xref: /kernel/linux/linux-6.6/drivers/opp/of.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Generic OPP OF helpers
4 *
5 * Copyright (C) 2009-2010 Texas Instruments Incorporated.
6 *	Nishanth Menon
7 *	Romit Dasgupta
8 *	Kevin Hilman
9 */
10
11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13#include <linux/cpu.h>
14#include <linux/errno.h>
15#include <linux/device.h>
16#include <linux/of.h>
17#include <linux/pm_domain.h>
18#include <linux/slab.h>
19#include <linux/export.h>
20#include <linux/energy_model.h>
21
22#include "opp.h"
23
24/* OPP tables with uninitialized required OPPs, protected by opp_table_lock */
25static LIST_HEAD(lazy_opp_tables);
26
27/*
28 * Returns opp descriptor node for a device node, caller must
29 * do of_node_put().
30 */
31static struct device_node *_opp_of_get_opp_desc_node(struct device_node *np,
32						     int index)
33{
34	/* "operating-points-v2" can be an array for power domain providers */
35	return of_parse_phandle(np, "operating-points-v2", index);
36}
37
38/* Returns opp descriptor node for a device, caller must do of_node_put() */
39struct device_node *dev_pm_opp_of_get_opp_desc_node(struct device *dev)
40{
41	return _opp_of_get_opp_desc_node(dev->of_node, 0);
42}
43EXPORT_SYMBOL_GPL(dev_pm_opp_of_get_opp_desc_node);
44
45struct opp_table *_managed_opp(struct device *dev, int index)
46{
47	struct opp_table *opp_table, *managed_table = NULL;
48	struct device_node *np;
49
50	np = _opp_of_get_opp_desc_node(dev->of_node, index);
51	if (!np)
52		return NULL;
53
54	list_for_each_entry(opp_table, &opp_tables, node) {
55		if (opp_table->np == np) {
56			/*
57			 * Multiple devices can point to the same OPP table and
58			 * so will have same node-pointer, np.
59			 *
60			 * But the OPPs will be considered as shared only if the
61			 * OPP table contains a "opp-shared" property.
62			 */
63			if (opp_table->shared_opp == OPP_TABLE_ACCESS_SHARED) {
64				_get_opp_table_kref(opp_table);
65				managed_table = opp_table;
66			}
67
68			break;
69		}
70	}
71
72	of_node_put(np);
73
74	return managed_table;
75}
76
77/* The caller must call dev_pm_opp_put() after the OPP is used */
78static struct dev_pm_opp *_find_opp_of_np(struct opp_table *opp_table,
79					  struct device_node *opp_np)
80{
81	struct dev_pm_opp *opp;
82
83	mutex_lock(&opp_table->lock);
84
85	list_for_each_entry(opp, &opp_table->opp_list, node) {
86		if (opp->np == opp_np) {
87			dev_pm_opp_get(opp);
88			mutex_unlock(&opp_table->lock);
89			return opp;
90		}
91	}
92
93	mutex_unlock(&opp_table->lock);
94
95	return NULL;
96}
97
98static struct device_node *of_parse_required_opp(struct device_node *np,
99						 int index)
100{
101	return of_parse_phandle(np, "required-opps", index);
102}
103
104/* The caller must call dev_pm_opp_put_opp_table() after the table is used */
105static struct opp_table *_find_table_of_opp_np(struct device_node *opp_np)
106{
107	struct opp_table *opp_table;
108	struct device_node *opp_table_np;
109
110	opp_table_np = of_get_parent(opp_np);
111	if (!opp_table_np)
112		goto err;
113
114	/* It is safe to put the node now as all we need now is its address */
115	of_node_put(opp_table_np);
116
117	mutex_lock(&opp_table_lock);
118	list_for_each_entry(opp_table, &opp_tables, node) {
119		if (opp_table_np == opp_table->np) {
120			_get_opp_table_kref(opp_table);
121			mutex_unlock(&opp_table_lock);
122			return opp_table;
123		}
124	}
125	mutex_unlock(&opp_table_lock);
126
127err:
128	return ERR_PTR(-ENODEV);
129}
130
131/* Free resources previously acquired by _opp_table_alloc_required_tables() */
132static void _opp_table_free_required_tables(struct opp_table *opp_table)
133{
134	struct opp_table **required_opp_tables = opp_table->required_opp_tables;
135	int i;
136
137	if (!required_opp_tables)
138		return;
139
140	for (i = 0; i < opp_table->required_opp_count; i++) {
141		if (IS_ERR_OR_NULL(required_opp_tables[i]))
142			continue;
143
144		dev_pm_opp_put_opp_table(required_opp_tables[i]);
145	}
146
147	kfree(required_opp_tables);
148
149	opp_table->required_opp_count = 0;
150	opp_table->required_opp_tables = NULL;
151
152	mutex_lock(&opp_table_lock);
153	list_del(&opp_table->lazy);
154	mutex_unlock(&opp_table_lock);
155}
156
157/*
158 * Populate all devices and opp tables which are part of "required-opps" list.
159 * Checking only the first OPP node should be enough.
160 */
161static void _opp_table_alloc_required_tables(struct opp_table *opp_table,
162					     struct device *dev,
163					     struct device_node *opp_np)
164{
165	struct opp_table **required_opp_tables;
166	struct device_node *required_np, *np;
167	bool lazy = false;
168	int count, i;
169
170	/* Traversing the first OPP node is all we need */
171	np = of_get_next_available_child(opp_np, NULL);
172	if (!np) {
173		dev_warn(dev, "Empty OPP table\n");
174
175		return;
176	}
177
178	count = of_count_phandle_with_args(np, "required-opps", NULL);
179	if (count <= 0)
180		goto put_np;
181
182	required_opp_tables = kcalloc(count, sizeof(*required_opp_tables),
183				      GFP_KERNEL);
184	if (!required_opp_tables)
185		goto put_np;
186
187	opp_table->required_opp_tables = required_opp_tables;
188	opp_table->required_opp_count = count;
189
190	for (i = 0; i < count; i++) {
191		required_np = of_parse_required_opp(np, i);
192		if (!required_np)
193			goto free_required_tables;
194
195		required_opp_tables[i] = _find_table_of_opp_np(required_np);
196		of_node_put(required_np);
197
198		if (IS_ERR(required_opp_tables[i]))
199			lazy = true;
200	}
201
202	/* Let's do the linking later on */
203	if (lazy) {
204		/*
205		 * The OPP table is not held while allocating the table, take it
206		 * now to avoid corruption to the lazy_opp_tables list.
207		 */
208		mutex_lock(&opp_table_lock);
209		list_add(&opp_table->lazy, &lazy_opp_tables);
210		mutex_unlock(&opp_table_lock);
211	}
212	else
213		_update_set_required_opps(opp_table);
214
215	goto put_np;
216
217free_required_tables:
218	_opp_table_free_required_tables(opp_table);
219put_np:
220	of_node_put(np);
221}
222
223void _of_init_opp_table(struct opp_table *opp_table, struct device *dev,
224			int index)
225{
226	struct device_node *np, *opp_np;
227	u32 val;
228
229	/*
230	 * Only required for backward compatibility with v1 bindings, but isn't
231	 * harmful for other cases. And so we do it unconditionally.
232	 */
233	np = of_node_get(dev->of_node);
234	if (!np)
235		return;
236
237	if (!of_property_read_u32(np, "clock-latency", &val))
238		opp_table->clock_latency_ns_max = val;
239	of_property_read_u32(np, "voltage-tolerance",
240			     &opp_table->voltage_tolerance_v1);
241
242	if (of_property_present(np, "#power-domain-cells"))
243		opp_table->is_genpd = true;
244
245	/* Get OPP table node */
246	opp_np = _opp_of_get_opp_desc_node(np, index);
247	of_node_put(np);
248
249	if (!opp_np)
250		return;
251
252	if (of_property_read_bool(opp_np, "opp-shared"))
253		opp_table->shared_opp = OPP_TABLE_ACCESS_SHARED;
254	else
255		opp_table->shared_opp = OPP_TABLE_ACCESS_EXCLUSIVE;
256
257	opp_table->np = opp_np;
258
259	_opp_table_alloc_required_tables(opp_table, dev, opp_np);
260}
261
262void _of_clear_opp_table(struct opp_table *opp_table)
263{
264	_opp_table_free_required_tables(opp_table);
265	of_node_put(opp_table->np);
266}
267
268/*
269 * Release all resources previously acquired with a call to
270 * _of_opp_alloc_required_opps().
271 */
272static void _of_opp_free_required_opps(struct opp_table *opp_table,
273				       struct dev_pm_opp *opp)
274{
275	struct dev_pm_opp **required_opps = opp->required_opps;
276	int i;
277
278	if (!required_opps)
279		return;
280
281	for (i = 0; i < opp_table->required_opp_count; i++) {
282		if (!required_opps[i])
283			continue;
284
285		/* Put the reference back */
286		dev_pm_opp_put(required_opps[i]);
287	}
288
289	opp->required_opps = NULL;
290	kfree(required_opps);
291}
292
293void _of_clear_opp(struct opp_table *opp_table, struct dev_pm_opp *opp)
294{
295	_of_opp_free_required_opps(opp_table, opp);
296	of_node_put(opp->np);
297}
298
299/* Populate all required OPPs which are part of "required-opps" list */
300static int _of_opp_alloc_required_opps(struct opp_table *opp_table,
301				       struct dev_pm_opp *opp)
302{
303	struct dev_pm_opp **required_opps;
304	struct opp_table *required_table;
305	struct device_node *np;
306	int i, ret, count = opp_table->required_opp_count;
307
308	if (!count)
309		return 0;
310
311	required_opps = kcalloc(count, sizeof(*required_opps), GFP_KERNEL);
312	if (!required_opps)
313		return -ENOMEM;
314
315	opp->required_opps = required_opps;
316
317	for (i = 0; i < count; i++) {
318		required_table = opp_table->required_opp_tables[i];
319
320		/* Required table not added yet, we will link later */
321		if (IS_ERR_OR_NULL(required_table))
322			continue;
323
324		np = of_parse_required_opp(opp->np, i);
325		if (unlikely(!np)) {
326			ret = -ENODEV;
327			goto free_required_opps;
328		}
329
330		required_opps[i] = _find_opp_of_np(required_table, np);
331		of_node_put(np);
332
333		if (!required_opps[i]) {
334			pr_err("%s: Unable to find required OPP node: %pOF (%d)\n",
335			       __func__, opp->np, i);
336			ret = -ENODEV;
337			goto free_required_opps;
338		}
339	}
340
341	return 0;
342
343free_required_opps:
344	_of_opp_free_required_opps(opp_table, opp);
345
346	return ret;
347}
348
349/* Link required OPPs for an individual OPP */
350static int lazy_link_required_opps(struct opp_table *opp_table,
351				   struct opp_table *new_table, int index)
352{
353	struct device_node *required_np;
354	struct dev_pm_opp *opp;
355
356	list_for_each_entry(opp, &opp_table->opp_list, node) {
357		required_np = of_parse_required_opp(opp->np, index);
358		if (unlikely(!required_np))
359			return -ENODEV;
360
361		opp->required_opps[index] = _find_opp_of_np(new_table, required_np);
362		of_node_put(required_np);
363
364		if (!opp->required_opps[index]) {
365			pr_err("%s: Unable to find required OPP node: %pOF (%d)\n",
366			       __func__, opp->np, index);
367			return -ENODEV;
368		}
369	}
370
371	return 0;
372}
373
374/* Link required OPPs for all OPPs of the newly added OPP table */
375static void lazy_link_required_opp_table(struct opp_table *new_table)
376{
377	struct opp_table *opp_table, *temp, **required_opp_tables;
378	struct device_node *required_np, *opp_np, *required_table_np;
379	struct dev_pm_opp *opp;
380	int i, ret;
381
382	mutex_lock(&opp_table_lock);
383
384	list_for_each_entry_safe(opp_table, temp, &lazy_opp_tables, lazy) {
385		bool lazy = false;
386
387		/* opp_np can't be invalid here */
388		opp_np = of_get_next_available_child(opp_table->np, NULL);
389
390		for (i = 0; i < opp_table->required_opp_count; i++) {
391			required_opp_tables = opp_table->required_opp_tables;
392
393			/* Required opp-table is already parsed */
394			if (!IS_ERR(required_opp_tables[i]))
395				continue;
396
397			/* required_np can't be invalid here */
398			required_np = of_parse_required_opp(opp_np, i);
399			required_table_np = of_get_parent(required_np);
400
401			of_node_put(required_table_np);
402			of_node_put(required_np);
403
404			/*
405			 * Newly added table isn't the required opp-table for
406			 * opp_table.
407			 */
408			if (required_table_np != new_table->np) {
409				lazy = true;
410				continue;
411			}
412
413			required_opp_tables[i] = new_table;
414			_get_opp_table_kref(new_table);
415
416			/* Link OPPs now */
417			ret = lazy_link_required_opps(opp_table, new_table, i);
418			if (ret) {
419				/* The OPPs will be marked unusable */
420				lazy = false;
421				break;
422			}
423		}
424
425		of_node_put(opp_np);
426
427		/* All required opp-tables found, remove from lazy list */
428		if (!lazy) {
429			_update_set_required_opps(opp_table);
430			list_del_init(&opp_table->lazy);
431
432			list_for_each_entry(opp, &opp_table->opp_list, node)
433				_required_opps_available(opp, opp_table->required_opp_count);
434		}
435	}
436
437	mutex_unlock(&opp_table_lock);
438}
439
440static int _bandwidth_supported(struct device *dev, struct opp_table *opp_table)
441{
442	struct device_node *np, *opp_np;
443	struct property *prop;
444
445	if (!opp_table) {
446		np = of_node_get(dev->of_node);
447		if (!np)
448			return -ENODEV;
449
450		opp_np = _opp_of_get_opp_desc_node(np, 0);
451		of_node_put(np);
452	} else {
453		opp_np = of_node_get(opp_table->np);
454	}
455
456	/* Lets not fail in case we are parsing opp-v1 bindings */
457	if (!opp_np)
458		return 0;
459
460	/* Checking only first OPP is sufficient */
461	np = of_get_next_available_child(opp_np, NULL);
462	of_node_put(opp_np);
463	if (!np) {
464		dev_err(dev, "OPP table empty\n");
465		return -EINVAL;
466	}
467
468	prop = of_find_property(np, "opp-peak-kBps", NULL);
469	of_node_put(np);
470
471	if (!prop || !prop->length)
472		return 0;
473
474	return 1;
475}
476
477int dev_pm_opp_of_find_icc_paths(struct device *dev,
478				 struct opp_table *opp_table)
479{
480	struct device_node *np;
481	int ret, i, count, num_paths;
482	struct icc_path **paths;
483
484	ret = _bandwidth_supported(dev, opp_table);
485	if (ret == -EINVAL)
486		return 0; /* Empty OPP table is a valid corner-case, let's not fail */
487	else if (ret <= 0)
488		return ret;
489
490	ret = 0;
491
492	np = of_node_get(dev->of_node);
493	if (!np)
494		return 0;
495
496	count = of_count_phandle_with_args(np, "interconnects",
497					   "#interconnect-cells");
498	of_node_put(np);
499	if (count < 0)
500		return 0;
501
502	/* two phandles when #interconnect-cells = <1> */
503	if (count % 2) {
504		dev_err(dev, "%s: Invalid interconnects values\n", __func__);
505		return -EINVAL;
506	}
507
508	num_paths = count / 2;
509	paths = kcalloc(num_paths, sizeof(*paths), GFP_KERNEL);
510	if (!paths)
511		return -ENOMEM;
512
513	for (i = 0; i < num_paths; i++) {
514		paths[i] = of_icc_get_by_index(dev, i);
515		if (IS_ERR(paths[i])) {
516			ret = dev_err_probe(dev, PTR_ERR(paths[i]), "%s: Unable to get path%d\n", __func__, i);
517			goto err;
518		}
519	}
520
521	if (opp_table) {
522		opp_table->paths = paths;
523		opp_table->path_count = num_paths;
524		return 0;
525	}
526
527err:
528	while (i--)
529		icc_put(paths[i]);
530
531	kfree(paths);
532
533	return ret;
534}
535EXPORT_SYMBOL_GPL(dev_pm_opp_of_find_icc_paths);
536
537static bool _opp_is_supported(struct device *dev, struct opp_table *opp_table,
538			      struct device_node *np)
539{
540	unsigned int levels = opp_table->supported_hw_count;
541	int count, versions, ret, i, j;
542	u32 val;
543
544	if (!opp_table->supported_hw) {
545		/*
546		 * In the case that no supported_hw has been set by the
547		 * platform but there is an opp-supported-hw value set for
548		 * an OPP then the OPP should not be enabled as there is
549		 * no way to see if the hardware supports it.
550		 */
551		if (of_property_present(np, "opp-supported-hw"))
552			return false;
553		else
554			return true;
555	}
556
557	count = of_property_count_u32_elems(np, "opp-supported-hw");
558	if (count <= 0 || count % levels) {
559		dev_err(dev, "%s: Invalid opp-supported-hw property (%d)\n",
560			__func__, count);
561		return false;
562	}
563
564	versions = count / levels;
565
566	/* All levels in at least one of the versions should match */
567	for (i = 0; i < versions; i++) {
568		bool supported = true;
569
570		for (j = 0; j < levels; j++) {
571			ret = of_property_read_u32_index(np, "opp-supported-hw",
572							 i * levels + j, &val);
573			if (ret) {
574				dev_warn(dev, "%s: failed to read opp-supported-hw property at index %d: %d\n",
575					 __func__, i * levels + j, ret);
576				return false;
577			}
578
579			/* Check if the level is supported */
580			if (!(val & opp_table->supported_hw[j])) {
581				supported = false;
582				break;
583			}
584		}
585
586		if (supported)
587			return true;
588	}
589
590	return false;
591}
592
593static u32 *_parse_named_prop(struct dev_pm_opp *opp, struct device *dev,
594			      struct opp_table *opp_table,
595			      const char *prop_type, bool *triplet)
596{
597	struct property *prop = NULL;
598	char name[NAME_MAX];
599	int count, ret;
600	u32 *out;
601
602	/* Search for "opp-<prop_type>-<name>" */
603	if (opp_table->prop_name) {
604		snprintf(name, sizeof(name), "opp-%s-%s", prop_type,
605			 opp_table->prop_name);
606		prop = of_find_property(opp->np, name, NULL);
607	}
608
609	if (!prop) {
610		/* Search for "opp-<prop_type>" */
611		snprintf(name, sizeof(name), "opp-%s", prop_type);
612		prop = of_find_property(opp->np, name, NULL);
613		if (!prop)
614			return NULL;
615	}
616
617	count = of_property_count_u32_elems(opp->np, name);
618	if (count < 0) {
619		dev_err(dev, "%s: Invalid %s property (%d)\n", __func__, name,
620			count);
621		return ERR_PTR(count);
622	}
623
624	/*
625	 * Initialize regulator_count, if regulator information isn't provided
626	 * by the platform. Now that one of the properties is available, fix the
627	 * regulator_count to 1.
628	 */
629	if (unlikely(opp_table->regulator_count == -1))
630		opp_table->regulator_count = 1;
631
632	if (count != opp_table->regulator_count &&
633	    (!triplet || count != opp_table->regulator_count * 3)) {
634		dev_err(dev, "%s: Invalid number of elements in %s property (%u) with supplies (%d)\n",
635			__func__, prop_type, count, opp_table->regulator_count);
636		return ERR_PTR(-EINVAL);
637	}
638
639	out = kmalloc_array(count, sizeof(*out), GFP_KERNEL);
640	if (!out)
641		return ERR_PTR(-EINVAL);
642
643	ret = of_property_read_u32_array(opp->np, name, out, count);
644	if (ret) {
645		dev_err(dev, "%s: error parsing %s: %d\n", __func__, name, ret);
646		kfree(out);
647		return ERR_PTR(-EINVAL);
648	}
649
650	if (triplet)
651		*triplet = count != opp_table->regulator_count;
652
653	return out;
654}
655
656static u32 *opp_parse_microvolt(struct dev_pm_opp *opp, struct device *dev,
657				struct opp_table *opp_table, bool *triplet)
658{
659	u32 *microvolt;
660
661	microvolt = _parse_named_prop(opp, dev, opp_table, "microvolt", triplet);
662	if (IS_ERR(microvolt))
663		return microvolt;
664
665	if (!microvolt) {
666		/*
667		 * Missing property isn't a problem, but an invalid
668		 * entry is. This property isn't optional if regulator
669		 * information is provided. Check only for the first OPP, as
670		 * regulator_count may get initialized after that to a valid
671		 * value.
672		 */
673		if (list_empty(&opp_table->opp_list) &&
674		    opp_table->regulator_count > 0) {
675			dev_err(dev, "%s: opp-microvolt missing although OPP managing regulators\n",
676				__func__);
677			return ERR_PTR(-EINVAL);
678		}
679	}
680
681	return microvolt;
682}
683
684static int opp_parse_supplies(struct dev_pm_opp *opp, struct device *dev,
685			      struct opp_table *opp_table)
686{
687	u32 *microvolt, *microamp, *microwatt;
688	int ret = 0, i, j;
689	bool triplet;
690
691	microvolt = opp_parse_microvolt(opp, dev, opp_table, &triplet);
692	if (IS_ERR(microvolt))
693		return PTR_ERR(microvolt);
694
695	microamp = _parse_named_prop(opp, dev, opp_table, "microamp", NULL);
696	if (IS_ERR(microamp)) {
697		ret = PTR_ERR(microamp);
698		goto free_microvolt;
699	}
700
701	microwatt = _parse_named_prop(opp, dev, opp_table, "microwatt", NULL);
702	if (IS_ERR(microwatt)) {
703		ret = PTR_ERR(microwatt);
704		goto free_microamp;
705	}
706
707	/*
708	 * Initialize regulator_count if it is uninitialized and no properties
709	 * are found.
710	 */
711	if (unlikely(opp_table->regulator_count == -1)) {
712		opp_table->regulator_count = 0;
713		return 0;
714	}
715
716	for (i = 0, j = 0; i < opp_table->regulator_count; i++) {
717		if (microvolt) {
718			opp->supplies[i].u_volt = microvolt[j++];
719
720			if (triplet) {
721				opp->supplies[i].u_volt_min = microvolt[j++];
722				opp->supplies[i].u_volt_max = microvolt[j++];
723			} else {
724				opp->supplies[i].u_volt_min = opp->supplies[i].u_volt;
725				opp->supplies[i].u_volt_max = opp->supplies[i].u_volt;
726			}
727		}
728
729		if (microamp)
730			opp->supplies[i].u_amp = microamp[i];
731
732		if (microwatt)
733			opp->supplies[i].u_watt = microwatt[i];
734	}
735
736	kfree(microwatt);
737free_microamp:
738	kfree(microamp);
739free_microvolt:
740	kfree(microvolt);
741
742	return ret;
743}
744
745/**
746 * dev_pm_opp_of_remove_table() - Free OPP table entries created from static DT
747 *				  entries
748 * @dev:	device pointer used to lookup OPP table.
749 *
750 * Free OPPs created using static entries present in DT.
751 */
752void dev_pm_opp_of_remove_table(struct device *dev)
753{
754	dev_pm_opp_remove_table(dev);
755}
756EXPORT_SYMBOL_GPL(dev_pm_opp_of_remove_table);
757
758static int _read_rate(struct dev_pm_opp *new_opp, struct opp_table *opp_table,
759		      struct device_node *np)
760{
761	struct property *prop;
762	int i, count, ret;
763	u64 *rates;
764
765	prop = of_find_property(np, "opp-hz", NULL);
766	if (!prop)
767		return -ENODEV;
768
769	count = prop->length / sizeof(u64);
770	if (opp_table->clk_count != count) {
771		pr_err("%s: Count mismatch between opp-hz and clk_count (%d %d)\n",
772		       __func__, count, opp_table->clk_count);
773		return -EINVAL;
774	}
775
776	rates = kmalloc_array(count, sizeof(*rates), GFP_KERNEL);
777	if (!rates)
778		return -ENOMEM;
779
780	ret = of_property_read_u64_array(np, "opp-hz", rates, count);
781	if (ret) {
782		pr_err("%s: Error parsing opp-hz: %d\n", __func__, ret);
783	} else {
784		/*
785		 * Rate is defined as an unsigned long in clk API, and so
786		 * casting explicitly to its type. Must be fixed once rate is 64
787		 * bit guaranteed in clk API.
788		 */
789		for (i = 0; i < count; i++) {
790			new_opp->rates[i] = (unsigned long)rates[i];
791
792			/* This will happen for frequencies > 4.29 GHz */
793			WARN_ON(new_opp->rates[i] != rates[i]);
794		}
795	}
796
797	kfree(rates);
798
799	return ret;
800}
801
802static int _read_bw(struct dev_pm_opp *new_opp, struct opp_table *opp_table,
803		    struct device_node *np, bool peak)
804{
805	const char *name = peak ? "opp-peak-kBps" : "opp-avg-kBps";
806	struct property *prop;
807	int i, count, ret;
808	u32 *bw;
809
810	prop = of_find_property(np, name, NULL);
811	if (!prop)
812		return -ENODEV;
813
814	count = prop->length / sizeof(u32);
815	if (opp_table->path_count != count) {
816		pr_err("%s: Mismatch between %s and paths (%d %d)\n",
817				__func__, name, count, opp_table->path_count);
818		return -EINVAL;
819	}
820
821	bw = kmalloc_array(count, sizeof(*bw), GFP_KERNEL);
822	if (!bw)
823		return -ENOMEM;
824
825	ret = of_property_read_u32_array(np, name, bw, count);
826	if (ret) {
827		pr_err("%s: Error parsing %s: %d\n", __func__, name, ret);
828		goto out;
829	}
830
831	for (i = 0; i < count; i++) {
832		if (peak)
833			new_opp->bandwidth[i].peak = kBps_to_icc(bw[i]);
834		else
835			new_opp->bandwidth[i].avg = kBps_to_icc(bw[i]);
836	}
837
838out:
839	kfree(bw);
840	return ret;
841}
842
843static int _read_opp_key(struct dev_pm_opp *new_opp,
844			 struct opp_table *opp_table, struct device_node *np)
845{
846	bool found = false;
847	int ret;
848
849	ret = _read_rate(new_opp, opp_table, np);
850	if (!ret)
851		found = true;
852	else if (ret != -ENODEV)
853		return ret;
854
855	/*
856	 * Bandwidth consists of peak and average (optional) values:
857	 * opp-peak-kBps = <path1_value path2_value>;
858	 * opp-avg-kBps = <path1_value path2_value>;
859	 */
860	ret = _read_bw(new_opp, opp_table, np, true);
861	if (!ret) {
862		found = true;
863		ret = _read_bw(new_opp, opp_table, np, false);
864	}
865
866	/* The properties were found but we failed to parse them */
867	if (ret && ret != -ENODEV)
868		return ret;
869
870	if (!of_property_read_u32(np, "opp-level", &new_opp->level))
871		found = true;
872
873	if (found)
874		return 0;
875
876	return ret;
877}
878
879/**
880 * _opp_add_static_v2() - Allocate static OPPs (As per 'v2' DT bindings)
881 * @opp_table:	OPP table
882 * @dev:	device for which we do this operation
883 * @np:		device node
884 *
885 * This function adds an opp definition to the opp table and returns status. The
886 * opp can be controlled using dev_pm_opp_enable/disable functions and may be
887 * removed by dev_pm_opp_remove.
888 *
889 * Return:
890 * Valid OPP pointer:
891 *		On success
892 * NULL:
893 *		Duplicate OPPs (both freq and volt are same) and opp->available
894 *		OR if the OPP is not supported by hardware.
895 * ERR_PTR(-EEXIST):
896 *		Freq are same and volt are different OR
897 *		Duplicate OPPs (both freq and volt are same) and !opp->available
898 * ERR_PTR(-ENOMEM):
899 *		Memory allocation failure
900 * ERR_PTR(-EINVAL):
901 *		Failed parsing the OPP node
902 */
903static struct dev_pm_opp *_opp_add_static_v2(struct opp_table *opp_table,
904		struct device *dev, struct device_node *np)
905{
906	struct dev_pm_opp *new_opp;
907	u32 val;
908	int ret;
909
910	new_opp = _opp_allocate(opp_table);
911	if (!new_opp)
912		return ERR_PTR(-ENOMEM);
913
914	ret = _read_opp_key(new_opp, opp_table, np);
915	if (ret < 0) {
916		dev_err(dev, "%s: opp key field not found\n", __func__);
917		goto free_opp;
918	}
919
920	/* Check if the OPP supports hardware's hierarchy of versions or not */
921	if (!_opp_is_supported(dev, opp_table, np)) {
922		dev_dbg(dev, "OPP not supported by hardware: %s\n",
923			of_node_full_name(np));
924		goto free_opp;
925	}
926
927	new_opp->turbo = of_property_read_bool(np, "turbo-mode");
928
929	new_opp->np = of_node_get(np);
930	new_opp->dynamic = false;
931	new_opp->available = true;
932
933	ret = _of_opp_alloc_required_opps(opp_table, new_opp);
934	if (ret)
935		goto free_opp;
936
937	if (!of_property_read_u32(np, "clock-latency-ns", &val))
938		new_opp->clock_latency_ns = val;
939
940	ret = opp_parse_supplies(new_opp, dev, opp_table);
941	if (ret)
942		goto free_required_opps;
943
944	ret = _opp_add(dev, new_opp, opp_table);
945	if (ret) {
946		/* Don't return error for duplicate OPPs */
947		if (ret == -EBUSY)
948			ret = 0;
949		goto free_required_opps;
950	}
951
952	/* OPP to select on device suspend */
953	if (of_property_read_bool(np, "opp-suspend")) {
954		if (opp_table->suspend_opp) {
955			/* Pick the OPP with higher rate/bw/level as suspend OPP */
956			if (_opp_compare_key(opp_table, new_opp, opp_table->suspend_opp) == 1) {
957				opp_table->suspend_opp->suspend = false;
958				new_opp->suspend = true;
959				opp_table->suspend_opp = new_opp;
960			}
961		} else {
962			new_opp->suspend = true;
963			opp_table->suspend_opp = new_opp;
964		}
965	}
966
967	if (new_opp->clock_latency_ns > opp_table->clock_latency_ns_max)
968		opp_table->clock_latency_ns_max = new_opp->clock_latency_ns;
969
970	pr_debug("%s: turbo:%d rate:%lu uv:%lu uvmin:%lu uvmax:%lu latency:%lu level:%u\n",
971		 __func__, new_opp->turbo, new_opp->rates[0],
972		 new_opp->supplies[0].u_volt, new_opp->supplies[0].u_volt_min,
973		 new_opp->supplies[0].u_volt_max, new_opp->clock_latency_ns,
974		 new_opp->level);
975
976	/*
977	 * Notify the changes in the availability of the operable
978	 * frequency/voltage list.
979	 */
980	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
981	return new_opp;
982
983free_required_opps:
984	_of_opp_free_required_opps(opp_table, new_opp);
985free_opp:
986	_opp_free(new_opp);
987
988	return ret ? ERR_PTR(ret) : NULL;
989}
990
991/* Initializes OPP tables based on new bindings */
992static int _of_add_opp_table_v2(struct device *dev, struct opp_table *opp_table)
993{
994	struct device_node *np;
995	int ret, count = 0;
996	struct dev_pm_opp *opp;
997
998	/* OPP table is already initialized for the device */
999	mutex_lock(&opp_table->lock);
1000	if (opp_table->parsed_static_opps) {
1001		opp_table->parsed_static_opps++;
1002		mutex_unlock(&opp_table->lock);
1003		return 0;
1004	}
1005
1006	opp_table->parsed_static_opps = 1;
1007	mutex_unlock(&opp_table->lock);
1008
1009	/* We have opp-table node now, iterate over it and add OPPs */
1010	for_each_available_child_of_node(opp_table->np, np) {
1011		opp = _opp_add_static_v2(opp_table, dev, np);
1012		if (IS_ERR(opp)) {
1013			ret = PTR_ERR(opp);
1014			dev_err(dev, "%s: Failed to add OPP, %d\n", __func__,
1015				ret);
1016			of_node_put(np);
1017			goto remove_static_opp;
1018		} else if (opp) {
1019			count++;
1020		}
1021	}
1022
1023	/* There should be one or more OPPs defined */
1024	if (!count) {
1025		dev_err(dev, "%s: no supported OPPs", __func__);
1026		ret = -ENOENT;
1027		goto remove_static_opp;
1028	}
1029
1030	lazy_link_required_opp_table(opp_table);
1031
1032	return 0;
1033
1034remove_static_opp:
1035	_opp_remove_all_static(opp_table);
1036
1037	return ret;
1038}
1039
1040/* Initializes OPP tables based on old-deprecated bindings */
1041static int _of_add_opp_table_v1(struct device *dev, struct opp_table *opp_table)
1042{
1043	const struct property *prop;
1044	const __be32 *val;
1045	int nr, ret = 0;
1046
1047	mutex_lock(&opp_table->lock);
1048	if (opp_table->parsed_static_opps) {
1049		opp_table->parsed_static_opps++;
1050		mutex_unlock(&opp_table->lock);
1051		return 0;
1052	}
1053
1054	opp_table->parsed_static_opps = 1;
1055	mutex_unlock(&opp_table->lock);
1056
1057	prop = of_find_property(dev->of_node, "operating-points", NULL);
1058	if (!prop) {
1059		ret = -ENODEV;
1060		goto remove_static_opp;
1061	}
1062	if (!prop->value) {
1063		ret = -ENODATA;
1064		goto remove_static_opp;
1065	}
1066
1067	/*
1068	 * Each OPP is a set of tuples consisting of frequency and
1069	 * voltage like <freq-kHz vol-uV>.
1070	 */
1071	nr = prop->length / sizeof(u32);
1072	if (nr % 2) {
1073		dev_err(dev, "%s: Invalid OPP table\n", __func__);
1074		ret = -EINVAL;
1075		goto remove_static_opp;
1076	}
1077
1078	val = prop->value;
1079	while (nr) {
1080		unsigned long freq = be32_to_cpup(val++) * 1000;
1081		unsigned long volt = be32_to_cpup(val++);
1082
1083		ret = _opp_add_v1(opp_table, dev, freq, volt, false);
1084		if (ret) {
1085			dev_err(dev, "%s: Failed to add OPP %ld (%d)\n",
1086				__func__, freq, ret);
1087			goto remove_static_opp;
1088		}
1089		nr -= 2;
1090	}
1091
1092	return 0;
1093
1094remove_static_opp:
1095	_opp_remove_all_static(opp_table);
1096
1097	return ret;
1098}
1099
1100static int _of_add_table_indexed(struct device *dev, int index)
1101{
1102	struct opp_table *opp_table;
1103	int ret, count;
1104
1105	if (index) {
1106		/*
1107		 * If only one phandle is present, then the same OPP table
1108		 * applies for all index requests.
1109		 */
1110		count = of_count_phandle_with_args(dev->of_node,
1111						   "operating-points-v2", NULL);
1112		if (count == 1)
1113			index = 0;
1114	}
1115
1116	opp_table = _add_opp_table_indexed(dev, index, true);
1117	if (IS_ERR(opp_table))
1118		return PTR_ERR(opp_table);
1119
1120	/*
1121	 * OPPs have two version of bindings now. Also try the old (v1)
1122	 * bindings for backward compatibility with older dtbs.
1123	 */
1124	if (opp_table->np)
1125		ret = _of_add_opp_table_v2(dev, opp_table);
1126	else
1127		ret = _of_add_opp_table_v1(dev, opp_table);
1128
1129	if (ret)
1130		dev_pm_opp_put_opp_table(opp_table);
1131
1132	return ret;
1133}
1134
1135static void devm_pm_opp_of_table_release(void *data)
1136{
1137	dev_pm_opp_of_remove_table(data);
1138}
1139
1140static int _devm_of_add_table_indexed(struct device *dev, int index)
1141{
1142	int ret;
1143
1144	ret = _of_add_table_indexed(dev, index);
1145	if (ret)
1146		return ret;
1147
1148	return devm_add_action_or_reset(dev, devm_pm_opp_of_table_release, dev);
1149}
1150
1151/**
1152 * devm_pm_opp_of_add_table() - Initialize opp table from device tree
1153 * @dev:	device pointer used to lookup OPP table.
1154 *
1155 * Register the initial OPP table with the OPP library for given device.
1156 *
1157 * The opp_table structure will be freed after the device is destroyed.
1158 *
1159 * Return:
1160 * 0		On success OR
1161 *		Duplicate OPPs (both freq and volt are same) and opp->available
1162 * -EEXIST	Freq are same and volt are different OR
1163 *		Duplicate OPPs (both freq and volt are same) and !opp->available
1164 * -ENOMEM	Memory allocation failure
1165 * -ENODEV	when 'operating-points' property is not found or is invalid data
1166 *		in device node.
1167 * -ENODATA	when empty 'operating-points' property is found
1168 * -EINVAL	when invalid entries are found in opp-v2 table
1169 */
1170int devm_pm_opp_of_add_table(struct device *dev)
1171{
1172	return _devm_of_add_table_indexed(dev, 0);
1173}
1174EXPORT_SYMBOL_GPL(devm_pm_opp_of_add_table);
1175
1176/**
1177 * dev_pm_opp_of_add_table() - Initialize opp table from device tree
1178 * @dev:	device pointer used to lookup OPP table.
1179 *
1180 * Register the initial OPP table with the OPP library for given device.
1181 *
1182 * Return:
1183 * 0		On success OR
1184 *		Duplicate OPPs (both freq and volt are same) and opp->available
1185 * -EEXIST	Freq are same and volt are different OR
1186 *		Duplicate OPPs (both freq and volt are same) and !opp->available
1187 * -ENOMEM	Memory allocation failure
1188 * -ENODEV	when 'operating-points' property is not found or is invalid data
1189 *		in device node.
1190 * -ENODATA	when empty 'operating-points' property is found
1191 * -EINVAL	when invalid entries are found in opp-v2 table
1192 */
1193int dev_pm_opp_of_add_table(struct device *dev)
1194{
1195	return _of_add_table_indexed(dev, 0);
1196}
1197EXPORT_SYMBOL_GPL(dev_pm_opp_of_add_table);
1198
1199/**
1200 * dev_pm_opp_of_add_table_indexed() - Initialize indexed opp table from device tree
1201 * @dev:	device pointer used to lookup OPP table.
1202 * @index:	Index number.
1203 *
1204 * Register the initial OPP table with the OPP library for given device only
1205 * using the "operating-points-v2" property.
1206 *
1207 * Return: Refer to dev_pm_opp_of_add_table() for return values.
1208 */
1209int dev_pm_opp_of_add_table_indexed(struct device *dev, int index)
1210{
1211	return _of_add_table_indexed(dev, index);
1212}
1213EXPORT_SYMBOL_GPL(dev_pm_opp_of_add_table_indexed);
1214
1215/**
1216 * devm_pm_opp_of_add_table_indexed() - Initialize indexed opp table from device tree
1217 * @dev:	device pointer used to lookup OPP table.
1218 * @index:	Index number.
1219 *
1220 * This is a resource-managed variant of dev_pm_opp_of_add_table_indexed().
1221 */
1222int devm_pm_opp_of_add_table_indexed(struct device *dev, int index)
1223{
1224	return _devm_of_add_table_indexed(dev, index);
1225}
1226EXPORT_SYMBOL_GPL(devm_pm_opp_of_add_table_indexed);
1227
1228/* CPU device specific helpers */
1229
1230/**
1231 * dev_pm_opp_of_cpumask_remove_table() - Removes OPP table for @cpumask
1232 * @cpumask:	cpumask for which OPP table needs to be removed
1233 *
1234 * This removes the OPP tables for CPUs present in the @cpumask.
1235 * This should be used only to remove static entries created from DT.
1236 */
1237void dev_pm_opp_of_cpumask_remove_table(const struct cpumask *cpumask)
1238{
1239	_dev_pm_opp_cpumask_remove_table(cpumask, -1);
1240}
1241EXPORT_SYMBOL_GPL(dev_pm_opp_of_cpumask_remove_table);
1242
1243/**
1244 * dev_pm_opp_of_cpumask_add_table() - Adds OPP table for @cpumask
1245 * @cpumask:	cpumask for which OPP table needs to be added.
1246 *
1247 * This adds the OPP tables for CPUs present in the @cpumask.
1248 */
1249int dev_pm_opp_of_cpumask_add_table(const struct cpumask *cpumask)
1250{
1251	struct device *cpu_dev;
1252	int cpu, ret;
1253
1254	if (WARN_ON(cpumask_empty(cpumask)))
1255		return -ENODEV;
1256
1257	for_each_cpu(cpu, cpumask) {
1258		cpu_dev = get_cpu_device(cpu);
1259		if (!cpu_dev) {
1260			pr_err("%s: failed to get cpu%d device\n", __func__,
1261			       cpu);
1262			ret = -ENODEV;
1263			goto remove_table;
1264		}
1265
1266		ret = dev_pm_opp_of_add_table(cpu_dev);
1267		if (ret) {
1268			/*
1269			 * OPP may get registered dynamically, don't print error
1270			 * message here.
1271			 */
1272			pr_debug("%s: couldn't find opp table for cpu:%d, %d\n",
1273				 __func__, cpu, ret);
1274
1275			goto remove_table;
1276		}
1277	}
1278
1279	return 0;
1280
1281remove_table:
1282	/* Free all other OPPs */
1283	_dev_pm_opp_cpumask_remove_table(cpumask, cpu);
1284
1285	return ret;
1286}
1287EXPORT_SYMBOL_GPL(dev_pm_opp_of_cpumask_add_table);
1288
1289/*
1290 * Works only for OPP v2 bindings.
1291 *
1292 * Returns -ENOENT if operating-points-v2 bindings aren't supported.
1293 */
1294/**
1295 * dev_pm_opp_of_get_sharing_cpus() - Get cpumask of CPUs sharing OPPs with
1296 *				      @cpu_dev using operating-points-v2
1297 *				      bindings.
1298 *
1299 * @cpu_dev:	CPU device for which we do this operation
1300 * @cpumask:	cpumask to update with information of sharing CPUs
1301 *
1302 * This updates the @cpumask with CPUs that are sharing OPPs with @cpu_dev.
1303 *
1304 * Returns -ENOENT if operating-points-v2 isn't present for @cpu_dev.
1305 */
1306int dev_pm_opp_of_get_sharing_cpus(struct device *cpu_dev,
1307				   struct cpumask *cpumask)
1308{
1309	struct device_node *np, *tmp_np, *cpu_np;
1310	int cpu, ret = 0;
1311
1312	/* Get OPP descriptor node */
1313	np = dev_pm_opp_of_get_opp_desc_node(cpu_dev);
1314	if (!np) {
1315		dev_dbg(cpu_dev, "%s: Couldn't find opp node.\n", __func__);
1316		return -ENOENT;
1317	}
1318
1319	cpumask_set_cpu(cpu_dev->id, cpumask);
1320
1321	/* OPPs are shared ? */
1322	if (!of_property_read_bool(np, "opp-shared"))
1323		goto put_cpu_node;
1324
1325	for_each_possible_cpu(cpu) {
1326		if (cpu == cpu_dev->id)
1327			continue;
1328
1329		cpu_np = of_cpu_device_node_get(cpu);
1330		if (!cpu_np) {
1331			dev_err(cpu_dev, "%s: failed to get cpu%d node\n",
1332				__func__, cpu);
1333			ret = -ENOENT;
1334			goto put_cpu_node;
1335		}
1336
1337		/* Get OPP descriptor node */
1338		tmp_np = _opp_of_get_opp_desc_node(cpu_np, 0);
1339		of_node_put(cpu_np);
1340		if (!tmp_np) {
1341			pr_err("%pOF: Couldn't find opp node\n", cpu_np);
1342			ret = -ENOENT;
1343			goto put_cpu_node;
1344		}
1345
1346		/* CPUs are sharing opp node */
1347		if (np == tmp_np)
1348			cpumask_set_cpu(cpu, cpumask);
1349
1350		of_node_put(tmp_np);
1351	}
1352
1353put_cpu_node:
1354	of_node_put(np);
1355	return ret;
1356}
1357EXPORT_SYMBOL_GPL(dev_pm_opp_of_get_sharing_cpus);
1358
1359/**
1360 * of_get_required_opp_performance_state() - Search for required OPP and return its performance state.
1361 * @np: Node that contains the "required-opps" property.
1362 * @index: Index of the phandle to parse.
1363 *
1364 * Returns the performance state of the OPP pointed out by the "required-opps"
1365 * property at @index in @np.
1366 *
1367 * Return: Zero or positive performance state on success, otherwise negative
1368 * value on errors.
1369 */
1370int of_get_required_opp_performance_state(struct device_node *np, int index)
1371{
1372	struct dev_pm_opp *opp;
1373	struct device_node *required_np;
1374	struct opp_table *opp_table;
1375	int pstate = -EINVAL;
1376
1377	required_np = of_parse_required_opp(np, index);
1378	if (!required_np)
1379		return -ENODEV;
1380
1381	opp_table = _find_table_of_opp_np(required_np);
1382	if (IS_ERR(opp_table)) {
1383		pr_err("%s: Failed to find required OPP table %pOF: %ld\n",
1384		       __func__, np, PTR_ERR(opp_table));
1385		goto put_required_np;
1386	}
1387
1388	/* The OPP tables must belong to a genpd */
1389	if (unlikely(!opp_table->is_genpd)) {
1390		pr_err("%s: Performance state is only valid for genpds.\n", __func__);
1391		goto put_required_np;
1392	}
1393
1394	opp = _find_opp_of_np(opp_table, required_np);
1395	if (opp) {
1396		pstate = opp->level;
1397		dev_pm_opp_put(opp);
1398	}
1399
1400	dev_pm_opp_put_opp_table(opp_table);
1401
1402put_required_np:
1403	of_node_put(required_np);
1404
1405	return pstate;
1406}
1407EXPORT_SYMBOL_GPL(of_get_required_opp_performance_state);
1408
1409/**
1410 * dev_pm_opp_get_of_node() - Gets the DT node corresponding to an opp
1411 * @opp:	opp for which DT node has to be returned for
1412 *
1413 * Return: DT node corresponding to the opp, else 0 on success.
1414 *
1415 * The caller needs to put the node with of_node_put() after using it.
1416 */
1417struct device_node *dev_pm_opp_get_of_node(struct dev_pm_opp *opp)
1418{
1419	if (IS_ERR_OR_NULL(opp)) {
1420		pr_err("%s: Invalid parameters\n", __func__);
1421		return NULL;
1422	}
1423
1424	return of_node_get(opp->np);
1425}
1426EXPORT_SYMBOL_GPL(dev_pm_opp_get_of_node);
1427
1428/*
1429 * Callback function provided to the Energy Model framework upon registration.
1430 * It provides the power used by @dev at @kHz if it is the frequency of an
1431 * existing OPP, or at the frequency of the first OPP above @kHz otherwise
1432 * (see dev_pm_opp_find_freq_ceil()). This function updates @kHz to the ceiled
1433 * frequency and @uW to the associated power.
1434 *
1435 * Returns 0 on success or a proper -EINVAL value in case of error.
1436 */
1437static int __maybe_unused
1438_get_dt_power(struct device *dev, unsigned long *uW, unsigned long *kHz)
1439{
1440	struct dev_pm_opp *opp;
1441	unsigned long opp_freq, opp_power;
1442
1443	/* Find the right frequency and related OPP */
1444	opp_freq = *kHz * 1000;
1445	opp = dev_pm_opp_find_freq_ceil(dev, &opp_freq);
1446	if (IS_ERR(opp))
1447		return -EINVAL;
1448
1449	opp_power = dev_pm_opp_get_power(opp);
1450	dev_pm_opp_put(opp);
1451	if (!opp_power)
1452		return -EINVAL;
1453
1454	*kHz = opp_freq / 1000;
1455	*uW = opp_power;
1456
1457	return 0;
1458}
1459
1460/*
1461 * Callback function provided to the Energy Model framework upon registration.
1462 * This computes the power estimated by @dev at @kHz if it is the frequency
1463 * of an existing OPP, or at the frequency of the first OPP above @kHz otherwise
1464 * (see dev_pm_opp_find_freq_ceil()). This function updates @kHz to the ceiled
1465 * frequency and @uW to the associated power. The power is estimated as
1466 * P = C * V^2 * f with C being the device's capacitance and V and f
1467 * respectively the voltage and frequency of the OPP.
1468 *
1469 * Returns -EINVAL if the power calculation failed because of missing
1470 * parameters, 0 otherwise.
1471 */
1472static int __maybe_unused _get_power(struct device *dev, unsigned long *uW,
1473				     unsigned long *kHz)
1474{
1475	struct dev_pm_opp *opp;
1476	struct device_node *np;
1477	unsigned long mV, Hz;
1478	u32 cap;
1479	u64 tmp;
1480	int ret;
1481
1482	np = of_node_get(dev->of_node);
1483	if (!np)
1484		return -EINVAL;
1485
1486	ret = of_property_read_u32(np, "dynamic-power-coefficient", &cap);
1487	of_node_put(np);
1488	if (ret)
1489		return -EINVAL;
1490
1491	Hz = *kHz * 1000;
1492	opp = dev_pm_opp_find_freq_ceil(dev, &Hz);
1493	if (IS_ERR(opp))
1494		return -EINVAL;
1495
1496	mV = dev_pm_opp_get_voltage(opp) / 1000;
1497	dev_pm_opp_put(opp);
1498	if (!mV)
1499		return -EINVAL;
1500
1501	tmp = (u64)cap * mV * mV * (Hz / 1000000);
1502	/* Provide power in micro-Watts */
1503	do_div(tmp, 1000000);
1504
1505	*uW = (unsigned long)tmp;
1506	*kHz = Hz / 1000;
1507
1508	return 0;
1509}
1510
1511static bool _of_has_opp_microwatt_property(struct device *dev)
1512{
1513	unsigned long power, freq = 0;
1514	struct dev_pm_opp *opp;
1515
1516	/* Check if at least one OPP has needed property */
1517	opp = dev_pm_opp_find_freq_ceil(dev, &freq);
1518	if (IS_ERR(opp))
1519		return false;
1520
1521	power = dev_pm_opp_get_power(opp);
1522	dev_pm_opp_put(opp);
1523	if (!power)
1524		return false;
1525
1526	return true;
1527}
1528
1529/**
1530 * dev_pm_opp_of_register_em() - Attempt to register an Energy Model
1531 * @dev		: Device for which an Energy Model has to be registered
1532 * @cpus	: CPUs for which an Energy Model has to be registered. For
1533 *		other type of devices it should be set to NULL.
1534 *
1535 * This checks whether the "dynamic-power-coefficient" devicetree property has
1536 * been specified, and tries to register an Energy Model with it if it has.
1537 * Having this property means the voltages are known for OPPs and the EM
1538 * might be calculated.
1539 */
1540int dev_pm_opp_of_register_em(struct device *dev, struct cpumask *cpus)
1541{
1542	struct em_data_callback em_cb;
1543	struct device_node *np;
1544	int ret, nr_opp;
1545	u32 cap;
1546
1547	if (IS_ERR_OR_NULL(dev)) {
1548		ret = -EINVAL;
1549		goto failed;
1550	}
1551
1552	nr_opp = dev_pm_opp_get_opp_count(dev);
1553	if (nr_opp <= 0) {
1554		ret = -EINVAL;
1555		goto failed;
1556	}
1557
1558	/* First, try to find more precised Energy Model in DT */
1559	if (_of_has_opp_microwatt_property(dev)) {
1560		EM_SET_ACTIVE_POWER_CB(em_cb, _get_dt_power);
1561		goto register_em;
1562	}
1563
1564	np = of_node_get(dev->of_node);
1565	if (!np) {
1566		ret = -EINVAL;
1567		goto failed;
1568	}
1569
1570	/*
1571	 * Register an EM only if the 'dynamic-power-coefficient' property is
1572	 * set in devicetree. It is assumed the voltage values are known if that
1573	 * property is set since it is useless otherwise. If voltages are not
1574	 * known, just let the EM registration fail with an error to alert the
1575	 * user about the inconsistent configuration.
1576	 */
1577	ret = of_property_read_u32(np, "dynamic-power-coefficient", &cap);
1578	of_node_put(np);
1579	if (ret || !cap) {
1580		dev_dbg(dev, "Couldn't find proper 'dynamic-power-coefficient' in DT\n");
1581		ret = -EINVAL;
1582		goto failed;
1583	}
1584
1585	EM_SET_ACTIVE_POWER_CB(em_cb, _get_power);
1586
1587register_em:
1588	ret = em_dev_register_perf_domain(dev, nr_opp, &em_cb, cpus, true);
1589	if (ret)
1590		goto failed;
1591
1592	return 0;
1593
1594failed:
1595	dev_dbg(dev, "Couldn't register Energy Model %d\n", ret);
1596	return ret;
1597}
1598EXPORT_SYMBOL_GPL(dev_pm_opp_of_register_em);
1599