1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Endpoint Function Driver to implement Non-Transparent Bridge functionality
4 * Between PCI RC and EP
5 *
6 * Copyright (C) 2020 Texas Instruments
7 * Copyright (C) 2022 NXP
8 *
9 * Based on pci-epf-ntb.c
10 * Author: Frank Li <Frank.Li@nxp.com>
11 * Author: Kishon Vijay Abraham I <kishon@ti.com>
12 */
13
14/*
15 * +------------+         +---------------------------------------+
16 * |            |         |                                       |
17 * +------------+         |                        +--------------+
18 * | NTB        |         |                        | NTB          |
19 * | NetDev     |         |                        | NetDev       |
20 * +------------+         |                        +--------------+
21 * | NTB        |         |                        | NTB          |
22 * | Transfer   |         |                        | Transfer     |
23 * +------------+         |                        +--------------+
24 * |            |         |                        |              |
25 * |  PCI NTB   |         |                        |              |
26 * |    EPF     |         |                        |              |
27 * |   Driver   |         |                        | PCI Virtual  |
28 * |            |         +---------------+        | NTB Driver   |
29 * |            |         | PCI EP NTB    |<------>|              |
30 * |            |         |  FN Driver    |        |              |
31 * +------------+         +---------------+        +--------------+
32 * |            |         |               |        |              |
33 * |  PCI Bus   | <-----> |  PCI EP Bus   |        |  Virtual PCI |
34 * |            |  PCI    |               |        |     Bus      |
35 * +------------+         +---------------+--------+--------------+
36 * PCIe Root Port                        PCI EP
37 */
38
39#include <linux/delay.h>
40#include <linux/io.h>
41#include <linux/module.h>
42#include <linux/slab.h>
43
44#include <linux/pci-epc.h>
45#include <linux/pci-epf.h>
46#include <linux/ntb.h>
47
48static struct workqueue_struct *kpcintb_workqueue;
49
50#define COMMAND_CONFIGURE_DOORBELL	1
51#define COMMAND_TEARDOWN_DOORBELL	2
52#define COMMAND_CONFIGURE_MW		3
53#define COMMAND_TEARDOWN_MW		4
54#define COMMAND_LINK_UP			5
55#define COMMAND_LINK_DOWN		6
56
57#define COMMAND_STATUS_OK		1
58#define COMMAND_STATUS_ERROR		2
59
60#define LINK_STATUS_UP			BIT(0)
61
62#define SPAD_COUNT			64
63#define DB_COUNT			4
64#define NTB_MW_OFFSET			2
65#define DB_COUNT_MASK			GENMASK(15, 0)
66#define MSIX_ENABLE			BIT(16)
67#define MAX_DB_COUNT			32
68#define MAX_MW				4
69
70enum epf_ntb_bar {
71	BAR_CONFIG,
72	BAR_DB,
73	BAR_MW0,
74	BAR_MW1,
75	BAR_MW2,
76};
77
78/*
79 * +--------------------------------------------------+ Base
80 * |                                                  |
81 * |                                                  |
82 * |                                                  |
83 * |          Common Control Register                 |
84 * |                                                  |
85 * |                                                  |
86 * |                                                  |
87 * +-----------------------+--------------------------+ Base+spad_offset
88 * |                       |                          |
89 * |    Peer Spad Space    |    Spad Space            |
90 * |                       |                          |
91 * |                       |                          |
92 * +-----------------------+--------------------------+ Base+spad_offset
93 * |                       |                          |     +spad_count * 4
94 * |                       |                          |
95 * |     Spad Space        |   Peer Spad Space        |
96 * |                       |                          |
97 * +-----------------------+--------------------------+
98 *       Virtual PCI             PCIe Endpoint
99 *       NTB Driver               NTB Driver
100 */
101struct epf_ntb_ctrl {
102	u32 command;
103	u32 argument;
104	u16 command_status;
105	u16 link_status;
106	u32 topology;
107	u64 addr;
108	u64 size;
109	u32 num_mws;
110	u32 reserved;
111	u32 spad_offset;
112	u32 spad_count;
113	u32 db_entry_size;
114	u32 db_data[MAX_DB_COUNT];
115	u32 db_offset[MAX_DB_COUNT];
116} __packed;
117
118struct epf_ntb {
119	struct ntb_dev ntb;
120	struct pci_epf *epf;
121	struct config_group group;
122
123	u32 num_mws;
124	u32 db_count;
125	u32 spad_count;
126	u64 mws_size[MAX_MW];
127	u64 db;
128	u32 vbus_number;
129	u16 vntb_pid;
130	u16 vntb_vid;
131
132	bool linkup;
133	u32 spad_size;
134
135	enum pci_barno epf_ntb_bar[6];
136
137	struct epf_ntb_ctrl *reg;
138
139	u32 *epf_db;
140
141	phys_addr_t vpci_mw_phy[MAX_MW];
142	void __iomem *vpci_mw_addr[MAX_MW];
143
144	struct delayed_work cmd_handler;
145};
146
147#define to_epf_ntb(epf_group) container_of((epf_group), struct epf_ntb, group)
148#define ntb_ndev(__ntb) container_of(__ntb, struct epf_ntb, ntb)
149
150static struct pci_epf_header epf_ntb_header = {
151	.vendorid	= PCI_ANY_ID,
152	.deviceid	= PCI_ANY_ID,
153	.baseclass_code	= PCI_BASE_CLASS_MEMORY,
154	.interrupt_pin	= PCI_INTERRUPT_INTA,
155};
156
157/**
158 * epf_ntb_link_up() - Raise link_up interrupt to Virtual Host (VHOST)
159 * @ntb: NTB device that facilitates communication between HOST and VHOST
160 * @link_up: true or false indicating Link is UP or Down
161 *
162 * Once NTB function in HOST invoke ntb_link_enable(),
163 * this NTB function driver will trigger a link event to VHOST.
164 *
165 * Returns: Zero for success, or an error code in case of failure
166 */
167static int epf_ntb_link_up(struct epf_ntb *ntb, bool link_up)
168{
169	if (link_up)
170		ntb->reg->link_status |= LINK_STATUS_UP;
171	else
172		ntb->reg->link_status &= ~LINK_STATUS_UP;
173
174	ntb_link_event(&ntb->ntb);
175	return 0;
176}
177
178/**
179 * epf_ntb_configure_mw() - Configure the Outbound Address Space for VHOST
180 *   to access the memory window of HOST
181 * @ntb: NTB device that facilitates communication between HOST and VHOST
182 * @mw: Index of the memory window (either 0, 1, 2 or 3)
183 *
184 *                          EP Outbound Window
185 * +--------+              +-----------+
186 * |        |              |           |
187 * |        |              |           |
188 * |        |              |           |
189 * |        |              |           |
190 * |        |              +-----------+
191 * | Virtual|              | Memory Win|
192 * | NTB    | -----------> |           |
193 * | Driver |              |           |
194 * |        |              +-----------+
195 * |        |              |           |
196 * |        |              |           |
197 * +--------+              +-----------+
198 *  VHOST                   PCI EP
199 *
200 * Returns: Zero for success, or an error code in case of failure
201 */
202static int epf_ntb_configure_mw(struct epf_ntb *ntb, u32 mw)
203{
204	phys_addr_t phys_addr;
205	u8 func_no, vfunc_no;
206	u64 addr, size;
207	int ret = 0;
208
209	phys_addr = ntb->vpci_mw_phy[mw];
210	addr = ntb->reg->addr;
211	size = ntb->reg->size;
212
213	func_no = ntb->epf->func_no;
214	vfunc_no = ntb->epf->vfunc_no;
215
216	ret = pci_epc_map_addr(ntb->epf->epc, func_no, vfunc_no, phys_addr, addr, size);
217	if (ret)
218		dev_err(&ntb->epf->epc->dev,
219			"Failed to map memory window %d address\n", mw);
220	return ret;
221}
222
223/**
224 * epf_ntb_teardown_mw() - Teardown the configured OB ATU
225 * @ntb: NTB device that facilitates communication between HOST and VHOST
226 * @mw: Index of the memory window (either 0, 1, 2 or 3)
227 *
228 * Teardown the configured OB ATU configured in epf_ntb_configure_mw() using
229 * pci_epc_unmap_addr()
230 */
231static void epf_ntb_teardown_mw(struct epf_ntb *ntb, u32 mw)
232{
233	pci_epc_unmap_addr(ntb->epf->epc,
234			   ntb->epf->func_no,
235			   ntb->epf->vfunc_no,
236			   ntb->vpci_mw_phy[mw]);
237}
238
239/**
240 * epf_ntb_cmd_handler() - Handle commands provided by the NTB HOST
241 * @work: work_struct for the epf_ntb_epc
242 *
243 * Workqueue function that gets invoked for the two epf_ntb_epc
244 * periodically (once every 5ms) to see if it has received any commands
245 * from NTB HOST. The HOST can send commands to configure doorbell or
246 * configure memory window or to update link status.
247 */
248static void epf_ntb_cmd_handler(struct work_struct *work)
249{
250	struct epf_ntb_ctrl *ctrl;
251	u32 command, argument;
252	struct epf_ntb *ntb;
253	struct device *dev;
254	int ret;
255	int i;
256
257	ntb = container_of(work, struct epf_ntb, cmd_handler.work);
258
259	for (i = 1; i < ntb->db_count; i++) {
260		if (ntb->epf_db[i]) {
261			ntb->db |= 1 << (i - 1);
262			ntb_db_event(&ntb->ntb, i);
263			ntb->epf_db[i] = 0;
264		}
265	}
266
267	ctrl = ntb->reg;
268	command = ctrl->command;
269	if (!command)
270		goto reset_handler;
271	argument = ctrl->argument;
272
273	ctrl->command = 0;
274	ctrl->argument = 0;
275
276	ctrl = ntb->reg;
277	dev = &ntb->epf->dev;
278
279	switch (command) {
280	case COMMAND_CONFIGURE_DOORBELL:
281		ctrl->command_status = COMMAND_STATUS_OK;
282		break;
283	case COMMAND_TEARDOWN_DOORBELL:
284		ctrl->command_status = COMMAND_STATUS_OK;
285		break;
286	case COMMAND_CONFIGURE_MW:
287		ret = epf_ntb_configure_mw(ntb, argument);
288		if (ret < 0)
289			ctrl->command_status = COMMAND_STATUS_ERROR;
290		else
291			ctrl->command_status = COMMAND_STATUS_OK;
292		break;
293	case COMMAND_TEARDOWN_MW:
294		epf_ntb_teardown_mw(ntb, argument);
295		ctrl->command_status = COMMAND_STATUS_OK;
296		break;
297	case COMMAND_LINK_UP:
298		ntb->linkup = true;
299		ret = epf_ntb_link_up(ntb, true);
300		if (ret < 0)
301			ctrl->command_status = COMMAND_STATUS_ERROR;
302		else
303			ctrl->command_status = COMMAND_STATUS_OK;
304		goto reset_handler;
305	case COMMAND_LINK_DOWN:
306		ntb->linkup = false;
307		ret = epf_ntb_link_up(ntb, false);
308		if (ret < 0)
309			ctrl->command_status = COMMAND_STATUS_ERROR;
310		else
311			ctrl->command_status = COMMAND_STATUS_OK;
312		break;
313	default:
314		dev_err(dev, "UNKNOWN command: %d\n", command);
315		break;
316	}
317
318reset_handler:
319	queue_delayed_work(kpcintb_workqueue, &ntb->cmd_handler,
320			   msecs_to_jiffies(5));
321}
322
323/**
324 * epf_ntb_config_sspad_bar_clear() - Clear Config + Self scratchpad BAR
325 * @ntb: EPC associated with one of the HOST which holds peer's outbound
326 *	 address.
327 *
328 * Clear BAR0 of EP CONTROLLER 1 which contains the HOST1's config and
329 * self scratchpad region (removes inbound ATU configuration). While BAR0 is
330 * the default self scratchpad BAR, an NTB could have other BARs for self
331 * scratchpad (because of reserved BARs). This function can get the exact BAR
332 * used for self scratchpad from epf_ntb_bar[BAR_CONFIG].
333 *
334 * Please note the self scratchpad region and config region is combined to
335 * a single region and mapped using the same BAR. Also note VHOST's peer
336 * scratchpad is HOST's self scratchpad.
337 *
338 * Returns: void
339 */
340static void epf_ntb_config_sspad_bar_clear(struct epf_ntb *ntb)
341{
342	struct pci_epf_bar *epf_bar;
343	enum pci_barno barno;
344
345	barno = ntb->epf_ntb_bar[BAR_CONFIG];
346	epf_bar = &ntb->epf->bar[barno];
347
348	pci_epc_clear_bar(ntb->epf->epc, ntb->epf->func_no, ntb->epf->vfunc_no, epf_bar);
349}
350
351/**
352 * epf_ntb_config_sspad_bar_set() - Set Config + Self scratchpad BAR
353 * @ntb: NTB device that facilitates communication between HOST and VHOST
354 *
355 * Map BAR0 of EP CONTROLLER which contains the VHOST's config and
356 * self scratchpad region.
357 *
358 * Please note the self scratchpad region and config region is combined to
359 * a single region and mapped using the same BAR.
360 *
361 * Returns: Zero for success, or an error code in case of failure
362 */
363static int epf_ntb_config_sspad_bar_set(struct epf_ntb *ntb)
364{
365	struct pci_epf_bar *epf_bar;
366	enum pci_barno barno;
367	u8 func_no, vfunc_no;
368	struct device *dev;
369	int ret;
370
371	dev = &ntb->epf->dev;
372	func_no = ntb->epf->func_no;
373	vfunc_no = ntb->epf->vfunc_no;
374	barno = ntb->epf_ntb_bar[BAR_CONFIG];
375	epf_bar = &ntb->epf->bar[barno];
376
377	ret = pci_epc_set_bar(ntb->epf->epc, func_no, vfunc_no, epf_bar);
378	if (ret) {
379		dev_err(dev, "inft: Config/Status/SPAD BAR set failed\n");
380		return ret;
381	}
382	return 0;
383}
384
385/**
386 * epf_ntb_config_spad_bar_free() - Free the physical memory associated with
387 *   config + scratchpad region
388 * @ntb: NTB device that facilitates communication between HOST and VHOST
389 */
390static void epf_ntb_config_spad_bar_free(struct epf_ntb *ntb)
391{
392	enum pci_barno barno;
393
394	barno = ntb->epf_ntb_bar[BAR_CONFIG];
395	pci_epf_free_space(ntb->epf, ntb->reg, barno, 0);
396}
397
398/**
399 * epf_ntb_config_spad_bar_alloc() - Allocate memory for config + scratchpad
400 *   region
401 * @ntb: NTB device that facilitates communication between HOST and VHOST
402 *
403 * Allocate the Local Memory mentioned in the above diagram. The size of
404 * CONFIG REGION is sizeof(struct epf_ntb_ctrl) and size of SCRATCHPAD REGION
405 * is obtained from "spad-count" configfs entry.
406 *
407 * Returns: Zero for success, or an error code in case of failure
408 */
409static int epf_ntb_config_spad_bar_alloc(struct epf_ntb *ntb)
410{
411	size_t align;
412	enum pci_barno barno;
413	struct epf_ntb_ctrl *ctrl;
414	u32 spad_size, ctrl_size;
415	u64 size;
416	struct pci_epf *epf = ntb->epf;
417	struct device *dev = &epf->dev;
418	u32 spad_count;
419	void *base;
420	int i;
421	const struct pci_epc_features *epc_features = pci_epc_get_features(epf->epc,
422								epf->func_no,
423								epf->vfunc_no);
424	barno = ntb->epf_ntb_bar[BAR_CONFIG];
425	size = epc_features->bar_fixed_size[barno];
426	align = epc_features->align;
427
428	if ((!IS_ALIGNED(size, align)))
429		return -EINVAL;
430
431	spad_count = ntb->spad_count;
432
433	ctrl_size = sizeof(struct epf_ntb_ctrl);
434	spad_size = 2 * spad_count * sizeof(u32);
435
436	if (!align) {
437		ctrl_size = roundup_pow_of_two(ctrl_size);
438		spad_size = roundup_pow_of_two(spad_size);
439	} else {
440		ctrl_size = ALIGN(ctrl_size, align);
441		spad_size = ALIGN(spad_size, align);
442	}
443
444	if (!size)
445		size = ctrl_size + spad_size;
446	else if (size < ctrl_size + spad_size)
447		return -EINVAL;
448
449	base = pci_epf_alloc_space(epf, size, barno, align, 0);
450	if (!base) {
451		dev_err(dev, "Config/Status/SPAD alloc region fail\n");
452		return -ENOMEM;
453	}
454
455	ntb->reg = base;
456
457	ctrl = ntb->reg;
458	ctrl->spad_offset = ctrl_size;
459
460	ctrl->spad_count = spad_count;
461	ctrl->num_mws = ntb->num_mws;
462	ntb->spad_size = spad_size;
463
464	ctrl->db_entry_size = sizeof(u32);
465
466	for (i = 0; i < ntb->db_count; i++) {
467		ntb->reg->db_data[i] = 1 + i;
468		ntb->reg->db_offset[i] = 0;
469	}
470
471	return 0;
472}
473
474/**
475 * epf_ntb_configure_interrupt() - Configure MSI/MSI-X capability
476 * @ntb: NTB device that facilitates communication between HOST and VHOST
477 *
478 * Configure MSI/MSI-X capability for each interface with number of
479 * interrupts equal to "db_count" configfs entry.
480 *
481 * Returns: Zero for success, or an error code in case of failure
482 */
483static int epf_ntb_configure_interrupt(struct epf_ntb *ntb)
484{
485	const struct pci_epc_features *epc_features;
486	struct device *dev;
487	u32 db_count;
488	int ret;
489
490	dev = &ntb->epf->dev;
491
492	epc_features = pci_epc_get_features(ntb->epf->epc, ntb->epf->func_no, ntb->epf->vfunc_no);
493
494	if (!(epc_features->msix_capable || epc_features->msi_capable)) {
495		dev_err(dev, "MSI or MSI-X is required for doorbell\n");
496		return -EINVAL;
497	}
498
499	db_count = ntb->db_count;
500	if (db_count > MAX_DB_COUNT) {
501		dev_err(dev, "DB count cannot be more than %d\n", MAX_DB_COUNT);
502		return -EINVAL;
503	}
504
505	ntb->db_count = db_count;
506
507	if (epc_features->msi_capable) {
508		ret = pci_epc_set_msi(ntb->epf->epc,
509				      ntb->epf->func_no,
510				      ntb->epf->vfunc_no,
511				      16);
512		if (ret) {
513			dev_err(dev, "MSI configuration failed\n");
514			return ret;
515		}
516	}
517
518	return 0;
519}
520
521/**
522 * epf_ntb_db_bar_init() - Configure Doorbell window BARs
523 * @ntb: NTB device that facilitates communication between HOST and VHOST
524 *
525 * Returns: Zero for success, or an error code in case of failure
526 */
527static int epf_ntb_db_bar_init(struct epf_ntb *ntb)
528{
529	const struct pci_epc_features *epc_features;
530	u32 align;
531	struct device *dev = &ntb->epf->dev;
532	int ret;
533	struct pci_epf_bar *epf_bar;
534	void __iomem *mw_addr;
535	enum pci_barno barno;
536	size_t size = sizeof(u32) * ntb->db_count;
537
538	epc_features = pci_epc_get_features(ntb->epf->epc,
539					    ntb->epf->func_no,
540					    ntb->epf->vfunc_no);
541	align = epc_features->align;
542
543	if (size < 128)
544		size = 128;
545
546	if (align)
547		size = ALIGN(size, align);
548	else
549		size = roundup_pow_of_two(size);
550
551	barno = ntb->epf_ntb_bar[BAR_DB];
552
553	mw_addr = pci_epf_alloc_space(ntb->epf, size, barno, align, 0);
554	if (!mw_addr) {
555		dev_err(dev, "Failed to allocate OB address\n");
556		return -ENOMEM;
557	}
558
559	ntb->epf_db = mw_addr;
560
561	epf_bar = &ntb->epf->bar[barno];
562
563	ret = pci_epc_set_bar(ntb->epf->epc, ntb->epf->func_no, ntb->epf->vfunc_no, epf_bar);
564	if (ret) {
565		dev_err(dev, "Doorbell BAR set failed\n");
566			goto err_alloc_peer_mem;
567	}
568	return ret;
569
570err_alloc_peer_mem:
571	pci_epf_free_space(ntb->epf, mw_addr, barno, 0);
572	return -1;
573}
574
575static void epf_ntb_mw_bar_clear(struct epf_ntb *ntb, int num_mws);
576
577/**
578 * epf_ntb_db_bar_clear() - Clear doorbell BAR and free memory
579 *   allocated in peer's outbound address space
580 * @ntb: NTB device that facilitates communication between HOST and VHOST
581 */
582static void epf_ntb_db_bar_clear(struct epf_ntb *ntb)
583{
584	enum pci_barno barno;
585
586	barno = ntb->epf_ntb_bar[BAR_DB];
587	pci_epf_free_space(ntb->epf, ntb->epf_db, barno, 0);
588	pci_epc_clear_bar(ntb->epf->epc,
589			  ntb->epf->func_no,
590			  ntb->epf->vfunc_no,
591			  &ntb->epf->bar[barno]);
592}
593
594/**
595 * epf_ntb_mw_bar_init() - Configure Memory window BARs
596 * @ntb: NTB device that facilitates communication between HOST and VHOST
597 *
598 * Returns: Zero for success, or an error code in case of failure
599 */
600static int epf_ntb_mw_bar_init(struct epf_ntb *ntb)
601{
602	int ret = 0;
603	int i;
604	u64 size;
605	enum pci_barno barno;
606	struct device *dev = &ntb->epf->dev;
607
608	for (i = 0; i < ntb->num_mws; i++) {
609		size = ntb->mws_size[i];
610		barno = ntb->epf_ntb_bar[BAR_MW0 + i];
611
612		ntb->epf->bar[barno].barno = barno;
613		ntb->epf->bar[barno].size = size;
614		ntb->epf->bar[barno].addr = NULL;
615		ntb->epf->bar[barno].phys_addr = 0;
616		ntb->epf->bar[barno].flags |= upper_32_bits(size) ?
617				PCI_BASE_ADDRESS_MEM_TYPE_64 :
618				PCI_BASE_ADDRESS_MEM_TYPE_32;
619
620		ret = pci_epc_set_bar(ntb->epf->epc,
621				      ntb->epf->func_no,
622				      ntb->epf->vfunc_no,
623				      &ntb->epf->bar[barno]);
624		if (ret) {
625			dev_err(dev, "MW set failed\n");
626			goto err_alloc_mem;
627		}
628
629		/* Allocate EPC outbound memory windows to vpci vntb device */
630		ntb->vpci_mw_addr[i] = pci_epc_mem_alloc_addr(ntb->epf->epc,
631							      &ntb->vpci_mw_phy[i],
632							      size);
633		if (!ntb->vpci_mw_addr[i]) {
634			ret = -ENOMEM;
635			dev_err(dev, "Failed to allocate source address\n");
636			goto err_set_bar;
637		}
638	}
639
640	return ret;
641
642err_set_bar:
643	pci_epc_clear_bar(ntb->epf->epc,
644			  ntb->epf->func_no,
645			  ntb->epf->vfunc_no,
646			  &ntb->epf->bar[barno]);
647err_alloc_mem:
648	epf_ntb_mw_bar_clear(ntb, i);
649	return ret;
650}
651
652/**
653 * epf_ntb_mw_bar_clear() - Clear Memory window BARs
654 * @ntb: NTB device that facilitates communication between HOST and VHOST
655 * @num_mws: the number of Memory window BARs that to be cleared
656 */
657static void epf_ntb_mw_bar_clear(struct epf_ntb *ntb, int num_mws)
658{
659	enum pci_barno barno;
660	int i;
661
662	for (i = 0; i < num_mws; i++) {
663		barno = ntb->epf_ntb_bar[BAR_MW0 + i];
664		pci_epc_clear_bar(ntb->epf->epc,
665				  ntb->epf->func_no,
666				  ntb->epf->vfunc_no,
667				  &ntb->epf->bar[barno]);
668
669		pci_epc_mem_free_addr(ntb->epf->epc,
670				      ntb->vpci_mw_phy[i],
671				      ntb->vpci_mw_addr[i],
672				      ntb->mws_size[i]);
673	}
674}
675
676/**
677 * epf_ntb_epc_destroy() - Cleanup NTB EPC interface
678 * @ntb: NTB device that facilitates communication between HOST and VHOST
679 *
680 * Wrapper for epf_ntb_epc_destroy_interface() to cleanup all the NTB interfaces
681 */
682static void epf_ntb_epc_destroy(struct epf_ntb *ntb)
683{
684	pci_epc_remove_epf(ntb->epf->epc, ntb->epf, 0);
685	pci_epc_put(ntb->epf->epc);
686}
687
688/**
689 * epf_ntb_init_epc_bar() - Identify BARs to be used for each of the NTB
690 * constructs (scratchpad region, doorbell, memorywindow)
691 * @ntb: NTB device that facilitates communication between HOST and VHOST
692 *
693 * Returns: Zero for success, or an error code in case of failure
694 */
695static int epf_ntb_init_epc_bar(struct epf_ntb *ntb)
696{
697	const struct pci_epc_features *epc_features;
698	enum pci_barno barno;
699	enum epf_ntb_bar bar;
700	struct device *dev;
701	u32 num_mws;
702	int i;
703
704	barno = BAR_0;
705	num_mws = ntb->num_mws;
706	dev = &ntb->epf->dev;
707	epc_features = pci_epc_get_features(ntb->epf->epc, ntb->epf->func_no, ntb->epf->vfunc_no);
708
709	/* These are required BARs which are mandatory for NTB functionality */
710	for (bar = BAR_CONFIG; bar <= BAR_MW0; bar++, barno++) {
711		barno = pci_epc_get_next_free_bar(epc_features, barno);
712		if (barno < 0) {
713			dev_err(dev, "Fail to get NTB function BAR\n");
714			return barno;
715		}
716		ntb->epf_ntb_bar[bar] = barno;
717	}
718
719	/* These are optional BARs which don't impact NTB functionality */
720	for (bar = BAR_MW1, i = 1; i < num_mws; bar++, barno++, i++) {
721		barno = pci_epc_get_next_free_bar(epc_features, barno);
722		if (barno < 0) {
723			ntb->num_mws = i;
724			dev_dbg(dev, "BAR not available for > MW%d\n", i + 1);
725		}
726		ntb->epf_ntb_bar[bar] = barno;
727	}
728
729	return 0;
730}
731
732/**
733 * epf_ntb_epc_init() - Initialize NTB interface
734 * @ntb: NTB device that facilitates communication between HOST and VHOST
735 *
736 * Wrapper to initialize a particular EPC interface and start the workqueue
737 * to check for commands from HOST. This function will write to the
738 * EP controller HW for configuring it.
739 *
740 * Returns: Zero for success, or an error code in case of failure
741 */
742static int epf_ntb_epc_init(struct epf_ntb *ntb)
743{
744	u8 func_no, vfunc_no;
745	struct pci_epc *epc;
746	struct pci_epf *epf;
747	struct device *dev;
748	int ret;
749
750	epf = ntb->epf;
751	dev = &epf->dev;
752	epc = epf->epc;
753	func_no = ntb->epf->func_no;
754	vfunc_no = ntb->epf->vfunc_no;
755
756	ret = epf_ntb_config_sspad_bar_set(ntb);
757	if (ret) {
758		dev_err(dev, "Config/self SPAD BAR init failed");
759		return ret;
760	}
761
762	ret = epf_ntb_configure_interrupt(ntb);
763	if (ret) {
764		dev_err(dev, "Interrupt configuration failed\n");
765		goto err_config_interrupt;
766	}
767
768	ret = epf_ntb_db_bar_init(ntb);
769	if (ret) {
770		dev_err(dev, "DB BAR init failed\n");
771		goto err_db_bar_init;
772	}
773
774	ret = epf_ntb_mw_bar_init(ntb);
775	if (ret) {
776		dev_err(dev, "MW BAR init failed\n");
777		goto err_mw_bar_init;
778	}
779
780	if (vfunc_no <= 1) {
781		ret = pci_epc_write_header(epc, func_no, vfunc_no, epf->header);
782		if (ret) {
783			dev_err(dev, "Configuration header write failed\n");
784			goto err_write_header;
785		}
786	}
787
788	INIT_DELAYED_WORK(&ntb->cmd_handler, epf_ntb_cmd_handler);
789	queue_work(kpcintb_workqueue, &ntb->cmd_handler.work);
790
791	return 0;
792
793err_write_header:
794	epf_ntb_mw_bar_clear(ntb, ntb->num_mws);
795err_mw_bar_init:
796	epf_ntb_db_bar_clear(ntb);
797err_db_bar_init:
798err_config_interrupt:
799	epf_ntb_config_sspad_bar_clear(ntb);
800
801	return ret;
802}
803
804
805/**
806 * epf_ntb_epc_cleanup() - Cleanup all NTB interfaces
807 * @ntb: NTB device that facilitates communication between HOST and VHOST
808 *
809 * Wrapper to cleanup all NTB interfaces.
810 */
811static void epf_ntb_epc_cleanup(struct epf_ntb *ntb)
812{
813	epf_ntb_db_bar_clear(ntb);
814	epf_ntb_mw_bar_clear(ntb, ntb->num_mws);
815}
816
817#define EPF_NTB_R(_name)						\
818static ssize_t epf_ntb_##_name##_show(struct config_item *item,		\
819				      char *page)			\
820{									\
821	struct config_group *group = to_config_group(item);		\
822	struct epf_ntb *ntb = to_epf_ntb(group);			\
823									\
824	return sprintf(page, "%d\n", ntb->_name);			\
825}
826
827#define EPF_NTB_W(_name)						\
828static ssize_t epf_ntb_##_name##_store(struct config_item *item,	\
829				       const char *page, size_t len)	\
830{									\
831	struct config_group *group = to_config_group(item);		\
832	struct epf_ntb *ntb = to_epf_ntb(group);			\
833	u32 val;							\
834	int ret;							\
835									\
836	ret = kstrtou32(page, 0, &val);					\
837	if (ret)							\
838		return ret;						\
839									\
840	ntb->_name = val;						\
841									\
842	return len;							\
843}
844
845#define EPF_NTB_MW_R(_name)						\
846static ssize_t epf_ntb_##_name##_show(struct config_item *item,		\
847				      char *page)			\
848{									\
849	struct config_group *group = to_config_group(item);		\
850	struct epf_ntb *ntb = to_epf_ntb(group);			\
851	struct device *dev = &ntb->epf->dev;				\
852	int win_no;							\
853									\
854	if (sscanf(#_name, "mw%d", &win_no) != 1)			\
855		return -EINVAL;						\
856									\
857	if (win_no <= 0 || win_no > ntb->num_mws) {			\
858		dev_err(dev, "Invalid num_nws: %d value\n", ntb->num_mws); \
859		return -EINVAL;						\
860	}								\
861									\
862	return sprintf(page, "%lld\n", ntb->mws_size[win_no - 1]);	\
863}
864
865#define EPF_NTB_MW_W(_name)						\
866static ssize_t epf_ntb_##_name##_store(struct config_item *item,	\
867				       const char *page, size_t len)	\
868{									\
869	struct config_group *group = to_config_group(item);		\
870	struct epf_ntb *ntb = to_epf_ntb(group);			\
871	struct device *dev = &ntb->epf->dev;				\
872	int win_no;							\
873	u64 val;							\
874	int ret;							\
875									\
876	ret = kstrtou64(page, 0, &val);					\
877	if (ret)							\
878		return ret;						\
879									\
880	if (sscanf(#_name, "mw%d", &win_no) != 1)			\
881		return -EINVAL;						\
882									\
883	if (win_no <= 0 || win_no > ntb->num_mws) {			\
884		dev_err(dev, "Invalid num_nws: %d value\n", ntb->num_mws); \
885		return -EINVAL;						\
886	}								\
887									\
888	ntb->mws_size[win_no - 1] = val;				\
889									\
890	return len;							\
891}
892
893static ssize_t epf_ntb_num_mws_store(struct config_item *item,
894				     const char *page, size_t len)
895{
896	struct config_group *group = to_config_group(item);
897	struct epf_ntb *ntb = to_epf_ntb(group);
898	u32 val;
899	int ret;
900
901	ret = kstrtou32(page, 0, &val);
902	if (ret)
903		return ret;
904
905	if (val > MAX_MW)
906		return -EINVAL;
907
908	ntb->num_mws = val;
909
910	return len;
911}
912
913EPF_NTB_R(spad_count)
914EPF_NTB_W(spad_count)
915EPF_NTB_R(db_count)
916EPF_NTB_W(db_count)
917EPF_NTB_R(num_mws)
918EPF_NTB_R(vbus_number)
919EPF_NTB_W(vbus_number)
920EPF_NTB_R(vntb_pid)
921EPF_NTB_W(vntb_pid)
922EPF_NTB_R(vntb_vid)
923EPF_NTB_W(vntb_vid)
924EPF_NTB_MW_R(mw1)
925EPF_NTB_MW_W(mw1)
926EPF_NTB_MW_R(mw2)
927EPF_NTB_MW_W(mw2)
928EPF_NTB_MW_R(mw3)
929EPF_NTB_MW_W(mw3)
930EPF_NTB_MW_R(mw4)
931EPF_NTB_MW_W(mw4)
932
933CONFIGFS_ATTR(epf_ntb_, spad_count);
934CONFIGFS_ATTR(epf_ntb_, db_count);
935CONFIGFS_ATTR(epf_ntb_, num_mws);
936CONFIGFS_ATTR(epf_ntb_, mw1);
937CONFIGFS_ATTR(epf_ntb_, mw2);
938CONFIGFS_ATTR(epf_ntb_, mw3);
939CONFIGFS_ATTR(epf_ntb_, mw4);
940CONFIGFS_ATTR(epf_ntb_, vbus_number);
941CONFIGFS_ATTR(epf_ntb_, vntb_pid);
942CONFIGFS_ATTR(epf_ntb_, vntb_vid);
943
944static struct configfs_attribute *epf_ntb_attrs[] = {
945	&epf_ntb_attr_spad_count,
946	&epf_ntb_attr_db_count,
947	&epf_ntb_attr_num_mws,
948	&epf_ntb_attr_mw1,
949	&epf_ntb_attr_mw2,
950	&epf_ntb_attr_mw3,
951	&epf_ntb_attr_mw4,
952	&epf_ntb_attr_vbus_number,
953	&epf_ntb_attr_vntb_pid,
954	&epf_ntb_attr_vntb_vid,
955	NULL,
956};
957
958static const struct config_item_type ntb_group_type = {
959	.ct_attrs	= epf_ntb_attrs,
960	.ct_owner	= THIS_MODULE,
961};
962
963/**
964 * epf_ntb_add_cfs() - Add configfs directory specific to NTB
965 * @epf: NTB endpoint function device
966 * @group: A pointer to the config_group structure referencing a group of
967 *	   config_items of a specific type that belong to a specific sub-system.
968 *
969 * Add configfs directory specific to NTB. This directory will hold
970 * NTB specific properties like db_count, spad_count, num_mws etc.,
971 *
972 * Returns: Pointer to config_group
973 */
974static struct config_group *epf_ntb_add_cfs(struct pci_epf *epf,
975					    struct config_group *group)
976{
977	struct epf_ntb *ntb = epf_get_drvdata(epf);
978	struct config_group *ntb_group = &ntb->group;
979	struct device *dev = &epf->dev;
980
981	config_group_init_type_name(ntb_group, dev_name(dev), &ntb_group_type);
982
983	return ntb_group;
984}
985
986/*==== virtual PCI bus driver, which only load virtual NTB PCI driver ====*/
987
988static u32 pci_space[] = {
989	0xffffffff,	/* Device ID, Vendor ID */
990	0,		/* Status, Command */
991	0xffffffff,	/* Base Class, Subclass, Prog Intf, Revision ID */
992	0x40,		/* BIST, Header Type, Latency Timer, Cache Line Size */
993	0,		/* BAR 0 */
994	0,		/* BAR 1 */
995	0,		/* BAR 2 */
996	0,		/* BAR 3 */
997	0,		/* BAR 4 */
998	0,		/* BAR 5 */
999	0,		/* Cardbus CIS Pointer */
1000	0,		/* Subsystem ID, Subsystem Vendor ID */
1001	0,		/* ROM Base Address */
1002	0,		/* Reserved, Capabilities Pointer */
1003	0,		/* Reserved */
1004	0,		/* Max_Lat, Min_Gnt, Interrupt Pin, Interrupt Line */
1005};
1006
1007static int pci_read(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 *val)
1008{
1009	if (devfn == 0) {
1010		memcpy(val, ((u8 *)pci_space) + where, size);
1011		return PCIBIOS_SUCCESSFUL;
1012	}
1013	return PCIBIOS_DEVICE_NOT_FOUND;
1014}
1015
1016static int pci_write(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 val)
1017{
1018	return 0;
1019}
1020
1021static struct pci_ops vpci_ops = {
1022	.read = pci_read,
1023	.write = pci_write,
1024};
1025
1026static int vpci_scan_bus(void *sysdata)
1027{
1028	struct pci_bus *vpci_bus;
1029	struct epf_ntb *ndev = sysdata;
1030
1031	vpci_bus = pci_scan_bus(ndev->vbus_number, &vpci_ops, sysdata);
1032	if (vpci_bus)
1033		pr_err("create pci bus\n");
1034
1035	pci_bus_add_devices(vpci_bus);
1036
1037	return 0;
1038}
1039
1040/*==================== Virtual PCIe NTB driver ==========================*/
1041
1042static int vntb_epf_mw_count(struct ntb_dev *ntb, int pidx)
1043{
1044	struct epf_ntb *ndev = ntb_ndev(ntb);
1045
1046	return ndev->num_mws;
1047}
1048
1049static int vntb_epf_spad_count(struct ntb_dev *ntb)
1050{
1051	return ntb_ndev(ntb)->spad_count;
1052}
1053
1054static int vntb_epf_peer_mw_count(struct ntb_dev *ntb)
1055{
1056	return ntb_ndev(ntb)->num_mws;
1057}
1058
1059static u64 vntb_epf_db_valid_mask(struct ntb_dev *ntb)
1060{
1061	return BIT_ULL(ntb_ndev(ntb)->db_count) - 1;
1062}
1063
1064static int vntb_epf_db_set_mask(struct ntb_dev *ntb, u64 db_bits)
1065{
1066	return 0;
1067}
1068
1069static int vntb_epf_mw_set_trans(struct ntb_dev *ndev, int pidx, int idx,
1070		dma_addr_t addr, resource_size_t size)
1071{
1072	struct epf_ntb *ntb = ntb_ndev(ndev);
1073	struct pci_epf_bar *epf_bar;
1074	enum pci_barno barno;
1075	int ret;
1076	struct device *dev;
1077
1078	dev = &ntb->ntb.dev;
1079	barno = ntb->epf_ntb_bar[BAR_MW0 + idx];
1080	epf_bar = &ntb->epf->bar[barno];
1081	epf_bar->phys_addr = addr;
1082	epf_bar->barno = barno;
1083	epf_bar->size = size;
1084
1085	ret = pci_epc_set_bar(ntb->epf->epc, 0, 0, epf_bar);
1086	if (ret) {
1087		dev_err(dev, "failure set mw trans\n");
1088		return ret;
1089	}
1090	return 0;
1091}
1092
1093static int vntb_epf_mw_clear_trans(struct ntb_dev *ntb, int pidx, int idx)
1094{
1095	return 0;
1096}
1097
1098static int vntb_epf_peer_mw_get_addr(struct ntb_dev *ndev, int idx,
1099				phys_addr_t *base, resource_size_t *size)
1100{
1101
1102	struct epf_ntb *ntb = ntb_ndev(ndev);
1103
1104	if (base)
1105		*base = ntb->vpci_mw_phy[idx];
1106
1107	if (size)
1108		*size = ntb->mws_size[idx];
1109
1110	return 0;
1111}
1112
1113static int vntb_epf_link_enable(struct ntb_dev *ntb,
1114			enum ntb_speed max_speed,
1115			enum ntb_width max_width)
1116{
1117	return 0;
1118}
1119
1120static u32 vntb_epf_spad_read(struct ntb_dev *ndev, int idx)
1121{
1122	struct epf_ntb *ntb = ntb_ndev(ndev);
1123	int off = ntb->reg->spad_offset, ct = ntb->reg->spad_count * sizeof(u32);
1124	u32 val;
1125	void __iomem *base = (void __iomem *)ntb->reg;
1126
1127	val = readl(base + off + ct + idx * sizeof(u32));
1128	return val;
1129}
1130
1131static int vntb_epf_spad_write(struct ntb_dev *ndev, int idx, u32 val)
1132{
1133	struct epf_ntb *ntb = ntb_ndev(ndev);
1134	struct epf_ntb_ctrl *ctrl = ntb->reg;
1135	int off = ctrl->spad_offset, ct = ctrl->spad_count * sizeof(u32);
1136	void __iomem *base = (void __iomem *)ntb->reg;
1137
1138	writel(val, base + off + ct + idx * sizeof(u32));
1139	return 0;
1140}
1141
1142static u32 vntb_epf_peer_spad_read(struct ntb_dev *ndev, int pidx, int idx)
1143{
1144	struct epf_ntb *ntb = ntb_ndev(ndev);
1145	struct epf_ntb_ctrl *ctrl = ntb->reg;
1146	int off = ctrl->spad_offset;
1147	void __iomem *base = (void __iomem *)ntb->reg;
1148	u32 val;
1149
1150	val = readl(base + off + idx * sizeof(u32));
1151	return val;
1152}
1153
1154static int vntb_epf_peer_spad_write(struct ntb_dev *ndev, int pidx, int idx, u32 val)
1155{
1156	struct epf_ntb *ntb = ntb_ndev(ndev);
1157	struct epf_ntb_ctrl *ctrl = ntb->reg;
1158	int off = ctrl->spad_offset;
1159	void __iomem *base = (void __iomem *)ntb->reg;
1160
1161	writel(val, base + off + idx * sizeof(u32));
1162	return 0;
1163}
1164
1165static int vntb_epf_peer_db_set(struct ntb_dev *ndev, u64 db_bits)
1166{
1167	u32 interrupt_num = ffs(db_bits) + 1;
1168	struct epf_ntb *ntb = ntb_ndev(ndev);
1169	u8 func_no, vfunc_no;
1170	int ret;
1171
1172	func_no = ntb->epf->func_no;
1173	vfunc_no = ntb->epf->vfunc_no;
1174
1175	ret = pci_epc_raise_irq(ntb->epf->epc,
1176				func_no,
1177				vfunc_no,
1178				PCI_EPC_IRQ_MSI,
1179				interrupt_num + 1);
1180	if (ret)
1181		dev_err(&ntb->ntb.dev, "Failed to raise IRQ\n");
1182
1183	return ret;
1184}
1185
1186static u64 vntb_epf_db_read(struct ntb_dev *ndev)
1187{
1188	struct epf_ntb *ntb = ntb_ndev(ndev);
1189
1190	return ntb->db;
1191}
1192
1193static int vntb_epf_mw_get_align(struct ntb_dev *ndev, int pidx, int idx,
1194			resource_size_t *addr_align,
1195			resource_size_t *size_align,
1196			resource_size_t *size_max)
1197{
1198	struct epf_ntb *ntb = ntb_ndev(ndev);
1199
1200	if (addr_align)
1201		*addr_align = SZ_4K;
1202
1203	if (size_align)
1204		*size_align = 1;
1205
1206	if (size_max)
1207		*size_max = ntb->mws_size[idx];
1208
1209	return 0;
1210}
1211
1212static u64 vntb_epf_link_is_up(struct ntb_dev *ndev,
1213			enum ntb_speed *speed,
1214			enum ntb_width *width)
1215{
1216	struct epf_ntb *ntb = ntb_ndev(ndev);
1217
1218	return ntb->reg->link_status;
1219}
1220
1221static int vntb_epf_db_clear_mask(struct ntb_dev *ndev, u64 db_bits)
1222{
1223	return 0;
1224}
1225
1226static int vntb_epf_db_clear(struct ntb_dev *ndev, u64 db_bits)
1227{
1228	struct epf_ntb *ntb = ntb_ndev(ndev);
1229
1230	ntb->db &= ~db_bits;
1231	return 0;
1232}
1233
1234static int vntb_epf_link_disable(struct ntb_dev *ntb)
1235{
1236	return 0;
1237}
1238
1239static const struct ntb_dev_ops vntb_epf_ops = {
1240	.mw_count		= vntb_epf_mw_count,
1241	.spad_count		= vntb_epf_spad_count,
1242	.peer_mw_count		= vntb_epf_peer_mw_count,
1243	.db_valid_mask		= vntb_epf_db_valid_mask,
1244	.db_set_mask		= vntb_epf_db_set_mask,
1245	.mw_set_trans		= vntb_epf_mw_set_trans,
1246	.mw_clear_trans		= vntb_epf_mw_clear_trans,
1247	.peer_mw_get_addr	= vntb_epf_peer_mw_get_addr,
1248	.link_enable		= vntb_epf_link_enable,
1249	.spad_read		= vntb_epf_spad_read,
1250	.spad_write		= vntb_epf_spad_write,
1251	.peer_spad_read		= vntb_epf_peer_spad_read,
1252	.peer_spad_write	= vntb_epf_peer_spad_write,
1253	.peer_db_set		= vntb_epf_peer_db_set,
1254	.db_read		= vntb_epf_db_read,
1255	.mw_get_align		= vntb_epf_mw_get_align,
1256	.link_is_up		= vntb_epf_link_is_up,
1257	.db_clear_mask		= vntb_epf_db_clear_mask,
1258	.db_clear		= vntb_epf_db_clear,
1259	.link_disable		= vntb_epf_link_disable,
1260};
1261
1262static int pci_vntb_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1263{
1264	int ret;
1265	struct epf_ntb *ndev = (struct epf_ntb *)pdev->sysdata;
1266	struct device *dev = &pdev->dev;
1267
1268	ndev->ntb.pdev = pdev;
1269	ndev->ntb.topo = NTB_TOPO_NONE;
1270	ndev->ntb.ops =  &vntb_epf_ops;
1271
1272	ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
1273	if (ret) {
1274		dev_err(dev, "Cannot set DMA mask\n");
1275		return -EINVAL;
1276	}
1277
1278	ret = ntb_register_device(&ndev->ntb);
1279	if (ret) {
1280		dev_err(dev, "Failed to register NTB device\n");
1281		return ret;
1282	}
1283
1284	dev_dbg(dev, "PCI Virtual NTB driver loaded\n");
1285	return 0;
1286}
1287
1288static struct pci_device_id pci_vntb_table[] = {
1289	{
1290		PCI_DEVICE(0xffff, 0xffff),
1291	},
1292	{},
1293};
1294
1295static struct pci_driver vntb_pci_driver = {
1296	.name           = "pci-vntb",
1297	.id_table       = pci_vntb_table,
1298	.probe          = pci_vntb_probe,
1299};
1300
1301/* ============ PCIe EPF Driver Bind ====================*/
1302
1303/**
1304 * epf_ntb_bind() - Initialize endpoint controller to provide NTB functionality
1305 * @epf: NTB endpoint function device
1306 *
1307 * Initialize both the endpoint controllers associated with NTB function device.
1308 * Invoked when a primary interface or secondary interface is bound to EPC
1309 * device. This function will succeed only when EPC is bound to both the
1310 * interfaces.
1311 *
1312 * Returns: Zero for success, or an error code in case of failure
1313 */
1314static int epf_ntb_bind(struct pci_epf *epf)
1315{
1316	struct epf_ntb *ntb = epf_get_drvdata(epf);
1317	struct device *dev = &epf->dev;
1318	int ret;
1319
1320	if (!epf->epc) {
1321		dev_dbg(dev, "PRIMARY EPC interface not yet bound\n");
1322		return 0;
1323	}
1324
1325	ret = epf_ntb_init_epc_bar(ntb);
1326	if (ret) {
1327		dev_err(dev, "Failed to create NTB EPC\n");
1328		goto err_bar_init;
1329	}
1330
1331	ret = epf_ntb_config_spad_bar_alloc(ntb);
1332	if (ret) {
1333		dev_err(dev, "Failed to allocate BAR memory\n");
1334		goto err_bar_alloc;
1335	}
1336
1337	ret = epf_ntb_epc_init(ntb);
1338	if (ret) {
1339		dev_err(dev, "Failed to initialize EPC\n");
1340		goto err_bar_alloc;
1341	}
1342
1343	epf_set_drvdata(epf, ntb);
1344
1345	pci_space[0] = (ntb->vntb_pid << 16) | ntb->vntb_vid;
1346	pci_vntb_table[0].vendor = ntb->vntb_vid;
1347	pci_vntb_table[0].device = ntb->vntb_pid;
1348
1349	ret = pci_register_driver(&vntb_pci_driver);
1350	if (ret) {
1351		dev_err(dev, "failure register vntb pci driver\n");
1352		goto err_bar_alloc;
1353	}
1354
1355	vpci_scan_bus(ntb);
1356
1357	return 0;
1358
1359err_bar_alloc:
1360	epf_ntb_config_spad_bar_free(ntb);
1361
1362err_bar_init:
1363	epf_ntb_epc_destroy(ntb);
1364
1365	return ret;
1366}
1367
1368/**
1369 * epf_ntb_unbind() - Cleanup the initialization from epf_ntb_bind()
1370 * @epf: NTB endpoint function device
1371 *
1372 * Cleanup the initialization from epf_ntb_bind()
1373 */
1374static void epf_ntb_unbind(struct pci_epf *epf)
1375{
1376	struct epf_ntb *ntb = epf_get_drvdata(epf);
1377
1378	epf_ntb_epc_cleanup(ntb);
1379	epf_ntb_config_spad_bar_free(ntb);
1380	epf_ntb_epc_destroy(ntb);
1381
1382	pci_unregister_driver(&vntb_pci_driver);
1383}
1384
1385// EPF driver probe
1386static struct pci_epf_ops epf_ntb_ops = {
1387	.bind   = epf_ntb_bind,
1388	.unbind = epf_ntb_unbind,
1389	.add_cfs = epf_ntb_add_cfs,
1390};
1391
1392/**
1393 * epf_ntb_probe() - Probe NTB function driver
1394 * @epf: NTB endpoint function device
1395 * @id: NTB endpoint function device ID
1396 *
1397 * Probe NTB function driver when endpoint function bus detects a NTB
1398 * endpoint function.
1399 *
1400 * Returns: Zero for success, or an error code in case of failure
1401 */
1402static int epf_ntb_probe(struct pci_epf *epf,
1403			 const struct pci_epf_device_id *id)
1404{
1405	struct epf_ntb *ntb;
1406	struct device *dev;
1407
1408	dev = &epf->dev;
1409
1410	ntb = devm_kzalloc(dev, sizeof(*ntb), GFP_KERNEL);
1411	if (!ntb)
1412		return -ENOMEM;
1413
1414	epf->header = &epf_ntb_header;
1415	ntb->epf = epf;
1416	ntb->vbus_number = 0xff;
1417	epf_set_drvdata(epf, ntb);
1418
1419	dev_info(dev, "pci-ep epf driver loaded\n");
1420	return 0;
1421}
1422
1423static const struct pci_epf_device_id epf_ntb_ids[] = {
1424	{
1425		.name = "pci_epf_vntb",
1426	},
1427	{},
1428};
1429
1430static struct pci_epf_driver epf_ntb_driver = {
1431	.driver.name    = "pci_epf_vntb",
1432	.probe          = epf_ntb_probe,
1433	.id_table       = epf_ntb_ids,
1434	.ops            = &epf_ntb_ops,
1435	.owner          = THIS_MODULE,
1436};
1437
1438static int __init epf_ntb_init(void)
1439{
1440	int ret;
1441
1442	kpcintb_workqueue = alloc_workqueue("kpcintb", WQ_MEM_RECLAIM |
1443					    WQ_HIGHPRI, 0);
1444	ret = pci_epf_register_driver(&epf_ntb_driver);
1445	if (ret) {
1446		destroy_workqueue(kpcintb_workqueue);
1447		pr_err("Failed to register pci epf ntb driver --> %d\n", ret);
1448		return ret;
1449	}
1450
1451	return 0;
1452}
1453module_init(epf_ntb_init);
1454
1455static void __exit epf_ntb_exit(void)
1456{
1457	pci_epf_unregister_driver(&epf_ntb_driver);
1458	destroy_workqueue(kpcintb_workqueue);
1459}
1460module_exit(epf_ntb_exit);
1461
1462MODULE_DESCRIPTION("PCI EPF NTB DRIVER");
1463MODULE_AUTHOR("Frank Li <Frank.li@nxp.com>");
1464MODULE_LICENSE("GPL v2");
1465