xref: /kernel/linux/linux-6.6/drivers/opp/core.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Generic OPP Interface
4 *
5 * Copyright (C) 2009-2010 Texas Instruments Incorporated.
6 *	Nishanth Menon
7 *	Romit Dasgupta
8 *	Kevin Hilman
9 */
10
11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13#include <linux/clk.h>
14#include <linux/errno.h>
15#include <linux/err.h>
16#include <linux/device.h>
17#include <linux/export.h>
18#include <linux/pm_domain.h>
19#include <linux/regulator/consumer.h>
20#include <linux/slab.h>
21#include <linux/xarray.h>
22
23#include "opp.h"
24
25/*
26 * The root of the list of all opp-tables. All opp_table structures branch off
27 * from here, with each opp_table containing the list of opps it supports in
28 * various states of availability.
29 */
30LIST_HEAD(opp_tables);
31
32/* Lock to allow exclusive modification to the device and opp lists */
33DEFINE_MUTEX(opp_table_lock);
34/* Flag indicating that opp_tables list is being updated at the moment */
35static bool opp_tables_busy;
36
37/* OPP ID allocator */
38static DEFINE_XARRAY_ALLOC1(opp_configs);
39
40static bool _find_opp_dev(const struct device *dev, struct opp_table *opp_table)
41{
42	struct opp_device *opp_dev;
43	bool found = false;
44
45	mutex_lock(&opp_table->lock);
46	list_for_each_entry(opp_dev, &opp_table->dev_list, node)
47		if (opp_dev->dev == dev) {
48			found = true;
49			break;
50		}
51
52	mutex_unlock(&opp_table->lock);
53	return found;
54}
55
56static struct opp_table *_find_opp_table_unlocked(struct device *dev)
57{
58	struct opp_table *opp_table;
59
60	list_for_each_entry(opp_table, &opp_tables, node) {
61		if (_find_opp_dev(dev, opp_table)) {
62			_get_opp_table_kref(opp_table);
63			return opp_table;
64		}
65	}
66
67	return ERR_PTR(-ENODEV);
68}
69
70/**
71 * _find_opp_table() - find opp_table struct using device pointer
72 * @dev:	device pointer used to lookup OPP table
73 *
74 * Search OPP table for one containing matching device.
75 *
76 * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or
77 * -EINVAL based on type of error.
78 *
79 * The callers must call dev_pm_opp_put_opp_table() after the table is used.
80 */
81struct opp_table *_find_opp_table(struct device *dev)
82{
83	struct opp_table *opp_table;
84
85	if (IS_ERR_OR_NULL(dev)) {
86		pr_err("%s: Invalid parameters\n", __func__);
87		return ERR_PTR(-EINVAL);
88	}
89
90	mutex_lock(&opp_table_lock);
91	opp_table = _find_opp_table_unlocked(dev);
92	mutex_unlock(&opp_table_lock);
93
94	return opp_table;
95}
96
97/*
98 * Returns true if multiple clocks aren't there, else returns false with WARN.
99 *
100 * We don't force clk_count == 1 here as there are users who don't have a clock
101 * representation in the OPP table and manage the clock configuration themselves
102 * in an platform specific way.
103 */
104static bool assert_single_clk(struct opp_table *opp_table)
105{
106	return !WARN_ON(opp_table->clk_count > 1);
107}
108
109/**
110 * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp
111 * @opp:	opp for which voltage has to be returned for
112 *
113 * Return: voltage in micro volt corresponding to the opp, else
114 * return 0
115 *
116 * This is useful only for devices with single power supply.
117 */
118unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp)
119{
120	if (IS_ERR_OR_NULL(opp)) {
121		pr_err("%s: Invalid parameters\n", __func__);
122		return 0;
123	}
124
125	return opp->supplies[0].u_volt;
126}
127EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage);
128
129/**
130 * dev_pm_opp_get_supplies() - Gets the supply information corresponding to an opp
131 * @opp:	opp for which voltage has to be returned for
132 * @supplies:	Placeholder for copying the supply information.
133 *
134 * Return: negative error number on failure, 0 otherwise on success after
135 * setting @supplies.
136 *
137 * This can be used for devices with any number of power supplies. The caller
138 * must ensure the @supplies array must contain space for each regulator.
139 */
140int dev_pm_opp_get_supplies(struct dev_pm_opp *opp,
141			    struct dev_pm_opp_supply *supplies)
142{
143	if (IS_ERR_OR_NULL(opp) || !supplies) {
144		pr_err("%s: Invalid parameters\n", __func__);
145		return -EINVAL;
146	}
147
148	memcpy(supplies, opp->supplies,
149	       sizeof(*supplies) * opp->opp_table->regulator_count);
150	return 0;
151}
152EXPORT_SYMBOL_GPL(dev_pm_opp_get_supplies);
153
154/**
155 * dev_pm_opp_get_power() - Gets the power corresponding to an opp
156 * @opp:	opp for which power has to be returned for
157 *
158 * Return: power in micro watt corresponding to the opp, else
159 * return 0
160 *
161 * This is useful only for devices with single power supply.
162 */
163unsigned long dev_pm_opp_get_power(struct dev_pm_opp *opp)
164{
165	unsigned long opp_power = 0;
166	int i;
167
168	if (IS_ERR_OR_NULL(opp)) {
169		pr_err("%s: Invalid parameters\n", __func__);
170		return 0;
171	}
172	for (i = 0; i < opp->opp_table->regulator_count; i++)
173		opp_power += opp->supplies[i].u_watt;
174
175	return opp_power;
176}
177EXPORT_SYMBOL_GPL(dev_pm_opp_get_power);
178
179/**
180 * dev_pm_opp_get_freq_indexed() - Gets the frequency corresponding to an
181 *				   available opp with specified index
182 * @opp: opp for which frequency has to be returned for
183 * @index: index of the frequency within the required opp
184 *
185 * Return: frequency in hertz corresponding to the opp with specified index,
186 * else return 0
187 */
188unsigned long dev_pm_opp_get_freq_indexed(struct dev_pm_opp *opp, u32 index)
189{
190	if (IS_ERR_OR_NULL(opp) || index >= opp->opp_table->clk_count) {
191		pr_err("%s: Invalid parameters\n", __func__);
192		return 0;
193	}
194
195	return opp->rates[index];
196}
197EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq_indexed);
198
199/**
200 * dev_pm_opp_get_level() - Gets the level corresponding to an available opp
201 * @opp:	opp for which level value has to be returned for
202 *
203 * Return: level read from device tree corresponding to the opp, else
204 * return 0.
205 */
206unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp)
207{
208	if (IS_ERR_OR_NULL(opp) || !opp->available) {
209		pr_err("%s: Invalid parameters\n", __func__);
210		return 0;
211	}
212
213	return opp->level;
214}
215EXPORT_SYMBOL_GPL(dev_pm_opp_get_level);
216
217/**
218 * dev_pm_opp_get_required_pstate() - Gets the required performance state
219 *                                    corresponding to an available opp
220 * @opp:	opp for which performance state has to be returned for
221 * @index:	index of the required opp
222 *
223 * Return: performance state read from device tree corresponding to the
224 * required opp, else return 0.
225 */
226unsigned int dev_pm_opp_get_required_pstate(struct dev_pm_opp *opp,
227					    unsigned int index)
228{
229	if (IS_ERR_OR_NULL(opp) || !opp->available ||
230	    index >= opp->opp_table->required_opp_count) {
231		pr_err("%s: Invalid parameters\n", __func__);
232		return 0;
233	}
234
235	/* required-opps not fully initialized yet */
236	if (lazy_linking_pending(opp->opp_table))
237		return 0;
238
239	/* The required OPP table must belong to a genpd */
240	if (unlikely(!opp->opp_table->required_opp_tables[index]->is_genpd)) {
241		pr_err("%s: Performance state is only valid for genpds.\n", __func__);
242		return 0;
243	}
244
245	return opp->required_opps[index]->level;
246}
247EXPORT_SYMBOL_GPL(dev_pm_opp_get_required_pstate);
248
249/**
250 * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not
251 * @opp: opp for which turbo mode is being verified
252 *
253 * Turbo OPPs are not for normal use, and can be enabled (under certain
254 * conditions) for short duration of times to finish high throughput work
255 * quickly. Running on them for longer times may overheat the chip.
256 *
257 * Return: true if opp is turbo opp, else false.
258 */
259bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp)
260{
261	if (IS_ERR_OR_NULL(opp) || !opp->available) {
262		pr_err("%s: Invalid parameters\n", __func__);
263		return false;
264	}
265
266	return opp->turbo;
267}
268EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo);
269
270/**
271 * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds
272 * @dev:	device for which we do this operation
273 *
274 * Return: This function returns the max clock latency in nanoseconds.
275 */
276unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev)
277{
278	struct opp_table *opp_table;
279	unsigned long clock_latency_ns;
280
281	opp_table = _find_opp_table(dev);
282	if (IS_ERR(opp_table))
283		return 0;
284
285	clock_latency_ns = opp_table->clock_latency_ns_max;
286
287	dev_pm_opp_put_opp_table(opp_table);
288
289	return clock_latency_ns;
290}
291EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency);
292
293/**
294 * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds
295 * @dev: device for which we do this operation
296 *
297 * Return: This function returns the max voltage latency in nanoseconds.
298 */
299unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev)
300{
301	struct opp_table *opp_table;
302	struct dev_pm_opp *opp;
303	struct regulator *reg;
304	unsigned long latency_ns = 0;
305	int ret, i, count;
306	struct {
307		unsigned long min;
308		unsigned long max;
309	} *uV;
310
311	opp_table = _find_opp_table(dev);
312	if (IS_ERR(opp_table))
313		return 0;
314
315	/* Regulator may not be required for the device */
316	if (!opp_table->regulators)
317		goto put_opp_table;
318
319	count = opp_table->regulator_count;
320
321	uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL);
322	if (!uV)
323		goto put_opp_table;
324
325	mutex_lock(&opp_table->lock);
326
327	for (i = 0; i < count; i++) {
328		uV[i].min = ~0;
329		uV[i].max = 0;
330
331		list_for_each_entry(opp, &opp_table->opp_list, node) {
332			if (!opp->available)
333				continue;
334
335			if (opp->supplies[i].u_volt_min < uV[i].min)
336				uV[i].min = opp->supplies[i].u_volt_min;
337			if (opp->supplies[i].u_volt_max > uV[i].max)
338				uV[i].max = opp->supplies[i].u_volt_max;
339		}
340	}
341
342	mutex_unlock(&opp_table->lock);
343
344	/*
345	 * The caller needs to ensure that opp_table (and hence the regulator)
346	 * isn't freed, while we are executing this routine.
347	 */
348	for (i = 0; i < count; i++) {
349		reg = opp_table->regulators[i];
350		ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max);
351		if (ret > 0)
352			latency_ns += ret * 1000;
353	}
354
355	kfree(uV);
356put_opp_table:
357	dev_pm_opp_put_opp_table(opp_table);
358
359	return latency_ns;
360}
361EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency);
362
363/**
364 * dev_pm_opp_get_max_transition_latency() - Get max transition latency in
365 *					     nanoseconds
366 * @dev: device for which we do this operation
367 *
368 * Return: This function returns the max transition latency, in nanoseconds, to
369 * switch from one OPP to other.
370 */
371unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev)
372{
373	return dev_pm_opp_get_max_volt_latency(dev) +
374		dev_pm_opp_get_max_clock_latency(dev);
375}
376EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency);
377
378/**
379 * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz
380 * @dev:	device for which we do this operation
381 *
382 * Return: This function returns the frequency of the OPP marked as suspend_opp
383 * if one is available, else returns 0;
384 */
385unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev)
386{
387	struct opp_table *opp_table;
388	unsigned long freq = 0;
389
390	opp_table = _find_opp_table(dev);
391	if (IS_ERR(opp_table))
392		return 0;
393
394	if (opp_table->suspend_opp && opp_table->suspend_opp->available)
395		freq = dev_pm_opp_get_freq(opp_table->suspend_opp);
396
397	dev_pm_opp_put_opp_table(opp_table);
398
399	return freq;
400}
401EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq);
402
403int _get_opp_count(struct opp_table *opp_table)
404{
405	struct dev_pm_opp *opp;
406	int count = 0;
407
408	mutex_lock(&opp_table->lock);
409
410	list_for_each_entry(opp, &opp_table->opp_list, node) {
411		if (opp->available)
412			count++;
413	}
414
415	mutex_unlock(&opp_table->lock);
416
417	return count;
418}
419
420/**
421 * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table
422 * @dev:	device for which we do this operation
423 *
424 * Return: This function returns the number of available opps if there are any,
425 * else returns 0 if none or the corresponding error value.
426 */
427int dev_pm_opp_get_opp_count(struct device *dev)
428{
429	struct opp_table *opp_table;
430	int count;
431
432	opp_table = _find_opp_table(dev);
433	if (IS_ERR(opp_table)) {
434		count = PTR_ERR(opp_table);
435		dev_dbg(dev, "%s: OPP table not found (%d)\n",
436			__func__, count);
437		return count;
438	}
439
440	count = _get_opp_count(opp_table);
441	dev_pm_opp_put_opp_table(opp_table);
442
443	return count;
444}
445EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count);
446
447/* Helpers to read keys */
448static unsigned long _read_freq(struct dev_pm_opp *opp, int index)
449{
450	return opp->rates[index];
451}
452
453static unsigned long _read_level(struct dev_pm_opp *opp, int index)
454{
455	return opp->level;
456}
457
458static unsigned long _read_bw(struct dev_pm_opp *opp, int index)
459{
460	return opp->bandwidth[index].peak;
461}
462
463/* Generic comparison helpers */
464static bool _compare_exact(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
465			   unsigned long opp_key, unsigned long key)
466{
467	if (opp_key == key) {
468		*opp = temp_opp;
469		return true;
470	}
471
472	return false;
473}
474
475static bool _compare_ceil(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
476			  unsigned long opp_key, unsigned long key)
477{
478	if (opp_key >= key) {
479		*opp = temp_opp;
480		return true;
481	}
482
483	return false;
484}
485
486static bool _compare_floor(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
487			   unsigned long opp_key, unsigned long key)
488{
489	if (opp_key > key)
490		return true;
491
492	*opp = temp_opp;
493	return false;
494}
495
496/* Generic key finding helpers */
497static struct dev_pm_opp *_opp_table_find_key(struct opp_table *opp_table,
498		unsigned long *key, int index, bool available,
499		unsigned long (*read)(struct dev_pm_opp *opp, int index),
500		bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
501				unsigned long opp_key, unsigned long key),
502		bool (*assert)(struct opp_table *opp_table))
503{
504	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
505
506	/* Assert that the requirement is met */
507	if (assert && !assert(opp_table))
508		return ERR_PTR(-EINVAL);
509
510	mutex_lock(&opp_table->lock);
511
512	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
513		if (temp_opp->available == available) {
514			if (compare(&opp, temp_opp, read(temp_opp, index), *key))
515				break;
516		}
517	}
518
519	/* Increment the reference count of OPP */
520	if (!IS_ERR(opp)) {
521		*key = read(opp, index);
522		dev_pm_opp_get(opp);
523	}
524
525	mutex_unlock(&opp_table->lock);
526
527	return opp;
528}
529
530static struct dev_pm_opp *
531_find_key(struct device *dev, unsigned long *key, int index, bool available,
532	  unsigned long (*read)(struct dev_pm_opp *opp, int index),
533	  bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
534			  unsigned long opp_key, unsigned long key),
535	  bool (*assert)(struct opp_table *opp_table))
536{
537	struct opp_table *opp_table;
538	struct dev_pm_opp *opp;
539
540	opp_table = _find_opp_table(dev);
541	if (IS_ERR(opp_table)) {
542		dev_err(dev, "%s: OPP table not found (%ld)\n", __func__,
543			PTR_ERR(opp_table));
544		return ERR_CAST(opp_table);
545	}
546
547	opp = _opp_table_find_key(opp_table, key, index, available, read,
548				  compare, assert);
549
550	dev_pm_opp_put_opp_table(opp_table);
551
552	return opp;
553}
554
555static struct dev_pm_opp *_find_key_exact(struct device *dev,
556		unsigned long key, int index, bool available,
557		unsigned long (*read)(struct dev_pm_opp *opp, int index),
558		bool (*assert)(struct opp_table *opp_table))
559{
560	/*
561	 * The value of key will be updated here, but will be ignored as the
562	 * caller doesn't need it.
563	 */
564	return _find_key(dev, &key, index, available, read, _compare_exact,
565			 assert);
566}
567
568static struct dev_pm_opp *_opp_table_find_key_ceil(struct opp_table *opp_table,
569		unsigned long *key, int index, bool available,
570		unsigned long (*read)(struct dev_pm_opp *opp, int index),
571		bool (*assert)(struct opp_table *opp_table))
572{
573	return _opp_table_find_key(opp_table, key, index, available, read,
574				   _compare_ceil, assert);
575}
576
577static struct dev_pm_opp *_find_key_ceil(struct device *dev, unsigned long *key,
578		int index, bool available,
579		unsigned long (*read)(struct dev_pm_opp *opp, int index),
580		bool (*assert)(struct opp_table *opp_table))
581{
582	return _find_key(dev, key, index, available, read, _compare_ceil,
583			 assert);
584}
585
586static struct dev_pm_opp *_find_key_floor(struct device *dev,
587		unsigned long *key, int index, bool available,
588		unsigned long (*read)(struct dev_pm_opp *opp, int index),
589		bool (*assert)(struct opp_table *opp_table))
590{
591	return _find_key(dev, key, index, available, read, _compare_floor,
592			 assert);
593}
594
595/**
596 * dev_pm_opp_find_freq_exact() - search for an exact frequency
597 * @dev:		device for which we do this operation
598 * @freq:		frequency to search for
599 * @available:		true/false - match for available opp
600 *
601 * Return: Searches for exact match in the opp table and returns pointer to the
602 * matching opp if found, else returns ERR_PTR in case of error and should
603 * be handled using IS_ERR. Error return values can be:
604 * EINVAL:	for bad pointer
605 * ERANGE:	no match found for search
606 * ENODEV:	if device not found in list of registered devices
607 *
608 * Note: available is a modifier for the search. if available=true, then the
609 * match is for exact matching frequency and is available in the stored OPP
610 * table. if false, the match is for exact frequency which is not available.
611 *
612 * This provides a mechanism to enable an opp which is not available currently
613 * or the opposite as well.
614 *
615 * The callers are required to call dev_pm_opp_put() for the returned OPP after
616 * use.
617 */
618struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev,
619		unsigned long freq, bool available)
620{
621	return _find_key_exact(dev, freq, 0, available, _read_freq,
622			       assert_single_clk);
623}
624EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact);
625
626/**
627 * dev_pm_opp_find_freq_exact_indexed() - Search for an exact freq for the
628 *					 clock corresponding to the index
629 * @dev:	Device for which we do this operation
630 * @freq:	frequency to search for
631 * @index:	Clock index
632 * @available:	true/false - match for available opp
633 *
634 * Search for the matching exact OPP for the clock corresponding to the
635 * specified index from a starting freq for a device.
636 *
637 * Return: matching *opp , else returns ERR_PTR in case of error and should be
638 * handled using IS_ERR. Error return values can be:
639 * EINVAL:	for bad pointer
640 * ERANGE:	no match found for search
641 * ENODEV:	if device not found in list of registered devices
642 *
643 * The callers are required to call dev_pm_opp_put() for the returned OPP after
644 * use.
645 */
646struct dev_pm_opp *
647dev_pm_opp_find_freq_exact_indexed(struct device *dev, unsigned long freq,
648				   u32 index, bool available)
649{
650	return _find_key_exact(dev, freq, index, available, _read_freq, NULL);
651}
652EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact_indexed);
653
654static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table,
655						   unsigned long *freq)
656{
657	return _opp_table_find_key_ceil(opp_table, freq, 0, true, _read_freq,
658					assert_single_clk);
659}
660
661/**
662 * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq
663 * @dev:	device for which we do this operation
664 * @freq:	Start frequency
665 *
666 * Search for the matching ceil *available* OPP from a starting freq
667 * for a device.
668 *
669 * Return: matching *opp and refreshes *freq accordingly, else returns
670 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
671 * values can be:
672 * EINVAL:	for bad pointer
673 * ERANGE:	no match found for search
674 * ENODEV:	if device not found in list of registered devices
675 *
676 * The callers are required to call dev_pm_opp_put() for the returned OPP after
677 * use.
678 */
679struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev,
680					     unsigned long *freq)
681{
682	return _find_key_ceil(dev, freq, 0, true, _read_freq, assert_single_clk);
683}
684EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil);
685
686/**
687 * dev_pm_opp_find_freq_ceil_indexed() - Search for a rounded ceil freq for the
688 *					 clock corresponding to the index
689 * @dev:	Device for which we do this operation
690 * @freq:	Start frequency
691 * @index:	Clock index
692 *
693 * Search for the matching ceil *available* OPP for the clock corresponding to
694 * the specified index from a starting freq for a device.
695 *
696 * Return: matching *opp and refreshes *freq accordingly, else returns
697 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
698 * values can be:
699 * EINVAL:	for bad pointer
700 * ERANGE:	no match found for search
701 * ENODEV:	if device not found in list of registered devices
702 *
703 * The callers are required to call dev_pm_opp_put() for the returned OPP after
704 * use.
705 */
706struct dev_pm_opp *
707dev_pm_opp_find_freq_ceil_indexed(struct device *dev, unsigned long *freq,
708				  u32 index)
709{
710	return _find_key_ceil(dev, freq, index, true, _read_freq, NULL);
711}
712EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil_indexed);
713
714/**
715 * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq
716 * @dev:	device for which we do this operation
717 * @freq:	Start frequency
718 *
719 * Search for the matching floor *available* OPP from a starting freq
720 * for a device.
721 *
722 * Return: matching *opp and refreshes *freq accordingly, else returns
723 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
724 * values can be:
725 * EINVAL:	for bad pointer
726 * ERANGE:	no match found for search
727 * ENODEV:	if device not found in list of registered devices
728 *
729 * The callers are required to call dev_pm_opp_put() for the returned OPP after
730 * use.
731 */
732struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev,
733					      unsigned long *freq)
734{
735	return _find_key_floor(dev, freq, 0, true, _read_freq, assert_single_clk);
736}
737EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor);
738
739/**
740 * dev_pm_opp_find_freq_floor_indexed() - Search for a rounded floor freq for the
741 *					  clock corresponding to the index
742 * @dev:	Device for which we do this operation
743 * @freq:	Start frequency
744 * @index:	Clock index
745 *
746 * Search for the matching floor *available* OPP for the clock corresponding to
747 * the specified index from a starting freq for a device.
748 *
749 * Return: matching *opp and refreshes *freq accordingly, else returns
750 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
751 * values can be:
752 * EINVAL:	for bad pointer
753 * ERANGE:	no match found for search
754 * ENODEV:	if device not found in list of registered devices
755 *
756 * The callers are required to call dev_pm_opp_put() for the returned OPP after
757 * use.
758 */
759struct dev_pm_opp *
760dev_pm_opp_find_freq_floor_indexed(struct device *dev, unsigned long *freq,
761				   u32 index)
762{
763	return _find_key_floor(dev, freq, index, true, _read_freq, NULL);
764}
765EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor_indexed);
766
767/**
768 * dev_pm_opp_find_level_exact() - search for an exact level
769 * @dev:		device for which we do this operation
770 * @level:		level to search for
771 *
772 * Return: Searches for exact match in the opp table and returns pointer to the
773 * matching opp if found, else returns ERR_PTR in case of error and should
774 * be handled using IS_ERR. Error return values can be:
775 * EINVAL:	for bad pointer
776 * ERANGE:	no match found for search
777 * ENODEV:	if device not found in list of registered devices
778 *
779 * The callers are required to call dev_pm_opp_put() for the returned OPP after
780 * use.
781 */
782struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev,
783					       unsigned int level)
784{
785	return _find_key_exact(dev, level, 0, true, _read_level, NULL);
786}
787EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact);
788
789/**
790 * dev_pm_opp_find_level_ceil() - search for an rounded up level
791 * @dev:		device for which we do this operation
792 * @level:		level to search for
793 *
794 * Return: Searches for rounded up match in the opp table and returns pointer
795 * to the  matching opp if found, else returns ERR_PTR in case of error and
796 * should be handled using IS_ERR. Error return values can be:
797 * EINVAL:	for bad pointer
798 * ERANGE:	no match found for search
799 * ENODEV:	if device not found in list of registered devices
800 *
801 * The callers are required to call dev_pm_opp_put() for the returned OPP after
802 * use.
803 */
804struct dev_pm_opp *dev_pm_opp_find_level_ceil(struct device *dev,
805					      unsigned int *level)
806{
807	unsigned long temp = *level;
808	struct dev_pm_opp *opp;
809
810	opp = _find_key_ceil(dev, &temp, 0, true, _read_level, NULL);
811	*level = temp;
812	return opp;
813}
814EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_ceil);
815
816/**
817 * dev_pm_opp_find_bw_ceil() - Search for a rounded ceil bandwidth
818 * @dev:	device for which we do this operation
819 * @bw:	start bandwidth
820 * @index:	which bandwidth to compare, in case of OPPs with several values
821 *
822 * Search for the matching floor *available* OPP from a starting bandwidth
823 * for a device.
824 *
825 * Return: matching *opp and refreshes *bw accordingly, else returns
826 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
827 * values can be:
828 * EINVAL:	for bad pointer
829 * ERANGE:	no match found for search
830 * ENODEV:	if device not found in list of registered devices
831 *
832 * The callers are required to call dev_pm_opp_put() for the returned OPP after
833 * use.
834 */
835struct dev_pm_opp *dev_pm_opp_find_bw_ceil(struct device *dev, unsigned int *bw,
836					   int index)
837{
838	unsigned long temp = *bw;
839	struct dev_pm_opp *opp;
840
841	opp = _find_key_ceil(dev, &temp, index, true, _read_bw, NULL);
842	*bw = temp;
843	return opp;
844}
845EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_ceil);
846
847/**
848 * dev_pm_opp_find_bw_floor() - Search for a rounded floor bandwidth
849 * @dev:	device for which we do this operation
850 * @bw:	start bandwidth
851 * @index:	which bandwidth to compare, in case of OPPs with several values
852 *
853 * Search for the matching floor *available* OPP from a starting bandwidth
854 * for a device.
855 *
856 * Return: matching *opp and refreshes *bw accordingly, else returns
857 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
858 * values can be:
859 * EINVAL:	for bad pointer
860 * ERANGE:	no match found for search
861 * ENODEV:	if device not found in list of registered devices
862 *
863 * The callers are required to call dev_pm_opp_put() for the returned OPP after
864 * use.
865 */
866struct dev_pm_opp *dev_pm_opp_find_bw_floor(struct device *dev,
867					    unsigned int *bw, int index)
868{
869	unsigned long temp = *bw;
870	struct dev_pm_opp *opp;
871
872	opp = _find_key_floor(dev, &temp, index, true, _read_bw, NULL);
873	*bw = temp;
874	return opp;
875}
876EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_floor);
877
878static int _set_opp_voltage(struct device *dev, struct regulator *reg,
879			    struct dev_pm_opp_supply *supply)
880{
881	int ret;
882
883	/* Regulator not available for device */
884	if (IS_ERR(reg)) {
885		dev_dbg(dev, "%s: regulator not available: %ld\n", __func__,
886			PTR_ERR(reg));
887		return 0;
888	}
889
890	dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__,
891		supply->u_volt_min, supply->u_volt, supply->u_volt_max);
892
893	ret = regulator_set_voltage_triplet(reg, supply->u_volt_min,
894					    supply->u_volt, supply->u_volt_max);
895	if (ret)
896		dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n",
897			__func__, supply->u_volt_min, supply->u_volt,
898			supply->u_volt_max, ret);
899
900	return ret;
901}
902
903static int
904_opp_config_clk_single(struct device *dev, struct opp_table *opp_table,
905		       struct dev_pm_opp *opp, void *data, bool scaling_down)
906{
907	unsigned long *target = data;
908	unsigned long freq;
909	int ret;
910
911	/* One of target and opp must be available */
912	if (target) {
913		freq = *target;
914	} else if (opp) {
915		freq = opp->rates[0];
916	} else {
917		WARN_ON(1);
918		return -EINVAL;
919	}
920
921	ret = clk_set_rate(opp_table->clk, freq);
922	if (ret) {
923		dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
924			ret);
925	} else {
926		opp_table->rate_clk_single = freq;
927	}
928
929	return ret;
930}
931
932/*
933 * Simple implementation for configuring multiple clocks. Configure clocks in
934 * the order in which they are present in the array while scaling up.
935 */
936int dev_pm_opp_config_clks_simple(struct device *dev,
937		struct opp_table *opp_table, struct dev_pm_opp *opp, void *data,
938		bool scaling_down)
939{
940	int ret, i;
941
942	if (scaling_down) {
943		for (i = opp_table->clk_count - 1; i >= 0; i--) {
944			ret = clk_set_rate(opp_table->clks[i], opp->rates[i]);
945			if (ret) {
946				dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
947					ret);
948				return ret;
949			}
950		}
951	} else {
952		for (i = 0; i < opp_table->clk_count; i++) {
953			ret = clk_set_rate(opp_table->clks[i], opp->rates[i]);
954			if (ret) {
955				dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
956					ret);
957				return ret;
958			}
959		}
960	}
961
962	return 0;
963}
964EXPORT_SYMBOL_GPL(dev_pm_opp_config_clks_simple);
965
966static int _opp_config_regulator_single(struct device *dev,
967			struct dev_pm_opp *old_opp, struct dev_pm_opp *new_opp,
968			struct regulator **regulators, unsigned int count)
969{
970	struct regulator *reg = regulators[0];
971	int ret;
972
973	/* This function only supports single regulator per device */
974	if (WARN_ON(count > 1)) {
975		dev_err(dev, "multiple regulators are not supported\n");
976		return -EINVAL;
977	}
978
979	ret = _set_opp_voltage(dev, reg, new_opp->supplies);
980	if (ret)
981		return ret;
982
983	/*
984	 * Enable the regulator after setting its voltages, otherwise it breaks
985	 * some boot-enabled regulators.
986	 */
987	if (unlikely(!new_opp->opp_table->enabled)) {
988		ret = regulator_enable(reg);
989		if (ret < 0)
990			dev_warn(dev, "Failed to enable regulator: %d", ret);
991	}
992
993	return 0;
994}
995
996static int _set_opp_bw(const struct opp_table *opp_table,
997		       struct dev_pm_opp *opp, struct device *dev)
998{
999	u32 avg, peak;
1000	int i, ret;
1001
1002	if (!opp_table->paths)
1003		return 0;
1004
1005	for (i = 0; i < opp_table->path_count; i++) {
1006		if (!opp) {
1007			avg = 0;
1008			peak = 0;
1009		} else {
1010			avg = opp->bandwidth[i].avg;
1011			peak = opp->bandwidth[i].peak;
1012		}
1013		ret = icc_set_bw(opp_table->paths[i], avg, peak);
1014		if (ret) {
1015			dev_err(dev, "Failed to %s bandwidth[%d]: %d\n",
1016				opp ? "set" : "remove", i, ret);
1017			return ret;
1018		}
1019	}
1020
1021	return 0;
1022}
1023
1024static int _set_performance_state(struct device *dev, struct device *pd_dev,
1025				  struct dev_pm_opp *opp, int i)
1026{
1027	unsigned int pstate = likely(opp) ? opp->required_opps[i]->level: 0;
1028	int ret;
1029
1030	if (!pd_dev)
1031		return 0;
1032
1033	ret = dev_pm_genpd_set_performance_state(pd_dev, pstate);
1034	if (ret) {
1035		dev_err(dev, "Failed to set performance state of %s: %d (%d)\n",
1036			dev_name(pd_dev), pstate, ret);
1037	}
1038
1039	return ret;
1040}
1041
1042static int _opp_set_required_opps_generic(struct device *dev,
1043	struct opp_table *opp_table, struct dev_pm_opp *opp, bool scaling_down)
1044{
1045	dev_err(dev, "setting required-opps isn't supported for non-genpd devices\n");
1046	return -ENOENT;
1047}
1048
1049static int _opp_set_required_opps_genpd(struct device *dev,
1050	struct opp_table *opp_table, struct dev_pm_opp *opp, bool scaling_down)
1051{
1052	struct device **genpd_virt_devs =
1053		opp_table->genpd_virt_devs ? opp_table->genpd_virt_devs : &dev;
1054	int i, ret = 0;
1055
1056	/*
1057	 * Acquire genpd_virt_dev_lock to make sure we don't use a genpd_dev
1058	 * after it is freed from another thread.
1059	 */
1060	mutex_lock(&opp_table->genpd_virt_dev_lock);
1061
1062	/* Scaling up? Set required OPPs in normal order, else reverse */
1063	if (!scaling_down) {
1064		for (i = 0; i < opp_table->required_opp_count; i++) {
1065			ret = _set_performance_state(dev, genpd_virt_devs[i], opp, i);
1066			if (ret)
1067				break;
1068		}
1069	} else {
1070		for (i = opp_table->required_opp_count - 1; i >= 0; i--) {
1071			ret = _set_performance_state(dev, genpd_virt_devs[i], opp, i);
1072			if (ret)
1073				break;
1074		}
1075	}
1076
1077	mutex_unlock(&opp_table->genpd_virt_dev_lock);
1078
1079	return ret;
1080}
1081
1082/* This is only called for PM domain for now */
1083static int _set_required_opps(struct device *dev, struct opp_table *opp_table,
1084			      struct dev_pm_opp *opp, bool up)
1085{
1086	/* required-opps not fully initialized yet */
1087	if (lazy_linking_pending(opp_table))
1088		return -EBUSY;
1089
1090	if (opp_table->set_required_opps)
1091		return opp_table->set_required_opps(dev, opp_table, opp, up);
1092
1093	return 0;
1094}
1095
1096/* Update set_required_opps handler */
1097void _update_set_required_opps(struct opp_table *opp_table)
1098{
1099	/* Already set */
1100	if (opp_table->set_required_opps)
1101		return;
1102
1103	/* All required OPPs will belong to genpd or none */
1104	if (opp_table->required_opp_tables[0]->is_genpd)
1105		opp_table->set_required_opps = _opp_set_required_opps_genpd;
1106	else
1107		opp_table->set_required_opps = _opp_set_required_opps_generic;
1108}
1109
1110static void _find_current_opp(struct device *dev, struct opp_table *opp_table)
1111{
1112	struct dev_pm_opp *opp = ERR_PTR(-ENODEV);
1113	unsigned long freq;
1114
1115	if (!IS_ERR(opp_table->clk)) {
1116		freq = clk_get_rate(opp_table->clk);
1117		opp = _find_freq_ceil(opp_table, &freq);
1118	}
1119
1120	/*
1121	 * Unable to find the current OPP ? Pick the first from the list since
1122	 * it is in ascending order, otherwise rest of the code will need to
1123	 * make special checks to validate current_opp.
1124	 */
1125	if (IS_ERR(opp)) {
1126		mutex_lock(&opp_table->lock);
1127		opp = list_first_entry(&opp_table->opp_list, struct dev_pm_opp, node);
1128		dev_pm_opp_get(opp);
1129		mutex_unlock(&opp_table->lock);
1130	}
1131
1132	opp_table->current_opp = opp;
1133}
1134
1135static int _disable_opp_table(struct device *dev, struct opp_table *opp_table)
1136{
1137	int ret;
1138
1139	if (!opp_table->enabled)
1140		return 0;
1141
1142	/*
1143	 * Some drivers need to support cases where some platforms may
1144	 * have OPP table for the device, while others don't and
1145	 * opp_set_rate() just needs to behave like clk_set_rate().
1146	 */
1147	if (!_get_opp_count(opp_table))
1148		return 0;
1149
1150	ret = _set_opp_bw(opp_table, NULL, dev);
1151	if (ret)
1152		return ret;
1153
1154	if (opp_table->regulators)
1155		regulator_disable(opp_table->regulators[0]);
1156
1157	ret = _set_required_opps(dev, opp_table, NULL, false);
1158
1159	opp_table->enabled = false;
1160	return ret;
1161}
1162
1163static int _set_opp(struct device *dev, struct opp_table *opp_table,
1164		    struct dev_pm_opp *opp, void *clk_data, bool forced)
1165{
1166	struct dev_pm_opp *old_opp;
1167	int scaling_down, ret;
1168
1169	if (unlikely(!opp))
1170		return _disable_opp_table(dev, opp_table);
1171
1172	/* Find the currently set OPP if we don't know already */
1173	if (unlikely(!opp_table->current_opp))
1174		_find_current_opp(dev, opp_table);
1175
1176	old_opp = opp_table->current_opp;
1177
1178	/* Return early if nothing to do */
1179	if (!forced && old_opp == opp && opp_table->enabled) {
1180		dev_dbg_ratelimited(dev, "%s: OPPs are same, nothing to do\n", __func__);
1181		return 0;
1182	}
1183
1184	dev_dbg(dev, "%s: switching OPP: Freq %lu -> %lu Hz, Level %u -> %u, Bw %u -> %u\n",
1185		__func__, old_opp->rates[0], opp->rates[0], old_opp->level,
1186		opp->level, old_opp->bandwidth ? old_opp->bandwidth[0].peak : 0,
1187		opp->bandwidth ? opp->bandwidth[0].peak : 0);
1188
1189	scaling_down = _opp_compare_key(opp_table, old_opp, opp);
1190	if (scaling_down == -1)
1191		scaling_down = 0;
1192
1193	/* Scaling up? Configure required OPPs before frequency */
1194	if (!scaling_down) {
1195		ret = _set_required_opps(dev, opp_table, opp, true);
1196		if (ret) {
1197			dev_err(dev, "Failed to set required opps: %d\n", ret);
1198			return ret;
1199		}
1200
1201		ret = _set_opp_bw(opp_table, opp, dev);
1202		if (ret) {
1203			dev_err(dev, "Failed to set bw: %d\n", ret);
1204			return ret;
1205		}
1206
1207		if (opp_table->config_regulators) {
1208			ret = opp_table->config_regulators(dev, old_opp, opp,
1209							   opp_table->regulators,
1210							   opp_table->regulator_count);
1211			if (ret) {
1212				dev_err(dev, "Failed to set regulator voltages: %d\n",
1213					ret);
1214				return ret;
1215			}
1216		}
1217	}
1218
1219	if (opp_table->config_clks) {
1220		ret = opp_table->config_clks(dev, opp_table, opp, clk_data, scaling_down);
1221		if (ret)
1222			return ret;
1223	}
1224
1225	/* Scaling down? Configure required OPPs after frequency */
1226	if (scaling_down) {
1227		if (opp_table->config_regulators) {
1228			ret = opp_table->config_regulators(dev, old_opp, opp,
1229							   opp_table->regulators,
1230							   opp_table->regulator_count);
1231			if (ret) {
1232				dev_err(dev, "Failed to set regulator voltages: %d\n",
1233					ret);
1234				return ret;
1235			}
1236		}
1237
1238		ret = _set_opp_bw(opp_table, opp, dev);
1239		if (ret) {
1240			dev_err(dev, "Failed to set bw: %d\n", ret);
1241			return ret;
1242		}
1243
1244		ret = _set_required_opps(dev, opp_table, opp, false);
1245		if (ret) {
1246			dev_err(dev, "Failed to set required opps: %d\n", ret);
1247			return ret;
1248		}
1249	}
1250
1251	opp_table->enabled = true;
1252	dev_pm_opp_put(old_opp);
1253
1254	/* Make sure current_opp doesn't get freed */
1255	dev_pm_opp_get(opp);
1256	opp_table->current_opp = opp;
1257
1258	return ret;
1259}
1260
1261/**
1262 * dev_pm_opp_set_rate() - Configure new OPP based on frequency
1263 * @dev:	 device for which we do this operation
1264 * @target_freq: frequency to achieve
1265 *
1266 * This configures the power-supplies to the levels specified by the OPP
1267 * corresponding to the target_freq, and programs the clock to a value <=
1268 * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax
1269 * provided by the opp, should have already rounded to the target OPP's
1270 * frequency.
1271 */
1272int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq)
1273{
1274	struct opp_table *opp_table;
1275	unsigned long freq = 0, temp_freq;
1276	struct dev_pm_opp *opp = NULL;
1277	bool forced = false;
1278	int ret;
1279
1280	opp_table = _find_opp_table(dev);
1281	if (IS_ERR(opp_table)) {
1282		dev_err(dev, "%s: device's opp table doesn't exist\n", __func__);
1283		return PTR_ERR(opp_table);
1284	}
1285
1286	if (target_freq) {
1287		/*
1288		 * For IO devices which require an OPP on some platforms/SoCs
1289		 * while just needing to scale the clock on some others
1290		 * we look for empty OPP tables with just a clock handle and
1291		 * scale only the clk. This makes dev_pm_opp_set_rate()
1292		 * equivalent to a clk_set_rate()
1293		 */
1294		if (!_get_opp_count(opp_table)) {
1295			ret = opp_table->config_clks(dev, opp_table, NULL,
1296						     &target_freq, false);
1297			goto put_opp_table;
1298		}
1299
1300		freq = clk_round_rate(opp_table->clk, target_freq);
1301		if ((long)freq <= 0)
1302			freq = target_freq;
1303
1304		/*
1305		 * The clock driver may support finer resolution of the
1306		 * frequencies than the OPP table, don't update the frequency we
1307		 * pass to clk_set_rate() here.
1308		 */
1309		temp_freq = freq;
1310		opp = _find_freq_ceil(opp_table, &temp_freq);
1311		if (IS_ERR(opp)) {
1312			ret = PTR_ERR(opp);
1313			dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n",
1314				__func__, freq, ret);
1315			goto put_opp_table;
1316		}
1317
1318		/*
1319		 * An OPP entry specifies the highest frequency at which other
1320		 * properties of the OPP entry apply. Even if the new OPP is
1321		 * same as the old one, we may still reach here for a different
1322		 * value of the frequency. In such a case, do not abort but
1323		 * configure the hardware to the desired frequency forcefully.
1324		 */
1325		forced = opp_table->rate_clk_single != freq;
1326	}
1327
1328	ret = _set_opp(dev, opp_table, opp, &freq, forced);
1329
1330	if (freq)
1331		dev_pm_opp_put(opp);
1332
1333put_opp_table:
1334	dev_pm_opp_put_opp_table(opp_table);
1335	return ret;
1336}
1337EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate);
1338
1339/**
1340 * dev_pm_opp_set_opp() - Configure device for OPP
1341 * @dev: device for which we do this operation
1342 * @opp: OPP to set to
1343 *
1344 * This configures the device based on the properties of the OPP passed to this
1345 * routine.
1346 *
1347 * Return: 0 on success, a negative error number otherwise.
1348 */
1349int dev_pm_opp_set_opp(struct device *dev, struct dev_pm_opp *opp)
1350{
1351	struct opp_table *opp_table;
1352	int ret;
1353
1354	opp_table = _find_opp_table(dev);
1355	if (IS_ERR(opp_table)) {
1356		dev_err(dev, "%s: device opp doesn't exist\n", __func__);
1357		return PTR_ERR(opp_table);
1358	}
1359
1360	ret = _set_opp(dev, opp_table, opp, NULL, false);
1361	dev_pm_opp_put_opp_table(opp_table);
1362
1363	return ret;
1364}
1365EXPORT_SYMBOL_GPL(dev_pm_opp_set_opp);
1366
1367/* OPP-dev Helpers */
1368static void _remove_opp_dev(struct opp_device *opp_dev,
1369			    struct opp_table *opp_table)
1370{
1371	opp_debug_unregister(opp_dev, opp_table);
1372	list_del(&opp_dev->node);
1373	kfree(opp_dev);
1374}
1375
1376struct opp_device *_add_opp_dev(const struct device *dev,
1377				struct opp_table *opp_table)
1378{
1379	struct opp_device *opp_dev;
1380
1381	opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL);
1382	if (!opp_dev)
1383		return NULL;
1384
1385	/* Initialize opp-dev */
1386	opp_dev->dev = dev;
1387
1388	mutex_lock(&opp_table->lock);
1389	list_add(&opp_dev->node, &opp_table->dev_list);
1390	mutex_unlock(&opp_table->lock);
1391
1392	/* Create debugfs entries for the opp_table */
1393	opp_debug_register(opp_dev, opp_table);
1394
1395	return opp_dev;
1396}
1397
1398static struct opp_table *_allocate_opp_table(struct device *dev, int index)
1399{
1400	struct opp_table *opp_table;
1401	struct opp_device *opp_dev;
1402	int ret;
1403
1404	/*
1405	 * Allocate a new OPP table. In the infrequent case where a new
1406	 * device is needed to be added, we pay this penalty.
1407	 */
1408	opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL);
1409	if (!opp_table)
1410		return ERR_PTR(-ENOMEM);
1411
1412	mutex_init(&opp_table->lock);
1413	mutex_init(&opp_table->genpd_virt_dev_lock);
1414	INIT_LIST_HEAD(&opp_table->dev_list);
1415	INIT_LIST_HEAD(&opp_table->lazy);
1416
1417	opp_table->clk = ERR_PTR(-ENODEV);
1418
1419	/* Mark regulator count uninitialized */
1420	opp_table->regulator_count = -1;
1421
1422	opp_dev = _add_opp_dev(dev, opp_table);
1423	if (!opp_dev) {
1424		ret = -ENOMEM;
1425		goto err;
1426	}
1427
1428	_of_init_opp_table(opp_table, dev, index);
1429
1430	/* Find interconnect path(s) for the device */
1431	ret = dev_pm_opp_of_find_icc_paths(dev, opp_table);
1432	if (ret) {
1433		if (ret == -EPROBE_DEFER)
1434			goto remove_opp_dev;
1435
1436		dev_warn(dev, "%s: Error finding interconnect paths: %d\n",
1437			 __func__, ret);
1438	}
1439
1440	BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head);
1441	INIT_LIST_HEAD(&opp_table->opp_list);
1442	kref_init(&opp_table->kref);
1443
1444	return opp_table;
1445
1446remove_opp_dev:
1447	_of_clear_opp_table(opp_table);
1448	_remove_opp_dev(opp_dev, opp_table);
1449	mutex_destroy(&opp_table->genpd_virt_dev_lock);
1450	mutex_destroy(&opp_table->lock);
1451err:
1452	kfree(opp_table);
1453	return ERR_PTR(ret);
1454}
1455
1456void _get_opp_table_kref(struct opp_table *opp_table)
1457{
1458	kref_get(&opp_table->kref);
1459}
1460
1461static struct opp_table *_update_opp_table_clk(struct device *dev,
1462					       struct opp_table *opp_table,
1463					       bool getclk)
1464{
1465	int ret;
1466
1467	/*
1468	 * Return early if we don't need to get clk or we have already done it
1469	 * earlier.
1470	 */
1471	if (!getclk || IS_ERR(opp_table) || !IS_ERR(opp_table->clk) ||
1472	    opp_table->clks)
1473		return opp_table;
1474
1475	/* Find clk for the device */
1476	opp_table->clk = clk_get(dev, NULL);
1477
1478	ret = PTR_ERR_OR_ZERO(opp_table->clk);
1479	if (!ret) {
1480		opp_table->config_clks = _opp_config_clk_single;
1481		opp_table->clk_count = 1;
1482		return opp_table;
1483	}
1484
1485	if (ret == -ENOENT) {
1486		/*
1487		 * There are few platforms which don't want the OPP core to
1488		 * manage device's clock settings. In such cases neither the
1489		 * platform provides the clks explicitly to us, nor the DT
1490		 * contains a valid clk entry. The OPP nodes in DT may still
1491		 * contain "opp-hz" property though, which we need to parse and
1492		 * allow the platform to find an OPP based on freq later on.
1493		 *
1494		 * This is a simple solution to take care of such corner cases,
1495		 * i.e. make the clk_count 1, which lets us allocate space for
1496		 * frequency in opp->rates and also parse the entries in DT.
1497		 */
1498		opp_table->clk_count = 1;
1499
1500		dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__, ret);
1501		return opp_table;
1502	}
1503
1504	dev_pm_opp_put_opp_table(opp_table);
1505	dev_err_probe(dev, ret, "Couldn't find clock\n");
1506
1507	return ERR_PTR(ret);
1508}
1509
1510/*
1511 * We need to make sure that the OPP table for a device doesn't get added twice,
1512 * if this routine gets called in parallel with the same device pointer.
1513 *
1514 * The simplest way to enforce that is to perform everything (find existing
1515 * table and if not found, create a new one) under the opp_table_lock, so only
1516 * one creator gets access to the same. But that expands the critical section
1517 * under the lock and may end up causing circular dependencies with frameworks
1518 * like debugfs, interconnect or clock framework as they may be direct or
1519 * indirect users of OPP core.
1520 *
1521 * And for that reason we have to go for a bit tricky implementation here, which
1522 * uses the opp_tables_busy flag to indicate if another creator is in the middle
1523 * of adding an OPP table and others should wait for it to finish.
1524 */
1525struct opp_table *_add_opp_table_indexed(struct device *dev, int index,
1526					 bool getclk)
1527{
1528	struct opp_table *opp_table;
1529
1530again:
1531	mutex_lock(&opp_table_lock);
1532
1533	opp_table = _find_opp_table_unlocked(dev);
1534	if (!IS_ERR(opp_table))
1535		goto unlock;
1536
1537	/*
1538	 * The opp_tables list or an OPP table's dev_list is getting updated by
1539	 * another user, wait for it to finish.
1540	 */
1541	if (unlikely(opp_tables_busy)) {
1542		mutex_unlock(&opp_table_lock);
1543		cpu_relax();
1544		goto again;
1545	}
1546
1547	opp_tables_busy = true;
1548	opp_table = _managed_opp(dev, index);
1549
1550	/* Drop the lock to reduce the size of critical section */
1551	mutex_unlock(&opp_table_lock);
1552
1553	if (opp_table) {
1554		if (!_add_opp_dev(dev, opp_table)) {
1555			dev_pm_opp_put_opp_table(opp_table);
1556			opp_table = ERR_PTR(-ENOMEM);
1557		}
1558
1559		mutex_lock(&opp_table_lock);
1560	} else {
1561		opp_table = _allocate_opp_table(dev, index);
1562
1563		mutex_lock(&opp_table_lock);
1564		if (!IS_ERR(opp_table))
1565			list_add(&opp_table->node, &opp_tables);
1566	}
1567
1568	opp_tables_busy = false;
1569
1570unlock:
1571	mutex_unlock(&opp_table_lock);
1572
1573	return _update_opp_table_clk(dev, opp_table, getclk);
1574}
1575
1576static struct opp_table *_add_opp_table(struct device *dev, bool getclk)
1577{
1578	return _add_opp_table_indexed(dev, 0, getclk);
1579}
1580
1581struct opp_table *dev_pm_opp_get_opp_table(struct device *dev)
1582{
1583	return _find_opp_table(dev);
1584}
1585EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table);
1586
1587static void _opp_table_kref_release(struct kref *kref)
1588{
1589	struct opp_table *opp_table = container_of(kref, struct opp_table, kref);
1590	struct opp_device *opp_dev, *temp;
1591	int i;
1592
1593	/* Drop the lock as soon as we can */
1594	list_del(&opp_table->node);
1595	mutex_unlock(&opp_table_lock);
1596
1597	if (opp_table->current_opp)
1598		dev_pm_opp_put(opp_table->current_opp);
1599
1600	_of_clear_opp_table(opp_table);
1601
1602	/* Release automatically acquired single clk */
1603	if (!IS_ERR(opp_table->clk))
1604		clk_put(opp_table->clk);
1605
1606	if (opp_table->paths) {
1607		for (i = 0; i < opp_table->path_count; i++)
1608			icc_put(opp_table->paths[i]);
1609		kfree(opp_table->paths);
1610	}
1611
1612	WARN_ON(!list_empty(&opp_table->opp_list));
1613
1614	list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node)
1615		_remove_opp_dev(opp_dev, opp_table);
1616
1617	mutex_destroy(&opp_table->genpd_virt_dev_lock);
1618	mutex_destroy(&opp_table->lock);
1619	kfree(opp_table);
1620}
1621
1622void dev_pm_opp_put_opp_table(struct opp_table *opp_table)
1623{
1624	kref_put_mutex(&opp_table->kref, _opp_table_kref_release,
1625		       &opp_table_lock);
1626}
1627EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table);
1628
1629void _opp_free(struct dev_pm_opp *opp)
1630{
1631	kfree(opp);
1632}
1633
1634static void _opp_kref_release(struct kref *kref)
1635{
1636	struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1637	struct opp_table *opp_table = opp->opp_table;
1638
1639	list_del(&opp->node);
1640	mutex_unlock(&opp_table->lock);
1641
1642	/*
1643	 * Notify the changes in the availability of the operable
1644	 * frequency/voltage list.
1645	 */
1646	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp);
1647	_of_clear_opp(opp_table, opp);
1648	opp_debug_remove_one(opp);
1649	kfree(opp);
1650}
1651
1652void dev_pm_opp_get(struct dev_pm_opp *opp)
1653{
1654	kref_get(&opp->kref);
1655}
1656
1657void dev_pm_opp_put(struct dev_pm_opp *opp)
1658{
1659	kref_put_mutex(&opp->kref, _opp_kref_release, &opp->opp_table->lock);
1660}
1661EXPORT_SYMBOL_GPL(dev_pm_opp_put);
1662
1663/**
1664 * dev_pm_opp_remove()  - Remove an OPP from OPP table
1665 * @dev:	device for which we do this operation
1666 * @freq:	OPP to remove with matching 'freq'
1667 *
1668 * This function removes an opp from the opp table.
1669 */
1670void dev_pm_opp_remove(struct device *dev, unsigned long freq)
1671{
1672	struct dev_pm_opp *opp = NULL, *iter;
1673	struct opp_table *opp_table;
1674
1675	opp_table = _find_opp_table(dev);
1676	if (IS_ERR(opp_table))
1677		return;
1678
1679	if (!assert_single_clk(opp_table))
1680		goto put_table;
1681
1682	mutex_lock(&opp_table->lock);
1683
1684	list_for_each_entry(iter, &opp_table->opp_list, node) {
1685		if (iter->rates[0] == freq) {
1686			opp = iter;
1687			break;
1688		}
1689	}
1690
1691	mutex_unlock(&opp_table->lock);
1692
1693	if (opp) {
1694		dev_pm_opp_put(opp);
1695
1696		/* Drop the reference taken by dev_pm_opp_add() */
1697		dev_pm_opp_put_opp_table(opp_table);
1698	} else {
1699		dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n",
1700			 __func__, freq);
1701	}
1702
1703put_table:
1704	/* Drop the reference taken by _find_opp_table() */
1705	dev_pm_opp_put_opp_table(opp_table);
1706}
1707EXPORT_SYMBOL_GPL(dev_pm_opp_remove);
1708
1709static struct dev_pm_opp *_opp_get_next(struct opp_table *opp_table,
1710					bool dynamic)
1711{
1712	struct dev_pm_opp *opp = NULL, *temp;
1713
1714	mutex_lock(&opp_table->lock);
1715	list_for_each_entry(temp, &opp_table->opp_list, node) {
1716		/*
1717		 * Refcount must be dropped only once for each OPP by OPP core,
1718		 * do that with help of "removed" flag.
1719		 */
1720		if (!temp->removed && dynamic == temp->dynamic) {
1721			opp = temp;
1722			break;
1723		}
1724	}
1725
1726	mutex_unlock(&opp_table->lock);
1727	return opp;
1728}
1729
1730/*
1731 * Can't call dev_pm_opp_put() from under the lock as debugfs removal needs to
1732 * happen lock less to avoid circular dependency issues. This routine must be
1733 * called without the opp_table->lock held.
1734 */
1735static void _opp_remove_all(struct opp_table *opp_table, bool dynamic)
1736{
1737	struct dev_pm_opp *opp;
1738
1739	while ((opp = _opp_get_next(opp_table, dynamic))) {
1740		opp->removed = true;
1741		dev_pm_opp_put(opp);
1742
1743		/* Drop the references taken by dev_pm_opp_add() */
1744		if (dynamic)
1745			dev_pm_opp_put_opp_table(opp_table);
1746	}
1747}
1748
1749bool _opp_remove_all_static(struct opp_table *opp_table)
1750{
1751	mutex_lock(&opp_table->lock);
1752
1753	if (!opp_table->parsed_static_opps) {
1754		mutex_unlock(&opp_table->lock);
1755		return false;
1756	}
1757
1758	if (--opp_table->parsed_static_opps) {
1759		mutex_unlock(&opp_table->lock);
1760		return true;
1761	}
1762
1763	mutex_unlock(&opp_table->lock);
1764
1765	_opp_remove_all(opp_table, false);
1766	return true;
1767}
1768
1769/**
1770 * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs
1771 * @dev:	device for which we do this operation
1772 *
1773 * This function removes all dynamically created OPPs from the opp table.
1774 */
1775void dev_pm_opp_remove_all_dynamic(struct device *dev)
1776{
1777	struct opp_table *opp_table;
1778
1779	opp_table = _find_opp_table(dev);
1780	if (IS_ERR(opp_table))
1781		return;
1782
1783	_opp_remove_all(opp_table, true);
1784
1785	/* Drop the reference taken by _find_opp_table() */
1786	dev_pm_opp_put_opp_table(opp_table);
1787}
1788EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic);
1789
1790struct dev_pm_opp *_opp_allocate(struct opp_table *opp_table)
1791{
1792	struct dev_pm_opp *opp;
1793	int supply_count, supply_size, icc_size, clk_size;
1794
1795	/* Allocate space for at least one supply */
1796	supply_count = opp_table->regulator_count > 0 ?
1797			opp_table->regulator_count : 1;
1798	supply_size = sizeof(*opp->supplies) * supply_count;
1799	clk_size = sizeof(*opp->rates) * opp_table->clk_count;
1800	icc_size = sizeof(*opp->bandwidth) * opp_table->path_count;
1801
1802	/* allocate new OPP node and supplies structures */
1803	opp = kzalloc(sizeof(*opp) + supply_size + clk_size + icc_size, GFP_KERNEL);
1804	if (!opp)
1805		return NULL;
1806
1807	/* Put the supplies, bw and clock at the end of the OPP structure */
1808	opp->supplies = (struct dev_pm_opp_supply *)(opp + 1);
1809
1810	opp->rates = (unsigned long *)(opp->supplies + supply_count);
1811
1812	if (icc_size)
1813		opp->bandwidth = (struct dev_pm_opp_icc_bw *)(opp->rates + opp_table->clk_count);
1814
1815	INIT_LIST_HEAD(&opp->node);
1816
1817	return opp;
1818}
1819
1820static bool _opp_supported_by_regulators(struct dev_pm_opp *opp,
1821					 struct opp_table *opp_table)
1822{
1823	struct regulator *reg;
1824	int i;
1825
1826	if (!opp_table->regulators)
1827		return true;
1828
1829	for (i = 0; i < opp_table->regulator_count; i++) {
1830		reg = opp_table->regulators[i];
1831
1832		if (!regulator_is_supported_voltage(reg,
1833					opp->supplies[i].u_volt_min,
1834					opp->supplies[i].u_volt_max)) {
1835			pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n",
1836				__func__, opp->supplies[i].u_volt_min,
1837				opp->supplies[i].u_volt_max);
1838			return false;
1839		}
1840	}
1841
1842	return true;
1843}
1844
1845static int _opp_compare_rate(struct opp_table *opp_table,
1846			     struct dev_pm_opp *opp1, struct dev_pm_opp *opp2)
1847{
1848	int i;
1849
1850	for (i = 0; i < opp_table->clk_count; i++) {
1851		if (opp1->rates[i] != opp2->rates[i])
1852			return opp1->rates[i] < opp2->rates[i] ? -1 : 1;
1853	}
1854
1855	/* Same rates for both OPPs */
1856	return 0;
1857}
1858
1859static int _opp_compare_bw(struct opp_table *opp_table, struct dev_pm_opp *opp1,
1860			   struct dev_pm_opp *opp2)
1861{
1862	int i;
1863
1864	for (i = 0; i < opp_table->path_count; i++) {
1865		if (opp1->bandwidth[i].peak != opp2->bandwidth[i].peak)
1866			return opp1->bandwidth[i].peak < opp2->bandwidth[i].peak ? -1 : 1;
1867	}
1868
1869	/* Same bw for both OPPs */
1870	return 0;
1871}
1872
1873/*
1874 * Returns
1875 * 0: opp1 == opp2
1876 * 1: opp1 > opp2
1877 * -1: opp1 < opp2
1878 */
1879int _opp_compare_key(struct opp_table *opp_table, struct dev_pm_opp *opp1,
1880		     struct dev_pm_opp *opp2)
1881{
1882	int ret;
1883
1884	ret = _opp_compare_rate(opp_table, opp1, opp2);
1885	if (ret)
1886		return ret;
1887
1888	ret = _opp_compare_bw(opp_table, opp1, opp2);
1889	if (ret)
1890		return ret;
1891
1892	if (opp1->level != opp2->level)
1893		return opp1->level < opp2->level ? -1 : 1;
1894
1895	/* Duplicate OPPs */
1896	return 0;
1897}
1898
1899static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp,
1900			     struct opp_table *opp_table,
1901			     struct list_head **head)
1902{
1903	struct dev_pm_opp *opp;
1904	int opp_cmp;
1905
1906	/*
1907	 * Insert new OPP in order of increasing frequency and discard if
1908	 * already present.
1909	 *
1910	 * Need to use &opp_table->opp_list in the condition part of the 'for'
1911	 * loop, don't replace it with head otherwise it will become an infinite
1912	 * loop.
1913	 */
1914	list_for_each_entry(opp, &opp_table->opp_list, node) {
1915		opp_cmp = _opp_compare_key(opp_table, new_opp, opp);
1916		if (opp_cmp > 0) {
1917			*head = &opp->node;
1918			continue;
1919		}
1920
1921		if (opp_cmp < 0)
1922			return 0;
1923
1924		/* Duplicate OPPs */
1925		dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n",
1926			 __func__, opp->rates[0], opp->supplies[0].u_volt,
1927			 opp->available, new_opp->rates[0],
1928			 new_opp->supplies[0].u_volt, new_opp->available);
1929
1930		/* Should we compare voltages for all regulators here ? */
1931		return opp->available &&
1932		       new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST;
1933	}
1934
1935	return 0;
1936}
1937
1938void _required_opps_available(struct dev_pm_opp *opp, int count)
1939{
1940	int i;
1941
1942	for (i = 0; i < count; i++) {
1943		if (opp->required_opps[i]->available)
1944			continue;
1945
1946		opp->available = false;
1947		pr_warn("%s: OPP not supported by required OPP %pOF (%lu)\n",
1948			 __func__, opp->required_opps[i]->np, opp->rates[0]);
1949		return;
1950	}
1951}
1952
1953/*
1954 * Returns:
1955 * 0: On success. And appropriate error message for duplicate OPPs.
1956 * -EBUSY: For OPP with same freq/volt and is available. The callers of
1957 *  _opp_add() must return 0 if they receive -EBUSY from it. This is to make
1958 *  sure we don't print error messages unnecessarily if different parts of
1959 *  kernel try to initialize the OPP table.
1960 * -EEXIST: For OPP with same freq but different volt or is unavailable. This
1961 *  should be considered an error by the callers of _opp_add().
1962 */
1963int _opp_add(struct device *dev, struct dev_pm_opp *new_opp,
1964	     struct opp_table *opp_table)
1965{
1966	struct list_head *head;
1967	int ret;
1968
1969	mutex_lock(&opp_table->lock);
1970	head = &opp_table->opp_list;
1971
1972	ret = _opp_is_duplicate(dev, new_opp, opp_table, &head);
1973	if (ret) {
1974		mutex_unlock(&opp_table->lock);
1975		return ret;
1976	}
1977
1978	list_add(&new_opp->node, head);
1979	mutex_unlock(&opp_table->lock);
1980
1981	new_opp->opp_table = opp_table;
1982	kref_init(&new_opp->kref);
1983
1984	opp_debug_create_one(new_opp, opp_table);
1985
1986	if (!_opp_supported_by_regulators(new_opp, opp_table)) {
1987		new_opp->available = false;
1988		dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n",
1989			 __func__, new_opp->rates[0]);
1990	}
1991
1992	/* required-opps not fully initialized yet */
1993	if (lazy_linking_pending(opp_table))
1994		return 0;
1995
1996	_required_opps_available(new_opp, opp_table->required_opp_count);
1997
1998	return 0;
1999}
2000
2001/**
2002 * _opp_add_v1() - Allocate a OPP based on v1 bindings.
2003 * @opp_table:	OPP table
2004 * @dev:	device for which we do this operation
2005 * @freq:	Frequency in Hz for this OPP
2006 * @u_volt:	Voltage in uVolts for this OPP
2007 * @dynamic:	Dynamically added OPPs.
2008 *
2009 * This function adds an opp definition to the opp table and returns status.
2010 * The opp is made available by default and it can be controlled using
2011 * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove.
2012 *
2013 * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table
2014 * and freed by dev_pm_opp_of_remove_table.
2015 *
2016 * Return:
2017 * 0		On success OR
2018 *		Duplicate OPPs (both freq and volt are same) and opp->available
2019 * -EEXIST	Freq are same and volt are different OR
2020 *		Duplicate OPPs (both freq and volt are same) and !opp->available
2021 * -ENOMEM	Memory allocation failure
2022 */
2023int _opp_add_v1(struct opp_table *opp_table, struct device *dev,
2024		unsigned long freq, long u_volt, bool dynamic)
2025{
2026	struct dev_pm_opp *new_opp;
2027	unsigned long tol;
2028	int ret;
2029
2030	if (!assert_single_clk(opp_table))
2031		return -EINVAL;
2032
2033	new_opp = _opp_allocate(opp_table);
2034	if (!new_opp)
2035		return -ENOMEM;
2036
2037	/* populate the opp table */
2038	new_opp->rates[0] = freq;
2039	tol = u_volt * opp_table->voltage_tolerance_v1 / 100;
2040	new_opp->supplies[0].u_volt = u_volt;
2041	new_opp->supplies[0].u_volt_min = u_volt - tol;
2042	new_opp->supplies[0].u_volt_max = u_volt + tol;
2043	new_opp->available = true;
2044	new_opp->dynamic = dynamic;
2045
2046	ret = _opp_add(dev, new_opp, opp_table);
2047	if (ret) {
2048		/* Don't return error for duplicate OPPs */
2049		if (ret == -EBUSY)
2050			ret = 0;
2051		goto free_opp;
2052	}
2053
2054	/*
2055	 * Notify the changes in the availability of the operable
2056	 * frequency/voltage list.
2057	 */
2058	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
2059	return 0;
2060
2061free_opp:
2062	_opp_free(new_opp);
2063
2064	return ret;
2065}
2066
2067/**
2068 * _opp_set_supported_hw() - Set supported platforms
2069 * @dev: Device for which supported-hw has to be set.
2070 * @versions: Array of hierarchy of versions to match.
2071 * @count: Number of elements in the array.
2072 *
2073 * This is required only for the V2 bindings, and it enables a platform to
2074 * specify the hierarchy of versions it supports. OPP layer will then enable
2075 * OPPs, which are available for those versions, based on its 'opp-supported-hw'
2076 * property.
2077 */
2078static int _opp_set_supported_hw(struct opp_table *opp_table,
2079				 const u32 *versions, unsigned int count)
2080{
2081	/* Another CPU that shares the OPP table has set the property ? */
2082	if (opp_table->supported_hw)
2083		return 0;
2084
2085	opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions),
2086					GFP_KERNEL);
2087	if (!opp_table->supported_hw)
2088		return -ENOMEM;
2089
2090	opp_table->supported_hw_count = count;
2091
2092	return 0;
2093}
2094
2095/**
2096 * _opp_put_supported_hw() - Releases resources blocked for supported hw
2097 * @opp_table: OPP table returned by _opp_set_supported_hw().
2098 *
2099 * This is required only for the V2 bindings, and is called for a matching
2100 * _opp_set_supported_hw(). Until this is called, the opp_table structure
2101 * will not be freed.
2102 */
2103static void _opp_put_supported_hw(struct opp_table *opp_table)
2104{
2105	if (opp_table->supported_hw) {
2106		kfree(opp_table->supported_hw);
2107		opp_table->supported_hw = NULL;
2108		opp_table->supported_hw_count = 0;
2109	}
2110}
2111
2112/**
2113 * _opp_set_prop_name() - Set prop-extn name
2114 * @dev: Device for which the prop-name has to be set.
2115 * @name: name to postfix to properties.
2116 *
2117 * This is required only for the V2 bindings, and it enables a platform to
2118 * specify the extn to be used for certain property names. The properties to
2119 * which the extension will apply are opp-microvolt and opp-microamp. OPP core
2120 * should postfix the property name with -<name> while looking for them.
2121 */
2122static int _opp_set_prop_name(struct opp_table *opp_table, const char *name)
2123{
2124	/* Another CPU that shares the OPP table has set the property ? */
2125	if (!opp_table->prop_name) {
2126		opp_table->prop_name = kstrdup(name, GFP_KERNEL);
2127		if (!opp_table->prop_name)
2128			return -ENOMEM;
2129	}
2130
2131	return 0;
2132}
2133
2134/**
2135 * _opp_put_prop_name() - Releases resources blocked for prop-name
2136 * @opp_table: OPP table returned by _opp_set_prop_name().
2137 *
2138 * This is required only for the V2 bindings, and is called for a matching
2139 * _opp_set_prop_name(). Until this is called, the opp_table structure
2140 * will not be freed.
2141 */
2142static void _opp_put_prop_name(struct opp_table *opp_table)
2143{
2144	if (opp_table->prop_name) {
2145		kfree(opp_table->prop_name);
2146		opp_table->prop_name = NULL;
2147	}
2148}
2149
2150/**
2151 * _opp_set_regulators() - Set regulator names for the device
2152 * @dev: Device for which regulator name is being set.
2153 * @names: Array of pointers to the names of the regulator.
2154 * @count: Number of regulators.
2155 *
2156 * In order to support OPP switching, OPP layer needs to know the name of the
2157 * device's regulators, as the core would be required to switch voltages as
2158 * well.
2159 *
2160 * This must be called before any OPPs are initialized for the device.
2161 */
2162static int _opp_set_regulators(struct opp_table *opp_table, struct device *dev,
2163			       const char * const names[])
2164{
2165	const char * const *temp = names;
2166	struct regulator *reg;
2167	int count = 0, ret, i;
2168
2169	/* Count number of regulators */
2170	while (*temp++)
2171		count++;
2172
2173	if (!count)
2174		return -EINVAL;
2175
2176	/* Another CPU that shares the OPP table has set the regulators ? */
2177	if (opp_table->regulators)
2178		return 0;
2179
2180	opp_table->regulators = kmalloc_array(count,
2181					      sizeof(*opp_table->regulators),
2182					      GFP_KERNEL);
2183	if (!opp_table->regulators)
2184		return -ENOMEM;
2185
2186	for (i = 0; i < count; i++) {
2187		reg = regulator_get_optional(dev, names[i]);
2188		if (IS_ERR(reg)) {
2189			ret = dev_err_probe(dev, PTR_ERR(reg),
2190					    "%s: no regulator (%s) found\n",
2191					    __func__, names[i]);
2192			goto free_regulators;
2193		}
2194
2195		opp_table->regulators[i] = reg;
2196	}
2197
2198	opp_table->regulator_count = count;
2199
2200	/* Set generic config_regulators() for single regulators here */
2201	if (count == 1)
2202		opp_table->config_regulators = _opp_config_regulator_single;
2203
2204	return 0;
2205
2206free_regulators:
2207	while (i != 0)
2208		regulator_put(opp_table->regulators[--i]);
2209
2210	kfree(opp_table->regulators);
2211	opp_table->regulators = NULL;
2212	opp_table->regulator_count = -1;
2213
2214	return ret;
2215}
2216
2217/**
2218 * _opp_put_regulators() - Releases resources blocked for regulator
2219 * @opp_table: OPP table returned from _opp_set_regulators().
2220 */
2221static void _opp_put_regulators(struct opp_table *opp_table)
2222{
2223	int i;
2224
2225	if (!opp_table->regulators)
2226		return;
2227
2228	if (opp_table->enabled) {
2229		for (i = opp_table->regulator_count - 1; i >= 0; i--)
2230			regulator_disable(opp_table->regulators[i]);
2231	}
2232
2233	for (i = opp_table->regulator_count - 1; i >= 0; i--)
2234		regulator_put(opp_table->regulators[i]);
2235
2236	kfree(opp_table->regulators);
2237	opp_table->regulators = NULL;
2238	opp_table->regulator_count = -1;
2239}
2240
2241static void _put_clks(struct opp_table *opp_table, int count)
2242{
2243	int i;
2244
2245	for (i = count - 1; i >= 0; i--)
2246		clk_put(opp_table->clks[i]);
2247
2248	kfree(opp_table->clks);
2249	opp_table->clks = NULL;
2250}
2251
2252/**
2253 * _opp_set_clknames() - Set clk names for the device
2254 * @dev: Device for which clk names is being set.
2255 * @names: Clk names.
2256 *
2257 * In order to support OPP switching, OPP layer needs to get pointers to the
2258 * clocks for the device. Simple cases work fine without using this routine
2259 * (i.e. by passing connection-id as NULL), but for a device with multiple
2260 * clocks available, the OPP core needs to know the exact names of the clks to
2261 * use.
2262 *
2263 * This must be called before any OPPs are initialized for the device.
2264 */
2265static int _opp_set_clknames(struct opp_table *opp_table, struct device *dev,
2266			     const char * const names[],
2267			     config_clks_t config_clks)
2268{
2269	const char * const *temp = names;
2270	int count = 0, ret, i;
2271	struct clk *clk;
2272
2273	/* Count number of clks */
2274	while (*temp++)
2275		count++;
2276
2277	/*
2278	 * This is a special case where we have a single clock, whose connection
2279	 * id name is NULL, i.e. first two entries are NULL in the array.
2280	 */
2281	if (!count && !names[1])
2282		count = 1;
2283
2284	/* Fail early for invalid configurations */
2285	if (!count || (!config_clks && count > 1))
2286		return -EINVAL;
2287
2288	/* Another CPU that shares the OPP table has set the clkname ? */
2289	if (opp_table->clks)
2290		return 0;
2291
2292	opp_table->clks = kmalloc_array(count, sizeof(*opp_table->clks),
2293					GFP_KERNEL);
2294	if (!opp_table->clks)
2295		return -ENOMEM;
2296
2297	/* Find clks for the device */
2298	for (i = 0; i < count; i++) {
2299		clk = clk_get(dev, names[i]);
2300		if (IS_ERR(clk)) {
2301			ret = dev_err_probe(dev, PTR_ERR(clk),
2302					    "%s: Couldn't find clock with name: %s\n",
2303					    __func__, names[i]);
2304			goto free_clks;
2305		}
2306
2307		opp_table->clks[i] = clk;
2308	}
2309
2310	opp_table->clk_count = count;
2311	opp_table->config_clks = config_clks;
2312
2313	/* Set generic single clk set here */
2314	if (count == 1) {
2315		if (!opp_table->config_clks)
2316			opp_table->config_clks = _opp_config_clk_single;
2317
2318		/*
2319		 * We could have just dropped the "clk" field and used "clks"
2320		 * everywhere. Instead we kept the "clk" field around for
2321		 * following reasons:
2322		 *
2323		 * - avoiding clks[0] everywhere else.
2324		 * - not running single clk helpers for multiple clk usecase by
2325		 *   mistake.
2326		 *
2327		 * Since this is single-clk case, just update the clk pointer
2328		 * too.
2329		 */
2330		opp_table->clk = opp_table->clks[0];
2331	}
2332
2333	return 0;
2334
2335free_clks:
2336	_put_clks(opp_table, i);
2337	return ret;
2338}
2339
2340/**
2341 * _opp_put_clknames() - Releases resources blocked for clks.
2342 * @opp_table: OPP table returned from _opp_set_clknames().
2343 */
2344static void _opp_put_clknames(struct opp_table *opp_table)
2345{
2346	if (!opp_table->clks)
2347		return;
2348
2349	opp_table->config_clks = NULL;
2350	opp_table->clk = ERR_PTR(-ENODEV);
2351
2352	_put_clks(opp_table, opp_table->clk_count);
2353}
2354
2355/**
2356 * _opp_set_config_regulators_helper() - Register custom set regulator helper.
2357 * @dev: Device for which the helper is getting registered.
2358 * @config_regulators: Custom set regulator helper.
2359 *
2360 * This is useful to support platforms with multiple regulators per device.
2361 *
2362 * This must be called before any OPPs are initialized for the device.
2363 */
2364static int _opp_set_config_regulators_helper(struct opp_table *opp_table,
2365		struct device *dev, config_regulators_t config_regulators)
2366{
2367	/* Another CPU that shares the OPP table has set the helper ? */
2368	if (!opp_table->config_regulators)
2369		opp_table->config_regulators = config_regulators;
2370
2371	return 0;
2372}
2373
2374/**
2375 * _opp_put_config_regulators_helper() - Releases resources blocked for
2376 *					 config_regulators helper.
2377 * @opp_table: OPP table returned from _opp_set_config_regulators_helper().
2378 *
2379 * Release resources blocked for platform specific config_regulators helper.
2380 */
2381static void _opp_put_config_regulators_helper(struct opp_table *opp_table)
2382{
2383	if (opp_table->config_regulators)
2384		opp_table->config_regulators = NULL;
2385}
2386
2387static void _detach_genpd(struct opp_table *opp_table)
2388{
2389	int index;
2390
2391	if (!opp_table->genpd_virt_devs)
2392		return;
2393
2394	for (index = 0; index < opp_table->required_opp_count; index++) {
2395		if (!opp_table->genpd_virt_devs[index])
2396			continue;
2397
2398		dev_pm_domain_detach(opp_table->genpd_virt_devs[index], false);
2399		opp_table->genpd_virt_devs[index] = NULL;
2400	}
2401
2402	kfree(opp_table->genpd_virt_devs);
2403	opp_table->genpd_virt_devs = NULL;
2404}
2405
2406/**
2407 * _opp_attach_genpd - Attach genpd(s) for the device and save virtual device pointer
2408 * @dev: Consumer device for which the genpd is getting attached.
2409 * @names: Null terminated array of pointers containing names of genpd to attach.
2410 * @virt_devs: Pointer to return the array of virtual devices.
2411 *
2412 * Multiple generic power domains for a device are supported with the help of
2413 * virtual genpd devices, which are created for each consumer device - genpd
2414 * pair. These are the device structures which are attached to the power domain
2415 * and are required by the OPP core to set the performance state of the genpd.
2416 * The same API also works for the case where single genpd is available and so
2417 * we don't need to support that separately.
2418 *
2419 * This helper will normally be called by the consumer driver of the device
2420 * "dev", as only that has details of the genpd names.
2421 *
2422 * This helper needs to be called once with a list of all genpd to attach.
2423 * Otherwise the original device structure will be used instead by the OPP core.
2424 *
2425 * The order of entries in the names array must match the order in which
2426 * "required-opps" are added in DT.
2427 */
2428static int _opp_attach_genpd(struct opp_table *opp_table, struct device *dev,
2429			const char * const *names, struct device ***virt_devs)
2430{
2431	struct device *virt_dev;
2432	int index = 0, ret = -EINVAL;
2433	const char * const *name = names;
2434
2435	if (opp_table->genpd_virt_devs)
2436		return 0;
2437
2438	/*
2439	 * If the genpd's OPP table isn't already initialized, parsing of the
2440	 * required-opps fail for dev. We should retry this after genpd's OPP
2441	 * table is added.
2442	 */
2443	if (!opp_table->required_opp_count)
2444		return -EPROBE_DEFER;
2445
2446	mutex_lock(&opp_table->genpd_virt_dev_lock);
2447
2448	opp_table->genpd_virt_devs = kcalloc(opp_table->required_opp_count,
2449					     sizeof(*opp_table->genpd_virt_devs),
2450					     GFP_KERNEL);
2451	if (!opp_table->genpd_virt_devs)
2452		goto unlock;
2453
2454	while (*name) {
2455		if (index >= opp_table->required_opp_count) {
2456			dev_err(dev, "Index can't be greater than required-opp-count - 1, %s (%d : %d)\n",
2457				*name, opp_table->required_opp_count, index);
2458			goto err;
2459		}
2460
2461		virt_dev = dev_pm_domain_attach_by_name(dev, *name);
2462		if (IS_ERR_OR_NULL(virt_dev)) {
2463			ret = virt_dev ? PTR_ERR(virt_dev) : -ENODEV;
2464			dev_err(dev, "Couldn't attach to pm_domain: %d\n", ret);
2465			goto err;
2466		}
2467
2468		opp_table->genpd_virt_devs[index] = virt_dev;
2469		index++;
2470		name++;
2471	}
2472
2473	if (virt_devs)
2474		*virt_devs = opp_table->genpd_virt_devs;
2475	mutex_unlock(&opp_table->genpd_virt_dev_lock);
2476
2477	return 0;
2478
2479err:
2480	_detach_genpd(opp_table);
2481unlock:
2482	mutex_unlock(&opp_table->genpd_virt_dev_lock);
2483	return ret;
2484
2485}
2486
2487/**
2488 * _opp_detach_genpd() - Detach genpd(s) from the device.
2489 * @opp_table: OPP table returned by _opp_attach_genpd().
2490 *
2491 * This detaches the genpd(s), resets the virtual device pointers, and puts the
2492 * OPP table.
2493 */
2494static void _opp_detach_genpd(struct opp_table *opp_table)
2495{
2496	/*
2497	 * Acquire genpd_virt_dev_lock to make sure virt_dev isn't getting
2498	 * used in parallel.
2499	 */
2500	mutex_lock(&opp_table->genpd_virt_dev_lock);
2501	_detach_genpd(opp_table);
2502	mutex_unlock(&opp_table->genpd_virt_dev_lock);
2503}
2504
2505static void _opp_clear_config(struct opp_config_data *data)
2506{
2507	if (data->flags & OPP_CONFIG_GENPD)
2508		_opp_detach_genpd(data->opp_table);
2509	if (data->flags & OPP_CONFIG_REGULATOR)
2510		_opp_put_regulators(data->opp_table);
2511	if (data->flags & OPP_CONFIG_SUPPORTED_HW)
2512		_opp_put_supported_hw(data->opp_table);
2513	if (data->flags & OPP_CONFIG_REGULATOR_HELPER)
2514		_opp_put_config_regulators_helper(data->opp_table);
2515	if (data->flags & OPP_CONFIG_PROP_NAME)
2516		_opp_put_prop_name(data->opp_table);
2517	if (data->flags & OPP_CONFIG_CLK)
2518		_opp_put_clknames(data->opp_table);
2519
2520	dev_pm_opp_put_opp_table(data->opp_table);
2521	kfree(data);
2522}
2523
2524/**
2525 * dev_pm_opp_set_config() - Set OPP configuration for the device.
2526 * @dev: Device for which configuration is being set.
2527 * @config: OPP configuration.
2528 *
2529 * This allows all device OPP configurations to be performed at once.
2530 *
2531 * This must be called before any OPPs are initialized for the device. This may
2532 * be called multiple times for the same OPP table, for example once for each
2533 * CPU that share the same table. This must be balanced by the same number of
2534 * calls to dev_pm_opp_clear_config() in order to free the OPP table properly.
2535 *
2536 * This returns a token to the caller, which must be passed to
2537 * dev_pm_opp_clear_config() to free the resources later. The value of the
2538 * returned token will be >= 1 for success and negative for errors. The minimum
2539 * value of 1 is chosen here to make it easy for callers to manage the resource.
2540 */
2541int dev_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config)
2542{
2543	struct opp_table *opp_table;
2544	struct opp_config_data *data;
2545	unsigned int id;
2546	int ret;
2547
2548	data = kmalloc(sizeof(*data), GFP_KERNEL);
2549	if (!data)
2550		return -ENOMEM;
2551
2552	opp_table = _add_opp_table(dev, false);
2553	if (IS_ERR(opp_table)) {
2554		kfree(data);
2555		return PTR_ERR(opp_table);
2556	}
2557
2558	data->opp_table = opp_table;
2559	data->flags = 0;
2560
2561	/* This should be called before OPPs are initialized */
2562	if (WARN_ON(!list_empty(&opp_table->opp_list))) {
2563		ret = -EBUSY;
2564		goto err;
2565	}
2566
2567	/* Configure clocks */
2568	if (config->clk_names) {
2569		ret = _opp_set_clknames(opp_table, dev, config->clk_names,
2570					config->config_clks);
2571		if (ret)
2572			goto err;
2573
2574		data->flags |= OPP_CONFIG_CLK;
2575	} else if (config->config_clks) {
2576		/* Don't allow config callback without clocks */
2577		ret = -EINVAL;
2578		goto err;
2579	}
2580
2581	/* Configure property names */
2582	if (config->prop_name) {
2583		ret = _opp_set_prop_name(opp_table, config->prop_name);
2584		if (ret)
2585			goto err;
2586
2587		data->flags |= OPP_CONFIG_PROP_NAME;
2588	}
2589
2590	/* Configure config_regulators helper */
2591	if (config->config_regulators) {
2592		ret = _opp_set_config_regulators_helper(opp_table, dev,
2593						config->config_regulators);
2594		if (ret)
2595			goto err;
2596
2597		data->flags |= OPP_CONFIG_REGULATOR_HELPER;
2598	}
2599
2600	/* Configure supported hardware */
2601	if (config->supported_hw) {
2602		ret = _opp_set_supported_hw(opp_table, config->supported_hw,
2603					    config->supported_hw_count);
2604		if (ret)
2605			goto err;
2606
2607		data->flags |= OPP_CONFIG_SUPPORTED_HW;
2608	}
2609
2610	/* Configure supplies */
2611	if (config->regulator_names) {
2612		ret = _opp_set_regulators(opp_table, dev,
2613					  config->regulator_names);
2614		if (ret)
2615			goto err;
2616
2617		data->flags |= OPP_CONFIG_REGULATOR;
2618	}
2619
2620	/* Attach genpds */
2621	if (config->genpd_names) {
2622		ret = _opp_attach_genpd(opp_table, dev, config->genpd_names,
2623					config->virt_devs);
2624		if (ret)
2625			goto err;
2626
2627		data->flags |= OPP_CONFIG_GENPD;
2628	}
2629
2630	ret = xa_alloc(&opp_configs, &id, data, XA_LIMIT(1, INT_MAX),
2631		       GFP_KERNEL);
2632	if (ret)
2633		goto err;
2634
2635	return id;
2636
2637err:
2638	_opp_clear_config(data);
2639	return ret;
2640}
2641EXPORT_SYMBOL_GPL(dev_pm_opp_set_config);
2642
2643/**
2644 * dev_pm_opp_clear_config() - Releases resources blocked for OPP configuration.
2645 * @opp_table: OPP table returned from dev_pm_opp_set_config().
2646 *
2647 * This allows all device OPP configurations to be cleared at once. This must be
2648 * called once for each call made to dev_pm_opp_set_config(), in order to free
2649 * the OPPs properly.
2650 *
2651 * Currently the first call itself ends up freeing all the OPP configurations,
2652 * while the later ones only drop the OPP table reference. This works well for
2653 * now as we would never want to use an half initialized OPP table and want to
2654 * remove the configurations together.
2655 */
2656void dev_pm_opp_clear_config(int token)
2657{
2658	struct opp_config_data *data;
2659
2660	/*
2661	 * This lets the callers call this unconditionally and keep their code
2662	 * simple.
2663	 */
2664	if (unlikely(token <= 0))
2665		return;
2666
2667	data = xa_erase(&opp_configs, token);
2668	if (WARN_ON(!data))
2669		return;
2670
2671	_opp_clear_config(data);
2672}
2673EXPORT_SYMBOL_GPL(dev_pm_opp_clear_config);
2674
2675static void devm_pm_opp_config_release(void *token)
2676{
2677	dev_pm_opp_clear_config((unsigned long)token);
2678}
2679
2680/**
2681 * devm_pm_opp_set_config() - Set OPP configuration for the device.
2682 * @dev: Device for which configuration is being set.
2683 * @config: OPP configuration.
2684 *
2685 * This allows all device OPP configurations to be performed at once.
2686 * This is a resource-managed variant of dev_pm_opp_set_config().
2687 *
2688 * Return: 0 on success and errorno otherwise.
2689 */
2690int devm_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config)
2691{
2692	int token = dev_pm_opp_set_config(dev, config);
2693
2694	if (token < 0)
2695		return token;
2696
2697	return devm_add_action_or_reset(dev, devm_pm_opp_config_release,
2698					(void *) ((unsigned long) token));
2699}
2700EXPORT_SYMBOL_GPL(devm_pm_opp_set_config);
2701
2702/**
2703 * dev_pm_opp_xlate_required_opp() - Find required OPP for @src_table OPP.
2704 * @src_table: OPP table which has @dst_table as one of its required OPP table.
2705 * @dst_table: Required OPP table of the @src_table.
2706 * @src_opp: OPP from the @src_table.
2707 *
2708 * This function returns the OPP (present in @dst_table) pointed out by the
2709 * "required-opps" property of the @src_opp (present in @src_table).
2710 *
2711 * The callers are required to call dev_pm_opp_put() for the returned OPP after
2712 * use.
2713 *
2714 * Return: pointer to 'struct dev_pm_opp' on success and errorno otherwise.
2715 */
2716struct dev_pm_opp *dev_pm_opp_xlate_required_opp(struct opp_table *src_table,
2717						 struct opp_table *dst_table,
2718						 struct dev_pm_opp *src_opp)
2719{
2720	struct dev_pm_opp *opp, *dest_opp = ERR_PTR(-ENODEV);
2721	int i;
2722
2723	if (!src_table || !dst_table || !src_opp ||
2724	    !src_table->required_opp_tables)
2725		return ERR_PTR(-EINVAL);
2726
2727	/* required-opps not fully initialized yet */
2728	if (lazy_linking_pending(src_table))
2729		return ERR_PTR(-EBUSY);
2730
2731	for (i = 0; i < src_table->required_opp_count; i++) {
2732		if (src_table->required_opp_tables[i] == dst_table) {
2733			mutex_lock(&src_table->lock);
2734
2735			list_for_each_entry(opp, &src_table->opp_list, node) {
2736				if (opp == src_opp) {
2737					dest_opp = opp->required_opps[i];
2738					dev_pm_opp_get(dest_opp);
2739					break;
2740				}
2741			}
2742
2743			mutex_unlock(&src_table->lock);
2744			break;
2745		}
2746	}
2747
2748	if (IS_ERR(dest_opp)) {
2749		pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__,
2750		       src_table, dst_table);
2751	}
2752
2753	return dest_opp;
2754}
2755EXPORT_SYMBOL_GPL(dev_pm_opp_xlate_required_opp);
2756
2757/**
2758 * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table.
2759 * @src_table: OPP table which has dst_table as one of its required OPP table.
2760 * @dst_table: Required OPP table of the src_table.
2761 * @pstate: Current performance state of the src_table.
2762 *
2763 * This Returns pstate of the OPP (present in @dst_table) pointed out by the
2764 * "required-opps" property of the OPP (present in @src_table) which has
2765 * performance state set to @pstate.
2766 *
2767 * Return: Zero or positive performance state on success, otherwise negative
2768 * value on errors.
2769 */
2770int dev_pm_opp_xlate_performance_state(struct opp_table *src_table,
2771				       struct opp_table *dst_table,
2772				       unsigned int pstate)
2773{
2774	struct dev_pm_opp *opp;
2775	int dest_pstate = -EINVAL;
2776	int i;
2777
2778	/*
2779	 * Normally the src_table will have the "required_opps" property set to
2780	 * point to one of the OPPs in the dst_table, but in some cases the
2781	 * genpd and its master have one to one mapping of performance states
2782	 * and so none of them have the "required-opps" property set. Return the
2783	 * pstate of the src_table as it is in such cases.
2784	 */
2785	if (!src_table || !src_table->required_opp_count)
2786		return pstate;
2787
2788	/* Both OPP tables must belong to genpds */
2789	if (unlikely(!src_table->is_genpd || !dst_table->is_genpd)) {
2790		pr_err("%s: Performance state is only valid for genpds.\n", __func__);
2791		return -EINVAL;
2792	}
2793
2794	/* required-opps not fully initialized yet */
2795	if (lazy_linking_pending(src_table))
2796		return -EBUSY;
2797
2798	for (i = 0; i < src_table->required_opp_count; i++) {
2799		if (src_table->required_opp_tables[i]->np == dst_table->np)
2800			break;
2801	}
2802
2803	if (unlikely(i == src_table->required_opp_count)) {
2804		pr_err("%s: Couldn't find matching OPP table (%p: %p)\n",
2805		       __func__, src_table, dst_table);
2806		return -EINVAL;
2807	}
2808
2809	mutex_lock(&src_table->lock);
2810
2811	list_for_each_entry(opp, &src_table->opp_list, node) {
2812		if (opp->level == pstate) {
2813			dest_pstate = opp->required_opps[i]->level;
2814			goto unlock;
2815		}
2816	}
2817
2818	pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table,
2819	       dst_table);
2820
2821unlock:
2822	mutex_unlock(&src_table->lock);
2823
2824	return dest_pstate;
2825}
2826
2827/**
2828 * dev_pm_opp_add()  - Add an OPP table from a table definitions
2829 * @dev:	device for which we do this operation
2830 * @freq:	Frequency in Hz for this OPP
2831 * @u_volt:	Voltage in uVolts for this OPP
2832 *
2833 * This function adds an opp definition to the opp table and returns status.
2834 * The opp is made available by default and it can be controlled using
2835 * dev_pm_opp_enable/disable functions.
2836 *
2837 * Return:
2838 * 0		On success OR
2839 *		Duplicate OPPs (both freq and volt are same) and opp->available
2840 * -EEXIST	Freq are same and volt are different OR
2841 *		Duplicate OPPs (both freq and volt are same) and !opp->available
2842 * -ENOMEM	Memory allocation failure
2843 */
2844int dev_pm_opp_add(struct device *dev, unsigned long freq, unsigned long u_volt)
2845{
2846	struct opp_table *opp_table;
2847	int ret;
2848
2849	opp_table = _add_opp_table(dev, true);
2850	if (IS_ERR(opp_table))
2851		return PTR_ERR(opp_table);
2852
2853	/* Fix regulator count for dynamic OPPs */
2854	opp_table->regulator_count = 1;
2855
2856	ret = _opp_add_v1(opp_table, dev, freq, u_volt, true);
2857	if (ret)
2858		dev_pm_opp_put_opp_table(opp_table);
2859
2860	return ret;
2861}
2862EXPORT_SYMBOL_GPL(dev_pm_opp_add);
2863
2864/**
2865 * _opp_set_availability() - helper to set the availability of an opp
2866 * @dev:		device for which we do this operation
2867 * @freq:		OPP frequency to modify availability
2868 * @availability_req:	availability status requested for this opp
2869 *
2870 * Set the availability of an OPP, opp_{enable,disable} share a common logic
2871 * which is isolated here.
2872 *
2873 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2874 * copy operation, returns 0 if no modification was done OR modification was
2875 * successful.
2876 */
2877static int _opp_set_availability(struct device *dev, unsigned long freq,
2878				 bool availability_req)
2879{
2880	struct opp_table *opp_table;
2881	struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2882	int r = 0;
2883
2884	/* Find the opp_table */
2885	opp_table = _find_opp_table(dev);
2886	if (IS_ERR(opp_table)) {
2887		r = PTR_ERR(opp_table);
2888		dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2889		return r;
2890	}
2891
2892	if (!assert_single_clk(opp_table)) {
2893		r = -EINVAL;
2894		goto put_table;
2895	}
2896
2897	mutex_lock(&opp_table->lock);
2898
2899	/* Do we have the frequency? */
2900	list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2901		if (tmp_opp->rates[0] == freq) {
2902			opp = tmp_opp;
2903			break;
2904		}
2905	}
2906
2907	if (IS_ERR(opp)) {
2908		r = PTR_ERR(opp);
2909		goto unlock;
2910	}
2911
2912	/* Is update really needed? */
2913	if (opp->available == availability_req)
2914		goto unlock;
2915
2916	opp->available = availability_req;
2917
2918	dev_pm_opp_get(opp);
2919	mutex_unlock(&opp_table->lock);
2920
2921	/* Notify the change of the OPP availability */
2922	if (availability_req)
2923		blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE,
2924					     opp);
2925	else
2926		blocking_notifier_call_chain(&opp_table->head,
2927					     OPP_EVENT_DISABLE, opp);
2928
2929	dev_pm_opp_put(opp);
2930	goto put_table;
2931
2932unlock:
2933	mutex_unlock(&opp_table->lock);
2934put_table:
2935	dev_pm_opp_put_opp_table(opp_table);
2936	return r;
2937}
2938
2939/**
2940 * dev_pm_opp_adjust_voltage() - helper to change the voltage of an OPP
2941 * @dev:		device for which we do this operation
2942 * @freq:		OPP frequency to adjust voltage of
2943 * @u_volt:		new OPP target voltage
2944 * @u_volt_min:		new OPP min voltage
2945 * @u_volt_max:		new OPP max voltage
2946 *
2947 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2948 * copy operation, returns 0 if no modifcation was done OR modification was
2949 * successful.
2950 */
2951int dev_pm_opp_adjust_voltage(struct device *dev, unsigned long freq,
2952			      unsigned long u_volt, unsigned long u_volt_min,
2953			      unsigned long u_volt_max)
2954
2955{
2956	struct opp_table *opp_table;
2957	struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2958	int r = 0;
2959
2960	/* Find the opp_table */
2961	opp_table = _find_opp_table(dev);
2962	if (IS_ERR(opp_table)) {
2963		r = PTR_ERR(opp_table);
2964		dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2965		return r;
2966	}
2967
2968	if (!assert_single_clk(opp_table)) {
2969		r = -EINVAL;
2970		goto put_table;
2971	}
2972
2973	mutex_lock(&opp_table->lock);
2974
2975	/* Do we have the frequency? */
2976	list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2977		if (tmp_opp->rates[0] == freq) {
2978			opp = tmp_opp;
2979			break;
2980		}
2981	}
2982
2983	if (IS_ERR(opp)) {
2984		r = PTR_ERR(opp);
2985		goto adjust_unlock;
2986	}
2987
2988	/* Is update really needed? */
2989	if (opp->supplies->u_volt == u_volt)
2990		goto adjust_unlock;
2991
2992	opp->supplies->u_volt = u_volt;
2993	opp->supplies->u_volt_min = u_volt_min;
2994	opp->supplies->u_volt_max = u_volt_max;
2995
2996	dev_pm_opp_get(opp);
2997	mutex_unlock(&opp_table->lock);
2998
2999	/* Notify the voltage change of the OPP */
3000	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADJUST_VOLTAGE,
3001				     opp);
3002
3003	dev_pm_opp_put(opp);
3004	goto put_table;
3005
3006adjust_unlock:
3007	mutex_unlock(&opp_table->lock);
3008put_table:
3009	dev_pm_opp_put_opp_table(opp_table);
3010	return r;
3011}
3012EXPORT_SYMBOL_GPL(dev_pm_opp_adjust_voltage);
3013
3014/**
3015 * dev_pm_opp_enable() - Enable a specific OPP
3016 * @dev:	device for which we do this operation
3017 * @freq:	OPP frequency to enable
3018 *
3019 * Enables a provided opp. If the operation is valid, this returns 0, else the
3020 * corresponding error value. It is meant to be used for users an OPP available
3021 * after being temporarily made unavailable with dev_pm_opp_disable.
3022 *
3023 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
3024 * copy operation, returns 0 if no modification was done OR modification was
3025 * successful.
3026 */
3027int dev_pm_opp_enable(struct device *dev, unsigned long freq)
3028{
3029	return _opp_set_availability(dev, freq, true);
3030}
3031EXPORT_SYMBOL_GPL(dev_pm_opp_enable);
3032
3033/**
3034 * dev_pm_opp_disable() - Disable a specific OPP
3035 * @dev:	device for which we do this operation
3036 * @freq:	OPP frequency to disable
3037 *
3038 * Disables a provided opp. If the operation is valid, this returns
3039 * 0, else the corresponding error value. It is meant to be a temporary
3040 * control by users to make this OPP not available until the circumstances are
3041 * right to make it available again (with a call to dev_pm_opp_enable).
3042 *
3043 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
3044 * copy operation, returns 0 if no modification was done OR modification was
3045 * successful.
3046 */
3047int dev_pm_opp_disable(struct device *dev, unsigned long freq)
3048{
3049	return _opp_set_availability(dev, freq, false);
3050}
3051EXPORT_SYMBOL_GPL(dev_pm_opp_disable);
3052
3053/**
3054 * dev_pm_opp_register_notifier() - Register OPP notifier for the device
3055 * @dev:	Device for which notifier needs to be registered
3056 * @nb:		Notifier block to be registered
3057 *
3058 * Return: 0 on success or a negative error value.
3059 */
3060int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb)
3061{
3062	struct opp_table *opp_table;
3063	int ret;
3064
3065	opp_table = _find_opp_table(dev);
3066	if (IS_ERR(opp_table))
3067		return PTR_ERR(opp_table);
3068
3069	ret = blocking_notifier_chain_register(&opp_table->head, nb);
3070
3071	dev_pm_opp_put_opp_table(opp_table);
3072
3073	return ret;
3074}
3075EXPORT_SYMBOL(dev_pm_opp_register_notifier);
3076
3077/**
3078 * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device
3079 * @dev:	Device for which notifier needs to be unregistered
3080 * @nb:		Notifier block to be unregistered
3081 *
3082 * Return: 0 on success or a negative error value.
3083 */
3084int dev_pm_opp_unregister_notifier(struct device *dev,
3085				   struct notifier_block *nb)
3086{
3087	struct opp_table *opp_table;
3088	int ret;
3089
3090	opp_table = _find_opp_table(dev);
3091	if (IS_ERR(opp_table))
3092		return PTR_ERR(opp_table);
3093
3094	ret = blocking_notifier_chain_unregister(&opp_table->head, nb);
3095
3096	dev_pm_opp_put_opp_table(opp_table);
3097
3098	return ret;
3099}
3100EXPORT_SYMBOL(dev_pm_opp_unregister_notifier);
3101
3102/**
3103 * dev_pm_opp_remove_table() - Free all OPPs associated with the device
3104 * @dev:	device pointer used to lookup OPP table.
3105 *
3106 * Free both OPPs created using static entries present in DT and the
3107 * dynamically added entries.
3108 */
3109void dev_pm_opp_remove_table(struct device *dev)
3110{
3111	struct opp_table *opp_table;
3112
3113	/* Check for existing table for 'dev' */
3114	opp_table = _find_opp_table(dev);
3115	if (IS_ERR(opp_table)) {
3116		int error = PTR_ERR(opp_table);
3117
3118		if (error != -ENODEV)
3119			WARN(1, "%s: opp_table: %d\n",
3120			     IS_ERR_OR_NULL(dev) ?
3121					"Invalid device" : dev_name(dev),
3122			     error);
3123		return;
3124	}
3125
3126	/*
3127	 * Drop the extra reference only if the OPP table was successfully added
3128	 * with dev_pm_opp_of_add_table() earlier.
3129	 **/
3130	if (_opp_remove_all_static(opp_table))
3131		dev_pm_opp_put_opp_table(opp_table);
3132
3133	/* Drop reference taken by _find_opp_table() */
3134	dev_pm_opp_put_opp_table(opp_table);
3135}
3136EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table);
3137
3138/**
3139 * dev_pm_opp_sync_regulators() - Sync state of voltage regulators
3140 * @dev:	device for which we do this operation
3141 *
3142 * Sync voltage state of the OPP table regulators.
3143 *
3144 * Return: 0 on success or a negative error value.
3145 */
3146int dev_pm_opp_sync_regulators(struct device *dev)
3147{
3148	struct opp_table *opp_table;
3149	struct regulator *reg;
3150	int i, ret = 0;
3151
3152	/* Device may not have OPP table */
3153	opp_table = _find_opp_table(dev);
3154	if (IS_ERR(opp_table))
3155		return 0;
3156
3157	/* Regulator may not be required for the device */
3158	if (unlikely(!opp_table->regulators))
3159		goto put_table;
3160
3161	/* Nothing to sync if voltage wasn't changed */
3162	if (!opp_table->enabled)
3163		goto put_table;
3164
3165	for (i = 0; i < opp_table->regulator_count; i++) {
3166		reg = opp_table->regulators[i];
3167		ret = regulator_sync_voltage(reg);
3168		if (ret)
3169			break;
3170	}
3171put_table:
3172	/* Drop reference taken by _find_opp_table() */
3173	dev_pm_opp_put_opp_table(opp_table);
3174
3175	return ret;
3176}
3177EXPORT_SYMBOL_GPL(dev_pm_opp_sync_regulators);
3178