BAR to set size to
3786 *
3787 * Read the size of a BAR from the resizable BAR config.
3788 * Returns size if found or negative error code.
3789 */
3790int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3791{
3792	int pos;
3793	u32 ctrl;
3794
3795	pos = pci_rebar_find_pos(pdev, bar);
3796	if (pos < 0)
3797		return pos;
3798
3799	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3800	return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3801}
3802
3803/**
3804 * pci_rebar_set_size - set a new size for a BAR
3805 * @pdev: PCI device
3806 * @bar: BAR to set size to
3807 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3808 *
3809 * Set the new size of a BAR as defined in the spec.
3810 * Returns zero if resizing was successful, error code otherwise.
3811 */
3812int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3813{
3814	int pos;
3815	u32 ctrl;
3816
3817	pos = pci_rebar_find_pos(pdev, bar);
3818	if (pos < 0)
3819		return pos;
3820
3821	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3822	ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3823	ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3824	pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3825	return 0;
3826}
3827
3828/**
3829 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3830 * @dev: the PCI device
3831 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3832 *	PCI_EXP_DEVCAP2_ATOMIC_COMP32
3833 *	PCI_EXP_DEVCAP2_ATOMIC_COMP64
3834 *	PCI_EXP_DEVCAP2_ATOMIC_COMP128
3835 *
3836 * Return 0 if all upstream bridges support AtomicOp routing, egress
3837 * blocking is disabled on all upstream ports, and the root port supports
3838 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3839 * AtomicOp completion), or negative otherwise.
3840 */
3841int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3842{
3843	struct pci_bus *bus = dev->bus;
3844	struct pci_dev *bridge;
3845	u32 cap, ctl2;
3846
3847	/*
3848	 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit
3849	 * in Device Control 2 is reserved in VFs and the PF value applies
3850	 * to all associated VFs.
3851	 */
3852	if (dev->is_virtfn)
3853		return -EINVAL;
3854
3855	if (!pci_is_pcie(dev))
3856		return -EINVAL;
3857
3858	/*
3859	 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3860	 * AtomicOp requesters.  For now, we only support endpoints as
3861	 * requesters and root ports as completers.  No endpoints as
3862	 * completers, and no peer-to-peer.
3863	 */
3864
3865	switch (pci_pcie_type(dev)) {
3866	case PCI_EXP_TYPE_ENDPOINT:
3867	case PCI_EXP_TYPE_LEG_END:
3868	case PCI_EXP_TYPE_RC_END:
3869		break;
3870	default:
3871		return -EINVAL;
3872	}
3873
3874	while (bus->parent) {
3875		bridge = bus->self;
3876
3877		pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3878
3879		switch (pci_pcie_type(bridge)) {
3880		/* Ensure switch ports support AtomicOp routing */
3881		case PCI_EXP_TYPE_UPSTREAM:
3882		case PCI_EXP_TYPE_DOWNSTREAM:
3883			if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3884				return -EINVAL;
3885			break;
3886
3887		/* Ensure root port supports all the sizes we care about */
3888		case PCI_EXP_TYPE_ROOT_PORT:
3889			if ((cap & cap_mask) != cap_mask)
3890				return -EINVAL;
3891			break;
3892		}
3893
3894		/* Ensure upstream ports don't block AtomicOps on egress */
3895		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3896			pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3897						   &ctl2);
3898			if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3899				return -EINVAL;
3900		}
3901
3902		bus = bus->parent;
3903	}
3904
3905	pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3906				 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3907	return 0;
3908}
3909EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3910
3911/**
3912 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3913 * @dev: the PCI device
3914 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3915 *
3916 * Perform INTx swizzling for a device behind one level of bridge.  This is
3917 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3918 * behind bridges on add-in cards.  For devices with ARI enabled, the slot
3919 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3920 * the PCI Express Base Specification, Revision 2.1)
3921 */
3922u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3923{
3924	int slot;
3925
3926	if (pci_ari_enabled(dev->bus))
3927		slot = 0;
3928	else
3929		slot = PCI_SLOT(dev->devfn);
3930
3931	return (((pin - 1) + slot) % 4) + 1;
3932}
3933
3934int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3935{
3936	u8 pin;
3937
3938	pin = dev->pin;
3939	if (!pin)
3940		return -1;
3941
3942	while (!pci_is_root_bus(dev->bus)) {
3943		pin = pci_swizzle_interrupt_pin(dev, pin);
3944		dev = dev->bus->self;
3945	}
3946	*bridge = dev;
3947	return pin;
3948}
3949
3950/**
3951 * pci_common_swizzle - swizzle INTx all the way to root bridge
3952 * @dev: the PCI device
3953 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3954 *
3955 * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
3956 * bridges all the way up to a PCI root bus.
3957 */
3958u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3959{
3960	u8 pin = *pinp;
3961
3962	while (!pci_is_root_bus(dev->bus)) {
3963		pin = pci_swizzle_interrupt_pin(dev, pin);
3964		dev = dev->bus->self;
3965	}
3966	*pinp = pin;
3967	return PCI_SLOT(dev->devfn);
3968}
3969EXPORT_SYMBOL_GPL(pci_common_swizzle);
3970
3971/**
3972 * pci_release_region - Release a PCI bar
3973 * @pdev: PCI device whose resources were previously reserved by
3974 *	  pci_request_region()
3975 * @bar: BAR to release
3976 *
3977 * Releases the PCI I/O and memory resources previously reserved by a
3978 * successful call to pci_request_region().  Call this function only
3979 * after all use of the PCI regions has ceased.
3980 */
3981void pci_release_region(struct pci_dev *pdev, int bar)
3982{
3983	struct pci_devres *dr;
3984
3985	if (pci_resource_len(pdev, bar) == 0)
3986		return;
3987	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3988		release_region(pci_resource_start(pdev, bar),
3989				pci_resource_len(pdev, bar));
3990	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3991		release_mem_region(pci_resource_start(pdev, bar),
3992				pci_resource_len(pdev, bar));
3993
3994	dr = find_pci_dr(pdev);
3995	if (dr)
3996		dr->region_mask &= ~(1 << bar);
3997}
3998EXPORT_SYMBOL(pci_release_region);
3999
4000/**
4001 * __pci_request_region - Reserved PCI I/O and memory resource
4002 * @pdev: PCI device whose resources are to be reserved
4003 * @bar: BAR to be reserved
4004 * @res_name: Name to be associated with resource.
4005 * @exclusive: whether the region access is exclusive or not
4006 *
4007 * Mark the PCI region associated with PCI device @pdev BAR @bar as
4008 * being reserved by owner @res_name.  Do not access any
4009 * address inside the PCI regions unless this call returns
4010 * successfully.
4011 *
4012 * If @exclusive is set, then the region is marked so that userspace
4013 * is explicitly not allowed to map the resource via /dev/mem or
4014 * sysfs MMIO access.
4015 *
4016 * Returns 0 on success, or %EBUSY on error.  A warning
4017 * message is also printed on failure.
4018 */
4019static int __pci_request_region(struct pci_dev *pdev, int bar,
4020				const char *res_name, int exclusive)
4021{
4022	struct pci_devres *dr;
4023
4024	if (pci_resource_len(pdev, bar) == 0)
4025		return 0;
4026
4027	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
4028		if (!request_region(pci_resource_start(pdev, bar),
4029			    pci_resource_len(pdev, bar), res_name))
4030			goto err_out;
4031	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
4032		if (!__request_mem_region(pci_resource_start(pdev, bar),
4033					pci_resource_len(pdev, bar), res_name,
4034					exclusive))
4035			goto err_out;
4036	}
4037
4038	dr = find_pci_dr(pdev);
4039	if (dr)
4040		dr->region_mask |= 1 << bar;
4041
4042	return 0;
4043
4044err_out:
4045	pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
4046		 &pdev->resource[bar]);
4047	return -EBUSY;
4048}
4049
4050/**
4051 * pci_request_region - Reserve PCI I/O and memory resource
4052 * @pdev: PCI device whose resources are to be reserved
4053 * @bar: BAR to be reserved
4054 * @res_name: Name to be associated with resource
4055 *
4056 * Mark the PCI region associated with PCI device @pdev BAR @bar as
4057 * being reserved by owner @res_name.  Do not access any
4058 * address inside the PCI regions unless this call returns
4059 * successfully.
4060 *
4061 * Returns 0 on success, or %EBUSY on error.  A warning
4062 * message is also printed on failure.
4063 */
4064int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
4065{
4066	return __pci_request_region(pdev, bar, res_name, 0);
4067}
4068EXPORT_SYMBOL(pci_request_region);
4069
4070/**
4071 * pci_release_selected_regions - Release selected PCI I/O and memory resources
4072 * @pdev: PCI device whose resources were previously reserved
4073 * @bars: Bitmask of BARs to be released
4074 *
4075 * Release selected PCI I/O and memory resources previously reserved.
4076 * Call this function only after all use of the PCI regions has ceased.
4077 */
4078void pci_release_selected_regions(struct pci_dev *pdev, int bars)
4079{
4080	int i;
4081
4082	for (i = 0; i < PCI_STD_NUM_BARS; i++)
4083		if (bars & (1 << i))
4084			pci_release_region(pdev, i);
4085}
4086EXPORT_SYMBOL(pci_release_selected_regions);
4087
4088static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
4089					  const char *res_name, int excl)
4090{
4091	int i;
4092
4093	for (i = 0; i < PCI_STD_NUM_BARS; i++)
4094		if (bars & (1 << i))
4095			if (__pci_request_region(pdev, i, res_name, excl))
4096				goto err_out;
4097	return 0;
4098
4099err_out:
4100	while (--i >= 0)
4101		if (bars & (1 << i))
4102			pci_release_region(pdev, i);
4103
4104	return -EBUSY;
4105}
4106
4107
4108/**
4109 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
4110 * @pdev: PCI device whose resources are to be reserved
4111 * @bars: Bitmask of BARs to be requested
4112 * @res_name: Name to be associated with resource
4113 */
4114int pci_request_selected_regions(struct pci_dev *pdev, int bars,
4115				 const char *res_name)
4116{
4117	return __pci_request_selected_regions(pdev, bars, res_name, 0);
4118}
4119EXPORT_SYMBOL(pci_request_selected_regions);
4120
4121int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
4122					   const char *res_name)
4123{
4124	return __pci_request_selected_regions(pdev, bars, res_name,
4125			IORESOURCE_EXCLUSIVE);
4126}
4127EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
4128
4129/**
4130 * pci_release_regions - Release reserved PCI I/O and memory resources
4131 * @pdev: PCI device whose resources were previously reserved by
4132 *	  pci_request_regions()
4133 *
4134 * Releases all PCI I/O and memory resources previously reserved by a
4135 * successful call to pci_request_regions().  Call this function only
4136 * after all use of the PCI regions has ceased.
4137 */
4138
4139void pci_release_regions(struct pci_dev *pdev)
4140{
4141	pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
4142}
4143EXPORT_SYMBOL(pci_release_regions);
4144
4145/**
4146 * pci_request_regions - Reserve PCI I/O and memory resources
4147 * @pdev: PCI device whose resources are to be reserved
4148 * @res_name: Name to be associated with resource.
4149 *
4150 * Mark all PCI regions associated with PCI device @pdev as
4151 * being reserved by owner @res_name.  Do not access any
4152 * address inside the PCI regions unless this call returns
4153 * successfully.
4154 *
4155 * Returns 0 on success, or %EBUSY on error.  A warning
4156 * message is also printed on failure.
4157 */
4158int pci_request_regions(struct pci_dev *pdev, const char *res_name)
4159{
4160	return pci_request_selected_regions(pdev,
4161			((1 << PCI_STD_NUM_BARS) - 1), res_name);
4162}
4163EXPORT_SYMBOL(pci_request_regions);
4164
4165/**
4166 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
4167 * @pdev: PCI device whose resources are to be reserved
4168 * @res_name: Name to be associated with resource.
4169 *
4170 * Mark all PCI regions associated with PCI device @pdev as being reserved
4171 * by owner @res_name.  Do not access any address inside the PCI regions
4172 * unless this call returns successfully.
4173 *
4174 * pci_request_regions_exclusive() will mark the region so that /dev/mem
4175 * and the sysfs MMIO access will not be allowed.
4176 *
4177 * Returns 0 on success, or %EBUSY on error.  A warning message is also
4178 * printed on failure.
4179 */
4180int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
4181{
4182	return pci_request_selected_regions_exclusive(pdev,
4183				((1 << PCI_STD_NUM_BARS) - 1), res_name);
4184}
4185EXPORT_SYMBOL(pci_request_regions_exclusive);
4186
4187/*
4188 * Record the PCI IO range (expressed as CPU physical address + size).
4189 * Return a negative value if an error has occurred, zero otherwise
4190 */
4191int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
4192			resource_size_t	size)
4193{
4194	int ret = 0;
4195#ifdef PCI_IOBASE
4196	struct logic_pio_hwaddr *range;
4197
4198	if (!size || addr + size < addr)
4199		return -EINVAL;
4200
4201	range = kzalloc(sizeof(*range), GFP_ATOMIC);
4202	if (!range)
4203		return -ENOMEM;
4204
4205	range->fwnode = fwnode;
4206	range->size = size;
4207	range->hw_start = addr;
4208	range->flags = LOGIC_PIO_CPU_MMIO;
4209
4210	ret = logic_pio_register_range(range);
4211	if (ret)
4212		kfree(range);
4213
4214	/* Ignore duplicates due to deferred probing */
4215	if (ret == -EEXIST)
4216		ret = 0;
4217#endif
4218
4219	return ret;
4220}
4221
4222phys_addr_t pci_pio_to_address(unsigned long pio)
4223{
4224#ifdef PCI_IOBASE
4225	if (pio < MMIO_UPPER_LIMIT)
4226		return logic_pio_to_hwaddr(pio);
4227#endif
4228
4229	return (phys_addr_t) OF_BAD_ADDR;
4230}
4231EXPORT_SYMBOL_GPL(pci_pio_to_address);
4232
4233unsigned long __weak pci_address_to_pio(phys_addr_t address)
4234{
4235#ifdef PCI_IOBASE
4236	return logic_pio_trans_cpuaddr(address);
4237#else
4238	if (address > IO_SPACE_LIMIT)
4239		return (unsigned long)-1;
4240
4241	return (unsigned long) address;
4242#endif
4243}
4244
4245/**
4246 * pci_remap_iospace - Remap the memory mapped I/O space
4247 * @res: Resource describing the I/O space
4248 * @phys_addr: physical address of range to be mapped
4249 *
4250 * Remap the memory mapped I/O space described by the @res and the CPU
4251 * physical address @phys_addr into virtual address space.  Only
4252 * architectures that have memory mapped IO functions defined (and the
4253 * PCI_IOBASE value defined) should call this function.
4254 */
4255#ifndef pci_remap_iospace
4256int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4257{
4258#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4259	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4260
4261	if (!(res->flags & IORESOURCE_IO))
4262		return -EINVAL;
4263
4264	if (res->end > IO_SPACE_LIMIT)
4265		return -EINVAL;
4266
4267	return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4268				  pgprot_device(PAGE_KERNEL));
4269#else
4270	/*
4271	 * This architecture does not have memory mapped I/O space,
4272	 * so this function should never be called
4273	 */
4274	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4275	return -ENODEV;
4276#endif
4277}
4278EXPORT_SYMBOL(pci_remap_iospace);
4279#endif
4280
4281/**
4282 * pci_unmap_iospace - Unmap the memory mapped I/O space
4283 * @res: resource to be unmapped
4284 *
4285 * Unmap the CPU virtual address @res from virtual address space.  Only
4286 * architectures that have memory mapped IO functions defined (and the
4287 * PCI_IOBASE value defined) should call this function.
4288 */
4289void pci_unmap_iospace(struct resource *res)
4290{
4291#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4292	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4293
4294	vunmap_range(vaddr, vaddr + resource_size(res));
4295#endif
4296}
4297EXPORT_SYMBOL(pci_unmap_iospace);
4298
4299static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
4300{
4301	struct resource **res = ptr;
4302
4303	pci_unmap_iospace(*res);
4304}
4305
4306/**
4307 * devm_pci_remap_iospace - Managed pci_remap_iospace()
4308 * @dev: Generic device to remap IO address for
4309 * @res: Resource describing the I/O space
4310 * @phys_addr: physical address of range to be mapped
4311 *
4312 * Managed pci_remap_iospace().  Map is automatically unmapped on driver
4313 * detach.
4314 */
4315int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
4316			   phys_addr_t phys_addr)
4317{
4318	const struct resource **ptr;
4319	int error;
4320
4321	ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4322	if (!ptr)
4323		return -ENOMEM;
4324
4325	error = pci_remap_iospace(res, phys_addr);
4326	if (error) {
4327		devres_free(ptr);
4328	} else	{
4329		*ptr = res;
4330		devres_add(dev, ptr);
4331	}
4332
4333	return error;
4334}
4335EXPORT_SYMBOL(devm_pci_remap_iospace);
4336
4337/**
4338 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4339 * @dev: Generic device to remap IO address for
4340 * @offset: Resource address to map
4341 * @size: Size of map
4342 *
4343 * Managed pci_remap_cfgspace().  Map is automatically unmapped on driver
4344 * detach.
4345 */
4346void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4347				      resource_size_t offset,
4348				      resource_size_t size)
4349{
4350	void __iomem **ptr, *addr;
4351
4352	ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4353	if (!ptr)
4354		return NULL;
4355
4356	addr = pci_remap_cfgspace(offset, size);
4357	if (addr) {
4358		*ptr = addr;
4359		devres_add(dev, ptr);
4360	} else
4361		devres_free(ptr);
4362
4363	return addr;
4364}
4365EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4366
4367/**
4368 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4369 * @dev: generic device to handle the resource for
4370 * @res: configuration space resource to be handled
4371 *
4372 * Checks that a resource is a valid memory region, requests the memory
4373 * region and ioremaps with pci_remap_cfgspace() API that ensures the
4374 * proper PCI configuration space memory attributes are guaranteed.
4375 *
4376 * All operations are managed and will be undone on driver detach.
4377 *
4378 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4379 * on failure. Usage example::
4380 *
4381 *	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4382 *	base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4383 *	if (IS_ERR(base))
4384 *		return PTR_ERR(base);
4385 */
4386void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4387					  struct resource *res)
4388{
4389	resource_size_t size;
4390	const char *name;
4391	void __iomem *dest_ptr;
4392
4393	BUG_ON(!dev);
4394
4395	if (!res || resource_type(res) != IORESOURCE_MEM) {
4396		dev_err(dev, "invalid resource\n");
4397		return IOMEM_ERR_PTR(-EINVAL);
4398	}
4399
4400	size = resource_size(res);
4401
4402	if (res->name)
4403		name = devm_kasprintf(dev, GFP_KERNEL, "%s %s", dev_name(dev),
4404				      res->name);
4405	else
4406		name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL);
4407	if (!name)
4408		return IOMEM_ERR_PTR(-ENOMEM);
4409
4410	if (!devm_request_mem_region(dev, res->start, size, name)) {
4411		dev_err(dev, "can't request region for resource %pR\n", res);
4412		return IOMEM_ERR_PTR(-EBUSY);
4413	}
4414
4415	dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4416	if (!dest_ptr) {
4417		dev_err(dev, "ioremap failed for resource %pR\n", res);
4418		devm_release_mem_region(dev, res->start, size);
4419		dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4420	}
4421
4422	return dest_ptr;
4423}
4424EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4425
4426static void __pci_set_master(struct pci_dev *dev, bool enable)
4427{
4428	u16 old_cmd, cmd;
4429
4430	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4431	if (enable)
4432		cmd = old_cmd | PCI_COMMAND_MASTER;
4433	else
4434		cmd = old_cmd & ~PCI_COMMAND_MASTER;
4435	if (cmd != old_cmd) {
4436		pci_dbg(dev, "%s bus mastering\n",
4437			enable ? "enabling" : "disabling");
4438		pci_write_config_word(dev, PCI_COMMAND, cmd);
4439	}
4440	dev->is_busmaster = enable;
4441}
4442
4443/**
4444 * pcibios_setup - process "pci=" kernel boot arguments
4445 * @str: string used to pass in "pci=" kernel boot arguments
4446 *
4447 * Process kernel boot arguments.  This is the default implementation.
4448 * Architecture specific implementations can override this as necessary.
4449 */
4450char * __weak __init pcibios_setup(char *str)
4451{
4452	return str;
4453}
4454
4455/**
4456 * pcibios_set_master - enable PCI bus-mastering for device dev
4457 * @dev: the PCI device to enable
4458 *
4459 * Enables PCI bus-mastering for the device.  This is the default
4460 * implementation.  Architecture specific implementations can override
4461 * this if necessary.
4462 */
4463void __weak pcibios_set_master(struct pci_dev *dev)
4464{
4465	u8 lat;
4466
4467	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4468	if (pci_is_pcie(dev))
4469		return;
4470
4471	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4472	if (lat < 16)
4473		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4474	else if (lat > pcibios_max_latency)
4475		lat = pcibios_max_latency;
4476	else
4477		return;
4478
4479	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4480}
4481
4482/**
4483 * pci_set_master - enables bus-mastering for device dev
4484 * @dev: the PCI device to enable
4485 *
4486 * Enables bus-mastering on the device and calls pcibios_set_master()
4487 * to do the needed arch specific settings.
4488 */
4489void pci_set_master(struct pci_dev *dev)
4490{
4491	__pci_set_master(dev, true);
4492	pcibios_set_master(dev);
4493}
4494EXPORT_SYMBOL(pci_set_master);
4495
4496/**
4497 * pci_clear_master - disables bus-mastering for device dev
4498 * @dev: the PCI device to disable
4499 */
4500void pci_clear_master(struct pci_dev *dev)
4501{
4502	__pci_set_master(dev, false);
4503}
4504EXPORT_SYMBOL(pci_clear_master);
4505
4506/**
4507 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4508 * @dev: the PCI device for which MWI is to be enabled
4509 *
4510 * Helper function for pci_set_mwi.
4511 * Originally copied from drivers/net/acenic.c.
4512 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4513 *
4514 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4515 */
4516int pci_set_cacheline_size(struct pci_dev *dev)
4517{
4518	u8 cacheline_size;
4519
4520	if (!pci_cache_line_size)
4521		return -EINVAL;
4522
4523	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4524	   equal to or multiple of the right value. */
4525	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4526	if (cacheline_size >= pci_cache_line_size &&
4527	    (cacheline_size % pci_cache_line_size) == 0)
4528		return 0;
4529
4530	/* Write the correct value. */
4531	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4532	/* Read it back. */
4533	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4534	if (cacheline_size == pci_cache_line_size)
4535		return 0;
4536
4537	pci_dbg(dev, "cache line size of %d is not supported\n",
4538		   pci_cache_line_size << 2);
4539
4540	return -EINVAL;
4541}
4542EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4543
4544/**
4545 * pci_set_mwi - enables memory-write-invalidate PCI transaction
4546 * @dev: the PCI device for which MWI is enabled
4547 *
4548 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4549 *
4550 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4551 */
4552int pci_set_mwi(struct pci_dev *dev)
4553{
4554#ifdef PCI_DISABLE_MWI
4555	return 0;
4556#else
4557	int rc;
4558	u16 cmd;
4559
4560	rc = pci_set_cacheline_size(dev);
4561	if (rc)
4562		return rc;
4563
4564	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4565	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4566		pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4567		cmd |= PCI_COMMAND_INVALIDATE;
4568		pci_write_config_word(dev, PCI_COMMAND, cmd);
4569	}
4570	return 0;
4571#endif
4572}
4573EXPORT_SYMBOL(pci_set_mwi);
4574
4575/**
4576 * pcim_set_mwi - a device-managed pci_set_mwi()
4577 * @dev: the PCI device for which MWI is enabled
4578 *
4579 * Managed pci_set_mwi().
4580 *
4581 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4582 */
4583int pcim_set_mwi(struct pci_dev *dev)
4584{
4585	struct pci_devres *dr;
4586
4587	dr = find_pci_dr(dev);
4588	if (!dr)
4589		return -ENOMEM;
4590
4591	dr->mwi = 1;
4592	return pci_set_mwi(dev);
4593}
4594EXPORT_SYMBOL(pcim_set_mwi);
4595
4596/**
4597 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4598 * @dev: the PCI device for which MWI is enabled
4599 *
4600 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4601 * Callers are not required to check the return value.
4602 *
4603 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4604 */
4605int pci_try_set_mwi(struct pci_dev *dev)
4606{
4607#ifdef PCI_DISABLE_MWI
4608	return 0;
4609#else
4610	return pci_set_mwi(dev);
4611#endif
4612}
4613EXPORT_SYMBOL(pci_try_set_mwi);
4614
4615/**
4616 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4617 * @dev: the PCI device to disable
4618 *
4619 * Disables PCI Memory-Write-Invalidate transaction on the device
4620 */
4621void pci_clear_mwi(struct pci_dev *dev)
4622{
4623#ifndef PCI_DISABLE_MWI
4624	u16 cmd;
4625
4626	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4627	if (cmd & PCI_COMMAND_INVALIDATE) {
4628		cmd &= ~PCI_COMMAND_INVALIDATE;
4629		pci_write_config_word(dev, PCI_COMMAND, cmd);
4630	}
4631#endif
4632}
4633EXPORT_SYMBOL(pci_clear_mwi);
4634
4635/**
4636 * pci_disable_parity - disable parity checking for device
4637 * @dev: the PCI device to operate on
4638 *
4639 * Disable parity checking for device @dev
4640 */
4641void pci_disable_parity(struct pci_dev *dev)
4642{
4643	u16 cmd;
4644
4645	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4646	if (cmd & PCI_COMMAND_PARITY) {
4647		cmd &= ~PCI_COMMAND_PARITY;
4648		pci_write_config_word(dev, PCI_COMMAND, cmd);
4649	}
4650}
4651
4652/**
4653 * pci_intx - enables/disables PCI INTx for device dev
4654 * @pdev: the PCI device to operate on
4655 * @enable: boolean: whether to enable or disable PCI INTx
4656 *
4657 * Enables/disables PCI INTx for device @pdev
4658 */
4659void pci_intx(struct pci_dev *pdev, int enable)
4660{
4661	u16 pci_command, new;
4662
4663	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4664
4665	if (enable)
4666		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4667	else
4668		new = pci_command | PCI_COMMAND_INTX_DISABLE;
4669
4670	if (new != pci_command) {
4671		struct pci_devres *dr;
4672
4673		pci_write_config_word(pdev, PCI_COMMAND, new);
4674
4675		dr = find_pci_dr(pdev);
4676		if (dr && !dr->restore_intx) {
4677			dr->restore_intx = 1;
4678			dr->orig_intx = !enable;
4679		}
4680	}
4681}
4682EXPORT_SYMBOL_GPL(pci_intx);
4683
4684static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4685{
4686	struct pci_bus *bus = dev->bus;
4687	bool mask_updated = true;
4688	u32 cmd_status_dword;
4689	u16 origcmd, newcmd;
4690	unsigned long flags;
4691	bool irq_pending;
4692
4693	/*
4694	 * We do a single dword read to retrieve both command and status.
4695	 * Document assumptions that make this possible.
4696	 */
4697	BUILD_BUG_ON(PCI_COMMAND % 4);
4698	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4699
4700	raw_spin_lock_irqsave(&pci_lock, flags);
4701
4702	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4703
4704	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4705
4706	/*
4707	 * Check interrupt status register to see whether our device
4708	 * triggered the interrupt (when masking) or the next IRQ is
4709	 * already pending (when unmasking).
4710	 */
4711	if (mask != irq_pending) {
4712		mask_updated = false;
4713		goto done;
4714	}
4715
4716	origcmd = cmd_status_dword;
4717	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4718	if (mask)
4719		newcmd |= PCI_COMMAND_INTX_DISABLE;
4720	if (newcmd != origcmd)
4721		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4722
4723done:
4724	raw_spin_unlock_irqrestore(&pci_lock, flags);
4725
4726	return mask_updated;
4727}
4728
4729/**
4730 * pci_check_and_mask_intx - mask INTx on pending interrupt
4731 * @dev: the PCI device to operate on
4732 *
4733 * Check if the device dev has its INTx line asserted, mask it and return
4734 * true in that case. False is returned if no interrupt was pending.
4735 */
4736bool pci_check_and_mask_intx(struct pci_dev *dev)
4737{
4738	return pci_check_and_set_intx_mask(dev, true);
4739}
4740EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4741
4742/**
4743 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4744 * @dev: the PCI device to operate on
4745 *
4746 * Check if the device dev has its INTx line asserted, unmask it if not and
4747 * return true. False is returned and the mask remains active if there was
4748 * still an interrupt pending.
4749 */
4750bool pci_check_and_unmask_intx(struct pci_dev *dev)
4751{
4752	return pci_check_and_set_intx_mask(dev, false);
4753}
4754EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4755
4756/**
4757 * pci_wait_for_pending_transaction - wait for pending transaction
4758 * @dev: the PCI device to operate on
4759 *
4760 * Return 0 if transaction is pending 1 otherwise.
4761 */
4762int pci_wait_for_pending_transaction(struct pci_dev *dev)
4763{
4764	if (!pci_is_pcie(dev))
4765		return 1;
4766
4767	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4768				    PCI_EXP_DEVSTA_TRPND);
4769}
4770EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4771
4772/**
4773 * pcie_flr - initiate a PCIe function level reset
4774 * @dev: device to reset
4775 *
4776 * Initiate a function level reset unconditionally on @dev without
4777 * checking any flags and DEVCAP
4778 */
4779int pcie_flr(struct pci_dev *dev)
4780{
4781	if (!pci_wait_for_pending_transaction(dev))
4782		pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4783
4784	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4785
4786	if (dev->imm_ready)
4787		return 0;
4788
4789	/*
4790	 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4791	 * 100ms, but may silently discard requests while the FLR is in
4792	 * progress.  Wait 100ms before trying to access the device.
4793	 */
4794	msleep(100);
4795
4796	return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4797}
4798EXPORT_SYMBOL_GPL(pcie_flr);
4799
4800/**
4801 * pcie_reset_flr - initiate a PCIe function level reset
4802 * @dev: device to reset
4803 * @probe: if true, return 0 if device can be reset this way
4804 *
4805 * Initiate a function level reset on @dev.
4806 */
4807int pcie_reset_flr(struct pci_dev *dev, bool probe)
4808{
4809	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4810		return -ENOTTY;
4811
4812	if (!(dev->devcap & PCI_EXP_DEVCAP_FLR))
4813		return -ENOTTY;
4814
4815	if (probe)
4816		return 0;
4817
4818	return pcie_flr(dev);
4819}
4820EXPORT_SYMBOL_GPL(pcie_reset_flr);
4821
4822static int pci_af_flr(struct pci_dev *dev, bool probe)
4823{
4824	int pos;
4825	u8 cap;
4826
4827	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4828	if (!pos)
4829		return -ENOTTY;
4830
4831	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4832		return -ENOTTY;
4833
4834	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4835	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4836		return -ENOTTY;
4837
4838	if (probe)
4839		return 0;
4840
4841	/*
4842	 * Wait for Transaction Pending bit to clear.  A word-aligned test
4843	 * is used, so we use the control offset rather than status and shift
4844	 * the test bit to match.
4845	 */
4846	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4847				 PCI_AF_STATUS_TP << 8))
4848		pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4849
4850	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4851
4852	if (dev->imm_ready)
4853		return 0;
4854
4855	/*
4856	 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4857	 * updated 27 July 2006; a device must complete an FLR within
4858	 * 100ms, but may silently discard requests while the FLR is in
4859	 * progress.  Wait 100ms before trying to access the device.
4860	 */
4861	msleep(100);
4862
4863	return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4864}
4865
4866/**
4867 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4868 * @dev: Device to reset.
4869 * @probe: if true, return 0 if the device can be reset this way.
4870 *
4871 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4872 * unset, it will be reinitialized internally when going from PCI_D3hot to
4873 * PCI_D0.  If that's the case and the device is not in a low-power state
4874 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4875 *
4876 * NOTE: This causes the caller to sleep for twice the device power transition
4877 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4878 * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4879 * Moreover, only devices in D0 can be reset by this function.
4880 */
4881static int pci_pm_reset(struct pci_dev *dev, bool probe)
4882{
4883	u16 csr;
4884
4885	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4886		return -ENOTTY;
4887
4888	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4889	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4890		return -ENOTTY;
4891
4892	if (probe)
4893		return 0;
4894
4895	if (dev->current_state != PCI_D0)
4896		return -EINVAL;
4897
4898	csr &= ~PCI_PM_CTRL_STATE_MASK;
4899	csr |= PCI_D3hot;
4900	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4901	pci_dev_d3_sleep(dev);
4902
4903	csr &= ~PCI_PM_CTRL_STATE_MASK;
4904	csr |= PCI_D0;
4905	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4906	pci_dev_d3_sleep(dev);
4907
4908	return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4909}
4910
4911/**
4912 * pcie_wait_for_link_status - Wait for link status change
4913 * @pdev: Device whose link to wait for.
4914 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE.
4915 * @active: Waiting for active or inactive?
4916 *
4917 * Return 0 if successful, or -ETIMEDOUT if status has not changed within
4918 * PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
4919 */
4920static int pcie_wait_for_link_status(struct pci_dev *pdev,
4921				     bool use_lt, bool active)
4922{
4923	u16 lnksta_mask, lnksta_match;
4924	unsigned long end_jiffies;
4925	u16 lnksta;
4926
4927	lnksta_mask = use_lt ? PCI_EXP_LNKSTA_LT : PCI_EXP_LNKSTA_DLLLA;
4928	lnksta_match = active ? lnksta_mask : 0;
4929
4930	end_jiffies = jiffies + msecs_to_jiffies(PCIE_LINK_RETRAIN_TIMEOUT_MS);
4931	do {
4932		pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta);
4933		if ((lnksta & lnksta_mask) == lnksta_match)
4934			return 0;
4935		msleep(1);
4936	} while (time_before(jiffies, end_jiffies));
4937
4938	return -ETIMEDOUT;
4939}
4940
4941/**
4942 * pcie_retrain_link - Request a link retrain and wait for it to complete
4943 * @pdev: Device whose link to retrain.
4944 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE, for status.
4945 *
4946 * Retrain completion status is retrieved from the Link Status Register
4947 * according to @use_lt.  It is not verified whether the use of the DLLLA
4948 * bit is valid.
4949 *
4950 * Return 0 if successful, or -ETIMEDOUT if training has not completed
4951 * within PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
4952 */
4953int pcie_retrain_link(struct pci_dev *pdev, bool use_lt)
4954{
4955	int rc;
4956
4957	/*
4958	 * Ensure the updated LNKCTL parameters are used during link
4959	 * training by checking that there is no ongoing link training to
4960	 * avoid LTSSM race as recommended in Implementation Note at the
4961	 * end of PCIe r6.0.1 sec 7.5.3.7.
4962	 */
4963	rc = pcie_wait_for_link_status(pdev, use_lt, !use_lt);
4964	if (rc)
4965		return rc;
4966
4967	pcie_capability_set_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL);
4968	if (pdev->clear_retrain_link) {
4969		/*
4970		 * Due to an erratum in some devices the Retrain Link bit
4971		 * needs to be cleared again manually to allow the link
4972		 * training to succeed.
4973		 */
4974		pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL);
4975	}
4976
4977	return pcie_wait_for_link_status(pdev, use_lt, !use_lt);
4978}
4979
4980/**
4981 * pcie_wait_for_link_delay - Wait until link is active or inactive
4982 * @pdev: Bridge device
4983 * @active: waiting for active or inactive?
4984 * @delay: Delay to wait after link has become active (in ms)
4985 *
4986 * Use this to wait till link becomes active or inactive.
4987 */
4988static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4989				     int delay)
4990{
4991	int rc;
4992
4993	/*
4994	 * Some controllers might not implement link active reporting. In this
4995	 * case, we wait for 1000 ms + any delay requested by the caller.
4996	 */
4997	if (!pdev->link_active_reporting) {
4998		msleep(PCIE_LINK_RETRAIN_TIMEOUT_MS + delay);
4999		return true;
5000	}
5001
5002	/*
5003	 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
5004	 * after which we should expect an link active if the reset was
5005	 * successful. If so, software must wait a minimum 100ms before sending
5006	 * configuration requests to devices downstream this port.
5007	 *
5008	 * If the link fails to activate, either the device was physically
5009	 * removed or the link is permanently failed.
5010	 */
5011	if (active)
5012		msleep(20);
5013	rc = pcie_wait_for_link_status(pdev, false, active);
5014	if (active) {
5015		if (rc)
5016			rc = pcie_failed_link_retrain(pdev);
5017		if (rc)
5018			return false;
5019
5020		msleep(delay);
5021		return true;
5022	}
5023
5024	if (rc)
5025		return false;
5026
5027	return true;
5028}
5029
5030/**
5031 * pcie_wait_for_link - Wait until link is active or inactive
5032 * @pdev: Bridge device
5033 * @active: waiting for active or inactive?
5034 *
5035 * Use this to wait till link becomes active or inactive.
5036 */
5037bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
5038{
5039	return pcie_wait_for_link_delay(pdev, active, 100);
5040}
5041
5042/*
5043 * Find maximum D3cold delay required by all the devices on the bus.  The
5044 * spec says 100 ms, but firmware can lower it and we allow drivers to
5045 * increase it as well.
5046 *
5047 * Called with @pci_bus_sem locked for reading.
5048 */
5049static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
5050{
5051	const struct pci_dev *pdev;
5052	int min_delay = 100;
5053	int max_delay = 0;
5054
5055	list_for_each_entry(pdev, &bus->devices, bus_list) {
5056		if (pdev->d3cold_delay < min_delay)
5057			min_delay = pdev->d3cold_delay;
5058		if (pdev->d3cold_delay > max_delay)
5059			max_delay = pdev->d3cold_delay;
5060	}
5061
5062	return max(min_delay, max_delay);
5063}
5064
5065/**
5066 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
5067 * @dev: PCI bridge
5068 * @reset_type: reset type in human-readable form
5069 *
5070 * Handle necessary delays before access to the devices on the secondary
5071 * side of the bridge are permitted after D3cold to D0 transition
5072 * or Conventional Reset.
5073 *
5074 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
5075 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
5076 * 4.3.2.
5077 *
5078 * Return 0 on success or -ENOTTY if the first device on the secondary bus
5079 * failed to become accessible.
5080 */
5081int pci_bridge_wait_for_secondary_bus(struct pci_dev *dev, char *reset_type)
5082{
5083	struct pci_dev *child;
5084	int delay;
5085
5086	if (pci_dev_is_disconnected(dev))
5087		return 0;
5088
5089	if (!pci_is_bridge(dev))
5090		return 0;
5091
5092	down_read(&pci_bus_sem);
5093
5094	/*
5095	 * We only deal with devices that are present currently on the bus.
5096	 * For any hot-added devices the access delay is handled in pciehp
5097	 * board_added(). In case of ACPI hotplug the firmware is expected
5098	 * to configure the devices before OS is notified.
5099	 */
5100	if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
5101		up_read(&pci_bus_sem);
5102		return 0;
5103	}
5104
5105	/* Take d3cold_delay requirements into account */
5106	delay = pci_bus_max_d3cold_delay(dev->subordinate);
5107	if (!delay) {
5108		up_read(&pci_bus_sem);
5109		return 0;
5110	}
5111
5112	child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
5113				 bus_list);
5114	up_read(&pci_bus_sem);
5115
5116	/*
5117	 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
5118	 * accessing the device after reset (that is 1000 ms + 100 ms).
5119	 */
5120	if (!pci_is_pcie(dev)) {
5121		pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
5122		msleep(1000 + delay);
5123		return 0;
5124	}
5125
5126	/*
5127	 * For PCIe downstream and root ports that do not support speeds
5128	 * greater than 5 GT/s need to wait minimum 100 ms. For higher
5129	 * speeds (gen3) we need to wait first for the data link layer to
5130	 * become active.
5131	 *
5132	 * However, 100 ms is the minimum and the PCIe spec says the
5133	 * software must allow at least 1s before it can determine that the
5134	 * device that did not respond is a broken device. Also device can
5135	 * take longer than that to respond if it indicates so through Request
5136	 * Retry Status completions.
5137	 *
5138	 * Therefore we wait for 100 ms and check for the device presence
5139	 * until the timeout expires.
5140	 */
5141	if (!pcie_downstream_port(dev))
5142		return 0;
5143
5144	if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
5145		u16 status;
5146
5147		pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
5148		msleep(delay);
5149
5150		if (!pci_dev_wait(child, reset_type, PCI_RESET_WAIT - delay))
5151			return 0;
5152
5153		/*
5154		 * If the port supports active link reporting we now check
5155		 * whether the link is active and if not bail out early with
5156		 * the assumption that the device is not present anymore.
5157		 */
5158		if (!dev->link_active_reporting)
5159			return -ENOTTY;
5160
5161		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &status);
5162		if (!(status & PCI_EXP_LNKSTA_DLLLA))
5163			return -ENOTTY;
5164
5165		return pci_dev_wait(child, reset_type,
5166				    PCIE_RESET_READY_POLL_MS - PCI_RESET_WAIT);
5167	}
5168
5169	pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
5170		delay);
5171	if (!pcie_wait_for_link_delay(dev, true, delay)) {
5172		/* Did not train, no need to wait any further */
5173		pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
5174		return -ENOTTY;
5175	}
5176
5177	return pci_dev_wait(child, reset_type,
5178			    PCIE_RESET_READY_POLL_MS - delay);
5179}
5180
5181void pci_reset_secondary_bus(struct pci_dev *dev)
5182{
5183	u16 ctrl;
5184
5185	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
5186	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
5187	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
5188
5189	/*
5190	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
5191	 * this to 2ms to ensure that we meet the minimum requirement.
5192	 */
5193	msleep(2);
5194
5195	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
5196	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
5197}
5198
5199void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
5200{
5201	pci_reset_secondary_bus(dev);
5202}
5203
5204/**
5205 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
5206 * @dev: Bridge device
5207 *
5208 * Use the bridge control register to assert reset on the secondary bus.
5209 * Devices on the secondary bus are left in power-on state.
5210 */
5211int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
5212{
5213	pcibios_reset_secondary_bus(dev);
5214
5215	return pci_bridge_wait_for_secondary_bus(dev, "bus reset");
5216}
5217EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
5218
5219static int pci_parent_bus_reset(struct pci_dev *dev, bool probe)
5220{
5221	struct pci_dev *pdev;
5222
5223	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
5224	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5225		return -ENOTTY;
5226
5227	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
5228		if (pdev != dev)
5229			return -ENOTTY;
5230
5231	if (probe)
5232		return 0;
5233
5234	return pci_bridge_secondary_bus_reset(dev->bus->self);
5235}
5236
5237static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe)
5238{
5239	int rc = -ENOTTY;
5240
5241	if (!hotplug || !try_module_get(hotplug->owner))
5242		return rc;
5243
5244	if (hotplug->ops->reset_slot)
5245		rc = hotplug->ops->reset_slot(hotplug, probe);
5246
5247	module_put(hotplug->owner);
5248
5249	return rc;
5250}
5251
5252static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe)
5253{
5254	if (dev->multifunction || dev->subordinate || !dev->slot ||
5255	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5256		return -ENOTTY;
5257
5258	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
5259}
5260
5261static int pci_reset_bus_function(struct pci_dev *dev, bool probe)
5262{
5263	int rc;
5264
5265	rc = pci_dev_reset_slot_function(dev, probe);
5266	if (rc != -ENOTTY)
5267		return rc;
5268	return pci_parent_bus_reset(dev, probe);
5269}
5270
5271void pci_dev_lock(struct pci_dev *dev)
5272{
5273	/* block PM suspend, driver probe, etc. */
5274	device_lock(&dev->dev);
5275	pci_cfg_access_lock(dev);
5276}
5277EXPORT_SYMBOL_GPL(pci_dev_lock);
5278
5279/* Return 1 on successful lock, 0 on contention */
5280int pci_dev_trylock(struct pci_dev *dev)
5281{
5282	if (device_trylock(&dev->dev)) {
5283		if (pci_cfg_access_trylock(dev))
5284			return 1;
5285		device_unlock(&dev->dev);
5286	}
5287
5288	return 0;
5289}
5290EXPORT_SYMBOL_GPL(pci_dev_trylock);
5291
5292void pci_dev_unlock(struct pci_dev *dev)
5293{
5294	pci_cfg_access_unlock(dev);
5295	device_unlock(&dev->dev);
5296}
5297EXPORT_SYMBOL_GPL(pci_dev_unlock);
5298
5299static void pci_dev_save_and_disable(struct pci_dev *dev)
5300{
5301	const struct pci_error_handlers *err_handler =
5302			dev->driver ? dev->driver->err_handler : NULL;
5303
5304	/*
5305	 * dev->driver->err_handler->reset_prepare() is protected against
5306	 * races with ->remove() by the device lock, which must be held by
5307	 * the caller.
5308	 */
5309	if (err_handler && err_handler->reset_prepare)
5310		err_handler->reset_prepare(dev);
5311
5312	/*
5313	 * Wake-up device prior to save.  PM registers default to D0 after
5314	 * reset and a simple register restore doesn't reliably return
5315	 * to a non-D0 state anyway.
5316	 */
5317	pci_set_power_state(dev, PCI_D0);
5318
5319	pci_save_state(dev);
5320	/*
5321	 * Disable the device by clearing the Command register, except for
5322	 * INTx-disable which is set.  This not only disables MMIO and I/O port
5323	 * BARs, but also prevents the device from being Bus Master, preventing
5324	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
5325	 * compliant devices, INTx-disable prevents legacy interrupts.
5326	 */
5327	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
5328}
5329
5330static void pci_dev_restore(struct pci_dev *dev)
5331{
5332	const struct pci_error_handlers *err_handler =
5333			dev->driver ? dev->driver->err_handler : NULL;
5334
5335	pci_restore_state(dev);
5336
5337	/*
5338	 * dev->driver->err_handler->reset_done() is protected against
5339	 * races with ->remove() by the device lock, which must be held by
5340	 * the caller.
5341	 */
5342	if (err_handler && err_handler->reset_done)
5343		err_handler->reset_done(dev);
5344}
5345
5346/* dev->reset_methods[] is a 0-terminated list of indices into this array */
5347static const struct pci_reset_fn_method pci_reset_fn_methods[] = {
5348	{ },
5349	{ pci_dev_specific_reset, .name = "device_specific" },
5350	{ pci_dev_acpi_reset, .name = "acpi" },
5351	{ pcie_reset_flr, .name = "flr" },
5352	{ pci_af_flr, .name = "af_flr" },
5353	{ pci_pm_reset, .name = "pm" },
5354	{ pci_reset_bus_function, .name = "bus" },
5355};
5356
5357static ssize_t reset_method_show(struct device *dev,
5358				 struct device_attribute *attr, char *buf)
5359{
5360	struct pci_dev *pdev = to_pci_dev(dev);
5361	ssize_t len = 0;
5362	int i, m;
5363
5364	for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5365		m = pdev->reset_methods[i];
5366		if (!m)
5367			break;
5368
5369		len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "",
5370				     pci_reset_fn_methods[m].name);
5371	}
5372
5373	if (len)
5374		len += sysfs_emit_at(buf, len, "\n");
5375
5376	return len;
5377}
5378
5379static int reset_method_lookup(const char *name)
5380{
5381	int m;
5382
5383	for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5384		if (sysfs_streq(name, pci_reset_fn_methods[m].name))
5385			return m;
5386	}
5387
5388	return 0;	/* not found */
5389}
5390
5391static ssize_t reset_method_store(struct device *dev,
5392				  struct device_attribute *attr,
5393				  const char *buf, size_t count)
5394{
5395	struct pci_dev *pdev = to_pci_dev(dev);
5396	char *options, *name;
5397	int m, n;
5398	u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 };
5399
5400	if (sysfs_streq(buf, "")) {
5401		pdev->reset_methods[0] = 0;
5402		pci_warn(pdev, "All device reset methods disabled by user");
5403		return count;
5404	}
5405
5406	if (sysfs_streq(buf, "default")) {
5407		pci_init_reset_methods(pdev);
5408		return count;
5409	}
5410
5411	options = kstrndup(buf, count, GFP_KERNEL);
5412	if (!options)
5413		return -ENOMEM;
5414
5415	n = 0;
5416	while ((name = strsep(&options, " ")) != NULL) {
5417		if (sysfs_streq(name, ""))
5418			continue;
5419
5420		name = strim(name);
5421
5422		m = reset_method_lookup(name);
5423		if (!m) {
5424			pci_err(pdev, "Invalid reset method '%s'", name);
5425			goto error;
5426		}
5427
5428		if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) {
5429			pci_err(pdev, "Unsupported reset method '%s'", name);
5430			goto error;
5431		}
5432
5433		if (n == PCI_NUM_RESET_METHODS - 1) {
5434			pci_err(pdev, "Too many reset methods\n");
5435			goto error;
5436		}
5437
5438		reset_methods[n++] = m;
5439	}
5440
5441	reset_methods[n] = 0;
5442
5443	/* Warn if dev-specific supported but not highest priority */
5444	if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 &&
5445	    reset_methods[0] != 1)
5446		pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user");
5447	memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods));
5448	kfree(options);
5449	return count;
5450
5451error:
5452	/* Leave previous methods unchanged */
5453	kfree(options);
5454	return -EINVAL;
5455}
5456static DEVICE_ATTR_RW(reset_method);
5457
5458static struct attribute *pci_dev_reset_method_attrs[] = {
5459	&dev_attr_reset_method.attr,
5460	NULL,
5461};
5462
5463static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj,
5464						    struct attribute *a, int n)
5465{
5466	struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj));
5467
5468	if (!pci_reset_supported(pdev))
5469		return 0;
5470
5471	return a->mode;
5472}
5473
5474const struct attribute_group pci_dev_reset_method_attr_group = {
5475	.attrs = pci_dev_reset_method_attrs,
5476	.is_visible = pci_dev_reset_method_attr_is_visible,
5477};
5478
5479/**
5480 * __pci_reset_function_locked - reset a PCI device function while holding
5481 * the @dev mutex lock.
5482 * @dev: PCI device to reset
5483 *
5484 * Some devices allow an individual function to be reset without affecting
5485 * other functions in the same device.  The PCI device must be responsive
5486 * to PCI config space in order to use this function.
5487 *
5488 * The device function is presumed to be unused and the caller is holding
5489 * the device mutex lock when this function is called.
5490 *
5491 * Resetting the device will make the contents of PCI configuration space
5492 * random, so any caller of this must be prepared to reinitialise the
5493 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5494 * etc.
5495 *
5496 * Returns 0 if the device function was successfully reset or negative if the
5497 * device doesn't support resetting a single function.
5498 */
5499int __pci_reset_function_locked(struct pci_dev *dev)
5500{
5501	int i, m, rc;
5502
5503	might_sleep();
5504
5505	/*
5506	 * A reset method returns -ENOTTY if it doesn't support this device and
5507	 * we should try the next method.
5508	 *
5509	 * If it returns 0 (success), we're finished.  If it returns any other
5510	 * error, we're also finished: this indicates that further reset
5511	 * mechanisms might be broken on the device.
5512	 */
5513	for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5514		m = dev->reset_methods[i];
5515		if (!m)
5516			return -ENOTTY;
5517
5518		rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET);
5519		if (!rc)
5520			return 0;
5521		if (rc != -ENOTTY)
5522			return rc;
5523	}
5524
5525	return -ENOTTY;
5526}
5527EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5528
5529/**
5530 * pci_init_reset_methods - check whether device can be safely reset
5531 * and store supported reset mechanisms.
5532 * @dev: PCI device to check for reset mechanisms
5533 *
5534 * Some devices allow an individual function to be reset without affecting
5535 * other functions in the same device.  The PCI device must be in D0-D3hot
5536 * state.
5537 *
5538 * Stores reset mechanisms supported by device in reset_methods byte array
5539 * which is a member of struct pci_dev.
5540 */
5541void pci_init_reset_methods(struct pci_dev *dev)
5542{
5543	int m, i, rc;
5544
5545	BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS);
5546
5547	might_sleep();
5548
5549	i = 0;
5550	for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5551		rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE);
5552		if (!rc)
5553			dev->reset_methods[i++] = m;
5554		else if (rc != -ENOTTY)
5555			break;
5556	}
5557
5558	dev->reset_methods[i] = 0;
5559}
5560
5561/**
5562 * pci_reset_function - quiesce and reset a PCI device function
5563 * @dev: PCI device to reset
5564 *
5565 * Some devices allow an individual function to be reset without affecting
5566 * other functions in the same device.  The PCI device must be responsive
5567 * to PCI config space in order to use this function.
5568 *
5569 * This function does not just reset the PCI portion of a device, but
5570 * clears all the state associated with the device.  This function differs
5571 * from __pci_reset_function_locked() in that it saves and restores device state
5572 * over the reset and takes the PCI device lock.
5573 *
5574 * Returns 0 if the device function was successfully reset or negative if the
5575 * device doesn't support resetting a single function.
5576 */
5577int pci_reset_function(struct pci_dev *dev)
5578{
5579	int rc;
5580
5581	if (!pci_reset_supported(dev))
5582		return -ENOTTY;
5583
5584	pci_dev_lock(dev);
5585	pci_dev_save_and_disable(dev);
5586
5587	rc = __pci_reset_function_locked(dev);
5588
5589	pci_dev_restore(dev);
5590	pci_dev_unlock(dev);
5591
5592	return rc;
5593}
5594EXPORT_SYMBOL_GPL(pci_reset_function);
5595
5596/**
5597 * pci_reset_function_locked - quiesce and reset a PCI device function
5598 * @dev: PCI device to reset
5599 *
5600 * Some devices allow an individual function to be reset without affecting
5601 * other functions in the same device.  The PCI device must be responsive
5602 * to PCI config space in order to use this function.
5603 *
5604 * This function does not just reset the PCI portion of a device, but
5605 * clears all the state associated with the device.  This function differs
5606 * from __pci_reset_function_locked() in that it saves and restores device state
5607 * over the reset.  It also differs from pci_reset_function() in that it
5608 * requires the PCI device lock to be held.
5609 *
5610 * Returns 0 if the device function was successfully reset or negative if the
5611 * device doesn't support resetting a single function.
5612 */
5613int pci_reset_function_locked(struct pci_dev *dev)
5614{
5615	int rc;
5616
5617	if (!pci_reset_supported(dev))
5618		return -ENOTTY;
5619
5620	pci_dev_save_and_disable(dev);
5621
5622	rc = __pci_reset_function_locked(dev);
5623
5624	pci_dev_restore(dev);
5625
5626	return rc;
5627}
5628EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5629
5630/**
5631 * pci_try_reset_function - quiesce and reset a PCI device function
5632 * @dev: PCI device to reset
5633 *
5634 * Same as above, except return -EAGAIN if unable to lock device.
5635 */
5636int pci_try_reset_function(struct pci_dev *dev)
5637{
5638	int rc;
5639
5640	if (!pci_reset_supported(dev))
5641		return -ENOTTY;
5642
5643	if (!pci_dev_trylock(dev))
5644		return -EAGAIN;
5645
5646	pci_dev_save_and_disable(dev);
5647	rc = __pci_reset_function_locked(dev);
5648	pci_dev_restore(dev);
5649	pci_dev_unlock(dev);
5650
5651	return rc;
5652}
5653EXPORT_SYMBOL_GPL(pci_try_reset_function);
5654
5655/* Do any devices on or below this bus prevent a bus reset? */
5656static bool pci_bus_resettable(struct pci_bus *bus)
5657{
5658	struct pci_dev *dev;
5659
5660
5661	if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5662		return false;
5663
5664	list_for_each_entry(dev, &bus->devices, bus_list) {
5665		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5666		    (dev->subordinate && !pci_bus_resettable(dev->subordinate)))
5667			return false;
5668	}
5669
5670	return true;
5671}
5672
5673/* Lock devices from the top of the tree down */
5674static void pci_bus_lock(struct pci_bus *bus)
5675{
5676	struct pci_dev *dev;
5677
5678	list_for_each_entry(dev, &bus->devices, bus_list) {
5679		pci_dev_lock(dev);
5680		if (dev->subordinate)
5681			pci_bus_lock(dev->subordinate);
5682	}
5683}
5684
5685/* Unlock devices from the bottom of the tree up */
5686static void pci_bus_unlock(struct pci_bus *bus)
5687{
5688	struct pci_dev *dev;
5689
5690	list_for_each_entry(dev, &bus->devices, bus_list) {
5691		if (dev->subordinate)
5692			pci_bus_unlock(dev->subordinate);
5693		pci_dev_unlock(dev);
5694	}
5695}
5696
5697/* Return 1 on successful lock, 0 on contention */
5698static int pci_bus_trylock(struct pci_bus *bus)
5699{
5700	struct pci_dev *dev;
5701
5702	list_for_each_entry(dev, &bus->devices, bus_list) {
5703		if (!pci_dev_trylock(dev))
5704			goto unlock;
5705		if (dev->subordinate) {
5706			if (!pci_bus_trylock(dev->subordinate)) {
5707				pci_dev_unlock(dev);
5708				goto unlock;
5709			}
5710		}
5711	}
5712	return 1;
5713
5714unlock:
5715	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5716		if (dev->subordinate)
5717			pci_bus_unlock(dev->subordinate);
5718		pci_dev_unlock(dev);
5719	}
5720	return 0;
5721}
5722
5723/* Do any devices on or below this slot prevent a bus reset? */
5724static bool pci_slot_resettable(struct pci_slot *slot)
5725{
5726	struct pci_dev *dev;
5727
5728	if (slot->bus->self &&
5729	    (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5730		return false;
5731
5732	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5733		if (!dev->slot || dev->slot != slot)
5734			continue;
5735		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5736		    (dev->subordinate && !pci_bus_resettable(dev->subordinate)))
5737			return false;
5738	}
5739
5740	return true;
5741}
5742
5743/* Lock devices from the top of the tree down */
5744static void pci_slot_lock(struct pci_slot *slot)
5745{
5746	struct pci_dev *dev;
5747
5748	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5749		if (!dev->slot || dev->slot != slot)
5750			continue;
5751		pci_dev_lock(dev);
5752		if (dev->subordinate)
5753			pci_bus_lock(dev->subordinate);
5754	}
5755}
5756
5757/* Unlock devices from the bottom of the tree up */
5758static void pci_slot_unlock(struct pci_slot *slot)
5759{
5760	struct pci_dev *dev;
5761
5762	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5763		if (!dev->slot || dev->slot != slot)
5764			continue;
5765		if (dev->subordinate)
5766			pci_bus_unlock(dev->subordinate);
5767		pci_dev_unlock(dev);
5768	}
5769}
5770
5771/* Return 1 on successful lock, 0 on contention */
5772static int pci_slot_trylock(struct pci_slot *slot)
5773{
5774	struct pci_dev *dev;
5775
5776	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5777		if (!dev->slot || dev->slot != slot)
5778			continue;
5779		if (!pci_dev_trylock(dev))
5780			goto unlock;
5781		if (dev->subordinate) {
5782			if (!pci_bus_trylock(dev->subordinate)) {
5783				pci_dev_unlock(dev);
5784				goto unlock;
5785			}
5786		}
5787	}
5788	return 1;
5789
5790unlock:
5791	list_for_each_entry_continue_reverse(dev,
5792					     &slot->bus->devices, bus_list) {
5793		if (!dev->slot || dev->slot != slot)
5794			continue;
5795		if (dev->subordinate)
5796			pci_bus_unlock(dev->subordinate);
5797		pci_dev_unlock(dev);
5798	}
5799	return 0;
5800}
5801
5802/*
5803 * Save and disable devices from the top of the tree down while holding
5804 * the @dev mutex lock for the entire tree.
5805 */
5806static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5807{
5808	struct pci_dev *dev;
5809
5810	list_for_each_entry(dev, &bus->devices, bus_list) {
5811		pci_dev_save_and_disable(dev);
5812		if (dev->subordinate)
5813			pci_bus_save_and_disable_locked(dev->subordinate);
5814	}
5815}
5816
5817/*
5818 * Restore devices from top of the tree down while holding @dev mutex lock
5819 * for the entire tree.  Parent bridges need to be restored before we can
5820 * get to subordinate devices.
5821 */
5822static void pci_bus_restore_locked(struct pci_bus *bus)
5823{
5824	struct pci_dev *dev;
5825
5826	list_for_each_entry(dev, &bus->devices, bus_list) {
5827		pci_dev_restore(dev);
5828		if (dev->subordinate)
5829			pci_bus_restore_locked(dev->subordinate);
5830	}
5831}
5832
5833/*
5834 * Save and disable devices from the top of the tree down while holding
5835 * the @dev mutex lock for the entire tree.
5836 */
5837static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5838{
5839	struct pci_dev *dev;
5840
5841	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5842		if (!dev->slot || dev->slot != slot)
5843			continue;
5844		pci_dev_save_and_disable(dev);
5845		if (dev->subordinate)
5846			pci_bus_save_and_disable_locked(dev->subordinate);
5847	}
5848}
5849
5850/*
5851 * Restore devices from top of the tree down while holding @dev mutex lock
5852 * for the entire tree.  Parent bridges need to be restored before we can
5853 * get to subordinate devices.
5854 */
5855static void pci_slot_restore_locked(struct pci_slot *slot)
5856{
5857	struct pci_dev *dev;
5858
5859	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5860		if (!dev->slot || dev->slot != slot)
5861			continue;
5862		pci_dev_restore(dev);
5863		if (dev->subordinate)
5864			pci_bus_restore_locked(dev->subordinate);
5865	}
5866}
5867
5868static int pci_slot_reset(struct pci_slot *slot, bool probe)
5869{
5870	int rc;
5871
5872	if (!slot || !pci_slot_resettable(slot))
5873		return -ENOTTY;
5874
5875	if (!probe)
5876		pci_slot_lock(slot);
5877
5878	might_sleep();
5879
5880	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5881
5882	if (!probe)
5883		pci_slot_unlock(slot);
5884
5885	return rc;
5886}
5887
5888/**
5889 * pci_probe_reset_slot - probe whether a PCI slot can be reset
5890 * @slot: PCI slot to probe
5891 *
5892 * Return 0 if slot can be reset, negative if a slot reset is not supported.
5893 */
5894int pci_probe_reset_slot(struct pci_slot *slot)
5895{
5896	return pci_slot_reset(slot, PCI_RESET_PROBE);
5897}
5898EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5899
5900/**
5901 * __pci_reset_slot - Try to reset a PCI slot
5902 * @slot: PCI slot to reset
5903 *
5904 * A PCI bus may host multiple slots, each slot may support a reset mechanism
5905 * independent of other slots.  For instance, some slots may support slot power
5906 * control.  In the case of a 1:1 bus to slot architecture, this function may
5907 * wrap the bus reset to avoid spurious slot related events such as hotplug.
5908 * Generally a slot reset should be attempted before a bus reset.  All of the
5909 * function of the slot and any subordinate buses behind the slot are reset
5910 * through this function.  PCI config space of all devices in the slot and
5911 * behind the slot is saved before and restored after reset.
5912 *
5913 * Same as above except return -EAGAIN if the slot cannot be locked
5914 */
5915static int __pci_reset_slot(struct pci_slot *slot)
5916{
5917	int rc;
5918
5919	rc = pci_slot_reset(slot, PCI_RESET_PROBE);
5920	if (rc)
5921		return rc;
5922
5923	if (pci_slot_trylock(slot)) {
5924		pci_slot_save_and_disable_locked(slot);
5925		might_sleep();
5926		rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET);
5927		pci_slot_restore_locked(slot);
5928		pci_slot_unlock(slot);
5929	} else
5930		rc = -EAGAIN;
5931
5932	return rc;
5933}
5934
5935static int pci_bus_reset(struct pci_bus *bus, bool probe)
5936{
5937	int ret;
5938
5939	if (!bus->self || !pci_bus_resettable(bus))
5940		return -ENOTTY;
5941
5942	if (probe)
5943		return 0;
5944
5945	pci_bus_lock(bus);
5946
5947	might_sleep();
5948
5949	ret = pci_bridge_secondary_bus_reset(bus->self);
5950
5951	pci_bus_unlock(bus);
5952
5953	return ret;
5954}
5955
5956/**
5957 * pci_bus_error_reset - reset the bridge's subordinate bus
5958 * @bridge: The parent device that connects to the bus to reset
5959 *
5960 * This function will first try to reset the slots on this bus if the method is
5961 * available. If slot reset fails or is not available, this will fall back to a
5962 * secondary bus reset.
5963 */
5964int pci_bus_error_reset(struct pci_dev *bridge)
5965{
5966	struct pci_bus *bus = bridge->subordinate;
5967	struct pci_slot *slot;
5968
5969	if (!bus)
5970		return -ENOTTY;
5971
5972	mutex_lock(&pci_slot_mutex);
5973	if (list_empty(&bus->slots))
5974		goto bus_reset;
5975
5976	list_for_each_entry(slot, &bus->slots, list)
5977		if (pci_probe_reset_slot(slot))
5978			goto bus_reset;
5979
5980	list_for_each_entry(slot, &bus->slots, list)
5981		if (pci_slot_reset(slot, PCI_RESET_DO_RESET))
5982			goto bus_reset;
5983
5984	mutex_unlock(&pci_slot_mutex);
5985	return 0;
5986bus_reset:
5987	mutex_unlock(&pci_slot_mutex);
5988	return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET);
5989}
5990
5991/**
5992 * pci_probe_reset_bus - probe whether a PCI bus can be reset
5993 * @bus: PCI bus to probe
5994 *
5995 * Return 0 if bus can be reset, negative if a bus reset is not supported.
5996 */
5997int pci_probe_reset_bus(struct pci_bus *bus)
5998{
5999	return pci_bus_reset(bus, PCI_RESET_PROBE);
6000}
6001EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
6002
6003/**
6004 * __pci_reset_bus - Try to reset a PCI bus
6005 * @bus: top level PCI bus to reset
6006 *
6007 * Same as above except return -EAGAIN if the bus cannot be locked
6008 */
6009static int __pci_reset_bus(struct pci_bus *bus)
6010{
6011	int rc;
6012
6013	rc = pci_bus_reset(bus, PCI_RESET_PROBE);
6014	if (rc)
6015		return rc;
6016
6017	if (pci_bus_trylock(bus)) {
6018		pci_bus_save_and_disable_locked(bus);
6019		might_sleep();
6020		rc = pci_bridge_secondary_bus_reset(bus->self);
6021		pci_bus_restore_locked(bus);
6022		pci_bus_unlock(bus);
6023	} else
6024		rc = -EAGAIN;
6025
6026	return rc;
6027}
6028
6029/**
6030 * pci_reset_bus - Try to reset a PCI bus
6031 * @pdev: top level PCI device to reset via slot/bus
6032 *
6033 * Same as above except return -EAGAIN if the bus cannot be locked
6034 */
6035int pci_reset_bus(struct pci_dev *pdev)
6036{
6037	return (!pci_probe_reset_slot(pdev->slot)) ?
6038	    __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
6039}
6040EXPORT_SYMBOL_GPL(pci_reset_bus);
6041
6042/**
6043 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
6044 * @dev: PCI device to query
6045 *
6046 * Returns mmrbc: maximum designed memory read count in bytes or
6047 * appropriate error value.
6048 */
6049int pcix_get_max_mmrbc(struct pci_dev *dev)
6050{
6051	int cap;
6052	u32 stat;
6053
6054	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
6055	if (!cap)
6056		return -EINVAL;
6057
6058	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
6059		return -EINVAL;
6060
6061	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
6062}
6063EXPORT_SYMBOL(pcix_get_max_mmrbc);
6064
6065/**
6066 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
6067 * @dev: PCI device to query
6068 *
6069 * Returns mmrbc: maximum memory read count in bytes or appropriate error
6070 * value.
6071 */
6072int pcix_get_mmrbc(struct pci_dev *dev)
6073{
6074	int cap;
6075	u16 cmd;
6076
6077	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
6078	if (!cap)
6079		return -EINVAL;
6080
6081	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
6082		return -EINVAL;
6083
6084	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
6085}
6086EXPORT_SYMBOL(pcix_get_mmrbc);
6087
6088/**
6089 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
6090 * @dev: PCI device to query
6091 * @mmrbc: maximum memory read count in bytes
6092 *    valid values are 512, 1024, 2048, 4096
6093 *
6094 * If possible sets maximum memory read byte count, some bridges have errata
6095 * that prevent this.
6096 */
6097int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
6098{
6099	int cap;
6100	u32 stat, v, o;
6101	u16 cmd;
6102
6103	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
6104		return -EINVAL;
6105
6106	v = ffs(mmrbc) - 10;
6107
6108	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
6109	if (!cap)
6110		return -EINVAL;
6111
6112	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
6113		return -EINVAL;
6114
6115	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
6116		return -E2BIG;
6117
6118	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
6119		return -EINVAL;
6120
6121	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
6122	if (o != v) {
6123		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
6124			return -EIO;
6125
6126		cmd &= ~PCI_X_CMD_MAX_READ;
6127		cmd |= v << 2;
6128		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
6129			return -EIO;
6130	}
6131	return 0;
6132}
6133EXPORT_SYMBOL(pcix_set_mmrbc);
6134
6135/**
6136 * pcie_get_readrq - get PCI Express read request size
6137 * @dev: PCI device to query
6138 *
6139 * Returns maximum memory read request in bytes or appropriate error value.
6140 */
6141int pcie_get_readrq(struct pci_dev *dev)
6142{
6143	u16 ctl;
6144
6145	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6146
6147	return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6148}
6149EXPORT_SYMBOL(pcie_get_readrq);
6150
6151/**
6152 * pcie_set_readrq - set PCI Express maximum memory read request
6153 * @dev: PCI device to query
6154 * @rq: maximum memory read count in bytes
6155 *    valid values are 128, 256, 512, 1024, 2048, 4096
6156 *
6157 * If possible sets maximum memory read request in bytes
6158 */
6159int pcie_set_readrq(struct pci_dev *dev, int rq)
6160{
6161	u16 v;
6162	int ret;
6163	struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
6164
6165	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
6166		return -EINVAL;
6167
6168	/*
6169	 * If using the "performance" PCIe config, we clamp the read rq
6170	 * size to the max packet size to keep the host bridge from
6171	 * generating requests larger than we can cope with.
6172	 */
6173	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
6174		int mps = pcie_get_mps(dev);
6175
6176		if (mps < rq)
6177			rq = mps;
6178	}
6179
6180	v = (ffs(rq) - 8) << 12;
6181
6182	if (bridge->no_inc_mrrs) {
6183		int max_mrrs = pcie_get_readrq(dev);
6184
6185		if (rq > max_mrrs) {
6186			pci_info(dev, "can't set Max_Read_Request_Size to %d; max is %d\n", rq, max_mrrs);
6187			return -EINVAL;
6188		}
6189	}
6190
6191	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6192						  PCI_EXP_DEVCTL_READRQ, v);
6193
6194	return pcibios_err_to_errno(ret);
6195}
6196EXPORT_SYMBOL(pcie_set_readrq);
6197
6198/**
6199 * pcie_get_mps - get PCI Express maximum payload size
6200 * @dev: PCI device to query
6201 *
6202 * Returns maximum payload size in bytes
6203 */
6204int pcie_get_mps(struct pci_dev *dev)
6205{
6206	u16 ctl;
6207
6208	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6209
6210	return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6211}
6212EXPORT_SYMBOL(pcie_get_mps);
6213
6214/**
6215 * pcie_set_mps - set PCI Express maximum payload size
6216 * @dev: PCI device to query
6217 * @mps: maximum payload size in bytes
6218 *    valid values are 128, 256, 512, 1024, 2048, 4096
6219 *
6220 * If possible sets maximum payload size
6221 */
6222int pcie_set_mps(struct pci_dev *dev, int mps)
6223{
6224	u16 v;
6225	int ret;
6226
6227	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
6228		return -EINVAL;
6229
6230	v = ffs(mps) - 8;
6231	if (v > dev->pcie_mpss)
6232		return -EINVAL;
6233	v <<= 5;
6234
6235	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6236						  PCI_EXP_DEVCTL_PAYLOAD, v);
6237
6238	return pcibios_err_to_errno(ret);
6239}
6240EXPORT_SYMBOL(pcie_set_mps);
6241
6242/**
6243 * pcie_bandwidth_available - determine minimum link settings of a PCIe
6244 *			      device and its bandwidth limitation
6245 * @dev: PCI device to query
6246 * @limiting_dev: storage for device causing the bandwidth limitation
6247 * @speed: storage for speed of limiting device
6248 * @width: storage for width of limiting device
6249 *
6250 * Walk up the PCI device chain and find the point where the minimum
6251 * bandwidth is available.  Return the bandwidth available there and (if
6252 * limiting_dev, speed, and width pointers are supplied) information about
6253 * that point.  The bandwidth returned is in Mb/s, i.e., megabits/second of
6254 * raw bandwidth.
6255 */
6256u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
6257			     enum pci_bus_speed *speed,
6258			     enum pcie_link_width *width)
6259{
6260	u16 lnksta;
6261	enum pci_bus_speed next_speed;
6262	enum pcie_link_width next_width;
6263	u32 bw, next_bw;
6264
6265	if (speed)
6266		*speed = PCI_SPEED_UNKNOWN;
6267	if (width)
6268		*width = PCIE_LNK_WIDTH_UNKNOWN;
6269
6270	bw = 0;
6271
6272	while (dev) {
6273		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
6274
6275		next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
6276		next_width = FIELD_GET(PCI_EXP_LNKSTA_NLW, lnksta);
6277
6278		next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
6279
6280		/* Check if current device limits the total bandwidth */
6281		if (!bw || next_bw <= bw) {
6282			bw = next_bw;
6283
6284			if (limiting_dev)
6285				*limiting_dev = dev;
6286			if (speed)
6287				*speed = next_speed;
6288			if (width)
6289				*width = next_width;
6290		}
6291
6292		dev = pci_upstream_bridge(dev);
6293	}
6294
6295	return bw;
6296}
6297EXPORT_SYMBOL(pcie_bandwidth_available);
6298
6299/**
6300 * pcie_get_speed_cap - query for the PCI device's link speed capability
6301 * @dev: PCI device to query
6302 *
6303 * Query the PCI device speed capability.  Return the maximum link speed
6304 * supported by the device.
6305 */
6306enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
6307{
6308	u32 lnkcap2, lnkcap;
6309
6310	/*
6311	 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18.  The
6312	 * implementation note there recommends using the Supported Link
6313	 * Speeds Vector in Link Capabilities 2 when supported.
6314	 *
6315	 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
6316	 * should use the Supported Link Speeds field in Link Capabilities,
6317	 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
6318	 */
6319	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
6320
6321	/* PCIe r3.0-compliant */
6322	if (lnkcap2)
6323		return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
6324
6325	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6326	if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
6327		return PCIE_SPEED_5_0GT;
6328	else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
6329		return PCIE_SPEED_2_5GT;
6330
6331	return PCI_SPEED_UNKNOWN;
6332}
6333EXPORT_SYMBOL(pcie_get_speed_cap);
6334
6335/**
6336 * pcie_get_width_cap - query for the PCI device's link width capability
6337 * @dev: PCI device to query
6338 *
6339 * Query the PCI device width capability.  Return the maximum link width
6340 * supported by the device.
6341 */
6342enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
6343{
6344	u32 lnkcap;
6345
6346	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6347	if (lnkcap)
6348		return FIELD_GET(PCI_EXP_LNKCAP_MLW, lnkcap);
6349
6350	return PCIE_LNK_WIDTH_UNKNOWN;
6351}
6352EXPORT_SYMBOL(pcie_get_width_cap);
6353
6354/**
6355 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
6356 * @dev: PCI device
6357 * @speed: storage for link speed
6358 * @width: storage for link width
6359 *
6360 * Calculate a PCI device's link bandwidth by querying for its link speed
6361 * and width, multiplying them, and applying encoding overhead.  The result
6362 * is in Mb/s, i.e., megabits/second of raw bandwidth.
6363 */
6364u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
6365			   enum pcie_link_width *width)
6366{
6367	*speed = pcie_get_speed_cap(dev);
6368	*width = pcie_get_width_cap(dev);
6369
6370	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
6371		return 0;
6372
6373	return *width * PCIE_SPEED2MBS_ENC(*speed);
6374}
6375
6376/**
6377 * __pcie_print_link_status - Report the PCI device's link speed and width
6378 * @dev: PCI device to query
6379 * @verbose: Print info even when enough bandwidth is available
6380 *
6381 * If the available bandwidth at the device is less than the device is
6382 * capable of, report the device's maximum possible bandwidth and the
6383 * upstream link that limits its performance.  If @verbose, always print
6384 * the available bandwidth, even if the device isn't constrained.
6385 */
6386void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
6387{
6388	enum pcie_link_width width, width_cap;
6389	enum pci_bus_speed speed, speed_cap;
6390	struct pci_dev *limiting_dev = NULL;
6391	u32 bw_avail, bw_cap;
6392
6393	bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
6394	bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
6395
6396	if (bw_avail >= bw_cap && verbose)
6397		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
6398			 bw_cap / 1000, bw_cap % 1000,
6399			 pci_speed_string(speed_cap), width_cap);
6400	else if (bw_avail < bw_cap)
6401		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
6402			 bw_avail / 1000, bw_avail % 1000,
6403			 pci_speed_string(speed), width,
6404			 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
6405			 bw_cap / 1000, bw_cap % 1000,
6406			 pci_speed_string(speed_cap), width_cap);
6407}
6408
6409/**
6410 * pcie_print_link_status - Report the PCI device's link speed and width
6411 * @dev: PCI device to query
6412 *
6413 * Report the available bandwidth at the device.
6414 */
6415void pcie_print_link_status(struct pci_dev *dev)
6416{
6417	__pcie_print_link_status(dev, true);
6418}
6419EXPORT_SYMBOL(pcie_print_link_status);
6420
6421/**
6422 * pci_select_bars - Make BAR mask from the type of resource
6423 * @dev: the PCI device for which BAR mask is made
6424 * @flags: resource type mask to be selected
6425 *
6426 * This helper routine makes bar mask from the type of resource.
6427 */
6428int pci_select_bars(struct pci_dev *dev, unsigned long flags)
6429{
6430	int i, bars = 0;
6431	for (i = 0; i < PCI_NUM_RESOURCES; i++)
6432		if (pci_resource_flags(dev, i) & flags)
6433			bars |= (1 << i);
6434	return bars;
6435}
6436EXPORT_SYMBOL(pci_select_bars);
6437
6438/* Some architectures require additional programming to enable VGA */
6439static arch_set_vga_state_t arch_set_vga_state;
6440
6441void __init pci_register_set_vga_state(arch_set_vga_state_t func)
6442{
6443	arch_set_vga_state = func;	/* NULL disables */
6444}
6445
6446static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
6447				  unsigned int command_bits, u32 flags)
6448{
6449	if (arch_set_vga_state)
6450		return arch_set_vga_state(dev, decode, command_bits,
6451						flags);
6452	return 0;
6453}
6454
6455/**
6456 * pci_set_vga_state - set VGA decode state on device and parents if requested
6457 * @dev: the PCI device
6458 * @decode: true = enable decoding, false = disable decoding
6459 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
6460 * @flags: traverse ancestors and change bridges
6461 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6462 */
6463int pci_set_vga_state(struct pci_dev *dev, bool decode,
6464		      unsigned int command_bits, u32 flags)
6465{
6466	struct pci_bus *bus;
6467	struct pci_dev *bridge;
6468	u16 cmd;
6469	int rc;
6470
6471	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6472
6473	/* ARCH specific VGA enables */
6474	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6475	if (rc)
6476		return rc;
6477
6478	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6479		pci_read_config_word(dev, PCI_COMMAND, &cmd);
6480		if (decode)
6481			cmd |= command_bits;
6482		else
6483			cmd &= ~command_bits;
6484		pci_write_config_word(dev, PCI_COMMAND, cmd);
6485	}
6486
6487	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6488		return 0;
6489
6490	bus = dev->bus;
6491	while (bus) {
6492		bridge = bus->self;
6493		if (bridge) {
6494			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6495					     &cmd);
6496			if (decode)
6497				cmd |= PCI_BRIDGE_CTL_VGA;
6498			else
6499				cmd &= ~PCI_BRIDGE_CTL_VGA;
6500			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6501					      cmd);
6502		}
6503		bus = bus->parent;
6504	}
6505	return 0;
6506}
6507
6508#ifdef CONFIG_ACPI
6509bool pci_pr3_present(struct pci_dev *pdev)
6510{
6511	struct acpi_device *adev;
6512
6513	if (acpi_disabled)
6514		return false;
6515
6516	adev = ACPI_COMPANION(&pdev->dev);
6517	if (!adev)
6518		return false;
6519
6520	return adev->power.flags.power_resources &&
6521		acpi_has_method(adev->handle, "_PR3");
6522}
6523EXPORT_SYMBOL_GPL(pci_pr3_present);
6524#endif
6525
6526/**
6527 * pci_add_dma_alias - Add a DMA devfn alias for a device
6528 * @dev: the PCI device for which alias is added
6529 * @devfn_from: alias slot and function
6530 * @nr_devfns: number of subsequent devfns to alias
6531 *
6532 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6533 * which is used to program permissible bus-devfn source addresses for DMA
6534 * requests in an IOMMU.  These aliases factor into IOMMU group creation
6535 * and are useful for devices generating DMA requests beyond or different
6536 * from their logical bus-devfn.  Examples include device quirks where the
6537 * device simply uses the wrong devfn, as well as non-transparent bridges
6538 * where the alias may be a proxy for devices in another domain.
6539 *
6540 * IOMMU group creation is performed during device discovery or addition,
6541 * prior to any potential DMA mapping and therefore prior to driver probing
6542 * (especially for userspace assigned devices where IOMMU group definition
6543 * cannot be left as a userspace activity).  DMA aliases should therefore
6544 * be configured via quirks, such as the PCI fixup header quirk.
6545 */
6546void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from,
6547		       unsigned int nr_devfns)
6548{
6549	int devfn_to;
6550
6551	nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from);
6552	devfn_to = devfn_from + nr_devfns - 1;
6553
6554	if (!dev->dma_alias_mask)
6555		dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6556	if (!dev->dma_alias_mask) {
6557		pci_warn(dev, "Unable to allocate DMA alias mask\n");
6558		return;
6559	}
6560
6561	bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6562
6563	if (nr_devfns == 1)
6564		pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6565				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6566	else if (nr_devfns > 1)
6567		pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6568				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6569				PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6570}
6571
6572bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6573{
6574	return (dev1->dma_alias_mask &&
6575		test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6576	       (dev2->dma_alias_mask &&
6577		test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6578	       pci_real_dma_dev(dev1) == dev2 ||
6579	       pci_real_dma_dev(dev2) == dev1;
6580}
6581
6582bool pci_device_is_present(struct pci_dev *pdev)
6583{
6584	u32 v;
6585
6586	/* Check PF if pdev is a VF, since VF Vendor/Device IDs are 0xffff */
6587	pdev = pci_physfn(pdev);
6588	if (pci_dev_is_disconnected(pdev))
6589		return false;
6590	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6591}
6592EXPORT_SYMBOL_GPL(pci_device_is_present);
6593
6594void pci_ignore_hotplug(struct pci_dev *dev)
6595{
6596	struct pci_dev *bridge = dev->bus->self;
6597
6598	dev->ignore_hotplug = 1;
6599	/* Propagate the "ignore hotplug" setting to the parent bridge. */
6600	if (bridge)
6601		bridge->ignore_hotplug = 1;
6602}
6603EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6604
6605/**
6606 * pci_real_dma_dev - Get PCI DMA device for PCI device
6607 * @dev: the PCI device that may have a PCI DMA alias
6608 *
6609 * Permits the platform to provide architecture-specific functionality to
6610 * devices needing to alias DMA to another PCI device on another PCI bus. If
6611 * the PCI device is on the same bus, it is recommended to use
6612 * pci_add_dma_alias(). This is the default implementation. Architecture
6613 * implementations can override this.
6614 */
6615struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6616{
6617	return dev;
6618}
6619
6620resource_size_t __weak pcibios_default_alignment(void)
6621{
6622	return 0;
6623}
6624
6625/*
6626 * Arches that don't want to expose struct resource to userland as-is in
6627 * sysfs and /proc can implement their own pci_resource_to_user().
6628 */
6629void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6630				 const struct resource *rsrc,
6631				 resource_size_t *start, resource_size_t *end)
6632{
6633	*start = rsrc->start;
6634	*end = rsrc->end;
6635}
6636
6637static char *resource_alignment_param;
6638static DEFINE_SPINLOCK(resource_alignment_lock);
6639
6640/**
6641 * pci_specified_resource_alignment - get resource alignment specified by user.
6642 * @dev: the PCI device to get
6643 * @resize: whether or not to change resources' size when reassigning alignment
6644 *
6645 * RETURNS: Resource alignment if it is specified.
6646 *          Zero if it is not specified.
6647 */
6648static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6649							bool *resize)
6650{
6651	int align_order, count;
6652	resource_size_t align = pcibios_default_alignment();
6653	const char *p;
6654	int ret;
6655
6656	spin_lock(&resource_alignment_lock);
6657	p = resource_alignment_param;
6658	if (!p || !*p)
6659		goto out;
6660	if (pci_has_flag(PCI_PROBE_ONLY)) {
6661		align = 0;
6662		pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6663		goto out;
6664	}
6665
6666	while (*p) {
6667		count = 0;
6668		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6669		    p[count] == '@') {
6670			p += count + 1;
6671			if (align_order > 63) {
6672				pr_err("PCI: Invalid requested alignment (order %d)\n",
6673				       align_order);
6674				align_order = PAGE_SHIFT;
6675			}
6676		} else {
6677			align_order = PAGE_SHIFT;
6678		}
6679
6680		ret = pci_dev_str_match(dev, p, &p);
6681		if (ret == 1) {
6682			*resize = true;
6683			align = 1ULL << align_order;
6684			break;
6685		} else if (ret < 0) {
6686			pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6687			       p);
6688			break;
6689		}
6690
6691		if (*p != ';' && *p != ',') {
6692			/* End of param or invalid format */
6693			break;
6694		}
6695		p++;
6696	}
6697out:
6698	spin_unlock(&resource_alignment_lock);
6699	return align;
6700}
6701
6702static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6703					   resource_size_t align, bool resize)
6704{
6705	struct resource *r = &dev->resource[bar];
6706	resource_size_t size;
6707
6708	if (!(r->flags & IORESOURCE_MEM))
6709		return;
6710
6711	if (r->flags & IORESOURCE_PCI_FIXED) {
6712		pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
6713			 bar, r, (unsigned long long)align);
6714		return;
6715	}
6716
6717	size = resource_size(r);
6718	if (size >= align)
6719		return;
6720
6721	/*
6722	 * Increase the alignment of the resource.  There are two ways we
6723	 * can do this:
6724	 *
6725	 * 1) Increase the size of the resource.  BARs are aligned on their
6726	 *    size, so when we reallocate space for this resource, we'll
6727	 *    allocate it with the larger alignment.  This also prevents
6728	 *    assignment of any other BARs inside the alignment region, so
6729	 *    if we're requesting page alignment, this means no other BARs
6730	 *    will share the page.
6731	 *
6732	 *    The disadvantage is that this makes the resource larger than
6733	 *    the hardware BAR, which may break drivers that compute things
6734	 *    based on the resource size, e.g., to find registers at a
6735	 *    fixed offset before the end of the BAR.
6736	 *
6737	 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6738	 *    set r->start to the desired alignment.  By itself this
6739	 *    doesn't prevent other BARs being put inside the alignment
6740	 *    region, but if we realign *every* resource of every device in
6741	 *    the system, none of them will share an alignment region.
6742	 *
6743	 * When the user has requested alignment for only some devices via
6744	 * the "pci=resource_alignment" argument, "resize" is true and we
6745	 * use the first method.  Otherwise we assume we're aligning all
6746	 * devices and we use the second.
6747	 */
6748
6749	pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6750		 bar, r, (unsigned long long)align);
6751
6752	if (resize) {
6753		r->start = 0;
6754		r->end = align - 1;
6755	} else {
6756		r->flags &= ~IORESOURCE_SIZEALIGN;
6757		r->flags |= IORESOURCE_STARTALIGN;
6758		r->start = align;
6759		r->end = r->start + size - 1;
6760	}
6761	r->flags |= IORESOURCE_UNSET;
6762}
6763
6764/*
6765 * This function disables memory decoding and releases memory resources
6766 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6767 * It also rounds up size to specified alignment.
6768 * Later on, the kernel will assign page-aligned memory resource back
6769 * to the device.
6770 */
6771void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6772{
6773	int i;
6774	struct resource *r;
6775	resource_size_t align;
6776	u16 command;
6777	bool resize = false;
6778
6779	/*
6780	 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6781	 * 3.4.1.11.  Their resources are allocated from the space
6782	 * described by the VF BARx register in the PF's SR-IOV capability.
6783	 * We can't influence their alignment here.
6784	 */
6785	if (dev->is_virtfn)
6786		return;
6787
6788	/* check if specified PCI is target device to reassign */
6789	align = pci_specified_resource_alignment(dev, &resize);
6790	if (!align)
6791		return;
6792
6793	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6794	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6795		pci_warn(dev, "Can't reassign resources to host bridge\n");
6796		return;
6797	}
6798
6799	pci_read_config_word(dev, PCI_COMMAND, &command);
6800	command &= ~PCI_COMMAND_MEMORY;
6801	pci_write_config_word(dev, PCI_COMMAND, command);
6802
6803	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6804		pci_request_resource_alignment(dev, i, align, resize);
6805
6806	/*
6807	 * Need to disable bridge's resource window,
6808	 * to enable the kernel to reassign new resource
6809	 * window later on.
6810	 */
6811	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6812		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6813			r = &dev->resource[i];
6814			if (!(r->flags & IORESOURCE_MEM))
6815				continue;
6816			r->flags |= IORESOURCE_UNSET;
6817			r->end = resource_size(r) - 1;
6818			r->start = 0;
6819		}
6820		pci_disable_bridge_window(dev);
6821	}
6822}
6823
6824static ssize_t resource_alignment_show(const struct bus_type *bus, char *buf)
6825{
6826	size_t count = 0;
6827
6828	spin_lock(&resource_alignment_lock);
6829	if (resource_alignment_param)
6830		count = sysfs_emit(buf, "%s\n", resource_alignment_param);
6831	spin_unlock(&resource_alignment_lock);
6832
6833	return count;
6834}
6835
6836static ssize_t resource_alignment_store(const struct bus_type *bus,
6837					const char *buf, size_t count)
6838{
6839	char *param, *old, *end;
6840
6841	if (count >= (PAGE_SIZE - 1))
6842		return -EINVAL;
6843
6844	param = kstrndup(buf, count, GFP_KERNEL);
6845	if (!param)
6846		return -ENOMEM;
6847
6848	end = strchr(param, '\n');
6849	if (end)
6850		*end = '\0';
6851
6852	spin_lock(&resource_alignment_lock);
6853	old = resource_alignment_param;
6854	if (strlen(param)) {
6855		resource_alignment_param = param;
6856	} else {
6857		kfree(param);
6858		resource_alignment_param = NULL;
6859	}
6860	spin_unlock(&resource_alignment_lock);
6861
6862	kfree(old);
6863
6864	return count;
6865}
6866
6867static BUS_ATTR_RW(resource_alignment);
6868
6869static int __init pci_resource_alignment_sysfs_init(void)
6870{
6871	return bus_create_file(&pci_bus_type,
6872					&bus_attr_resource_alignment);
6873}
6874late_initcall(pci_resource_alignment_sysfs_init);
6875
6876static void pci_no_domains(void)
6877{
6878#ifdef CONFIG_PCI_DOMAINS
6879	pci_domains_supported = 0;
6880#endif
6881}
6882
6883#ifdef CONFIG_PCI_DOMAINS_GENERIC
6884static DEFINE_IDA(pci_domain_nr_static_ida);
6885static DEFINE_IDA(pci_domain_nr_dynamic_ida);
6886
6887static void of_pci_reserve_static_domain_nr(void)
6888{
6889	struct device_node *np;
6890	int domain_nr;
6891
6892	for_each_node_by_type(np, "pci") {
6893		domain_nr = of_get_pci_domain_nr(np);
6894		if (domain_nr < 0)
6895			continue;
6896		/*
6897		 * Permanently allocate domain_nr in dynamic_ida
6898		 * to prevent it from dynamic allocation.
6899		 */
6900		ida_alloc_range(&pci_domain_nr_dynamic_ida,
6901				domain_nr, domain_nr, GFP_KERNEL);
6902	}
6903}
6904
6905static int of_pci_bus_find_domain_nr(struct device *parent)
6906{
6907	static bool static_domains_reserved = false;
6908	int domain_nr;
6909
6910	/* On the first call scan device tree for static allocations. */
6911	if (!static_domains_reserved) {
6912		of_pci_reserve_static_domain_nr();
6913		static_domains_reserved = true;
6914	}
6915
6916	if (parent) {
6917		/*
6918		 * If domain is in DT, allocate it in static IDA.  This
6919		 * prevents duplicate static allocations in case of errors
6920		 * in DT.
6921		 */
6922		domain_nr = of_get_pci_domain_nr(parent->of_node);
6923		if (domain_nr >= 0)
6924			return ida_alloc_range(&pci_domain_nr_static_ida,
6925					       domain_nr, domain_nr,
6926					       GFP_KERNEL);
6927	}
6928
6929	/*
6930	 * If domain was not specified in DT, choose a free ID from dynamic
6931	 * allocations. All domain numbers from DT are permanently in
6932	 * dynamic allocations to prevent assigning them to other DT nodes
6933	 * without static domain.
6934	 */
6935	return ida_alloc(&pci_domain_nr_dynamic_ida, GFP_KERNEL);
6936}
6937
6938static void of_pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent)
6939{
6940	if (bus->domain_nr < 0)
6941		return;
6942
6943	/* Release domain from IDA where it was allocated. */
6944	if (of_get_pci_domain_nr(parent->of_node) == bus->domain_nr)
6945		ida_free(&pci_domain_nr_static_ida, bus->domain_nr);
6946	else
6947		ida_free(&pci_domain_nr_dynamic_ida, bus->domain_nr);
6948}
6949
6950int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6951{
6952	return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6953			       acpi_pci_bus_find_domain_nr(bus);
6954}
6955
6956void pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent)
6957{
6958	if (!acpi_disabled)
6959		return;
6960	of_pci_bus_release_domain_nr(bus, parent);
6961}
6962#endif
6963
6964/**
6965 * pci_ext_cfg_avail - can we access extended PCI config space?
6966 *
6967 * Returns 1 if we can access PCI extended config space (offsets
6968 * greater than 0xff). This is the default implementation. Architecture
6969 * implementations can override this.
6970 */
6971int __weak pci_ext_cfg_avail(void)
6972{
6973	return 1;
6974}
6975
6976void __weak pci_fixup_cardbus(struct pci_bus *bus)
6977{
6978}
6979EXPORT_SYMBOL(pci_fixup_cardbus);
6980
6981static int __init pci_setup(char *str)
6982{
6983	while (str) {
6984		char *k = strchr(str, ',');
6985		if (k)
6986			*k++ = 0;
6987		if (*str && (str = pcibios_setup(str)) && *str) {
6988			if (!strcmp(str, "nomsi")) {
6989				pci_no_msi();
6990			} else if (!strncmp(str, "noats", 5)) {
6991				pr_info("PCIe: ATS is disabled\n");
6992				pcie_ats_disabled = true;
6993			} else if (!strcmp(str, "noaer")) {
6994				pci_no_aer();
6995			} else if (!strcmp(str, "earlydump")) {
6996				pci_early_dump = true;
6997			} else if (!strncmp(str, "realloc=", 8)) {
6998				pci_realloc_get_opt(str + 8);
6999			} else if (!strncmp(str, "realloc", 7)) {
7000				pci_realloc_get_opt("on");
7001			} else if (!strcmp(str, "nodomains")) {
7002				pci_no_domains();
7003			} else if (!strncmp(str, "noari", 5)) {
7004				pcie_ari_disabled = true;
7005			} else if (!strncmp(str, "cbiosize=", 9)) {
7006				pci_cardbus_io_size = memparse(str + 9, &str);
7007			} else if (!strncmp(str, "cbmemsize=", 10)) {
7008				pci_cardbus_mem_size = memparse(str + 10, &str);
7009			} else if (!strncmp(str, "resource_alignment=", 19)) {
7010				resource_alignment_param = str + 19;
7011			} else if (!strncmp(str, "ecrc=", 5)) {
7012				pcie_ecrc_get_policy(str + 5);
7013			} else if (!strncmp(str, "hpiosize=", 9)) {
7014				pci_hotplug_io_size = memparse(str + 9, &str);
7015			} else if (!strncmp(str, "hpmmiosize=", 11)) {
7016				pci_hotplug_mmio_size = memparse(str + 11, &str);
7017			} else if (!strncmp(str, "hpmmioprefsize=", 15)) {
7018				pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
7019			} else if (!strncmp(str, "hpmemsize=", 10)) {
7020				pci_hotplug_mmio_size = memparse(str + 10, &str);
7021				pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
7022			} else if (!strncmp(str, "hpbussize=", 10)) {
7023				pci_hotplug_bus_size =
7024					simple_strtoul(str + 10, &str, 0);
7025				if (pci_hotplug_bus_size > 0xff)
7026					pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
7027			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
7028				pcie_bus_config = PCIE_BUS_TUNE_OFF;
7029			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
7030				pcie_bus_config = PCIE_BUS_SAFE;
7031			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
7032				pcie_bus_config = PCIE_BUS_PERFORMANCE;
7033			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
7034				pcie_bus_config = PCIE_BUS_PEER2PEER;
7035			} else if (!strncmp(str, "pcie_scan_all", 13)) {
7036				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
7037			} else if (!strncmp(str, "disable_acs_redir=", 18)) {
7038				disable_acs_redir_param = str + 18;
7039			} else {
7040				pr_err("PCI: Unknown option `%s'\n", str);
7041			}
7042		}
7043		str = k;
7044	}
7045	return 0;
7046}
7047early_param("pci", pci_setup);
7048
7049/*
7050 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
7051 * in pci_setup(), above, to point to data in the __initdata section which
7052 * will be freed after the init sequence is complete. We can't allocate memory
7053 * in pci_setup() because some architectures do not have any memory allocation
7054 * service available during an early_param() call. So we allocate memory and
7055 * copy the variable here before the init section is freed.
7056 *
7057 */
7058static int __init pci_realloc_setup_params(void)
7059{
7060	resource_alignment_param = kstrdup(resource_alignment_param,
7061					   GFP_KERNEL);
7062	disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
7063
7064	return 0;
7065}
7066pure_initcall(pci_realloc_setup_params);
7067