1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) Microsoft Corporation.
4 *
5 * Author:
6 *   Jake Oshins <jakeo@microsoft.com>
7 *
8 * This driver acts as a paravirtual front-end for PCI Express root buses.
9 * When a PCI Express function (either an entire device or an SR-IOV
10 * Virtual Function) is being passed through to the VM, this driver exposes
11 * a new bus to the guest VM.  This is modeled as a root PCI bus because
12 * no bridges are being exposed to the VM.  In fact, with a "Generation 2"
13 * VM within Hyper-V, there may seem to be no PCI bus at all in the VM
14 * until a device as been exposed using this driver.
15 *
16 * Each root PCI bus has its own PCI domain, which is called "Segment" in
17 * the PCI Firmware Specifications.  Thus while each device passed through
18 * to the VM using this front-end will appear at "device 0", the domain will
19 * be unique.  Typically, each bus will have one PCI function on it, though
20 * this driver does support more than one.
21 *
22 * In order to map the interrupts from the device through to the guest VM,
23 * this driver also implements an IRQ Domain, which handles interrupts (either
24 * MSI or MSI-X) associated with the functions on the bus.  As interrupts are
25 * set up, torn down, or reaffined, this driver communicates with the
26 * underlying hypervisor to adjust the mappings in the I/O MMU so that each
27 * interrupt will be delivered to the correct virtual processor at the right
28 * vector.  This driver does not support level-triggered (line-based)
29 * interrupts, and will report that the Interrupt Line register in the
30 * function's configuration space is zero.
31 *
32 * The rest of this driver mostly maps PCI concepts onto underlying Hyper-V
33 * facilities.  For instance, the configuration space of a function exposed
34 * by Hyper-V is mapped into a single page of memory space, and the
35 * read and write handlers for config space must be aware of this mechanism.
36 * Similarly, device setup and teardown involves messages sent to and from
37 * the PCI back-end driver in Hyper-V.
38 */
39
40#include <linux/kernel.h>
41#include <linux/module.h>
42#include <linux/pci.h>
43#include <linux/pci-ecam.h>
44#include <linux/delay.h>
45#include <linux/semaphore.h>
46#include <linux/irq.h>
47#include <linux/msi.h>
48#include <linux/hyperv.h>
49#include <linux/refcount.h>
50#include <linux/irqdomain.h>
51#include <linux/acpi.h>
52#include <linux/sizes.h>
53#include <asm/mshyperv.h>
54
55/*
56 * Protocol versions. The low word is the minor version, the high word the
57 * major version.
58 */
59
60#define PCI_MAKE_VERSION(major, minor) ((u32)(((major) << 16) | (minor)))
61#define PCI_MAJOR_VERSION(version) ((u32)(version) >> 16)
62#define PCI_MINOR_VERSION(version) ((u32)(version) & 0xff)
63
64enum pci_protocol_version_t {
65	PCI_PROTOCOL_VERSION_1_1 = PCI_MAKE_VERSION(1, 1),	/* Win10 */
66	PCI_PROTOCOL_VERSION_1_2 = PCI_MAKE_VERSION(1, 2),	/* RS1 */
67	PCI_PROTOCOL_VERSION_1_3 = PCI_MAKE_VERSION(1, 3),	/* Vibranium */
68	PCI_PROTOCOL_VERSION_1_4 = PCI_MAKE_VERSION(1, 4),	/* WS2022 */
69};
70
71#define CPU_AFFINITY_ALL	-1ULL
72
73/*
74 * Supported protocol versions in the order of probing - highest go
75 * first.
76 */
77static enum pci_protocol_version_t pci_protocol_versions[] = {
78	PCI_PROTOCOL_VERSION_1_4,
79	PCI_PROTOCOL_VERSION_1_3,
80	PCI_PROTOCOL_VERSION_1_2,
81	PCI_PROTOCOL_VERSION_1_1,
82};
83
84#define PCI_CONFIG_MMIO_LENGTH	0x2000
85#define CFG_PAGE_OFFSET 0x1000
86#define CFG_PAGE_SIZE (PCI_CONFIG_MMIO_LENGTH - CFG_PAGE_OFFSET)
87
88#define MAX_SUPPORTED_MSI_MESSAGES 0x400
89
90#define STATUS_REVISION_MISMATCH 0xC0000059
91
92/* space for 32bit serial number as string */
93#define SLOT_NAME_SIZE 11
94
95/*
96 * Size of requestor for VMbus; the value is based on the observation
97 * that having more than one request outstanding is 'rare', and so 64
98 * should be generous in ensuring that we don't ever run out.
99 */
100#define HV_PCI_RQSTOR_SIZE 64
101
102/*
103 * Message Types
104 */
105
106enum pci_message_type {
107	/*
108	 * Version 1.1
109	 */
110	PCI_MESSAGE_BASE                = 0x42490000,
111	PCI_BUS_RELATIONS               = PCI_MESSAGE_BASE + 0,
112	PCI_QUERY_BUS_RELATIONS         = PCI_MESSAGE_BASE + 1,
113	PCI_POWER_STATE_CHANGE          = PCI_MESSAGE_BASE + 4,
114	PCI_QUERY_RESOURCE_REQUIREMENTS = PCI_MESSAGE_BASE + 5,
115	PCI_QUERY_RESOURCE_RESOURCES    = PCI_MESSAGE_BASE + 6,
116	PCI_BUS_D0ENTRY                 = PCI_MESSAGE_BASE + 7,
117	PCI_BUS_D0EXIT                  = PCI_MESSAGE_BASE + 8,
118	PCI_READ_BLOCK                  = PCI_MESSAGE_BASE + 9,
119	PCI_WRITE_BLOCK                 = PCI_MESSAGE_BASE + 0xA,
120	PCI_EJECT                       = PCI_MESSAGE_BASE + 0xB,
121	PCI_QUERY_STOP                  = PCI_MESSAGE_BASE + 0xC,
122	PCI_REENABLE                    = PCI_MESSAGE_BASE + 0xD,
123	PCI_QUERY_STOP_FAILED           = PCI_MESSAGE_BASE + 0xE,
124	PCI_EJECTION_COMPLETE           = PCI_MESSAGE_BASE + 0xF,
125	PCI_RESOURCES_ASSIGNED          = PCI_MESSAGE_BASE + 0x10,
126	PCI_RESOURCES_RELEASED          = PCI_MESSAGE_BASE + 0x11,
127	PCI_INVALIDATE_BLOCK            = PCI_MESSAGE_BASE + 0x12,
128	PCI_QUERY_PROTOCOL_VERSION      = PCI_MESSAGE_BASE + 0x13,
129	PCI_CREATE_INTERRUPT_MESSAGE    = PCI_MESSAGE_BASE + 0x14,
130	PCI_DELETE_INTERRUPT_MESSAGE    = PCI_MESSAGE_BASE + 0x15,
131	PCI_RESOURCES_ASSIGNED2		= PCI_MESSAGE_BASE + 0x16,
132	PCI_CREATE_INTERRUPT_MESSAGE2	= PCI_MESSAGE_BASE + 0x17,
133	PCI_DELETE_INTERRUPT_MESSAGE2	= PCI_MESSAGE_BASE + 0x18, /* unused */
134	PCI_BUS_RELATIONS2		= PCI_MESSAGE_BASE + 0x19,
135	PCI_RESOURCES_ASSIGNED3         = PCI_MESSAGE_BASE + 0x1A,
136	PCI_CREATE_INTERRUPT_MESSAGE3   = PCI_MESSAGE_BASE + 0x1B,
137	PCI_MESSAGE_MAXIMUM
138};
139
140/*
141 * Structures defining the virtual PCI Express protocol.
142 */
143
144union pci_version {
145	struct {
146		u16 minor_version;
147		u16 major_version;
148	} parts;
149	u32 version;
150} __packed;
151
152/*
153 * Function numbers are 8-bits wide on Express, as interpreted through ARI,
154 * which is all this driver does.  This representation is the one used in
155 * Windows, which is what is expected when sending this back and forth with
156 * the Hyper-V parent partition.
157 */
158union win_slot_encoding {
159	struct {
160		u32	dev:5;
161		u32	func:3;
162		u32	reserved:24;
163	} bits;
164	u32 slot;
165} __packed;
166
167/*
168 * Pretty much as defined in the PCI Specifications.
169 */
170struct pci_function_description {
171	u16	v_id;	/* vendor ID */
172	u16	d_id;	/* device ID */
173	u8	rev;
174	u8	prog_intf;
175	u8	subclass;
176	u8	base_class;
177	u32	subsystem_id;
178	union win_slot_encoding win_slot;
179	u32	ser;	/* serial number */
180} __packed;
181
182enum pci_device_description_flags {
183	HV_PCI_DEVICE_FLAG_NONE			= 0x0,
184	HV_PCI_DEVICE_FLAG_NUMA_AFFINITY	= 0x1,
185};
186
187struct pci_function_description2 {
188	u16	v_id;	/* vendor ID */
189	u16	d_id;	/* device ID */
190	u8	rev;
191	u8	prog_intf;
192	u8	subclass;
193	u8	base_class;
194	u32	subsystem_id;
195	union	win_slot_encoding win_slot;
196	u32	ser;	/* serial number */
197	u32	flags;
198	u16	virtual_numa_node;
199	u16	reserved;
200} __packed;
201
202/**
203 * struct hv_msi_desc
204 * @vector:		IDT entry
205 * @delivery_mode:	As defined in Intel's Programmer's
206 *			Reference Manual, Volume 3, Chapter 8.
207 * @vector_count:	Number of contiguous entries in the
208 *			Interrupt Descriptor Table that are
209 *			occupied by this Message-Signaled
210 *			Interrupt. For "MSI", as first defined
211 *			in PCI 2.2, this can be between 1 and
212 *			32. For "MSI-X," as first defined in PCI
213 *			3.0, this must be 1, as each MSI-X table
214 *			entry would have its own descriptor.
215 * @reserved:		Empty space
216 * @cpu_mask:		All the target virtual processors.
217 */
218struct hv_msi_desc {
219	u8	vector;
220	u8	delivery_mode;
221	u16	vector_count;
222	u32	reserved;
223	u64	cpu_mask;
224} __packed;
225
226/**
227 * struct hv_msi_desc2 - 1.2 version of hv_msi_desc
228 * @vector:		IDT entry
229 * @delivery_mode:	As defined in Intel's Programmer's
230 *			Reference Manual, Volume 3, Chapter 8.
231 * @vector_count:	Number of contiguous entries in the
232 *			Interrupt Descriptor Table that are
233 *			occupied by this Message-Signaled
234 *			Interrupt. For "MSI", as first defined
235 *			in PCI 2.2, this can be between 1 and
236 *			32. For "MSI-X," as first defined in PCI
237 *			3.0, this must be 1, as each MSI-X table
238 *			entry would have its own descriptor.
239 * @processor_count:	number of bits enabled in array.
240 * @processor_array:	All the target virtual processors.
241 */
242struct hv_msi_desc2 {
243	u8	vector;
244	u8	delivery_mode;
245	u16	vector_count;
246	u16	processor_count;
247	u16	processor_array[32];
248} __packed;
249
250/*
251 * struct hv_msi_desc3 - 1.3 version of hv_msi_desc
252 *	Everything is the same as in 'hv_msi_desc2' except that the size of the
253 *	'vector' field is larger to support bigger vector values. For ex: LPI
254 *	vectors on ARM.
255 */
256struct hv_msi_desc3 {
257	u32	vector;
258	u8	delivery_mode;
259	u8	reserved;
260	u16	vector_count;
261	u16	processor_count;
262	u16	processor_array[32];
263} __packed;
264
265/**
266 * struct tran_int_desc
267 * @reserved:		unused, padding
268 * @vector_count:	same as in hv_msi_desc
269 * @data:		This is the "data payload" value that is
270 *			written by the device when it generates
271 *			a message-signaled interrupt, either MSI
272 *			or MSI-X.
273 * @address:		This is the address to which the data
274 *			payload is written on interrupt
275 *			generation.
276 */
277struct tran_int_desc {
278	u16	reserved;
279	u16	vector_count;
280	u32	data;
281	u64	address;
282} __packed;
283
284/*
285 * A generic message format for virtual PCI.
286 * Specific message formats are defined later in the file.
287 */
288
289struct pci_message {
290	u32 type;
291} __packed;
292
293struct pci_child_message {
294	struct pci_message message_type;
295	union win_slot_encoding wslot;
296} __packed;
297
298struct pci_incoming_message {
299	struct vmpacket_descriptor hdr;
300	struct pci_message message_type;
301} __packed;
302
303struct pci_response {
304	struct vmpacket_descriptor hdr;
305	s32 status;			/* negative values are failures */
306} __packed;
307
308struct pci_packet {
309	void (*completion_func)(void *context, struct pci_response *resp,
310				int resp_packet_size);
311	void *compl_ctxt;
312
313	struct pci_message message[];
314};
315
316/*
317 * Specific message types supporting the PCI protocol.
318 */
319
320/*
321 * Version negotiation message. Sent from the guest to the host.
322 * The guest is free to try different versions until the host
323 * accepts the version.
324 *
325 * pci_version: The protocol version requested.
326 * is_last_attempt: If TRUE, this is the last version guest will request.
327 * reservedz: Reserved field, set to zero.
328 */
329
330struct pci_version_request {
331	struct pci_message message_type;
332	u32 protocol_version;
333} __packed;
334
335/*
336 * Bus D0 Entry.  This is sent from the guest to the host when the virtual
337 * bus (PCI Express port) is ready for action.
338 */
339
340struct pci_bus_d0_entry {
341	struct pci_message message_type;
342	u32 reserved;
343	u64 mmio_base;
344} __packed;
345
346struct pci_bus_relations {
347	struct pci_incoming_message incoming;
348	u32 device_count;
349	struct pci_function_description func[];
350} __packed;
351
352struct pci_bus_relations2 {
353	struct pci_incoming_message incoming;
354	u32 device_count;
355	struct pci_function_description2 func[];
356} __packed;
357
358struct pci_q_res_req_response {
359	struct vmpacket_descriptor hdr;
360	s32 status;			/* negative values are failures */
361	u32 probed_bar[PCI_STD_NUM_BARS];
362} __packed;
363
364struct pci_set_power {
365	struct pci_message message_type;
366	union win_slot_encoding wslot;
367	u32 power_state;		/* In Windows terms */
368	u32 reserved;
369} __packed;
370
371struct pci_set_power_response {
372	struct vmpacket_descriptor hdr;
373	s32 status;			/* negative values are failures */
374	union win_slot_encoding wslot;
375	u32 resultant_state;		/* In Windows terms */
376	u32 reserved;
377} __packed;
378
379struct pci_resources_assigned {
380	struct pci_message message_type;
381	union win_slot_encoding wslot;
382	u8 memory_range[0x14][6];	/* not used here */
383	u32 msi_descriptors;
384	u32 reserved[4];
385} __packed;
386
387struct pci_resources_assigned2 {
388	struct pci_message message_type;
389	union win_slot_encoding wslot;
390	u8 memory_range[0x14][6];	/* not used here */
391	u32 msi_descriptor_count;
392	u8 reserved[70];
393} __packed;
394
395struct pci_create_interrupt {
396	struct pci_message message_type;
397	union win_slot_encoding wslot;
398	struct hv_msi_desc int_desc;
399} __packed;
400
401struct pci_create_int_response {
402	struct pci_response response;
403	u32 reserved;
404	struct tran_int_desc int_desc;
405} __packed;
406
407struct pci_create_interrupt2 {
408	struct pci_message message_type;
409	union win_slot_encoding wslot;
410	struct hv_msi_desc2 int_desc;
411} __packed;
412
413struct pci_create_interrupt3 {
414	struct pci_message message_type;
415	union win_slot_encoding wslot;
416	struct hv_msi_desc3 int_desc;
417} __packed;
418
419struct pci_delete_interrupt {
420	struct pci_message message_type;
421	union win_slot_encoding wslot;
422	struct tran_int_desc int_desc;
423} __packed;
424
425/*
426 * Note: the VM must pass a valid block id, wslot and bytes_requested.
427 */
428struct pci_read_block {
429	struct pci_message message_type;
430	u32 block_id;
431	union win_slot_encoding wslot;
432	u32 bytes_requested;
433} __packed;
434
435struct pci_read_block_response {
436	struct vmpacket_descriptor hdr;
437	u32 status;
438	u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX];
439} __packed;
440
441/*
442 * Note: the VM must pass a valid block id, wslot and byte_count.
443 */
444struct pci_write_block {
445	struct pci_message message_type;
446	u32 block_id;
447	union win_slot_encoding wslot;
448	u32 byte_count;
449	u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX];
450} __packed;
451
452struct pci_dev_inval_block {
453	struct pci_incoming_message incoming;
454	union win_slot_encoding wslot;
455	u64 block_mask;
456} __packed;
457
458struct pci_dev_incoming {
459	struct pci_incoming_message incoming;
460	union win_slot_encoding wslot;
461} __packed;
462
463struct pci_eject_response {
464	struct pci_message message_type;
465	union win_slot_encoding wslot;
466	u32 status;
467} __packed;
468
469static int pci_ring_size = VMBUS_RING_SIZE(SZ_16K);
470
471/*
472 * Driver specific state.
473 */
474
475enum hv_pcibus_state {
476	hv_pcibus_init = 0,
477	hv_pcibus_probed,
478	hv_pcibus_installed,
479	hv_pcibus_removing,
480	hv_pcibus_maximum
481};
482
483struct hv_pcibus_device {
484#ifdef CONFIG_X86
485	struct pci_sysdata sysdata;
486#elif defined(CONFIG_ARM64)
487	struct pci_config_window sysdata;
488#endif
489	struct pci_host_bridge *bridge;
490	struct fwnode_handle *fwnode;
491	/* Protocol version negotiated with the host */
492	enum pci_protocol_version_t protocol_version;
493
494	struct mutex state_lock;
495	enum hv_pcibus_state state;
496
497	struct hv_device *hdev;
498	resource_size_t low_mmio_space;
499	resource_size_t high_mmio_space;
500	struct resource *mem_config;
501	struct resource *low_mmio_res;
502	struct resource *high_mmio_res;
503	struct completion *survey_event;
504	struct pci_bus *pci_bus;
505	spinlock_t config_lock;	/* Avoid two threads writing index page */
506	spinlock_t device_list_lock;	/* Protect lists below */
507	void __iomem *cfg_addr;
508
509	struct list_head children;
510	struct list_head dr_list;
511
512	struct msi_domain_info msi_info;
513	struct irq_domain *irq_domain;
514
515	struct workqueue_struct *wq;
516
517	/* Highest slot of child device with resources allocated */
518	int wslot_res_allocated;
519	bool use_calls; /* Use hypercalls to access mmio cfg space */
520};
521
522/*
523 * Tracks "Device Relations" messages from the host, which must be both
524 * processed in order and deferred so that they don't run in the context
525 * of the incoming packet callback.
526 */
527struct hv_dr_work {
528	struct work_struct wrk;
529	struct hv_pcibus_device *bus;
530};
531
532struct hv_pcidev_description {
533	u16	v_id;	/* vendor ID */
534	u16	d_id;	/* device ID */
535	u8	rev;
536	u8	prog_intf;
537	u8	subclass;
538	u8	base_class;
539	u32	subsystem_id;
540	union	win_slot_encoding win_slot;
541	u32	ser;	/* serial number */
542	u32	flags;
543	u16	virtual_numa_node;
544};
545
546struct hv_dr_state {
547	struct list_head list_entry;
548	u32 device_count;
549	struct hv_pcidev_description func[];
550};
551
552struct hv_pci_dev {
553	/* List protected by pci_rescan_remove_lock */
554	struct list_head list_entry;
555	refcount_t refs;
556	struct pci_slot *pci_slot;
557	struct hv_pcidev_description desc;
558	bool reported_missing;
559	struct hv_pcibus_device *hbus;
560	struct work_struct wrk;
561
562	void (*block_invalidate)(void *context, u64 block_mask);
563	void *invalidate_context;
564
565	/*
566	 * What would be observed if one wrote 0xFFFFFFFF to a BAR and then
567	 * read it back, for each of the BAR offsets within config space.
568	 */
569	u32 probed_bar[PCI_STD_NUM_BARS];
570};
571
572struct hv_pci_compl {
573	struct completion host_event;
574	s32 completion_status;
575};
576
577static void hv_pci_onchannelcallback(void *context);
578
579#ifdef CONFIG_X86
580#define DELIVERY_MODE	APIC_DELIVERY_MODE_FIXED
581#define FLOW_HANDLER	handle_edge_irq
582#define FLOW_NAME	"edge"
583
584static int hv_pci_irqchip_init(void)
585{
586	return 0;
587}
588
589static struct irq_domain *hv_pci_get_root_domain(void)
590{
591	return x86_vector_domain;
592}
593
594static unsigned int hv_msi_get_int_vector(struct irq_data *data)
595{
596	struct irq_cfg *cfg = irqd_cfg(data);
597
598	return cfg->vector;
599}
600
601#define hv_msi_prepare		pci_msi_prepare
602
603/**
604 * hv_arch_irq_unmask() - "Unmask" the IRQ by setting its current
605 * affinity.
606 * @data:	Describes the IRQ
607 *
608 * Build new a destination for the MSI and make a hypercall to
609 * update the Interrupt Redirection Table. "Device Logical ID"
610 * is built out of this PCI bus's instance GUID and the function
611 * number of the device.
612 */
613static void hv_arch_irq_unmask(struct irq_data *data)
614{
615	struct msi_desc *msi_desc = irq_data_get_msi_desc(data);
616	struct hv_retarget_device_interrupt *params;
617	struct tran_int_desc *int_desc;
618	struct hv_pcibus_device *hbus;
619	const struct cpumask *dest;
620	cpumask_var_t tmp;
621	struct pci_bus *pbus;
622	struct pci_dev *pdev;
623	unsigned long flags;
624	u32 var_size = 0;
625	int cpu, nr_bank;
626	u64 res;
627
628	dest = irq_data_get_effective_affinity_mask(data);
629	pdev = msi_desc_to_pci_dev(msi_desc);
630	pbus = pdev->bus;
631	hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
632	int_desc = data->chip_data;
633	if (!int_desc) {
634		dev_warn(&hbus->hdev->device, "%s() can not unmask irq %u\n",
635			 __func__, data->irq);
636		return;
637	}
638
639	local_irq_save(flags);
640
641	params = *this_cpu_ptr(hyperv_pcpu_input_arg);
642	memset(params, 0, sizeof(*params));
643	params->partition_id = HV_PARTITION_ID_SELF;
644	params->int_entry.source = HV_INTERRUPT_SOURCE_MSI;
645	params->int_entry.msi_entry.address.as_uint32 = int_desc->address & 0xffffffff;
646	params->int_entry.msi_entry.data.as_uint32 = int_desc->data;
647	params->device_id = (hbus->hdev->dev_instance.b[5] << 24) |
648			   (hbus->hdev->dev_instance.b[4] << 16) |
649			   (hbus->hdev->dev_instance.b[7] << 8) |
650			   (hbus->hdev->dev_instance.b[6] & 0xf8) |
651			   PCI_FUNC(pdev->devfn);
652	params->int_target.vector = hv_msi_get_int_vector(data);
653
654	/*
655	 * Honoring apic->delivery_mode set to APIC_DELIVERY_MODE_FIXED by
656	 * setting the HV_DEVICE_INTERRUPT_TARGET_MULTICAST flag results in a
657	 * spurious interrupt storm. Not doing so does not seem to have a
658	 * negative effect (yet?).
659	 */
660
661	if (hbus->protocol_version >= PCI_PROTOCOL_VERSION_1_2) {
662		/*
663		 * PCI_PROTOCOL_VERSION_1_2 supports the VP_SET version of the
664		 * HVCALL_RETARGET_INTERRUPT hypercall, which also coincides
665		 * with >64 VP support.
666		 * ms_hyperv.hints & HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED
667		 * is not sufficient for this hypercall.
668		 */
669		params->int_target.flags |=
670			HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET;
671
672		if (!alloc_cpumask_var(&tmp, GFP_ATOMIC)) {
673			res = 1;
674			goto out;
675		}
676
677		cpumask_and(tmp, dest, cpu_online_mask);
678		nr_bank = cpumask_to_vpset(&params->int_target.vp_set, tmp);
679		free_cpumask_var(tmp);
680
681		if (nr_bank <= 0) {
682			res = 1;
683			goto out;
684		}
685
686		/*
687		 * var-sized hypercall, var-size starts after vp_mask (thus
688		 * vp_set.format does not count, but vp_set.valid_bank_mask
689		 * does).
690		 */
691		var_size = 1 + nr_bank;
692	} else {
693		for_each_cpu_and(cpu, dest, cpu_online_mask) {
694			params->int_target.vp_mask |=
695				(1ULL << hv_cpu_number_to_vp_number(cpu));
696		}
697	}
698
699	res = hv_do_hypercall(HVCALL_RETARGET_INTERRUPT | (var_size << 17),
700			      params, NULL);
701
702out:
703	local_irq_restore(flags);
704
705	/*
706	 * During hibernation, when a CPU is offlined, the kernel tries
707	 * to move the interrupt to the remaining CPUs that haven't
708	 * been offlined yet. In this case, the below hv_do_hypercall()
709	 * always fails since the vmbus channel has been closed:
710	 * refer to cpu_disable_common() -> fixup_irqs() ->
711	 * irq_migrate_all_off_this_cpu() -> migrate_one_irq().
712	 *
713	 * Suppress the error message for hibernation because the failure
714	 * during hibernation does not matter (at this time all the devices
715	 * have been frozen). Note: the correct affinity info is still updated
716	 * into the irqdata data structure in migrate_one_irq() ->
717	 * irq_do_set_affinity(), so later when the VM resumes,
718	 * hv_pci_restore_msi_state() is able to correctly restore the
719	 * interrupt with the correct affinity.
720	 */
721	if (!hv_result_success(res) && hbus->state != hv_pcibus_removing)
722		dev_err(&hbus->hdev->device,
723			"%s() failed: %#llx", __func__, res);
724}
725#elif defined(CONFIG_ARM64)
726/*
727 * SPI vectors to use for vPCI; arch SPIs range is [32, 1019], but leaving a bit
728 * of room at the start to allow for SPIs to be specified through ACPI and
729 * starting with a power of two to satisfy power of 2 multi-MSI requirement.
730 */
731#define HV_PCI_MSI_SPI_START	64
732#define HV_PCI_MSI_SPI_NR	(1020 - HV_PCI_MSI_SPI_START)
733#define DELIVERY_MODE		0
734#define FLOW_HANDLER		NULL
735#define FLOW_NAME		NULL
736#define hv_msi_prepare		NULL
737
738struct hv_pci_chip_data {
739	DECLARE_BITMAP(spi_map, HV_PCI_MSI_SPI_NR);
740	struct mutex	map_lock;
741};
742
743/* Hyper-V vPCI MSI GIC IRQ domain */
744static struct irq_domain *hv_msi_gic_irq_domain;
745
746/* Hyper-V PCI MSI IRQ chip */
747static struct irq_chip hv_arm64_msi_irq_chip = {
748	.name = "MSI",
749	.irq_set_affinity = irq_chip_set_affinity_parent,
750	.irq_eoi = irq_chip_eoi_parent,
751	.irq_mask = irq_chip_mask_parent,
752	.irq_unmask = irq_chip_unmask_parent
753};
754
755static unsigned int hv_msi_get_int_vector(struct irq_data *irqd)
756{
757	return irqd->parent_data->hwirq;
758}
759
760/*
761 * @nr_bm_irqs:		Indicates the number of IRQs that were allocated from
762 *			the bitmap.
763 * @nr_dom_irqs:	Indicates the number of IRQs that were allocated from
764 *			the parent domain.
765 */
766static void hv_pci_vec_irq_free(struct irq_domain *domain,
767				unsigned int virq,
768				unsigned int nr_bm_irqs,
769				unsigned int nr_dom_irqs)
770{
771	struct hv_pci_chip_data *chip_data = domain->host_data;
772	struct irq_data *d = irq_domain_get_irq_data(domain, virq);
773	int first = d->hwirq - HV_PCI_MSI_SPI_START;
774	int i;
775
776	mutex_lock(&chip_data->map_lock);
777	bitmap_release_region(chip_data->spi_map,
778			      first,
779			      get_count_order(nr_bm_irqs));
780	mutex_unlock(&chip_data->map_lock);
781	for (i = 0; i < nr_dom_irqs; i++) {
782		if (i)
783			d = irq_domain_get_irq_data(domain, virq + i);
784		irq_domain_reset_irq_data(d);
785	}
786
787	irq_domain_free_irqs_parent(domain, virq, nr_dom_irqs);
788}
789
790static void hv_pci_vec_irq_domain_free(struct irq_domain *domain,
791				       unsigned int virq,
792				       unsigned int nr_irqs)
793{
794	hv_pci_vec_irq_free(domain, virq, nr_irqs, nr_irqs);
795}
796
797static int hv_pci_vec_alloc_device_irq(struct irq_domain *domain,
798				       unsigned int nr_irqs,
799				       irq_hw_number_t *hwirq)
800{
801	struct hv_pci_chip_data *chip_data = domain->host_data;
802	int index;
803
804	/* Find and allocate region from the SPI bitmap */
805	mutex_lock(&chip_data->map_lock);
806	index = bitmap_find_free_region(chip_data->spi_map,
807					HV_PCI_MSI_SPI_NR,
808					get_count_order(nr_irqs));
809	mutex_unlock(&chip_data->map_lock);
810	if (index < 0)
811		return -ENOSPC;
812
813	*hwirq = index + HV_PCI_MSI_SPI_START;
814
815	return 0;
816}
817
818static int hv_pci_vec_irq_gic_domain_alloc(struct irq_domain *domain,
819					   unsigned int virq,
820					   irq_hw_number_t hwirq)
821{
822	struct irq_fwspec fwspec;
823	struct irq_data *d;
824	int ret;
825
826	fwspec.fwnode = domain->parent->fwnode;
827	fwspec.param_count = 2;
828	fwspec.param[0] = hwirq;
829	fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
830
831	ret = irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
832	if (ret)
833		return ret;
834
835	/*
836	 * Since the interrupt specifier is not coming from ACPI or DT, the
837	 * trigger type will need to be set explicitly. Otherwise, it will be
838	 * set to whatever is in the GIC configuration.
839	 */
840	d = irq_domain_get_irq_data(domain->parent, virq);
841
842	return d->chip->irq_set_type(d, IRQ_TYPE_EDGE_RISING);
843}
844
845static int hv_pci_vec_irq_domain_alloc(struct irq_domain *domain,
846				       unsigned int virq, unsigned int nr_irqs,
847				       void *args)
848{
849	irq_hw_number_t hwirq;
850	unsigned int i;
851	int ret;
852
853	ret = hv_pci_vec_alloc_device_irq(domain, nr_irqs, &hwirq);
854	if (ret)
855		return ret;
856
857	for (i = 0; i < nr_irqs; i++) {
858		ret = hv_pci_vec_irq_gic_domain_alloc(domain, virq + i,
859						      hwirq + i);
860		if (ret) {
861			hv_pci_vec_irq_free(domain, virq, nr_irqs, i);
862			return ret;
863		}
864
865		irq_domain_set_hwirq_and_chip(domain, virq + i,
866					      hwirq + i,
867					      &hv_arm64_msi_irq_chip,
868					      domain->host_data);
869		pr_debug("pID:%d vID:%u\n", (int)(hwirq + i), virq + i);
870	}
871
872	return 0;
873}
874
875/*
876 * Pick the first cpu as the irq affinity that can be temporarily used for
877 * composing MSI from the hypervisor. GIC will eventually set the right
878 * affinity for the irq and the 'unmask' will retarget the interrupt to that
879 * cpu.
880 */
881static int hv_pci_vec_irq_domain_activate(struct irq_domain *domain,
882					  struct irq_data *irqd, bool reserve)
883{
884	int cpu = cpumask_first(cpu_present_mask);
885
886	irq_data_update_effective_affinity(irqd, cpumask_of(cpu));
887
888	return 0;
889}
890
891static const struct irq_domain_ops hv_pci_domain_ops = {
892	.alloc	= hv_pci_vec_irq_domain_alloc,
893	.free	= hv_pci_vec_irq_domain_free,
894	.activate = hv_pci_vec_irq_domain_activate,
895};
896
897static int hv_pci_irqchip_init(void)
898{
899	static struct hv_pci_chip_data *chip_data;
900	struct fwnode_handle *fn = NULL;
901	int ret = -ENOMEM;
902
903	chip_data = kzalloc(sizeof(*chip_data), GFP_KERNEL);
904	if (!chip_data)
905		return ret;
906
907	mutex_init(&chip_data->map_lock);
908	fn = irq_domain_alloc_named_fwnode("hv_vpci_arm64");
909	if (!fn)
910		goto free_chip;
911
912	/*
913	 * IRQ domain once enabled, should not be removed since there is no
914	 * way to ensure that all the corresponding devices are also gone and
915	 * no interrupts will be generated.
916	 */
917	hv_msi_gic_irq_domain = acpi_irq_create_hierarchy(0, HV_PCI_MSI_SPI_NR,
918							  fn, &hv_pci_domain_ops,
919							  chip_data);
920
921	if (!hv_msi_gic_irq_domain) {
922		pr_err("Failed to create Hyper-V arm64 vPCI MSI IRQ domain\n");
923		goto free_chip;
924	}
925
926	return 0;
927
928free_chip:
929	kfree(chip_data);
930	if (fn)
931		irq_domain_free_fwnode(fn);
932
933	return ret;
934}
935
936static struct irq_domain *hv_pci_get_root_domain(void)
937{
938	return hv_msi_gic_irq_domain;
939}
940
941/*
942 * SPIs are used for interrupts of PCI devices and SPIs is managed via GICD
943 * registers which Hyper-V already supports, so no hypercall needed.
944 */
945static void hv_arch_irq_unmask(struct irq_data *data) { }
946#endif /* CONFIG_ARM64 */
947
948/**
949 * hv_pci_generic_compl() - Invoked for a completion packet
950 * @context:		Set up by the sender of the packet.
951 * @resp:		The response packet
952 * @resp_packet_size:	Size in bytes of the packet
953 *
954 * This function is used to trigger an event and report status
955 * for any message for which the completion packet contains a
956 * status and nothing else.
957 */
958static void hv_pci_generic_compl(void *context, struct pci_response *resp,
959				 int resp_packet_size)
960{
961	struct hv_pci_compl *comp_pkt = context;
962
963	comp_pkt->completion_status = resp->status;
964	complete(&comp_pkt->host_event);
965}
966
967static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
968						u32 wslot);
969
970static void get_pcichild(struct hv_pci_dev *hpdev)
971{
972	refcount_inc(&hpdev->refs);
973}
974
975static void put_pcichild(struct hv_pci_dev *hpdev)
976{
977	if (refcount_dec_and_test(&hpdev->refs))
978		kfree(hpdev);
979}
980
981/*
982 * There is no good way to get notified from vmbus_onoffer_rescind(),
983 * so let's use polling here, since this is not a hot path.
984 */
985static int wait_for_response(struct hv_device *hdev,
986			     struct completion *comp)
987{
988	while (true) {
989		if (hdev->channel->rescind) {
990			dev_warn_once(&hdev->device, "The device is gone.\n");
991			return -ENODEV;
992		}
993
994		if (wait_for_completion_timeout(comp, HZ / 10))
995			break;
996	}
997
998	return 0;
999}
1000
1001/**
1002 * devfn_to_wslot() - Convert from Linux PCI slot to Windows
1003 * @devfn:	The Linux representation of PCI slot
1004 *
1005 * Windows uses a slightly different representation of PCI slot.
1006 *
1007 * Return: The Windows representation
1008 */
1009static u32 devfn_to_wslot(int devfn)
1010{
1011	union win_slot_encoding wslot;
1012
1013	wslot.slot = 0;
1014	wslot.bits.dev = PCI_SLOT(devfn);
1015	wslot.bits.func = PCI_FUNC(devfn);
1016
1017	return wslot.slot;
1018}
1019
1020/**
1021 * wslot_to_devfn() - Convert from Windows PCI slot to Linux
1022 * @wslot:	The Windows representation of PCI slot
1023 *
1024 * Windows uses a slightly different representation of PCI slot.
1025 *
1026 * Return: The Linux representation
1027 */
1028static int wslot_to_devfn(u32 wslot)
1029{
1030	union win_slot_encoding slot_no;
1031
1032	slot_no.slot = wslot;
1033	return PCI_DEVFN(slot_no.bits.dev, slot_no.bits.func);
1034}
1035
1036static void hv_pci_read_mmio(struct device *dev, phys_addr_t gpa, int size, u32 *val)
1037{
1038	struct hv_mmio_read_input *in;
1039	struct hv_mmio_read_output *out;
1040	u64 ret;
1041
1042	/*
1043	 * Must be called with interrupts disabled so it is safe
1044	 * to use the per-cpu input argument page.  Use it for
1045	 * both input and output.
1046	 */
1047	in = *this_cpu_ptr(hyperv_pcpu_input_arg);
1048	out = *this_cpu_ptr(hyperv_pcpu_input_arg) + sizeof(*in);
1049	in->gpa = gpa;
1050	in->size = size;
1051
1052	ret = hv_do_hypercall(HVCALL_MMIO_READ, in, out);
1053	if (hv_result_success(ret)) {
1054		switch (size) {
1055		case 1:
1056			*val = *(u8 *)(out->data);
1057			break;
1058		case 2:
1059			*val = *(u16 *)(out->data);
1060			break;
1061		default:
1062			*val = *(u32 *)(out->data);
1063			break;
1064		}
1065	} else
1066		dev_err(dev, "MMIO read hypercall error %llx addr %llx size %d\n",
1067				ret, gpa, size);
1068}
1069
1070static void hv_pci_write_mmio(struct device *dev, phys_addr_t gpa, int size, u32 val)
1071{
1072	struct hv_mmio_write_input *in;
1073	u64 ret;
1074
1075	/*
1076	 * Must be called with interrupts disabled so it is safe
1077	 * to use the per-cpu input argument memory.
1078	 */
1079	in = *this_cpu_ptr(hyperv_pcpu_input_arg);
1080	in->gpa = gpa;
1081	in->size = size;
1082	switch (size) {
1083	case 1:
1084		*(u8 *)(in->data) = val;
1085		break;
1086	case 2:
1087		*(u16 *)(in->data) = val;
1088		break;
1089	default:
1090		*(u32 *)(in->data) = val;
1091		break;
1092	}
1093
1094	ret = hv_do_hypercall(HVCALL_MMIO_WRITE, in, NULL);
1095	if (!hv_result_success(ret))
1096		dev_err(dev, "MMIO write hypercall error %llx addr %llx size %d\n",
1097				ret, gpa, size);
1098}
1099
1100/*
1101 * PCI Configuration Space for these root PCI buses is implemented as a pair
1102 * of pages in memory-mapped I/O space.  Writing to the first page chooses
1103 * the PCI function being written or read.  Once the first page has been
1104 * written to, the following page maps in the entire configuration space of
1105 * the function.
1106 */
1107
1108/**
1109 * _hv_pcifront_read_config() - Internal PCI config read
1110 * @hpdev:	The PCI driver's representation of the device
1111 * @where:	Offset within config space
1112 * @size:	Size of the transfer
1113 * @val:	Pointer to the buffer receiving the data
1114 */
1115static void _hv_pcifront_read_config(struct hv_pci_dev *hpdev, int where,
1116				     int size, u32 *val)
1117{
1118	struct hv_pcibus_device *hbus = hpdev->hbus;
1119	struct device *dev = &hbus->hdev->device;
1120	int offset = where + CFG_PAGE_OFFSET;
1121	unsigned long flags;
1122
1123	/*
1124	 * If the attempt is to read the IDs or the ROM BAR, simulate that.
1125	 */
1126	if (where + size <= PCI_COMMAND) {
1127		memcpy(val, ((u8 *)&hpdev->desc.v_id) + where, size);
1128	} else if (where >= PCI_CLASS_REVISION && where + size <=
1129		   PCI_CACHE_LINE_SIZE) {
1130		memcpy(val, ((u8 *)&hpdev->desc.rev) + where -
1131		       PCI_CLASS_REVISION, size);
1132	} else if (where >= PCI_SUBSYSTEM_VENDOR_ID && where + size <=
1133		   PCI_ROM_ADDRESS) {
1134		memcpy(val, (u8 *)&hpdev->desc.subsystem_id + where -
1135		       PCI_SUBSYSTEM_VENDOR_ID, size);
1136	} else if (where >= PCI_ROM_ADDRESS && where + size <=
1137		   PCI_CAPABILITY_LIST) {
1138		/* ROM BARs are unimplemented */
1139		*val = 0;
1140	} else if (where >= PCI_INTERRUPT_LINE && where + size <=
1141		   PCI_INTERRUPT_PIN) {
1142		/*
1143		 * Interrupt Line and Interrupt PIN are hard-wired to zero
1144		 * because this front-end only supports message-signaled
1145		 * interrupts.
1146		 */
1147		*val = 0;
1148	} else if (where + size <= CFG_PAGE_SIZE) {
1149
1150		spin_lock_irqsave(&hbus->config_lock, flags);
1151		if (hbus->use_calls) {
1152			phys_addr_t addr = hbus->mem_config->start + offset;
1153
1154			hv_pci_write_mmio(dev, hbus->mem_config->start, 4,
1155						hpdev->desc.win_slot.slot);
1156			hv_pci_read_mmio(dev, addr, size, val);
1157		} else {
1158			void __iomem *addr = hbus->cfg_addr + offset;
1159
1160			/* Choose the function to be read. (See comment above) */
1161			writel(hpdev->desc.win_slot.slot, hbus->cfg_addr);
1162			/* Make sure the function was chosen before reading. */
1163			mb();
1164			/* Read from that function's config space. */
1165			switch (size) {
1166			case 1:
1167				*val = readb(addr);
1168				break;
1169			case 2:
1170				*val = readw(addr);
1171				break;
1172			default:
1173				*val = readl(addr);
1174				break;
1175			}
1176			/*
1177			 * Make sure the read was done before we release the
1178			 * spinlock allowing consecutive reads/writes.
1179			 */
1180			mb();
1181		}
1182		spin_unlock_irqrestore(&hbus->config_lock, flags);
1183	} else {
1184		dev_err(dev, "Attempt to read beyond a function's config space.\n");
1185	}
1186}
1187
1188static u16 hv_pcifront_get_vendor_id(struct hv_pci_dev *hpdev)
1189{
1190	struct hv_pcibus_device *hbus = hpdev->hbus;
1191	struct device *dev = &hbus->hdev->device;
1192	u32 val;
1193	u16 ret;
1194	unsigned long flags;
1195
1196	spin_lock_irqsave(&hbus->config_lock, flags);
1197
1198	if (hbus->use_calls) {
1199		phys_addr_t addr = hbus->mem_config->start +
1200					 CFG_PAGE_OFFSET + PCI_VENDOR_ID;
1201
1202		hv_pci_write_mmio(dev, hbus->mem_config->start, 4,
1203					hpdev->desc.win_slot.slot);
1204		hv_pci_read_mmio(dev, addr, 2, &val);
1205		ret = val;  /* Truncates to 16 bits */
1206	} else {
1207		void __iomem *addr = hbus->cfg_addr + CFG_PAGE_OFFSET +
1208					     PCI_VENDOR_ID;
1209		/* Choose the function to be read. (See comment above) */
1210		writel(hpdev->desc.win_slot.slot, hbus->cfg_addr);
1211		/* Make sure the function was chosen before we start reading. */
1212		mb();
1213		/* Read from that function's config space. */
1214		ret = readw(addr);
1215		/*
1216		 * mb() is not required here, because the
1217		 * spin_unlock_irqrestore() is a barrier.
1218		 */
1219	}
1220
1221	spin_unlock_irqrestore(&hbus->config_lock, flags);
1222
1223	return ret;
1224}
1225
1226/**
1227 * _hv_pcifront_write_config() - Internal PCI config write
1228 * @hpdev:	The PCI driver's representation of the device
1229 * @where:	Offset within config space
1230 * @size:	Size of the transfer
1231 * @val:	The data being transferred
1232 */
1233static void _hv_pcifront_write_config(struct hv_pci_dev *hpdev, int where,
1234				      int size, u32 val)
1235{
1236	struct hv_pcibus_device *hbus = hpdev->hbus;
1237	struct device *dev = &hbus->hdev->device;
1238	int offset = where + CFG_PAGE_OFFSET;
1239	unsigned long flags;
1240
1241	if (where >= PCI_SUBSYSTEM_VENDOR_ID &&
1242	    where + size <= PCI_CAPABILITY_LIST) {
1243		/* SSIDs and ROM BARs are read-only */
1244	} else if (where >= PCI_COMMAND && where + size <= CFG_PAGE_SIZE) {
1245		spin_lock_irqsave(&hbus->config_lock, flags);
1246
1247		if (hbus->use_calls) {
1248			phys_addr_t addr = hbus->mem_config->start + offset;
1249
1250			hv_pci_write_mmio(dev, hbus->mem_config->start, 4,
1251						hpdev->desc.win_slot.slot);
1252			hv_pci_write_mmio(dev, addr, size, val);
1253		} else {
1254			void __iomem *addr = hbus->cfg_addr + offset;
1255
1256			/* Choose the function to write. (See comment above) */
1257			writel(hpdev->desc.win_slot.slot, hbus->cfg_addr);
1258			/* Make sure the function was chosen before writing. */
1259			wmb();
1260			/* Write to that function's config space. */
1261			switch (size) {
1262			case 1:
1263				writeb(val, addr);
1264				break;
1265			case 2:
1266				writew(val, addr);
1267				break;
1268			default:
1269				writel(val, addr);
1270				break;
1271			}
1272			/*
1273			 * Make sure the write was done before we release the
1274			 * spinlock allowing consecutive reads/writes.
1275			 */
1276			mb();
1277		}
1278		spin_unlock_irqrestore(&hbus->config_lock, flags);
1279	} else {
1280		dev_err(dev, "Attempt to write beyond a function's config space.\n");
1281	}
1282}
1283
1284/**
1285 * hv_pcifront_read_config() - Read configuration space
1286 * @bus: PCI Bus structure
1287 * @devfn: Device/function
1288 * @where: Offset from base
1289 * @size: Byte/word/dword
1290 * @val: Value to be read
1291 *
1292 * Return: PCIBIOS_SUCCESSFUL on success
1293 *	   PCIBIOS_DEVICE_NOT_FOUND on failure
1294 */
1295static int hv_pcifront_read_config(struct pci_bus *bus, unsigned int devfn,
1296				   int where, int size, u32 *val)
1297{
1298	struct hv_pcibus_device *hbus =
1299		container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
1300	struct hv_pci_dev *hpdev;
1301
1302	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
1303	if (!hpdev)
1304		return PCIBIOS_DEVICE_NOT_FOUND;
1305
1306	_hv_pcifront_read_config(hpdev, where, size, val);
1307
1308	put_pcichild(hpdev);
1309	return PCIBIOS_SUCCESSFUL;
1310}
1311
1312/**
1313 * hv_pcifront_write_config() - Write configuration space
1314 * @bus: PCI Bus structure
1315 * @devfn: Device/function
1316 * @where: Offset from base
1317 * @size: Byte/word/dword
1318 * @val: Value to be written to device
1319 *
1320 * Return: PCIBIOS_SUCCESSFUL on success
1321 *	   PCIBIOS_DEVICE_NOT_FOUND on failure
1322 */
1323static int hv_pcifront_write_config(struct pci_bus *bus, unsigned int devfn,
1324				    int where, int size, u32 val)
1325{
1326	struct hv_pcibus_device *hbus =
1327	    container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
1328	struct hv_pci_dev *hpdev;
1329
1330	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
1331	if (!hpdev)
1332		return PCIBIOS_DEVICE_NOT_FOUND;
1333
1334	_hv_pcifront_write_config(hpdev, where, size, val);
1335
1336	put_pcichild(hpdev);
1337	return PCIBIOS_SUCCESSFUL;
1338}
1339
1340/* PCIe operations */
1341static struct pci_ops hv_pcifront_ops = {
1342	.read  = hv_pcifront_read_config,
1343	.write = hv_pcifront_write_config,
1344};
1345
1346/*
1347 * Paravirtual backchannel
1348 *
1349 * Hyper-V SR-IOV provides a backchannel mechanism in software for
1350 * communication between a VF driver and a PF driver.  These
1351 * "configuration blocks" are similar in concept to PCI configuration space,
1352 * but instead of doing reads and writes in 32-bit chunks through a very slow
1353 * path, packets of up to 128 bytes can be sent or received asynchronously.
1354 *
1355 * Nearly every SR-IOV device contains just such a communications channel in
1356 * hardware, so using this one in software is usually optional.  Using the
1357 * software channel, however, allows driver implementers to leverage software
1358 * tools that fuzz the communications channel looking for vulnerabilities.
1359 *
1360 * The usage model for these packets puts the responsibility for reading or
1361 * writing on the VF driver.  The VF driver sends a read or a write packet,
1362 * indicating which "block" is being referred to by number.
1363 *
1364 * If the PF driver wishes to initiate communication, it can "invalidate" one or
1365 * more of the first 64 blocks.  This invalidation is delivered via a callback
1366 * supplied by the VF driver by this driver.
1367 *
1368 * No protocol is implied, except that supplied by the PF and VF drivers.
1369 */
1370
1371struct hv_read_config_compl {
1372	struct hv_pci_compl comp_pkt;
1373	void *buf;
1374	unsigned int len;
1375	unsigned int bytes_returned;
1376};
1377
1378/**
1379 * hv_pci_read_config_compl() - Invoked when a response packet
1380 * for a read config block operation arrives.
1381 * @context:		Identifies the read config operation
1382 * @resp:		The response packet itself
1383 * @resp_packet_size:	Size in bytes of the response packet
1384 */
1385static void hv_pci_read_config_compl(void *context, struct pci_response *resp,
1386				     int resp_packet_size)
1387{
1388	struct hv_read_config_compl *comp = context;
1389	struct pci_read_block_response *read_resp =
1390		(struct pci_read_block_response *)resp;
1391	unsigned int data_len, hdr_len;
1392
1393	hdr_len = offsetof(struct pci_read_block_response, bytes);
1394	if (resp_packet_size < hdr_len) {
1395		comp->comp_pkt.completion_status = -1;
1396		goto out;
1397	}
1398
1399	data_len = resp_packet_size - hdr_len;
1400	if (data_len > 0 && read_resp->status == 0) {
1401		comp->bytes_returned = min(comp->len, data_len);
1402		memcpy(comp->buf, read_resp->bytes, comp->bytes_returned);
1403	} else {
1404		comp->bytes_returned = 0;
1405	}
1406
1407	comp->comp_pkt.completion_status = read_resp->status;
1408out:
1409	complete(&comp->comp_pkt.host_event);
1410}
1411
1412/**
1413 * hv_read_config_block() - Sends a read config block request to
1414 * the back-end driver running in the Hyper-V parent partition.
1415 * @pdev:		The PCI driver's representation for this device.
1416 * @buf:		Buffer into which the config block will be copied.
1417 * @len:		Size in bytes of buf.
1418 * @block_id:		Identifies the config block which has been requested.
1419 * @bytes_returned:	Size which came back from the back-end driver.
1420 *
1421 * Return: 0 on success, -errno on failure
1422 */
1423static int hv_read_config_block(struct pci_dev *pdev, void *buf,
1424				unsigned int len, unsigned int block_id,
1425				unsigned int *bytes_returned)
1426{
1427	struct hv_pcibus_device *hbus =
1428		container_of(pdev->bus->sysdata, struct hv_pcibus_device,
1429			     sysdata);
1430	struct {
1431		struct pci_packet pkt;
1432		char buf[sizeof(struct pci_read_block)];
1433	} pkt;
1434	struct hv_read_config_compl comp_pkt;
1435	struct pci_read_block *read_blk;
1436	int ret;
1437
1438	if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX)
1439		return -EINVAL;
1440
1441	init_completion(&comp_pkt.comp_pkt.host_event);
1442	comp_pkt.buf = buf;
1443	comp_pkt.len = len;
1444
1445	memset(&pkt, 0, sizeof(pkt));
1446	pkt.pkt.completion_func = hv_pci_read_config_compl;
1447	pkt.pkt.compl_ctxt = &comp_pkt;
1448	read_blk = (struct pci_read_block *)&pkt.pkt.message;
1449	read_blk->message_type.type = PCI_READ_BLOCK;
1450	read_blk->wslot.slot = devfn_to_wslot(pdev->devfn);
1451	read_blk->block_id = block_id;
1452	read_blk->bytes_requested = len;
1453
1454	ret = vmbus_sendpacket(hbus->hdev->channel, read_blk,
1455			       sizeof(*read_blk), (unsigned long)&pkt.pkt,
1456			       VM_PKT_DATA_INBAND,
1457			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1458	if (ret)
1459		return ret;
1460
1461	ret = wait_for_response(hbus->hdev, &comp_pkt.comp_pkt.host_event);
1462	if (ret)
1463		return ret;
1464
1465	if (comp_pkt.comp_pkt.completion_status != 0 ||
1466	    comp_pkt.bytes_returned == 0) {
1467		dev_err(&hbus->hdev->device,
1468			"Read Config Block failed: 0x%x, bytes_returned=%d\n",
1469			comp_pkt.comp_pkt.completion_status,
1470			comp_pkt.bytes_returned);
1471		return -EIO;
1472	}
1473
1474	*bytes_returned = comp_pkt.bytes_returned;
1475	return 0;
1476}
1477
1478/**
1479 * hv_pci_write_config_compl() - Invoked when a response packet for a write
1480 * config block operation arrives.
1481 * @context:		Identifies the write config operation
1482 * @resp:		The response packet itself
1483 * @resp_packet_size:	Size in bytes of the response packet
1484 */
1485static void hv_pci_write_config_compl(void *context, struct pci_response *resp,
1486				      int resp_packet_size)
1487{
1488	struct hv_pci_compl *comp_pkt = context;
1489
1490	comp_pkt->completion_status = resp->status;
1491	complete(&comp_pkt->host_event);
1492}
1493
1494/**
1495 * hv_write_config_block() - Sends a write config block request to the
1496 * back-end driver running in the Hyper-V parent partition.
1497 * @pdev:		The PCI driver's representation for this device.
1498 * @buf:		Buffer from which the config block will	be copied.
1499 * @len:		Size in bytes of buf.
1500 * @block_id:		Identifies the config block which is being written.
1501 *
1502 * Return: 0 on success, -errno on failure
1503 */
1504static int hv_write_config_block(struct pci_dev *pdev, void *buf,
1505				unsigned int len, unsigned int block_id)
1506{
1507	struct hv_pcibus_device *hbus =
1508		container_of(pdev->bus->sysdata, struct hv_pcibus_device,
1509			     sysdata);
1510	struct {
1511		struct pci_packet pkt;
1512		char buf[sizeof(struct pci_write_block)];
1513		u32 reserved;
1514	} pkt;
1515	struct hv_pci_compl comp_pkt;
1516	struct pci_write_block *write_blk;
1517	u32 pkt_size;
1518	int ret;
1519
1520	if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX)
1521		return -EINVAL;
1522
1523	init_completion(&comp_pkt.host_event);
1524
1525	memset(&pkt, 0, sizeof(pkt));
1526	pkt.pkt.completion_func = hv_pci_write_config_compl;
1527	pkt.pkt.compl_ctxt = &comp_pkt;
1528	write_blk = (struct pci_write_block *)&pkt.pkt.message;
1529	write_blk->message_type.type = PCI_WRITE_BLOCK;
1530	write_blk->wslot.slot = devfn_to_wslot(pdev->devfn);
1531	write_blk->block_id = block_id;
1532	write_blk->byte_count = len;
1533	memcpy(write_blk->bytes, buf, len);
1534	pkt_size = offsetof(struct pci_write_block, bytes) + len;
1535	/*
1536	 * This quirk is required on some hosts shipped around 2018, because
1537	 * these hosts don't check the pkt_size correctly (new hosts have been
1538	 * fixed since early 2019). The quirk is also safe on very old hosts
1539	 * and new hosts, because, on them, what really matters is the length
1540	 * specified in write_blk->byte_count.
1541	 */
1542	pkt_size += sizeof(pkt.reserved);
1543
1544	ret = vmbus_sendpacket(hbus->hdev->channel, write_blk, pkt_size,
1545			       (unsigned long)&pkt.pkt, VM_PKT_DATA_INBAND,
1546			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1547	if (ret)
1548		return ret;
1549
1550	ret = wait_for_response(hbus->hdev, &comp_pkt.host_event);
1551	if (ret)
1552		return ret;
1553
1554	if (comp_pkt.completion_status != 0) {
1555		dev_err(&hbus->hdev->device,
1556			"Write Config Block failed: 0x%x\n",
1557			comp_pkt.completion_status);
1558		return -EIO;
1559	}
1560
1561	return 0;
1562}
1563
1564/**
1565 * hv_register_block_invalidate() - Invoked when a config block invalidation
1566 * arrives from the back-end driver.
1567 * @pdev:		The PCI driver's representation for this device.
1568 * @context:		Identifies the device.
1569 * @block_invalidate:	Identifies all of the blocks being invalidated.
1570 *
1571 * Return: 0 on success, -errno on failure
1572 */
1573static int hv_register_block_invalidate(struct pci_dev *pdev, void *context,
1574					void (*block_invalidate)(void *context,
1575								 u64 block_mask))
1576{
1577	struct hv_pcibus_device *hbus =
1578		container_of(pdev->bus->sysdata, struct hv_pcibus_device,
1579			     sysdata);
1580	struct hv_pci_dev *hpdev;
1581
1582	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1583	if (!hpdev)
1584		return -ENODEV;
1585
1586	hpdev->block_invalidate = block_invalidate;
1587	hpdev->invalidate_context = context;
1588
1589	put_pcichild(hpdev);
1590	return 0;
1591
1592}
1593
1594/* Interrupt management hooks */
1595static void hv_int_desc_free(struct hv_pci_dev *hpdev,
1596			     struct tran_int_desc *int_desc)
1597{
1598	struct pci_delete_interrupt *int_pkt;
1599	struct {
1600		struct pci_packet pkt;
1601		u8 buffer[sizeof(struct pci_delete_interrupt)];
1602	} ctxt;
1603
1604	if (!int_desc->vector_count) {
1605		kfree(int_desc);
1606		return;
1607	}
1608	memset(&ctxt, 0, sizeof(ctxt));
1609	int_pkt = (struct pci_delete_interrupt *)&ctxt.pkt.message;
1610	int_pkt->message_type.type =
1611		PCI_DELETE_INTERRUPT_MESSAGE;
1612	int_pkt->wslot.slot = hpdev->desc.win_slot.slot;
1613	int_pkt->int_desc = *int_desc;
1614	vmbus_sendpacket(hpdev->hbus->hdev->channel, int_pkt, sizeof(*int_pkt),
1615			 0, VM_PKT_DATA_INBAND, 0);
1616	kfree(int_desc);
1617}
1618
1619/**
1620 * hv_msi_free() - Free the MSI.
1621 * @domain:	The interrupt domain pointer
1622 * @info:	Extra MSI-related context
1623 * @irq:	Identifies the IRQ.
1624 *
1625 * The Hyper-V parent partition and hypervisor are tracking the
1626 * messages that are in use, keeping the interrupt redirection
1627 * table up to date.  This callback sends a message that frees
1628 * the IRT entry and related tracking nonsense.
1629 */
1630static void hv_msi_free(struct irq_domain *domain, struct msi_domain_info *info,
1631			unsigned int irq)
1632{
1633	struct hv_pcibus_device *hbus;
1634	struct hv_pci_dev *hpdev;
1635	struct pci_dev *pdev;
1636	struct tran_int_desc *int_desc;
1637	struct irq_data *irq_data = irq_domain_get_irq_data(domain, irq);
1638	struct msi_desc *msi = irq_data_get_msi_desc(irq_data);
1639
1640	pdev = msi_desc_to_pci_dev(msi);
1641	hbus = info->data;
1642	int_desc = irq_data_get_irq_chip_data(irq_data);
1643	if (!int_desc)
1644		return;
1645
1646	irq_data->chip_data = NULL;
1647	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1648	if (!hpdev) {
1649		kfree(int_desc);
1650		return;
1651	}
1652
1653	hv_int_desc_free(hpdev, int_desc);
1654	put_pcichild(hpdev);
1655}
1656
1657static void hv_irq_mask(struct irq_data *data)
1658{
1659	pci_msi_mask_irq(data);
1660	if (data->parent_data->chip->irq_mask)
1661		irq_chip_mask_parent(data);
1662}
1663
1664static void hv_irq_unmask(struct irq_data *data)
1665{
1666	hv_arch_irq_unmask(data);
1667
1668	if (data->parent_data->chip->irq_unmask)
1669		irq_chip_unmask_parent(data);
1670	pci_msi_unmask_irq(data);
1671}
1672
1673struct compose_comp_ctxt {
1674	struct hv_pci_compl comp_pkt;
1675	struct tran_int_desc int_desc;
1676};
1677
1678static void hv_pci_compose_compl(void *context, struct pci_response *resp,
1679				 int resp_packet_size)
1680{
1681	struct compose_comp_ctxt *comp_pkt = context;
1682	struct pci_create_int_response *int_resp =
1683		(struct pci_create_int_response *)resp;
1684
1685	if (resp_packet_size < sizeof(*int_resp)) {
1686		comp_pkt->comp_pkt.completion_status = -1;
1687		goto out;
1688	}
1689	comp_pkt->comp_pkt.completion_status = resp->status;
1690	comp_pkt->int_desc = int_resp->int_desc;
1691out:
1692	complete(&comp_pkt->comp_pkt.host_event);
1693}
1694
1695static u32 hv_compose_msi_req_v1(
1696	struct pci_create_interrupt *int_pkt,
1697	u32 slot, u8 vector, u16 vector_count)
1698{
1699	int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE;
1700	int_pkt->wslot.slot = slot;
1701	int_pkt->int_desc.vector = vector;
1702	int_pkt->int_desc.vector_count = vector_count;
1703	int_pkt->int_desc.delivery_mode = DELIVERY_MODE;
1704
1705	/*
1706	 * Create MSI w/ dummy vCPU set, overwritten by subsequent retarget in
1707	 * hv_irq_unmask().
1708	 */
1709	int_pkt->int_desc.cpu_mask = CPU_AFFINITY_ALL;
1710
1711	return sizeof(*int_pkt);
1712}
1713
1714/*
1715 * The vCPU selected by hv_compose_multi_msi_req_get_cpu() and
1716 * hv_compose_msi_req_get_cpu() is a "dummy" vCPU because the final vCPU to be
1717 * interrupted is specified later in hv_irq_unmask() and communicated to Hyper-V
1718 * via the HVCALL_RETARGET_INTERRUPT hypercall. But the choice of dummy vCPU is
1719 * not irrelevant because Hyper-V chooses the physical CPU to handle the
1720 * interrupts based on the vCPU specified in message sent to the vPCI VSP in
1721 * hv_compose_msi_msg(). Hyper-V's choice of pCPU is not visible to the guest,
1722 * but assigning too many vPCI device interrupts to the same pCPU can cause a
1723 * performance bottleneck. So we spread out the dummy vCPUs to influence Hyper-V
1724 * to spread out the pCPUs that it selects.
1725 *
1726 * For the single-MSI and MSI-X cases, it's OK for hv_compose_msi_req_get_cpu()
1727 * to always return the same dummy vCPU, because a second call to
1728 * hv_compose_msi_msg() contains the "real" vCPU, causing Hyper-V to choose a
1729 * new pCPU for the interrupt. But for the multi-MSI case, the second call to
1730 * hv_compose_msi_msg() exits without sending a message to the vPCI VSP, so the
1731 * original dummy vCPU is used. This dummy vCPU must be round-robin'ed so that
1732 * the pCPUs are spread out. All interrupts for a multi-MSI device end up using
1733 * the same pCPU, even though the vCPUs will be spread out by later calls
1734 * to hv_irq_unmask(), but that is the best we can do now.
1735 *
1736 * With Hyper-V in Nov 2022, the HVCALL_RETARGET_INTERRUPT hypercall does *not*
1737 * cause Hyper-V to reselect the pCPU based on the specified vCPU. Such an
1738 * enhancement is planned for a future version. With that enhancement, the
1739 * dummy vCPU selection won't matter, and interrupts for the same multi-MSI
1740 * device will be spread across multiple pCPUs.
1741 */
1742
1743/*
1744 * Create MSI w/ dummy vCPU set targeting just one vCPU, overwritten
1745 * by subsequent retarget in hv_irq_unmask().
1746 */
1747static int hv_compose_msi_req_get_cpu(const struct cpumask *affinity)
1748{
1749	return cpumask_first_and(affinity, cpu_online_mask);
1750}
1751
1752/*
1753 * Make sure the dummy vCPU values for multi-MSI don't all point to vCPU0.
1754 */
1755static int hv_compose_multi_msi_req_get_cpu(void)
1756{
1757	static DEFINE_SPINLOCK(multi_msi_cpu_lock);
1758
1759	/* -1 means starting with CPU 0 */
1760	static int cpu_next = -1;
1761
1762	unsigned long flags;
1763	int cpu;
1764
1765	spin_lock_irqsave(&multi_msi_cpu_lock, flags);
1766
1767	cpu_next = cpumask_next_wrap(cpu_next, cpu_online_mask, nr_cpu_ids,
1768				     false);
1769	cpu = cpu_next;
1770
1771	spin_unlock_irqrestore(&multi_msi_cpu_lock, flags);
1772
1773	return cpu;
1774}
1775
1776static u32 hv_compose_msi_req_v2(
1777	struct pci_create_interrupt2 *int_pkt, int cpu,
1778	u32 slot, u8 vector, u16 vector_count)
1779{
1780	int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE2;
1781	int_pkt->wslot.slot = slot;
1782	int_pkt->int_desc.vector = vector;
1783	int_pkt->int_desc.vector_count = vector_count;
1784	int_pkt->int_desc.delivery_mode = DELIVERY_MODE;
1785	int_pkt->int_desc.processor_array[0] =
1786		hv_cpu_number_to_vp_number(cpu);
1787	int_pkt->int_desc.processor_count = 1;
1788
1789	return sizeof(*int_pkt);
1790}
1791
1792static u32 hv_compose_msi_req_v3(
1793	struct pci_create_interrupt3 *int_pkt, int cpu,
1794	u32 slot, u32 vector, u16 vector_count)
1795{
1796	int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE3;
1797	int_pkt->wslot.slot = slot;
1798	int_pkt->int_desc.vector = vector;
1799	int_pkt->int_desc.reserved = 0;
1800	int_pkt->int_desc.vector_count = vector_count;
1801	int_pkt->int_desc.delivery_mode = DELIVERY_MODE;
1802	int_pkt->int_desc.processor_array[0] =
1803		hv_cpu_number_to_vp_number(cpu);
1804	int_pkt->int_desc.processor_count = 1;
1805
1806	return sizeof(*int_pkt);
1807}
1808
1809/**
1810 * hv_compose_msi_msg() - Supplies a valid MSI address/data
1811 * @data:	Everything about this MSI
1812 * @msg:	Buffer that is filled in by this function
1813 *
1814 * This function unpacks the IRQ looking for target CPU set, IDT
1815 * vector and mode and sends a message to the parent partition
1816 * asking for a mapping for that tuple in this partition.  The
1817 * response supplies a data value and address to which that data
1818 * should be written to trigger that interrupt.
1819 */
1820static void hv_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
1821{
1822	struct hv_pcibus_device *hbus;
1823	struct vmbus_channel *channel;
1824	struct hv_pci_dev *hpdev;
1825	struct pci_bus *pbus;
1826	struct pci_dev *pdev;
1827	const struct cpumask *dest;
1828	struct compose_comp_ctxt comp;
1829	struct tran_int_desc *int_desc;
1830	struct msi_desc *msi_desc;
1831	/*
1832	 * vector_count should be u16: see hv_msi_desc, hv_msi_desc2
1833	 * and hv_msi_desc3. vector must be u32: see hv_msi_desc3.
1834	 */
1835	u16 vector_count;
1836	u32 vector;
1837	struct {
1838		struct pci_packet pci_pkt;
1839		union {
1840			struct pci_create_interrupt v1;
1841			struct pci_create_interrupt2 v2;
1842			struct pci_create_interrupt3 v3;
1843		} int_pkts;
1844	} __packed ctxt;
1845	bool multi_msi;
1846	u64 trans_id;
1847	u32 size;
1848	int ret;
1849	int cpu;
1850
1851	msi_desc  = irq_data_get_msi_desc(data);
1852	multi_msi = !msi_desc->pci.msi_attrib.is_msix &&
1853		    msi_desc->nvec_used > 1;
1854
1855	/* Reuse the previous allocation */
1856	if (data->chip_data && multi_msi) {
1857		int_desc = data->chip_data;
1858		msg->address_hi = int_desc->address >> 32;
1859		msg->address_lo = int_desc->address & 0xffffffff;
1860		msg->data = int_desc->data;
1861		return;
1862	}
1863
1864	pdev = msi_desc_to_pci_dev(msi_desc);
1865	dest = irq_data_get_effective_affinity_mask(data);
1866	pbus = pdev->bus;
1867	hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
1868	channel = hbus->hdev->channel;
1869	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1870	if (!hpdev)
1871		goto return_null_message;
1872
1873	/* Free any previous message that might have already been composed. */
1874	if (data->chip_data && !multi_msi) {
1875		int_desc = data->chip_data;
1876		data->chip_data = NULL;
1877		hv_int_desc_free(hpdev, int_desc);
1878	}
1879
1880	int_desc = kzalloc(sizeof(*int_desc), GFP_ATOMIC);
1881	if (!int_desc)
1882		goto drop_reference;
1883
1884	if (multi_msi) {
1885		/*
1886		 * If this is not the first MSI of Multi MSI, we already have
1887		 * a mapping.  Can exit early.
1888		 */
1889		if (msi_desc->irq != data->irq) {
1890			data->chip_data = int_desc;
1891			int_desc->address = msi_desc->msg.address_lo |
1892					    (u64)msi_desc->msg.address_hi << 32;
1893			int_desc->data = msi_desc->msg.data +
1894					 (data->irq - msi_desc->irq);
1895			msg->address_hi = msi_desc->msg.address_hi;
1896			msg->address_lo = msi_desc->msg.address_lo;
1897			msg->data = int_desc->data;
1898			put_pcichild(hpdev);
1899			return;
1900		}
1901		/*
1902		 * The vector we select here is a dummy value.  The correct
1903		 * value gets sent to the hypervisor in unmask().  This needs
1904		 * to be aligned with the count, and also not zero.  Multi-msi
1905		 * is powers of 2 up to 32, so 32 will always work here.
1906		 */
1907		vector = 32;
1908		vector_count = msi_desc->nvec_used;
1909		cpu = hv_compose_multi_msi_req_get_cpu();
1910	} else {
1911		vector = hv_msi_get_int_vector(data);
1912		vector_count = 1;
1913		cpu = hv_compose_msi_req_get_cpu(dest);
1914	}
1915
1916	/*
1917	 * hv_compose_msi_req_v1 and v2 are for x86 only, meaning 'vector'
1918	 * can't exceed u8. Cast 'vector' down to u8 for v1/v2 explicitly
1919	 * for better readability.
1920	 */
1921	memset(&ctxt, 0, sizeof(ctxt));
1922	init_completion(&comp.comp_pkt.host_event);
1923	ctxt.pci_pkt.completion_func = hv_pci_compose_compl;
1924	ctxt.pci_pkt.compl_ctxt = &comp;
1925
1926	switch (hbus->protocol_version) {
1927	case PCI_PROTOCOL_VERSION_1_1:
1928		size = hv_compose_msi_req_v1(&ctxt.int_pkts.v1,
1929					hpdev->desc.win_slot.slot,
1930					(u8)vector,
1931					vector_count);
1932		break;
1933
1934	case PCI_PROTOCOL_VERSION_1_2:
1935	case PCI_PROTOCOL_VERSION_1_3:
1936		size = hv_compose_msi_req_v2(&ctxt.int_pkts.v2,
1937					cpu,
1938					hpdev->desc.win_slot.slot,
1939					(u8)vector,
1940					vector_count);
1941		break;
1942
1943	case PCI_PROTOCOL_VERSION_1_4:
1944		size = hv_compose_msi_req_v3(&ctxt.int_pkts.v3,
1945					cpu,
1946					hpdev->desc.win_slot.slot,
1947					vector,
1948					vector_count);
1949		break;
1950
1951	default:
1952		/* As we only negotiate protocol versions known to this driver,
1953		 * this path should never hit. However, this is it not a hot
1954		 * path so we print a message to aid future updates.
1955		 */
1956		dev_err(&hbus->hdev->device,
1957			"Unexpected vPCI protocol, update driver.");
1958		goto free_int_desc;
1959	}
1960
1961	ret = vmbus_sendpacket_getid(hpdev->hbus->hdev->channel, &ctxt.int_pkts,
1962				     size, (unsigned long)&ctxt.pci_pkt,
1963				     &trans_id, VM_PKT_DATA_INBAND,
1964				     VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1965	if (ret) {
1966		dev_err(&hbus->hdev->device,
1967			"Sending request for interrupt failed: 0x%x",
1968			comp.comp_pkt.completion_status);
1969		goto free_int_desc;
1970	}
1971
1972	/*
1973	 * Prevents hv_pci_onchannelcallback() from running concurrently
1974	 * in the tasklet.
1975	 */
1976	tasklet_disable_in_atomic(&channel->callback_event);
1977
1978	/*
1979	 * Since this function is called with IRQ locks held, can't
1980	 * do normal wait for completion; instead poll.
1981	 */
1982	while (!try_wait_for_completion(&comp.comp_pkt.host_event)) {
1983		unsigned long flags;
1984
1985		/* 0xFFFF means an invalid PCI VENDOR ID. */
1986		if (hv_pcifront_get_vendor_id(hpdev) == 0xFFFF) {
1987			dev_err_once(&hbus->hdev->device,
1988				     "the device has gone\n");
1989			goto enable_tasklet;
1990		}
1991
1992		/*
1993		 * Make sure that the ring buffer data structure doesn't get
1994		 * freed while we dereference the ring buffer pointer.  Test
1995		 * for the channel's onchannel_callback being NULL within a
1996		 * sched_lock critical section.  See also the inline comments
1997		 * in vmbus_reset_channel_cb().
1998		 */
1999		spin_lock_irqsave(&channel->sched_lock, flags);
2000		if (unlikely(channel->onchannel_callback == NULL)) {
2001			spin_unlock_irqrestore(&channel->sched_lock, flags);
2002			goto enable_tasklet;
2003		}
2004		hv_pci_onchannelcallback(hbus);
2005		spin_unlock_irqrestore(&channel->sched_lock, flags);
2006
2007		udelay(100);
2008	}
2009
2010	tasklet_enable(&channel->callback_event);
2011
2012	if (comp.comp_pkt.completion_status < 0) {
2013		dev_err(&hbus->hdev->device,
2014			"Request for interrupt failed: 0x%x",
2015			comp.comp_pkt.completion_status);
2016		goto free_int_desc;
2017	}
2018
2019	/*
2020	 * Record the assignment so that this can be unwound later. Using
2021	 * irq_set_chip_data() here would be appropriate, but the lock it takes
2022	 * is already held.
2023	 */
2024	*int_desc = comp.int_desc;
2025	data->chip_data = int_desc;
2026
2027	/* Pass up the result. */
2028	msg->address_hi = comp.int_desc.address >> 32;
2029	msg->address_lo = comp.int_desc.address & 0xffffffff;
2030	msg->data = comp.int_desc.data;
2031
2032	put_pcichild(hpdev);
2033	return;
2034
2035enable_tasklet:
2036	tasklet_enable(&channel->callback_event);
2037	/*
2038	 * The completion packet on the stack becomes invalid after 'return';
2039	 * remove the ID from the VMbus requestor if the identifier is still
2040	 * mapped to/associated with the packet.  (The identifier could have
2041	 * been 're-used', i.e., already removed and (re-)mapped.)
2042	 *
2043	 * Cf. hv_pci_onchannelcallback().
2044	 */
2045	vmbus_request_addr_match(channel, trans_id, (unsigned long)&ctxt.pci_pkt);
2046free_int_desc:
2047	kfree(int_desc);
2048drop_reference:
2049	put_pcichild(hpdev);
2050return_null_message:
2051	msg->address_hi = 0;
2052	msg->address_lo = 0;
2053	msg->data = 0;
2054}
2055
2056/* HW Interrupt Chip Descriptor */
2057static struct irq_chip hv_msi_irq_chip = {
2058	.name			= "Hyper-V PCIe MSI",
2059	.irq_compose_msi_msg	= hv_compose_msi_msg,
2060	.irq_set_affinity	= irq_chip_set_affinity_parent,
2061#ifdef CONFIG_X86
2062	.irq_ack		= irq_chip_ack_parent,
2063#elif defined(CONFIG_ARM64)
2064	.irq_eoi		= irq_chip_eoi_parent,
2065#endif
2066	.irq_mask		= hv_irq_mask,
2067	.irq_unmask		= hv_irq_unmask,
2068};
2069
2070static struct msi_domain_ops hv_msi_ops = {
2071	.msi_prepare	= hv_msi_prepare,
2072	.msi_free	= hv_msi_free,
2073};
2074
2075/**
2076 * hv_pcie_init_irq_domain() - Initialize IRQ domain
2077 * @hbus:	The root PCI bus
2078 *
2079 * This function creates an IRQ domain which will be used for
2080 * interrupts from devices that have been passed through.  These
2081 * devices only support MSI and MSI-X, not line-based interrupts
2082 * or simulations of line-based interrupts through PCIe's
2083 * fabric-layer messages.  Because interrupts are remapped, we
2084 * can support multi-message MSI here.
2085 *
2086 * Return: '0' on success and error value on failure
2087 */
2088static int hv_pcie_init_irq_domain(struct hv_pcibus_device *hbus)
2089{
2090	hbus->msi_info.chip = &hv_msi_irq_chip;
2091	hbus->msi_info.ops = &hv_msi_ops;
2092	hbus->msi_info.flags = (MSI_FLAG_USE_DEF_DOM_OPS |
2093		MSI_FLAG_USE_DEF_CHIP_OPS | MSI_FLAG_MULTI_PCI_MSI |
2094		MSI_FLAG_PCI_MSIX);
2095	hbus->msi_info.handler = FLOW_HANDLER;
2096	hbus->msi_info.handler_name = FLOW_NAME;
2097	hbus->msi_info.data = hbus;
2098	hbus->irq_domain = pci_msi_create_irq_domain(hbus->fwnode,
2099						     &hbus->msi_info,
2100						     hv_pci_get_root_domain());
2101	if (!hbus->irq_domain) {
2102		dev_err(&hbus->hdev->device,
2103			"Failed to build an MSI IRQ domain\n");
2104		return -ENODEV;
2105	}
2106
2107	dev_set_msi_domain(&hbus->bridge->dev, hbus->irq_domain);
2108
2109	return 0;
2110}
2111
2112/**
2113 * get_bar_size() - Get the address space consumed by a BAR
2114 * @bar_val:	Value that a BAR returned after -1 was written
2115 *              to it.
2116 *
2117 * This function returns the size of the BAR, rounded up to 1
2118 * page.  It has to be rounded up because the hypervisor's page
2119 * table entry that maps the BAR into the VM can't specify an
2120 * offset within a page.  The invariant is that the hypervisor
2121 * must place any BARs of smaller than page length at the
2122 * beginning of a page.
2123 *
2124 * Return:	Size in bytes of the consumed MMIO space.
2125 */
2126static u64 get_bar_size(u64 bar_val)
2127{
2128	return round_up((1 + ~(bar_val & PCI_BASE_ADDRESS_MEM_MASK)),
2129			PAGE_SIZE);
2130}
2131
2132/**
2133 * survey_child_resources() - Total all MMIO requirements
2134 * @hbus:	Root PCI bus, as understood by this driver
2135 */
2136static void survey_child_resources(struct hv_pcibus_device *hbus)
2137{
2138	struct hv_pci_dev *hpdev;
2139	resource_size_t bar_size = 0;
2140	unsigned long flags;
2141	struct completion *event;
2142	u64 bar_val;
2143	int i;
2144
2145	/* If nobody is waiting on the answer, don't compute it. */
2146	event = xchg(&hbus->survey_event, NULL);
2147	if (!event)
2148		return;
2149
2150	/* If the answer has already been computed, go with it. */
2151	if (hbus->low_mmio_space || hbus->high_mmio_space) {
2152		complete(event);
2153		return;
2154	}
2155
2156	spin_lock_irqsave(&hbus->device_list_lock, flags);
2157
2158	/*
2159	 * Due to an interesting quirk of the PCI spec, all memory regions
2160	 * for a child device are a power of 2 in size and aligned in memory,
2161	 * so it's sufficient to just add them up without tracking alignment.
2162	 */
2163	list_for_each_entry(hpdev, &hbus->children, list_entry) {
2164		for (i = 0; i < PCI_STD_NUM_BARS; i++) {
2165			if (hpdev->probed_bar[i] & PCI_BASE_ADDRESS_SPACE_IO)
2166				dev_err(&hbus->hdev->device,
2167					"There's an I/O BAR in this list!\n");
2168
2169			if (hpdev->probed_bar[i] != 0) {
2170				/*
2171				 * A probed BAR has all the upper bits set that
2172				 * can be changed.
2173				 */
2174
2175				bar_val = hpdev->probed_bar[i];
2176				if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
2177					bar_val |=
2178					((u64)hpdev->probed_bar[++i] << 32);
2179				else
2180					bar_val |= 0xffffffff00000000ULL;
2181
2182				bar_size = get_bar_size(bar_val);
2183
2184				if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
2185					hbus->high_mmio_space += bar_size;
2186				else
2187					hbus->low_mmio_space += bar_size;
2188			}
2189		}
2190	}
2191
2192	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2193	complete(event);
2194}
2195
2196/**
2197 * prepopulate_bars() - Fill in BARs with defaults
2198 * @hbus:	Root PCI bus, as understood by this driver
2199 *
2200 * The core PCI driver code seems much, much happier if the BARs
2201 * for a device have values upon first scan. So fill them in.
2202 * The algorithm below works down from large sizes to small,
2203 * attempting to pack the assignments optimally. The assumption,
2204 * enforced in other parts of the code, is that the beginning of
2205 * the memory-mapped I/O space will be aligned on the largest
2206 * BAR size.
2207 */
2208static void prepopulate_bars(struct hv_pcibus_device *hbus)
2209{
2210	resource_size_t high_size = 0;
2211	resource_size_t low_size = 0;
2212	resource_size_t high_base = 0;
2213	resource_size_t low_base = 0;
2214	resource_size_t bar_size;
2215	struct hv_pci_dev *hpdev;
2216	unsigned long flags;
2217	u64 bar_val;
2218	u32 command;
2219	bool high;
2220	int i;
2221
2222	if (hbus->low_mmio_space) {
2223		low_size = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
2224		low_base = hbus->low_mmio_res->start;
2225	}
2226
2227	if (hbus->high_mmio_space) {
2228		high_size = 1ULL <<
2229			(63 - __builtin_clzll(hbus->high_mmio_space));
2230		high_base = hbus->high_mmio_res->start;
2231	}
2232
2233	spin_lock_irqsave(&hbus->device_list_lock, flags);
2234
2235	/*
2236	 * Clear the memory enable bit, in case it's already set. This occurs
2237	 * in the suspend path of hibernation, where the device is suspended,
2238	 * resumed and suspended again: see hibernation_snapshot() and
2239	 * hibernation_platform_enter().
2240	 *
2241	 * If the memory enable bit is already set, Hyper-V silently ignores
2242	 * the below BAR updates, and the related PCI device driver can not
2243	 * work, because reading from the device register(s) always returns
2244	 * 0xFFFFFFFF (PCI_ERROR_RESPONSE).
2245	 */
2246	list_for_each_entry(hpdev, &hbus->children, list_entry) {
2247		_hv_pcifront_read_config(hpdev, PCI_COMMAND, 2, &command);
2248		command &= ~PCI_COMMAND_MEMORY;
2249		_hv_pcifront_write_config(hpdev, PCI_COMMAND, 2, command);
2250	}
2251
2252	/* Pick addresses for the BARs. */
2253	do {
2254		list_for_each_entry(hpdev, &hbus->children, list_entry) {
2255			for (i = 0; i < PCI_STD_NUM_BARS; i++) {
2256				bar_val = hpdev->probed_bar[i];
2257				if (bar_val == 0)
2258					continue;
2259				high = bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64;
2260				if (high) {
2261					bar_val |=
2262						((u64)hpdev->probed_bar[i + 1]
2263						 << 32);
2264				} else {
2265					bar_val |= 0xffffffffULL << 32;
2266				}
2267				bar_size = get_bar_size(bar_val);
2268				if (high) {
2269					if (high_size != bar_size) {
2270						i++;
2271						continue;
2272					}
2273					_hv_pcifront_write_config(hpdev,
2274						PCI_BASE_ADDRESS_0 + (4 * i),
2275						4,
2276						(u32)(high_base & 0xffffff00));
2277					i++;
2278					_hv_pcifront_write_config(hpdev,
2279						PCI_BASE_ADDRESS_0 + (4 * i),
2280						4, (u32)(high_base >> 32));
2281					high_base += bar_size;
2282				} else {
2283					if (low_size != bar_size)
2284						continue;
2285					_hv_pcifront_write_config(hpdev,
2286						PCI_BASE_ADDRESS_0 + (4 * i),
2287						4,
2288						(u32)(low_base & 0xffffff00));
2289					low_base += bar_size;
2290				}
2291			}
2292			if (high_size <= 1 && low_size <= 1) {
2293				/*
2294				 * No need to set the PCI_COMMAND_MEMORY bit as
2295				 * the core PCI driver doesn't require the bit
2296				 * to be pre-set. Actually here we intentionally
2297				 * keep the bit off so that the PCI BAR probing
2298				 * in the core PCI driver doesn't cause Hyper-V
2299				 * to unnecessarily unmap/map the virtual BARs
2300				 * from/to the physical BARs multiple times.
2301				 * This reduces the VM boot time significantly
2302				 * if the BAR sizes are huge.
2303				 */
2304				break;
2305			}
2306		}
2307
2308		high_size >>= 1;
2309		low_size >>= 1;
2310	}  while (high_size || low_size);
2311
2312	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2313}
2314
2315/*
2316 * Assign entries in sysfs pci slot directory.
2317 *
2318 * Note that this function does not need to lock the children list
2319 * because it is called from pci_devices_present_work which
2320 * is serialized with hv_eject_device_work because they are on the
2321 * same ordered workqueue. Therefore hbus->children list will not change
2322 * even when pci_create_slot sleeps.
2323 */
2324static void hv_pci_assign_slots(struct hv_pcibus_device *hbus)
2325{
2326	struct hv_pci_dev *hpdev;
2327	char name[SLOT_NAME_SIZE];
2328	int slot_nr;
2329
2330	list_for_each_entry(hpdev, &hbus->children, list_entry) {
2331		if (hpdev->pci_slot)
2332			continue;
2333
2334		slot_nr = PCI_SLOT(wslot_to_devfn(hpdev->desc.win_slot.slot));
2335		snprintf(name, SLOT_NAME_SIZE, "%u", hpdev->desc.ser);
2336		hpdev->pci_slot = pci_create_slot(hbus->bridge->bus, slot_nr,
2337					  name, NULL);
2338		if (IS_ERR(hpdev->pci_slot)) {
2339			pr_warn("pci_create slot %s failed\n", name);
2340			hpdev->pci_slot = NULL;
2341		}
2342	}
2343}
2344
2345/*
2346 * Remove entries in sysfs pci slot directory.
2347 */
2348static void hv_pci_remove_slots(struct hv_pcibus_device *hbus)
2349{
2350	struct hv_pci_dev *hpdev;
2351
2352	list_for_each_entry(hpdev, &hbus->children, list_entry) {
2353		if (!hpdev->pci_slot)
2354			continue;
2355		pci_destroy_slot(hpdev->pci_slot);
2356		hpdev->pci_slot = NULL;
2357	}
2358}
2359
2360/*
2361 * Set NUMA node for the devices on the bus
2362 */
2363static void hv_pci_assign_numa_node(struct hv_pcibus_device *hbus)
2364{
2365	struct pci_dev *dev;
2366	struct pci_bus *bus = hbus->bridge->bus;
2367	struct hv_pci_dev *hv_dev;
2368
2369	list_for_each_entry(dev, &bus->devices, bus_list) {
2370		hv_dev = get_pcichild_wslot(hbus, devfn_to_wslot(dev->devfn));
2371		if (!hv_dev)
2372			continue;
2373
2374		if (hv_dev->desc.flags & HV_PCI_DEVICE_FLAG_NUMA_AFFINITY &&
2375		    hv_dev->desc.virtual_numa_node < num_possible_nodes())
2376			/*
2377			 * The kernel may boot with some NUMA nodes offline
2378			 * (e.g. in a KDUMP kernel) or with NUMA disabled via
2379			 * "numa=off". In those cases, adjust the host provided
2380			 * NUMA node to a valid NUMA node used by the kernel.
2381			 */
2382			set_dev_node(&dev->dev,
2383				     numa_map_to_online_node(
2384					     hv_dev->desc.virtual_numa_node));
2385
2386		put_pcichild(hv_dev);
2387	}
2388}
2389
2390/**
2391 * create_root_hv_pci_bus() - Expose a new root PCI bus
2392 * @hbus:	Root PCI bus, as understood by this driver
2393 *
2394 * Return: 0 on success, -errno on failure
2395 */
2396static int create_root_hv_pci_bus(struct hv_pcibus_device *hbus)
2397{
2398	int error;
2399	struct pci_host_bridge *bridge = hbus->bridge;
2400
2401	bridge->dev.parent = &hbus->hdev->device;
2402	bridge->sysdata = &hbus->sysdata;
2403	bridge->ops = &hv_pcifront_ops;
2404
2405	error = pci_scan_root_bus_bridge(bridge);
2406	if (error)
2407		return error;
2408
2409	pci_lock_rescan_remove();
2410	hv_pci_assign_numa_node(hbus);
2411	pci_bus_assign_resources(bridge->bus);
2412	hv_pci_assign_slots(hbus);
2413	pci_bus_add_devices(bridge->bus);
2414	pci_unlock_rescan_remove();
2415	hbus->state = hv_pcibus_installed;
2416	return 0;
2417}
2418
2419struct q_res_req_compl {
2420	struct completion host_event;
2421	struct hv_pci_dev *hpdev;
2422};
2423
2424/**
2425 * q_resource_requirements() - Query Resource Requirements
2426 * @context:		The completion context.
2427 * @resp:		The response that came from the host.
2428 * @resp_packet_size:	The size in bytes of resp.
2429 *
2430 * This function is invoked on completion of a Query Resource
2431 * Requirements packet.
2432 */
2433static void q_resource_requirements(void *context, struct pci_response *resp,
2434				    int resp_packet_size)
2435{
2436	struct q_res_req_compl *completion = context;
2437	struct pci_q_res_req_response *q_res_req =
2438		(struct pci_q_res_req_response *)resp;
2439	s32 status;
2440	int i;
2441
2442	status = (resp_packet_size < sizeof(*q_res_req)) ? -1 : resp->status;
2443	if (status < 0) {
2444		dev_err(&completion->hpdev->hbus->hdev->device,
2445			"query resource requirements failed: %x\n",
2446			status);
2447	} else {
2448		for (i = 0; i < PCI_STD_NUM_BARS; i++) {
2449			completion->hpdev->probed_bar[i] =
2450				q_res_req->probed_bar[i];
2451		}
2452	}
2453
2454	complete(&completion->host_event);
2455}
2456
2457/**
2458 * new_pcichild_device() - Create a new child device
2459 * @hbus:	The internal struct tracking this root PCI bus.
2460 * @desc:	The information supplied so far from the host
2461 *              about the device.
2462 *
2463 * This function creates the tracking structure for a new child
2464 * device and kicks off the process of figuring out what it is.
2465 *
2466 * Return: Pointer to the new tracking struct
2467 */
2468static struct hv_pci_dev *new_pcichild_device(struct hv_pcibus_device *hbus,
2469		struct hv_pcidev_description *desc)
2470{
2471	struct hv_pci_dev *hpdev;
2472	struct pci_child_message *res_req;
2473	struct q_res_req_compl comp_pkt;
2474	struct {
2475		struct pci_packet init_packet;
2476		u8 buffer[sizeof(struct pci_child_message)];
2477	} pkt;
2478	unsigned long flags;
2479	int ret;
2480
2481	hpdev = kzalloc(sizeof(*hpdev), GFP_KERNEL);
2482	if (!hpdev)
2483		return NULL;
2484
2485	hpdev->hbus = hbus;
2486
2487	memset(&pkt, 0, sizeof(pkt));
2488	init_completion(&comp_pkt.host_event);
2489	comp_pkt.hpdev = hpdev;
2490	pkt.init_packet.compl_ctxt = &comp_pkt;
2491	pkt.init_packet.completion_func = q_resource_requirements;
2492	res_req = (struct pci_child_message *)&pkt.init_packet.message;
2493	res_req->message_type.type = PCI_QUERY_RESOURCE_REQUIREMENTS;
2494	res_req->wslot.slot = desc->win_slot.slot;
2495
2496	ret = vmbus_sendpacket(hbus->hdev->channel, res_req,
2497			       sizeof(struct pci_child_message),
2498			       (unsigned long)&pkt.init_packet,
2499			       VM_PKT_DATA_INBAND,
2500			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2501	if (ret)
2502		goto error;
2503
2504	if (wait_for_response(hbus->hdev, &comp_pkt.host_event))
2505		goto error;
2506
2507	hpdev->desc = *desc;
2508	refcount_set(&hpdev->refs, 1);
2509	get_pcichild(hpdev);
2510	spin_lock_irqsave(&hbus->device_list_lock, flags);
2511
2512	list_add_tail(&hpdev->list_entry, &hbus->children);
2513	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2514	return hpdev;
2515
2516error:
2517	kfree(hpdev);
2518	return NULL;
2519}
2520
2521/**
2522 * get_pcichild_wslot() - Find device from slot
2523 * @hbus:	Root PCI bus, as understood by this driver
2524 * @wslot:	Location on the bus
2525 *
2526 * This function looks up a PCI device and returns the internal
2527 * representation of it.  It acquires a reference on it, so that
2528 * the device won't be deleted while somebody is using it.  The
2529 * caller is responsible for calling put_pcichild() to release
2530 * this reference.
2531 *
2532 * Return:	Internal representation of a PCI device
2533 */
2534static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
2535					     u32 wslot)
2536{
2537	unsigned long flags;
2538	struct hv_pci_dev *iter, *hpdev = NULL;
2539
2540	spin_lock_irqsave(&hbus->device_list_lock, flags);
2541	list_for_each_entry(iter, &hbus->children, list_entry) {
2542		if (iter->desc.win_slot.slot == wslot) {
2543			hpdev = iter;
2544			get_pcichild(hpdev);
2545			break;
2546		}
2547	}
2548	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2549
2550	return hpdev;
2551}
2552
2553/**
2554 * pci_devices_present_work() - Handle new list of child devices
2555 * @work:	Work struct embedded in struct hv_dr_work
2556 *
2557 * "Bus Relations" is the Windows term for "children of this
2558 * bus."  The terminology is preserved here for people trying to
2559 * debug the interaction between Hyper-V and Linux.  This
2560 * function is called when the parent partition reports a list
2561 * of functions that should be observed under this PCI Express
2562 * port (bus).
2563 *
2564 * This function updates the list, and must tolerate being
2565 * called multiple times with the same information.  The typical
2566 * number of child devices is one, with very atypical cases
2567 * involving three or four, so the algorithms used here can be
2568 * simple and inefficient.
2569 *
2570 * It must also treat the omission of a previously observed device as
2571 * notification that the device no longer exists.
2572 *
2573 * Note that this function is serialized with hv_eject_device_work(),
2574 * because both are pushed to the ordered workqueue hbus->wq.
2575 */
2576static void pci_devices_present_work(struct work_struct *work)
2577{
2578	u32 child_no;
2579	bool found;
2580	struct hv_pcidev_description *new_desc;
2581	struct hv_pci_dev *hpdev;
2582	struct hv_pcibus_device *hbus;
2583	struct list_head removed;
2584	struct hv_dr_work *dr_wrk;
2585	struct hv_dr_state *dr = NULL;
2586	unsigned long flags;
2587
2588	dr_wrk = container_of(work, struct hv_dr_work, wrk);
2589	hbus = dr_wrk->bus;
2590	kfree(dr_wrk);
2591
2592	INIT_LIST_HEAD(&removed);
2593
2594	/* Pull this off the queue and process it if it was the last one. */
2595	spin_lock_irqsave(&hbus->device_list_lock, flags);
2596	while (!list_empty(&hbus->dr_list)) {
2597		dr = list_first_entry(&hbus->dr_list, struct hv_dr_state,
2598				      list_entry);
2599		list_del(&dr->list_entry);
2600
2601		/* Throw this away if the list still has stuff in it. */
2602		if (!list_empty(&hbus->dr_list)) {
2603			kfree(dr);
2604			continue;
2605		}
2606	}
2607	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2608
2609	if (!dr)
2610		return;
2611
2612	mutex_lock(&hbus->state_lock);
2613
2614	/* First, mark all existing children as reported missing. */
2615	spin_lock_irqsave(&hbus->device_list_lock, flags);
2616	list_for_each_entry(hpdev, &hbus->children, list_entry) {
2617		hpdev->reported_missing = true;
2618	}
2619	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2620
2621	/* Next, add back any reported devices. */
2622	for (child_no = 0; child_no < dr->device_count; child_no++) {
2623		found = false;
2624		new_desc = &dr->func[child_no];
2625
2626		spin_lock_irqsave(&hbus->device_list_lock, flags);
2627		list_for_each_entry(hpdev, &hbus->children, list_entry) {
2628			if ((hpdev->desc.win_slot.slot == new_desc->win_slot.slot) &&
2629			    (hpdev->desc.v_id == new_desc->v_id) &&
2630			    (hpdev->desc.d_id == new_desc->d_id) &&
2631			    (hpdev->desc.ser == new_desc->ser)) {
2632				hpdev->reported_missing = false;
2633				found = true;
2634			}
2635		}
2636		spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2637
2638		if (!found) {
2639			hpdev = new_pcichild_device(hbus, new_desc);
2640			if (!hpdev)
2641				dev_err(&hbus->hdev->device,
2642					"couldn't record a child device.\n");
2643		}
2644	}
2645
2646	/* Move missing children to a list on the stack. */
2647	spin_lock_irqsave(&hbus->device_list_lock, flags);
2648	do {
2649		found = false;
2650		list_for_each_entry(hpdev, &hbus->children, list_entry) {
2651			if (hpdev->reported_missing) {
2652				found = true;
2653				put_pcichild(hpdev);
2654				list_move_tail(&hpdev->list_entry, &removed);
2655				break;
2656			}
2657		}
2658	} while (found);
2659	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2660
2661	/* Delete everything that should no longer exist. */
2662	while (!list_empty(&removed)) {
2663		hpdev = list_first_entry(&removed, struct hv_pci_dev,
2664					 list_entry);
2665		list_del(&hpdev->list_entry);
2666
2667		if (hpdev->pci_slot)
2668			pci_destroy_slot(hpdev->pci_slot);
2669
2670		put_pcichild(hpdev);
2671	}
2672
2673	switch (hbus->state) {
2674	case hv_pcibus_installed:
2675		/*
2676		 * Tell the core to rescan bus
2677		 * because there may have been changes.
2678		 */
2679		pci_lock_rescan_remove();
2680		pci_scan_child_bus(hbus->bridge->bus);
2681		hv_pci_assign_numa_node(hbus);
2682		hv_pci_assign_slots(hbus);
2683		pci_unlock_rescan_remove();
2684		break;
2685
2686	case hv_pcibus_init:
2687	case hv_pcibus_probed:
2688		survey_child_resources(hbus);
2689		break;
2690
2691	default:
2692		break;
2693	}
2694
2695	mutex_unlock(&hbus->state_lock);
2696
2697	kfree(dr);
2698}
2699
2700/**
2701 * hv_pci_start_relations_work() - Queue work to start device discovery
2702 * @hbus:	Root PCI bus, as understood by this driver
2703 * @dr:		The list of children returned from host
2704 *
2705 * Return:  0 on success, -errno on failure
2706 */
2707static int hv_pci_start_relations_work(struct hv_pcibus_device *hbus,
2708				       struct hv_dr_state *dr)
2709{
2710	struct hv_dr_work *dr_wrk;
2711	unsigned long flags;
2712	bool pending_dr;
2713
2714	if (hbus->state == hv_pcibus_removing) {
2715		dev_info(&hbus->hdev->device,
2716			 "PCI VMBus BUS_RELATIONS: ignored\n");
2717		return -ENOENT;
2718	}
2719
2720	dr_wrk = kzalloc(sizeof(*dr_wrk), GFP_NOWAIT);
2721	if (!dr_wrk)
2722		return -ENOMEM;
2723
2724	INIT_WORK(&dr_wrk->wrk, pci_devices_present_work);
2725	dr_wrk->bus = hbus;
2726
2727	spin_lock_irqsave(&hbus->device_list_lock, flags);
2728	/*
2729	 * If pending_dr is true, we have already queued a work,
2730	 * which will see the new dr. Otherwise, we need to
2731	 * queue a new work.
2732	 */
2733	pending_dr = !list_empty(&hbus->dr_list);
2734	list_add_tail(&dr->list_entry, &hbus->dr_list);
2735	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2736
2737	if (pending_dr)
2738		kfree(dr_wrk);
2739	else
2740		queue_work(hbus->wq, &dr_wrk->wrk);
2741
2742	return 0;
2743}
2744
2745/**
2746 * hv_pci_devices_present() - Handle list of new children
2747 * @hbus:      Root PCI bus, as understood by this driver
2748 * @relations: Packet from host listing children
2749 *
2750 * Process a new list of devices on the bus. The list of devices is
2751 * discovered by VSP and sent to us via VSP message PCI_BUS_RELATIONS,
2752 * whenever a new list of devices for this bus appears.
2753 */
2754static void hv_pci_devices_present(struct hv_pcibus_device *hbus,
2755				   struct pci_bus_relations *relations)
2756{
2757	struct hv_dr_state *dr;
2758	int i;
2759
2760	dr = kzalloc(struct_size(dr, func, relations->device_count),
2761		     GFP_NOWAIT);
2762	if (!dr)
2763		return;
2764
2765	dr->device_count = relations->device_count;
2766	for (i = 0; i < dr->device_count; i++) {
2767		dr->func[i].v_id = relations->func[i].v_id;
2768		dr->func[i].d_id = relations->func[i].d_id;
2769		dr->func[i].rev = relations->func[i].rev;
2770		dr->func[i].prog_intf = relations->func[i].prog_intf;
2771		dr->func[i].subclass = relations->func[i].subclass;
2772		dr->func[i].base_class = relations->func[i].base_class;
2773		dr->func[i].subsystem_id = relations->func[i].subsystem_id;
2774		dr->func[i].win_slot = relations->func[i].win_slot;
2775		dr->func[i].ser = relations->func[i].ser;
2776	}
2777
2778	if (hv_pci_start_relations_work(hbus, dr))
2779		kfree(dr);
2780}
2781
2782/**
2783 * hv_pci_devices_present2() - Handle list of new children
2784 * @hbus:	Root PCI bus, as understood by this driver
2785 * @relations:	Packet from host listing children
2786 *
2787 * This function is the v2 version of hv_pci_devices_present()
2788 */
2789static void hv_pci_devices_present2(struct hv_pcibus_device *hbus,
2790				    struct pci_bus_relations2 *relations)
2791{
2792	struct hv_dr_state *dr;
2793	int i;
2794
2795	dr = kzalloc(struct_size(dr, func, relations->device_count),
2796		     GFP_NOWAIT);
2797	if (!dr)
2798		return;
2799
2800	dr->device_count = relations->device_count;
2801	for (i = 0; i < dr->device_count; i++) {
2802		dr->func[i].v_id = relations->func[i].v_id;
2803		dr->func[i].d_id = relations->func[i].d_id;
2804		dr->func[i].rev = relations->func[i].rev;
2805		dr->func[i].prog_intf = relations->func[i].prog_intf;
2806		dr->func[i].subclass = relations->func[i].subclass;
2807		dr->func[i].base_class = relations->func[i].base_class;
2808		dr->func[i].subsystem_id = relations->func[i].subsystem_id;
2809		dr->func[i].win_slot = relations->func[i].win_slot;
2810		dr->func[i].ser = relations->func[i].ser;
2811		dr->func[i].flags = relations->func[i].flags;
2812		dr->func[i].virtual_numa_node =
2813			relations->func[i].virtual_numa_node;
2814	}
2815
2816	if (hv_pci_start_relations_work(hbus, dr))
2817		kfree(dr);
2818}
2819
2820/**
2821 * hv_eject_device_work() - Asynchronously handles ejection
2822 * @work:	Work struct embedded in internal device struct
2823 *
2824 * This function handles ejecting a device.  Windows will
2825 * attempt to gracefully eject a device, waiting 60 seconds to
2826 * hear back from the guest OS that this completed successfully.
2827 * If this timer expires, the device will be forcibly removed.
2828 */
2829static void hv_eject_device_work(struct work_struct *work)
2830{
2831	struct pci_eject_response *ejct_pkt;
2832	struct hv_pcibus_device *hbus;
2833	struct hv_pci_dev *hpdev;
2834	struct pci_dev *pdev;
2835	unsigned long flags;
2836	int wslot;
2837	struct {
2838		struct pci_packet pkt;
2839		u8 buffer[sizeof(struct pci_eject_response)];
2840	} ctxt;
2841
2842	hpdev = container_of(work, struct hv_pci_dev, wrk);
2843	hbus = hpdev->hbus;
2844
2845	mutex_lock(&hbus->state_lock);
2846
2847	/*
2848	 * Ejection can come before or after the PCI bus has been set up, so
2849	 * attempt to find it and tear down the bus state, if it exists.  This
2850	 * must be done without constructs like pci_domain_nr(hbus->bridge->bus)
2851	 * because hbus->bridge->bus may not exist yet.
2852	 */
2853	wslot = wslot_to_devfn(hpdev->desc.win_slot.slot);
2854	pdev = pci_get_domain_bus_and_slot(hbus->bridge->domain_nr, 0, wslot);
2855	if (pdev) {
2856		pci_lock_rescan_remove();
2857		pci_stop_and_remove_bus_device(pdev);
2858		pci_dev_put(pdev);
2859		pci_unlock_rescan_remove();
2860	}
2861
2862	spin_lock_irqsave(&hbus->device_list_lock, flags);
2863	list_del(&hpdev->list_entry);
2864	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2865
2866	if (hpdev->pci_slot)
2867		pci_destroy_slot(hpdev->pci_slot);
2868
2869	memset(&ctxt, 0, sizeof(ctxt));
2870	ejct_pkt = (struct pci_eject_response *)&ctxt.pkt.message;
2871	ejct_pkt->message_type.type = PCI_EJECTION_COMPLETE;
2872	ejct_pkt->wslot.slot = hpdev->desc.win_slot.slot;
2873	vmbus_sendpacket(hbus->hdev->channel, ejct_pkt,
2874			 sizeof(*ejct_pkt), 0,
2875			 VM_PKT_DATA_INBAND, 0);
2876
2877	/* For the get_pcichild() in hv_pci_eject_device() */
2878	put_pcichild(hpdev);
2879	/* For the two refs got in new_pcichild_device() */
2880	put_pcichild(hpdev);
2881	put_pcichild(hpdev);
2882	/* hpdev has been freed. Do not use it any more. */
2883
2884	mutex_unlock(&hbus->state_lock);
2885}
2886
2887/**
2888 * hv_pci_eject_device() - Handles device ejection
2889 * @hpdev:	Internal device tracking struct
2890 *
2891 * This function is invoked when an ejection packet arrives.  It
2892 * just schedules work so that we don't re-enter the packet
2893 * delivery code handling the ejection.
2894 */
2895static void hv_pci_eject_device(struct hv_pci_dev *hpdev)
2896{
2897	struct hv_pcibus_device *hbus = hpdev->hbus;
2898	struct hv_device *hdev = hbus->hdev;
2899
2900	if (hbus->state == hv_pcibus_removing) {
2901		dev_info(&hdev->device, "PCI VMBus EJECT: ignored\n");
2902		return;
2903	}
2904
2905	get_pcichild(hpdev);
2906	INIT_WORK(&hpdev->wrk, hv_eject_device_work);
2907	queue_work(hbus->wq, &hpdev->wrk);
2908}
2909
2910/**
2911 * hv_pci_onchannelcallback() - Handles incoming packets
2912 * @context:	Internal bus tracking struct
2913 *
2914 * This function is invoked whenever the host sends a packet to
2915 * this channel (which is private to this root PCI bus).
2916 */
2917static void hv_pci_onchannelcallback(void *context)
2918{
2919	const int packet_size = 0x100;
2920	int ret;
2921	struct hv_pcibus_device *hbus = context;
2922	struct vmbus_channel *chan = hbus->hdev->channel;
2923	u32 bytes_recvd;
2924	u64 req_id, req_addr;
2925	struct vmpacket_descriptor *desc;
2926	unsigned char *buffer;
2927	int bufferlen = packet_size;
2928	struct pci_packet *comp_packet;
2929	struct pci_response *response;
2930	struct pci_incoming_message *new_message;
2931	struct pci_bus_relations *bus_rel;
2932	struct pci_bus_relations2 *bus_rel2;
2933	struct pci_dev_inval_block *inval;
2934	struct pci_dev_incoming *dev_message;
2935	struct hv_pci_dev *hpdev;
2936	unsigned long flags;
2937
2938	buffer = kmalloc(bufferlen, GFP_ATOMIC);
2939	if (!buffer)
2940		return;
2941
2942	while (1) {
2943		ret = vmbus_recvpacket_raw(chan, buffer, bufferlen,
2944					   &bytes_recvd, &req_id);
2945
2946		if (ret == -ENOBUFS) {
2947			kfree(buffer);
2948			/* Handle large packet */
2949			bufferlen = bytes_recvd;
2950			buffer = kmalloc(bytes_recvd, GFP_ATOMIC);
2951			if (!buffer)
2952				return;
2953			continue;
2954		}
2955
2956		/* Zero length indicates there are no more packets. */
2957		if (ret || !bytes_recvd)
2958			break;
2959
2960		/*
2961		 * All incoming packets must be at least as large as a
2962		 * response.
2963		 */
2964		if (bytes_recvd <= sizeof(struct pci_response))
2965			continue;
2966		desc = (struct vmpacket_descriptor *)buffer;
2967
2968		switch (desc->type) {
2969		case VM_PKT_COMP:
2970
2971			lock_requestor(chan, flags);
2972			req_addr = __vmbus_request_addr_match(chan, req_id,
2973							      VMBUS_RQST_ADDR_ANY);
2974			if (req_addr == VMBUS_RQST_ERROR) {
2975				unlock_requestor(chan, flags);
2976				dev_err(&hbus->hdev->device,
2977					"Invalid transaction ID %llx\n",
2978					req_id);
2979				break;
2980			}
2981			comp_packet = (struct pci_packet *)req_addr;
2982			response = (struct pci_response *)buffer;
2983			/*
2984			 * Call ->completion_func() within the critical section to make
2985			 * sure that the packet pointer is still valid during the call:
2986			 * here 'valid' means that there's a task still waiting for the
2987			 * completion, and that the packet data is still on the waiting
2988			 * task's stack.  Cf. hv_compose_msi_msg().
2989			 */
2990			comp_packet->completion_func(comp_packet->compl_ctxt,
2991						     response,
2992						     bytes_recvd);
2993			unlock_requestor(chan, flags);
2994			break;
2995
2996		case VM_PKT_DATA_INBAND:
2997
2998			new_message = (struct pci_incoming_message *)buffer;
2999			switch (new_message->message_type.type) {
3000			case PCI_BUS_RELATIONS:
3001
3002				bus_rel = (struct pci_bus_relations *)buffer;
3003				if (bytes_recvd < sizeof(*bus_rel) ||
3004				    bytes_recvd <
3005					struct_size(bus_rel, func,
3006						    bus_rel->device_count)) {
3007					dev_err(&hbus->hdev->device,
3008						"bus relations too small\n");
3009					break;
3010				}
3011
3012				hv_pci_devices_present(hbus, bus_rel);
3013				break;
3014
3015			case PCI_BUS_RELATIONS2:
3016
3017				bus_rel2 = (struct pci_bus_relations2 *)buffer;
3018				if (bytes_recvd < sizeof(*bus_rel2) ||
3019				    bytes_recvd <
3020					struct_size(bus_rel2, func,
3021						    bus_rel2->device_count)) {
3022					dev_err(&hbus->hdev->device,
3023						"bus relations v2 too small\n");
3024					break;
3025				}
3026
3027				hv_pci_devices_present2(hbus, bus_rel2);
3028				break;
3029
3030			case PCI_EJECT:
3031
3032				dev_message = (struct pci_dev_incoming *)buffer;
3033				if (bytes_recvd < sizeof(*dev_message)) {
3034					dev_err(&hbus->hdev->device,
3035						"eject message too small\n");
3036					break;
3037				}
3038				hpdev = get_pcichild_wslot(hbus,
3039						      dev_message->wslot.slot);
3040				if (hpdev) {
3041					hv_pci_eject_device(hpdev);
3042					put_pcichild(hpdev);
3043				}
3044				break;
3045
3046			case PCI_INVALIDATE_BLOCK:
3047
3048				inval = (struct pci_dev_inval_block *)buffer;
3049				if (bytes_recvd < sizeof(*inval)) {
3050					dev_err(&hbus->hdev->device,
3051						"invalidate message too small\n");
3052					break;
3053				}
3054				hpdev = get_pcichild_wslot(hbus,
3055							   inval->wslot.slot);
3056				if (hpdev) {
3057					if (hpdev->block_invalidate) {
3058						hpdev->block_invalidate(
3059						    hpdev->invalidate_context,
3060						    inval->block_mask);
3061					}
3062					put_pcichild(hpdev);
3063				}
3064				break;
3065
3066			default:
3067				dev_warn(&hbus->hdev->device,
3068					"Unimplemented protocol message %x\n",
3069					new_message->message_type.type);
3070				break;
3071			}
3072			break;
3073
3074		default:
3075			dev_err(&hbus->hdev->device,
3076				"unhandled packet type %d, tid %llx len %d\n",
3077				desc->type, req_id, bytes_recvd);
3078			break;
3079		}
3080	}
3081
3082	kfree(buffer);
3083}
3084
3085/**
3086 * hv_pci_protocol_negotiation() - Set up protocol
3087 * @hdev:		VMBus's tracking struct for this root PCI bus.
3088 * @version:		Array of supported channel protocol versions in
3089 *			the order of probing - highest go first.
3090 * @num_version:	Number of elements in the version array.
3091 *
3092 * This driver is intended to support running on Windows 10
3093 * (server) and later versions. It will not run on earlier
3094 * versions, as they assume that many of the operations which
3095 * Linux needs accomplished with a spinlock held were done via
3096 * asynchronous messaging via VMBus.  Windows 10 increases the
3097 * surface area of PCI emulation so that these actions can take
3098 * place by suspending a virtual processor for their duration.
3099 *
3100 * This function negotiates the channel protocol version,
3101 * failing if the host doesn't support the necessary protocol
3102 * level.
3103 */
3104static int hv_pci_protocol_negotiation(struct hv_device *hdev,
3105				       enum pci_protocol_version_t version[],
3106				       int num_version)
3107{
3108	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3109	struct pci_version_request *version_req;
3110	struct hv_pci_compl comp_pkt;
3111	struct pci_packet *pkt;
3112	int ret;
3113	int i;
3114
3115	/*
3116	 * Initiate the handshake with the host and negotiate
3117	 * a version that the host can support. We start with the
3118	 * highest version number and go down if the host cannot
3119	 * support it.
3120	 */
3121	pkt = kzalloc(sizeof(*pkt) + sizeof(*version_req), GFP_KERNEL);
3122	if (!pkt)
3123		return -ENOMEM;
3124
3125	init_completion(&comp_pkt.host_event);
3126	pkt->completion_func = hv_pci_generic_compl;
3127	pkt->compl_ctxt = &comp_pkt;
3128	version_req = (struct pci_version_request *)&pkt->message;
3129	version_req->message_type.type = PCI_QUERY_PROTOCOL_VERSION;
3130
3131	for (i = 0; i < num_version; i++) {
3132		version_req->protocol_version = version[i];
3133		ret = vmbus_sendpacket(hdev->channel, version_req,
3134				sizeof(struct pci_version_request),
3135				(unsigned long)pkt, VM_PKT_DATA_INBAND,
3136				VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
3137		if (!ret)
3138			ret = wait_for_response(hdev, &comp_pkt.host_event);
3139
3140		if (ret) {
3141			dev_err(&hdev->device,
3142				"PCI Pass-through VSP failed to request version: %d",
3143				ret);
3144			goto exit;
3145		}
3146
3147		if (comp_pkt.completion_status >= 0) {
3148			hbus->protocol_version = version[i];
3149			dev_info(&hdev->device,
3150				"PCI VMBus probing: Using version %#x\n",
3151				hbus->protocol_version);
3152			goto exit;
3153		}
3154
3155		if (comp_pkt.completion_status != STATUS_REVISION_MISMATCH) {
3156			dev_err(&hdev->device,
3157				"PCI Pass-through VSP failed version request: %#x",
3158				comp_pkt.completion_status);
3159			ret = -EPROTO;
3160			goto exit;
3161		}
3162
3163		reinit_completion(&comp_pkt.host_event);
3164	}
3165
3166	dev_err(&hdev->device,
3167		"PCI pass-through VSP failed to find supported version");
3168	ret = -EPROTO;
3169
3170exit:
3171	kfree(pkt);
3172	return ret;
3173}
3174
3175/**
3176 * hv_pci_free_bridge_windows() - Release memory regions for the
3177 * bus
3178 * @hbus:	Root PCI bus, as understood by this driver
3179 */
3180static void hv_pci_free_bridge_windows(struct hv_pcibus_device *hbus)
3181{
3182	/*
3183	 * Set the resources back to the way they looked when they
3184	 * were allocated by setting IORESOURCE_BUSY again.
3185	 */
3186
3187	if (hbus->low_mmio_space && hbus->low_mmio_res) {
3188		hbus->low_mmio_res->flags |= IORESOURCE_BUSY;
3189		vmbus_free_mmio(hbus->low_mmio_res->start,
3190				resource_size(hbus->low_mmio_res));
3191	}
3192
3193	if (hbus->high_mmio_space && hbus->high_mmio_res) {
3194		hbus->high_mmio_res->flags |= IORESOURCE_BUSY;
3195		vmbus_free_mmio(hbus->high_mmio_res->start,
3196				resource_size(hbus->high_mmio_res));
3197	}
3198}
3199
3200/**
3201 * hv_pci_allocate_bridge_windows() - Allocate memory regions
3202 * for the bus
3203 * @hbus:	Root PCI bus, as understood by this driver
3204 *
3205 * This function calls vmbus_allocate_mmio(), which is itself a
3206 * bit of a compromise.  Ideally, we might change the pnp layer
3207 * in the kernel such that it comprehends either PCI devices
3208 * which are "grandchildren of ACPI," with some intermediate bus
3209 * node (in this case, VMBus) or change it such that it
3210 * understands VMBus.  The pnp layer, however, has been declared
3211 * deprecated, and not subject to change.
3212 *
3213 * The workaround, implemented here, is to ask VMBus to allocate
3214 * MMIO space for this bus.  VMBus itself knows which ranges are
3215 * appropriate by looking at its own ACPI objects.  Then, after
3216 * these ranges are claimed, they're modified to look like they
3217 * would have looked if the ACPI and pnp code had allocated
3218 * bridge windows.  These descriptors have to exist in this form
3219 * in order to satisfy the code which will get invoked when the
3220 * endpoint PCI function driver calls request_mem_region() or
3221 * request_mem_region_exclusive().
3222 *
3223 * Return: 0 on success, -errno on failure
3224 */
3225static int hv_pci_allocate_bridge_windows(struct hv_pcibus_device *hbus)
3226{
3227	resource_size_t align;
3228	int ret;
3229
3230	if (hbus->low_mmio_space) {
3231		align = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
3232		ret = vmbus_allocate_mmio(&hbus->low_mmio_res, hbus->hdev, 0,
3233					  (u64)(u32)0xffffffff,
3234					  hbus->low_mmio_space,
3235					  align, false);
3236		if (ret) {
3237			dev_err(&hbus->hdev->device,
3238				"Need %#llx of low MMIO space. Consider reconfiguring the VM.\n",
3239				hbus->low_mmio_space);
3240			return ret;
3241		}
3242
3243		/* Modify this resource to become a bridge window. */
3244		hbus->low_mmio_res->flags |= IORESOURCE_WINDOW;
3245		hbus->low_mmio_res->flags &= ~IORESOURCE_BUSY;
3246		pci_add_resource(&hbus->bridge->windows, hbus->low_mmio_res);
3247	}
3248
3249	if (hbus->high_mmio_space) {
3250		align = 1ULL << (63 - __builtin_clzll(hbus->high_mmio_space));
3251		ret = vmbus_allocate_mmio(&hbus->high_mmio_res, hbus->hdev,
3252					  0x100000000, -1,
3253					  hbus->high_mmio_space, align,
3254					  false);
3255		if (ret) {
3256			dev_err(&hbus->hdev->device,
3257				"Need %#llx of high MMIO space. Consider reconfiguring the VM.\n",
3258				hbus->high_mmio_space);
3259			goto release_low_mmio;
3260		}
3261
3262		/* Modify this resource to become a bridge window. */
3263		hbus->high_mmio_res->flags |= IORESOURCE_WINDOW;
3264		hbus->high_mmio_res->flags &= ~IORESOURCE_BUSY;
3265		pci_add_resource(&hbus->bridge->windows, hbus->high_mmio_res);
3266	}
3267
3268	return 0;
3269
3270release_low_mmio:
3271	if (hbus->low_mmio_res) {
3272		vmbus_free_mmio(hbus->low_mmio_res->start,
3273				resource_size(hbus->low_mmio_res));
3274	}
3275
3276	return ret;
3277}
3278
3279/**
3280 * hv_allocate_config_window() - Find MMIO space for PCI Config
3281 * @hbus:	Root PCI bus, as understood by this driver
3282 *
3283 * This function claims memory-mapped I/O space for accessing
3284 * configuration space for the functions on this bus.
3285 *
3286 * Return: 0 on success, -errno on failure
3287 */
3288static int hv_allocate_config_window(struct hv_pcibus_device *hbus)
3289{
3290	int ret;
3291
3292	/*
3293	 * Set up a region of MMIO space to use for accessing configuration
3294	 * space.
3295	 */
3296	ret = vmbus_allocate_mmio(&hbus->mem_config, hbus->hdev, 0, -1,
3297				  PCI_CONFIG_MMIO_LENGTH, 0x1000, false);
3298	if (ret)
3299		return ret;
3300
3301	/*
3302	 * vmbus_allocate_mmio() gets used for allocating both device endpoint
3303	 * resource claims (those which cannot be overlapped) and the ranges
3304	 * which are valid for the children of this bus, which are intended
3305	 * to be overlapped by those children.  Set the flag on this claim
3306	 * meaning that this region can't be overlapped.
3307	 */
3308
3309	hbus->mem_config->flags |= IORESOURCE_BUSY;
3310
3311	return 0;
3312}
3313
3314static void hv_free_config_window(struct hv_pcibus_device *hbus)
3315{
3316	vmbus_free_mmio(hbus->mem_config->start, PCI_CONFIG_MMIO_LENGTH);
3317}
3318
3319static int hv_pci_bus_exit(struct hv_device *hdev, bool keep_devs);
3320
3321/**
3322 * hv_pci_enter_d0() - Bring the "bus" into the D0 power state
3323 * @hdev:	VMBus's tracking struct for this root PCI bus
3324 *
3325 * Return: 0 on success, -errno on failure
3326 */
3327static int hv_pci_enter_d0(struct hv_device *hdev)
3328{
3329	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3330	struct pci_bus_d0_entry *d0_entry;
3331	struct hv_pci_compl comp_pkt;
3332	struct pci_packet *pkt;
3333	bool retry = true;
3334	int ret;
3335
3336enter_d0_retry:
3337	/*
3338	 * Tell the host that the bus is ready to use, and moved into the
3339	 * powered-on state.  This includes telling the host which region
3340	 * of memory-mapped I/O space has been chosen for configuration space
3341	 * access.
3342	 */
3343	pkt = kzalloc(sizeof(*pkt) + sizeof(*d0_entry), GFP_KERNEL);
3344	if (!pkt)
3345		return -ENOMEM;
3346
3347	init_completion(&comp_pkt.host_event);
3348	pkt->completion_func = hv_pci_generic_compl;
3349	pkt->compl_ctxt = &comp_pkt;
3350	d0_entry = (struct pci_bus_d0_entry *)&pkt->message;
3351	d0_entry->message_type.type = PCI_BUS_D0ENTRY;
3352	d0_entry->mmio_base = hbus->mem_config->start;
3353
3354	ret = vmbus_sendpacket(hdev->channel, d0_entry, sizeof(*d0_entry),
3355			       (unsigned long)pkt, VM_PKT_DATA_INBAND,
3356			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
3357	if (!ret)
3358		ret = wait_for_response(hdev, &comp_pkt.host_event);
3359
3360	if (ret)
3361		goto exit;
3362
3363	/*
3364	 * In certain case (Kdump) the pci device of interest was
3365	 * not cleanly shut down and resource is still held on host
3366	 * side, the host could return invalid device status.
3367	 * We need to explicitly request host to release the resource
3368	 * and try to enter D0 again.
3369	 */
3370	if (comp_pkt.completion_status < 0 && retry) {
3371		retry = false;
3372
3373		dev_err(&hdev->device, "Retrying D0 Entry\n");
3374
3375		/*
3376		 * Hv_pci_bus_exit() calls hv_send_resource_released()
3377		 * to free up resources of its child devices.
3378		 * In the kdump kernel we need to set the
3379		 * wslot_res_allocated to 255 so it scans all child
3380		 * devices to release resources allocated in the
3381		 * normal kernel before panic happened.
3382		 */
3383		hbus->wslot_res_allocated = 255;
3384
3385		ret = hv_pci_bus_exit(hdev, true);
3386
3387		if (ret == 0) {
3388			kfree(pkt);
3389			goto enter_d0_retry;
3390		}
3391		dev_err(&hdev->device,
3392			"Retrying D0 failed with ret %d\n", ret);
3393	}
3394
3395	if (comp_pkt.completion_status < 0) {
3396		dev_err(&hdev->device,
3397			"PCI Pass-through VSP failed D0 Entry with status %x\n",
3398			comp_pkt.completion_status);
3399		ret = -EPROTO;
3400		goto exit;
3401	}
3402
3403	ret = 0;
3404
3405exit:
3406	kfree(pkt);
3407	return ret;
3408}
3409
3410/**
3411 * hv_pci_query_relations() - Ask host to send list of child
3412 * devices
3413 * @hdev:	VMBus's tracking struct for this root PCI bus
3414 *
3415 * Return: 0 on success, -errno on failure
3416 */
3417static int hv_pci_query_relations(struct hv_device *hdev)
3418{
3419	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3420	struct pci_message message;
3421	struct completion comp;
3422	int ret;
3423
3424	/* Ask the host to send along the list of child devices */
3425	init_completion(&comp);
3426	if (cmpxchg(&hbus->survey_event, NULL, &comp))
3427		return -ENOTEMPTY;
3428
3429	memset(&message, 0, sizeof(message));
3430	message.type = PCI_QUERY_BUS_RELATIONS;
3431
3432	ret = vmbus_sendpacket(hdev->channel, &message, sizeof(message),
3433			       0, VM_PKT_DATA_INBAND, 0);
3434	if (!ret)
3435		ret = wait_for_response(hdev, &comp);
3436
3437	/*
3438	 * In the case of fast device addition/removal, it's possible that
3439	 * vmbus_sendpacket() or wait_for_response() returns -ENODEV but we
3440	 * already got a PCI_BUS_RELATIONS* message from the host and the
3441	 * channel callback already scheduled a work to hbus->wq, which can be
3442	 * running pci_devices_present_work() -> survey_child_resources() ->
3443	 * complete(&hbus->survey_event), even after hv_pci_query_relations()
3444	 * exits and the stack variable 'comp' is no longer valid; as a result,
3445	 * a hang or a page fault may happen when the complete() calls
3446	 * raw_spin_lock_irqsave(). Flush hbus->wq before we exit from
3447	 * hv_pci_query_relations() to avoid the issues. Note: if 'ret' is
3448	 * -ENODEV, there can't be any more work item scheduled to hbus->wq
3449	 * after the flush_workqueue(): see vmbus_onoffer_rescind() ->
3450	 * vmbus_reset_channel_cb(), vmbus_rescind_cleanup() ->
3451	 * channel->rescind = true.
3452	 */
3453	flush_workqueue(hbus->wq);
3454
3455	return ret;
3456}
3457
3458/**
3459 * hv_send_resources_allocated() - Report local resource choices
3460 * @hdev:	VMBus's tracking struct for this root PCI bus
3461 *
3462 * The host OS is expecting to be sent a request as a message
3463 * which contains all the resources that the device will use.
3464 * The response contains those same resources, "translated"
3465 * which is to say, the values which should be used by the
3466 * hardware, when it delivers an interrupt.  (MMIO resources are
3467 * used in local terms.)  This is nice for Windows, and lines up
3468 * with the FDO/PDO split, which doesn't exist in Linux.  Linux
3469 * is deeply expecting to scan an emulated PCI configuration
3470 * space.  So this message is sent here only to drive the state
3471 * machine on the host forward.
3472 *
3473 * Return: 0 on success, -errno on failure
3474 */
3475static int hv_send_resources_allocated(struct hv_device *hdev)
3476{
3477	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3478	struct pci_resources_assigned *res_assigned;
3479	struct pci_resources_assigned2 *res_assigned2;
3480	struct hv_pci_compl comp_pkt;
3481	struct hv_pci_dev *hpdev;
3482	struct pci_packet *pkt;
3483	size_t size_res;
3484	int wslot;
3485	int ret;
3486
3487	size_res = (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2)
3488			? sizeof(*res_assigned) : sizeof(*res_assigned2);
3489
3490	pkt = kmalloc(sizeof(*pkt) + size_res, GFP_KERNEL);
3491	if (!pkt)
3492		return -ENOMEM;
3493
3494	ret = 0;
3495
3496	for (wslot = 0; wslot < 256; wslot++) {
3497		hpdev = get_pcichild_wslot(hbus, wslot);
3498		if (!hpdev)
3499			continue;
3500
3501		memset(pkt, 0, sizeof(*pkt) + size_res);
3502		init_completion(&comp_pkt.host_event);
3503		pkt->completion_func = hv_pci_generic_compl;
3504		pkt->compl_ctxt = &comp_pkt;
3505
3506		if (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2) {
3507			res_assigned =
3508				(struct pci_resources_assigned *)&pkt->message;
3509			res_assigned->message_type.type =
3510				PCI_RESOURCES_ASSIGNED;
3511			res_assigned->wslot.slot = hpdev->desc.win_slot.slot;
3512		} else {
3513			res_assigned2 =
3514				(struct pci_resources_assigned2 *)&pkt->message;
3515			res_assigned2->message_type.type =
3516				PCI_RESOURCES_ASSIGNED2;
3517			res_assigned2->wslot.slot = hpdev->desc.win_slot.slot;
3518		}
3519		put_pcichild(hpdev);
3520
3521		ret = vmbus_sendpacket(hdev->channel, &pkt->message,
3522				size_res, (unsigned long)pkt,
3523				VM_PKT_DATA_INBAND,
3524				VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
3525		if (!ret)
3526			ret = wait_for_response(hdev, &comp_pkt.host_event);
3527		if (ret)
3528			break;
3529
3530		if (comp_pkt.completion_status < 0) {
3531			ret = -EPROTO;
3532			dev_err(&hdev->device,
3533				"resource allocated returned 0x%x",
3534				comp_pkt.completion_status);
3535			break;
3536		}
3537
3538		hbus->wslot_res_allocated = wslot;
3539	}
3540
3541	kfree(pkt);
3542	return ret;
3543}
3544
3545/**
3546 * hv_send_resources_released() - Report local resources
3547 * released
3548 * @hdev:	VMBus's tracking struct for this root PCI bus
3549 *
3550 * Return: 0 on success, -errno on failure
3551 */
3552static int hv_send_resources_released(struct hv_device *hdev)
3553{
3554	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3555	struct pci_child_message pkt;
3556	struct hv_pci_dev *hpdev;
3557	int wslot;
3558	int ret;
3559
3560	for (wslot = hbus->wslot_res_allocated; wslot >= 0; wslot--) {
3561		hpdev = get_pcichild_wslot(hbus, wslot);
3562		if (!hpdev)
3563			continue;
3564
3565		memset(&pkt, 0, sizeof(pkt));
3566		pkt.message_type.type = PCI_RESOURCES_RELEASED;
3567		pkt.wslot.slot = hpdev->desc.win_slot.slot;
3568
3569		put_pcichild(hpdev);
3570
3571		ret = vmbus_sendpacket(hdev->channel, &pkt, sizeof(pkt), 0,
3572				       VM_PKT_DATA_INBAND, 0);
3573		if (ret)
3574			return ret;
3575
3576		hbus->wslot_res_allocated = wslot - 1;
3577	}
3578
3579	hbus->wslot_res_allocated = -1;
3580
3581	return 0;
3582}
3583
3584#define HVPCI_DOM_MAP_SIZE (64 * 1024)
3585static DECLARE_BITMAP(hvpci_dom_map, HVPCI_DOM_MAP_SIZE);
3586
3587/*
3588 * PCI domain number 0 is used by emulated devices on Gen1 VMs, so define 0
3589 * as invalid for passthrough PCI devices of this driver.
3590 */
3591#define HVPCI_DOM_INVALID 0
3592
3593/**
3594 * hv_get_dom_num() - Get a valid PCI domain number
3595 * Check if the PCI domain number is in use, and return another number if
3596 * it is in use.
3597 *
3598 * @dom: Requested domain number
3599 *
3600 * return: domain number on success, HVPCI_DOM_INVALID on failure
3601 */
3602static u16 hv_get_dom_num(u16 dom)
3603{
3604	unsigned int i;
3605
3606	if (test_and_set_bit(dom, hvpci_dom_map) == 0)
3607		return dom;
3608
3609	for_each_clear_bit(i, hvpci_dom_map, HVPCI_DOM_MAP_SIZE) {
3610		if (test_and_set_bit(i, hvpci_dom_map) == 0)
3611			return i;
3612	}
3613
3614	return HVPCI_DOM_INVALID;
3615}
3616
3617/**
3618 * hv_put_dom_num() - Mark the PCI domain number as free
3619 * @dom: Domain number to be freed
3620 */
3621static void hv_put_dom_num(u16 dom)
3622{
3623	clear_bit(dom, hvpci_dom_map);
3624}
3625
3626/**
3627 * hv_pci_probe() - New VMBus channel probe, for a root PCI bus
3628 * @hdev:	VMBus's tracking struct for this root PCI bus
3629 * @dev_id:	Identifies the device itself
3630 *
3631 * Return: 0 on success, -errno on failure
3632 */
3633static int hv_pci_probe(struct hv_device *hdev,
3634			const struct hv_vmbus_device_id *dev_id)
3635{
3636	struct pci_host_bridge *bridge;
3637	struct hv_pcibus_device *hbus;
3638	u16 dom_req, dom;
3639	char *name;
3640	int ret;
3641
3642	bridge = devm_pci_alloc_host_bridge(&hdev->device, 0);
3643	if (!bridge)
3644		return -ENOMEM;
3645
3646	hbus = kzalloc(sizeof(*hbus), GFP_KERNEL);
3647	if (!hbus)
3648		return -ENOMEM;
3649
3650	hbus->bridge = bridge;
3651	mutex_init(&hbus->state_lock);
3652	hbus->state = hv_pcibus_init;
3653	hbus->wslot_res_allocated = -1;
3654
3655	/*
3656	 * The PCI bus "domain" is what is called "segment" in ACPI and other
3657	 * specs. Pull it from the instance ID, to get something usually
3658	 * unique. In rare cases of collision, we will find out another number
3659	 * not in use.
3660	 *
3661	 * Note that, since this code only runs in a Hyper-V VM, Hyper-V
3662	 * together with this guest driver can guarantee that (1) The only
3663	 * domain used by Gen1 VMs for something that looks like a physical
3664	 * PCI bus (which is actually emulated by the hypervisor) is domain 0.
3665	 * (2) There will be no overlap between domains (after fixing possible
3666	 * collisions) in the same VM.
3667	 */
3668	dom_req = hdev->dev_instance.b[5] << 8 | hdev->dev_instance.b[4];
3669	dom = hv_get_dom_num(dom_req);
3670
3671	if (dom == HVPCI_DOM_INVALID) {
3672		dev_err(&hdev->device,
3673			"Unable to use dom# 0x%x or other numbers", dom_req);
3674		ret = -EINVAL;
3675		goto free_bus;
3676	}
3677
3678	if (dom != dom_req)
3679		dev_info(&hdev->device,
3680			 "PCI dom# 0x%x has collision, using 0x%x",
3681			 dom_req, dom);
3682
3683	hbus->bridge->domain_nr = dom;
3684#ifdef CONFIG_X86
3685	hbus->sysdata.domain = dom;
3686	hbus->use_calls = !!(ms_hyperv.hints & HV_X64_USE_MMIO_HYPERCALLS);
3687#elif defined(CONFIG_ARM64)
3688	/*
3689	 * Set the PCI bus parent to be the corresponding VMbus
3690	 * device. Then the VMbus device will be assigned as the
3691	 * ACPI companion in pcibios_root_bridge_prepare() and
3692	 * pci_dma_configure() will propagate device coherence
3693	 * information to devices created on the bus.
3694	 */
3695	hbus->sysdata.parent = hdev->device.parent;
3696	hbus->use_calls = false;
3697#endif
3698
3699	hbus->hdev = hdev;
3700	INIT_LIST_HEAD(&hbus->children);
3701	INIT_LIST_HEAD(&hbus->dr_list);
3702	spin_lock_init(&hbus->config_lock);
3703	spin_lock_init(&hbus->device_list_lock);
3704	hbus->wq = alloc_ordered_workqueue("hv_pci_%x", 0,
3705					   hbus->bridge->domain_nr);
3706	if (!hbus->wq) {
3707		ret = -ENOMEM;
3708		goto free_dom;
3709	}
3710
3711	hdev->channel->next_request_id_callback = vmbus_next_request_id;
3712	hdev->channel->request_addr_callback = vmbus_request_addr;
3713	hdev->channel->rqstor_size = HV_PCI_RQSTOR_SIZE;
3714
3715	ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0,
3716			 hv_pci_onchannelcallback, hbus);
3717	if (ret)
3718		goto destroy_wq;
3719
3720	hv_set_drvdata(hdev, hbus);
3721
3722	ret = hv_pci_protocol_negotiation(hdev, pci_protocol_versions,
3723					  ARRAY_SIZE(pci_protocol_versions));
3724	if (ret)
3725		goto close;
3726
3727	ret = hv_allocate_config_window(hbus);
3728	if (ret)
3729		goto close;
3730
3731	hbus->cfg_addr = ioremap(hbus->mem_config->start,
3732				 PCI_CONFIG_MMIO_LENGTH);
3733	if (!hbus->cfg_addr) {
3734		dev_err(&hdev->device,
3735			"Unable to map a virtual address for config space\n");
3736		ret = -ENOMEM;
3737		goto free_config;
3738	}
3739
3740	name = kasprintf(GFP_KERNEL, "%pUL", &hdev->dev_instance);
3741	if (!name) {
3742		ret = -ENOMEM;
3743		goto unmap;
3744	}
3745
3746	hbus->fwnode = irq_domain_alloc_named_fwnode(name);
3747	kfree(name);
3748	if (!hbus->fwnode) {
3749		ret = -ENOMEM;
3750		goto unmap;
3751	}
3752
3753	ret = hv_pcie_init_irq_domain(hbus);
3754	if (ret)
3755		goto free_fwnode;
3756
3757	ret = hv_pci_query_relations(hdev);
3758	if (ret)
3759		goto free_irq_domain;
3760
3761	mutex_lock(&hbus->state_lock);
3762
3763	ret = hv_pci_enter_d0(hdev);
3764	if (ret)
3765		goto release_state_lock;
3766
3767	ret = hv_pci_allocate_bridge_windows(hbus);
3768	if (ret)
3769		goto exit_d0;
3770
3771	ret = hv_send_resources_allocated(hdev);
3772	if (ret)
3773		goto free_windows;
3774
3775	prepopulate_bars(hbus);
3776
3777	hbus->state = hv_pcibus_probed;
3778
3779	ret = create_root_hv_pci_bus(hbus);
3780	if (ret)
3781		goto free_windows;
3782
3783	mutex_unlock(&hbus->state_lock);
3784	return 0;
3785
3786free_windows:
3787	hv_pci_free_bridge_windows(hbus);
3788exit_d0:
3789	(void) hv_pci_bus_exit(hdev, true);
3790release_state_lock:
3791	mutex_unlock(&hbus->state_lock);
3792free_irq_domain:
3793	irq_domain_remove(hbus->irq_domain);
3794free_fwnode:
3795	irq_domain_free_fwnode(hbus->fwnode);
3796unmap:
3797	iounmap(hbus->cfg_addr);
3798free_config:
3799	hv_free_config_window(hbus);
3800close:
3801	vmbus_close(hdev->channel);
3802destroy_wq:
3803	destroy_workqueue(hbus->wq);
3804free_dom:
3805	hv_put_dom_num(hbus->bridge->domain_nr);
3806free_bus:
3807	kfree(hbus);
3808	return ret;
3809}
3810
3811static int hv_pci_bus_exit(struct hv_device *hdev, bool keep_devs)
3812{
3813	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3814	struct vmbus_channel *chan = hdev->channel;
3815	struct {
3816		struct pci_packet teardown_packet;
3817		u8 buffer[sizeof(struct pci_message)];
3818	} pkt;
3819	struct hv_pci_compl comp_pkt;
3820	struct hv_pci_dev *hpdev, *tmp;
3821	unsigned long flags;
3822	u64 trans_id;
3823	int ret;
3824
3825	/*
3826	 * After the host sends the RESCIND_CHANNEL message, it doesn't
3827	 * access the per-channel ringbuffer any longer.
3828	 */
3829	if (chan->rescind)
3830		return 0;
3831
3832	if (!keep_devs) {
3833		struct list_head removed;
3834
3835		/* Move all present children to the list on stack */
3836		INIT_LIST_HEAD(&removed);
3837		spin_lock_irqsave(&hbus->device_list_lock, flags);
3838		list_for_each_entry_safe(hpdev, tmp, &hbus->children, list_entry)
3839			list_move_tail(&hpdev->list_entry, &removed);
3840		spin_unlock_irqrestore(&hbus->device_list_lock, flags);
3841
3842		/* Remove all children in the list */
3843		list_for_each_entry_safe(hpdev, tmp, &removed, list_entry) {
3844			list_del(&hpdev->list_entry);
3845			if (hpdev->pci_slot)
3846				pci_destroy_slot(hpdev->pci_slot);
3847			/* For the two refs got in new_pcichild_device() */
3848			put_pcichild(hpdev);
3849			put_pcichild(hpdev);
3850		}
3851	}
3852
3853	ret = hv_send_resources_released(hdev);
3854	if (ret) {
3855		dev_err(&hdev->device,
3856			"Couldn't send resources released packet(s)\n");
3857		return ret;
3858	}
3859
3860	memset(&pkt.teardown_packet, 0, sizeof(pkt.teardown_packet));
3861	init_completion(&comp_pkt.host_event);
3862	pkt.teardown_packet.completion_func = hv_pci_generic_compl;
3863	pkt.teardown_packet.compl_ctxt = &comp_pkt;
3864	pkt.teardown_packet.message[0].type = PCI_BUS_D0EXIT;
3865
3866	ret = vmbus_sendpacket_getid(chan, &pkt.teardown_packet.message,
3867				     sizeof(struct pci_message),
3868				     (unsigned long)&pkt.teardown_packet,
3869				     &trans_id, VM_PKT_DATA_INBAND,
3870				     VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
3871	if (ret)
3872		return ret;
3873
3874	if (wait_for_completion_timeout(&comp_pkt.host_event, 10 * HZ) == 0) {
3875		/*
3876		 * The completion packet on the stack becomes invalid after
3877		 * 'return'; remove the ID from the VMbus requestor if the
3878		 * identifier is still mapped to/associated with the packet.
3879		 *
3880		 * Cf. hv_pci_onchannelcallback().
3881		 */
3882		vmbus_request_addr_match(chan, trans_id,
3883					 (unsigned long)&pkt.teardown_packet);
3884		return -ETIMEDOUT;
3885	}
3886
3887	return 0;
3888}
3889
3890/**
3891 * hv_pci_remove() - Remove routine for this VMBus channel
3892 * @hdev:	VMBus's tracking struct for this root PCI bus
3893 */
3894static void hv_pci_remove(struct hv_device *hdev)
3895{
3896	struct hv_pcibus_device *hbus;
3897
3898	hbus = hv_get_drvdata(hdev);
3899	if (hbus->state == hv_pcibus_installed) {
3900		tasklet_disable(&hdev->channel->callback_event);
3901		hbus->state = hv_pcibus_removing;
3902		tasklet_enable(&hdev->channel->callback_event);
3903		destroy_workqueue(hbus->wq);
3904		hbus->wq = NULL;
3905		/*
3906		 * At this point, no work is running or can be scheduled
3907		 * on hbus-wq. We can't race with hv_pci_devices_present()
3908		 * or hv_pci_eject_device(), it's safe to proceed.
3909		 */
3910
3911		/* Remove the bus from PCI's point of view. */
3912		pci_lock_rescan_remove();
3913		pci_stop_root_bus(hbus->bridge->bus);
3914		hv_pci_remove_slots(hbus);
3915		pci_remove_root_bus(hbus->bridge->bus);
3916		pci_unlock_rescan_remove();
3917	}
3918
3919	hv_pci_bus_exit(hdev, false);
3920
3921	vmbus_close(hdev->channel);
3922
3923	iounmap(hbus->cfg_addr);
3924	hv_free_config_window(hbus);
3925	hv_pci_free_bridge_windows(hbus);
3926	irq_domain_remove(hbus->irq_domain);
3927	irq_domain_free_fwnode(hbus->fwnode);
3928
3929	hv_put_dom_num(hbus->bridge->domain_nr);
3930
3931	kfree(hbus);
3932}
3933
3934static int hv_pci_suspend(struct hv_device *hdev)
3935{
3936	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3937	enum hv_pcibus_state old_state;
3938	int ret;
3939
3940	/*
3941	 * hv_pci_suspend() must make sure there are no pending work items
3942	 * before calling vmbus_close(), since it runs in a process context
3943	 * as a callback in dpm_suspend().  When it starts to run, the channel
3944	 * callback hv_pci_onchannelcallback(), which runs in a tasklet
3945	 * context, can be still running concurrently and scheduling new work
3946	 * items onto hbus->wq in hv_pci_devices_present() and
3947	 * hv_pci_eject_device(), and the work item handlers can access the
3948	 * vmbus channel, which can be being closed by hv_pci_suspend(), e.g.
3949	 * the work item handler pci_devices_present_work() ->
3950	 * new_pcichild_device() writes to the vmbus channel.
3951	 *
3952	 * To eliminate the race, hv_pci_suspend() disables the channel
3953	 * callback tasklet, sets hbus->state to hv_pcibus_removing, and
3954	 * re-enables the tasklet. This way, when hv_pci_suspend() proceeds,
3955	 * it knows that no new work item can be scheduled, and then it flushes
3956	 * hbus->wq and safely closes the vmbus channel.
3957	 */
3958	tasklet_disable(&hdev->channel->callback_event);
3959
3960	/* Change the hbus state to prevent new work items. */
3961	old_state = hbus->state;
3962	if (hbus->state == hv_pcibus_installed)
3963		hbus->state = hv_pcibus_removing;
3964
3965	tasklet_enable(&hdev->channel->callback_event);
3966
3967	if (old_state != hv_pcibus_installed)
3968		return -EINVAL;
3969
3970	flush_workqueue(hbus->wq);
3971
3972	ret = hv_pci_bus_exit(hdev, true);
3973	if (ret)
3974		return ret;
3975
3976	vmbus_close(hdev->channel);
3977
3978	return 0;
3979}
3980
3981static int hv_pci_restore_msi_msg(struct pci_dev *pdev, void *arg)
3982{
3983	struct irq_data *irq_data;
3984	struct msi_desc *entry;
3985	int ret = 0;
3986
3987	if (!pdev->msi_enabled && !pdev->msix_enabled)
3988		return 0;
3989
3990	msi_lock_descs(&pdev->dev);
3991	msi_for_each_desc(entry, &pdev->dev, MSI_DESC_ASSOCIATED) {
3992		irq_data = irq_get_irq_data(entry->irq);
3993		if (WARN_ON_ONCE(!irq_data)) {
3994			ret = -EINVAL;
3995			break;
3996		}
3997
3998		hv_compose_msi_msg(irq_data, &entry->msg);
3999	}
4000	msi_unlock_descs(&pdev->dev);
4001
4002	return ret;
4003}
4004
4005/*
4006 * Upon resume, pci_restore_msi_state() -> ... ->  __pci_write_msi_msg()
4007 * directly writes the MSI/MSI-X registers via MMIO, but since Hyper-V
4008 * doesn't trap and emulate the MMIO accesses, here hv_compose_msi_msg()
4009 * must be used to ask Hyper-V to re-create the IOMMU Interrupt Remapping
4010 * Table entries.
4011 */
4012static void hv_pci_restore_msi_state(struct hv_pcibus_device *hbus)
4013{
4014	pci_walk_bus(hbus->bridge->bus, hv_pci_restore_msi_msg, NULL);
4015}
4016
4017static int hv_pci_resume(struct hv_device *hdev)
4018{
4019	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
4020	enum pci_protocol_version_t version[1];
4021	int ret;
4022
4023	hbus->state = hv_pcibus_init;
4024
4025	hdev->channel->next_request_id_callback = vmbus_next_request_id;
4026	hdev->channel->request_addr_callback = vmbus_request_addr;
4027	hdev->channel->rqstor_size = HV_PCI_RQSTOR_SIZE;
4028
4029	ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0,
4030			 hv_pci_onchannelcallback, hbus);
4031	if (ret)
4032		return ret;
4033
4034	/* Only use the version that was in use before hibernation. */
4035	version[0] = hbus->protocol_version;
4036	ret = hv_pci_protocol_negotiation(hdev, version, 1);
4037	if (ret)
4038		goto out;
4039
4040	ret = hv_pci_query_relations(hdev);
4041	if (ret)
4042		goto out;
4043
4044	mutex_lock(&hbus->state_lock);
4045
4046	ret = hv_pci_enter_d0(hdev);
4047	if (ret)
4048		goto release_state_lock;
4049
4050	ret = hv_send_resources_allocated(hdev);
4051	if (ret)
4052		goto release_state_lock;
4053
4054	prepopulate_bars(hbus);
4055
4056	hv_pci_restore_msi_state(hbus);
4057
4058	hbus->state = hv_pcibus_installed;
4059	mutex_unlock(&hbus->state_lock);
4060	return 0;
4061
4062release_state_lock:
4063	mutex_unlock(&hbus->state_lock);
4064out:
4065	vmbus_close(hdev->channel);
4066	return ret;
4067}
4068
4069static const struct hv_vmbus_device_id hv_pci_id_table[] = {
4070	/* PCI Pass-through Class ID */
4071	/* 44C4F61D-4444-4400-9D52-802E27EDE19F */
4072	{ HV_PCIE_GUID, },
4073	{ },
4074};
4075
4076MODULE_DEVICE_TABLE(vmbus, hv_pci_id_table);
4077
4078static struct hv_driver hv_pci_drv = {
4079	.name		= "hv_pci",
4080	.id_table	= hv_pci_id_table,
4081	.probe		= hv_pci_probe,
4082	.remove		= hv_pci_remove,
4083	.suspend	= hv_pci_suspend,
4084	.resume		= hv_pci_resume,
4085};
4086
4087static void __exit exit_hv_pci_drv(void)
4088{
4089	vmbus_driver_unregister(&hv_pci_drv);
4090
4091	hvpci_block_ops.read_block = NULL;
4092	hvpci_block_ops.write_block = NULL;
4093	hvpci_block_ops.reg_blk_invalidate = NULL;
4094}
4095
4096static int __init init_hv_pci_drv(void)
4097{
4098	int ret;
4099
4100	if (!hv_is_hyperv_initialized())
4101		return -ENODEV;
4102
4103	ret = hv_pci_irqchip_init();
4104	if (ret)
4105		return ret;
4106
4107	/* Set the invalid domain number's bit, so it will not be used */
4108	set_bit(HVPCI_DOM_INVALID, hvpci_dom_map);
4109
4110	/* Initialize PCI block r/w interface */
4111	hvpci_block_ops.read_block = hv_read_config_block;
4112	hvpci_block_ops.write_block = hv_write_config_block;
4113	hvpci_block_ops.reg_blk_invalidate = hv_register_block_invalidate;
4114
4115	return vmbus_driver_register(&hv_pci_drv);
4116}
4117
4118module_init(init_hv_pci_drv);
4119module_exit(exit_hv_pci_drv);
4120
4121MODULE_DESCRIPTION("Hyper-V PCI");
4122MODULE_LICENSE("GPL v2");
4123