xref: /kernel/linux/linux-6.6/drivers/of/property.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * drivers/of/property.c - Procedures for accessing and interpreting
4 *			   Devicetree properties and graphs.
5 *
6 * Initially created by copying procedures from drivers/of/base.c. This
7 * file contains the OF property as well as the OF graph interface
8 * functions.
9 *
10 * Paul Mackerras	August 1996.
11 * Copyright (C) 1996-2005 Paul Mackerras.
12 *
13 *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
14 *    {engebret|bergner}@us.ibm.com
15 *
16 *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
17 *
18 *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
19 *  Grant Likely.
20 */
21
22#define pr_fmt(fmt)	"OF: " fmt
23
24#include <linux/of.h>
25#include <linux/of_address.h>
26#include <linux/of_device.h>
27#include <linux/of_graph.h>
28#include <linux/of_irq.h>
29#include <linux/string.h>
30#include <linux/moduleparam.h>
31
32#include "of_private.h"
33
34/**
35 * of_graph_is_present() - check graph's presence
36 * @node: pointer to device_node containing graph port
37 *
38 * Return: True if @node has a port or ports (with a port) sub-node,
39 * false otherwise.
40 */
41bool of_graph_is_present(const struct device_node *node)
42{
43	struct device_node *ports, *port;
44
45	ports = of_get_child_by_name(node, "ports");
46	if (ports)
47		node = ports;
48
49	port = of_get_child_by_name(node, "port");
50	of_node_put(ports);
51	of_node_put(port);
52
53	return !!port;
54}
55EXPORT_SYMBOL(of_graph_is_present);
56
57/**
58 * of_property_count_elems_of_size - Count the number of elements in a property
59 *
60 * @np:		device node from which the property value is to be read.
61 * @propname:	name of the property to be searched.
62 * @elem_size:	size of the individual element
63 *
64 * Search for a property in a device node and count the number of elements of
65 * size elem_size in it.
66 *
67 * Return: The number of elements on sucess, -EINVAL if the property does not
68 * exist or its length does not match a multiple of elem_size and -ENODATA if
69 * the property does not have a value.
70 */
71int of_property_count_elems_of_size(const struct device_node *np,
72				const char *propname, int elem_size)
73{
74	struct property *prop = of_find_property(np, propname, NULL);
75
76	if (!prop)
77		return -EINVAL;
78	if (!prop->value)
79		return -ENODATA;
80
81	if (prop->length % elem_size != 0) {
82		pr_err("size of %s in node %pOF is not a multiple of %d\n",
83		       propname, np, elem_size);
84		return -EINVAL;
85	}
86
87	return prop->length / elem_size;
88}
89EXPORT_SYMBOL_GPL(of_property_count_elems_of_size);
90
91/**
92 * of_find_property_value_of_size
93 *
94 * @np:		device node from which the property value is to be read.
95 * @propname:	name of the property to be searched.
96 * @min:	minimum allowed length of property value
97 * @max:	maximum allowed length of property value (0 means unlimited)
98 * @len:	if !=NULL, actual length is written to here
99 *
100 * Search for a property in a device node and valid the requested size.
101 *
102 * Return: The property value on success, -EINVAL if the property does not
103 * exist, -ENODATA if property does not have a value, and -EOVERFLOW if the
104 * property data is too small or too large.
105 *
106 */
107static void *of_find_property_value_of_size(const struct device_node *np,
108			const char *propname, u32 min, u32 max, size_t *len)
109{
110	struct property *prop = of_find_property(np, propname, NULL);
111
112	if (!prop)
113		return ERR_PTR(-EINVAL);
114	if (!prop->value)
115		return ERR_PTR(-ENODATA);
116	if (prop->length < min)
117		return ERR_PTR(-EOVERFLOW);
118	if (max && prop->length > max)
119		return ERR_PTR(-EOVERFLOW);
120
121	if (len)
122		*len = prop->length;
123
124	return prop->value;
125}
126
127/**
128 * of_property_read_u32_index - Find and read a u32 from a multi-value property.
129 *
130 * @np:		device node from which the property value is to be read.
131 * @propname:	name of the property to be searched.
132 * @index:	index of the u32 in the list of values
133 * @out_value:	pointer to return value, modified only if no error.
134 *
135 * Search for a property in a device node and read nth 32-bit value from
136 * it.
137 *
138 * Return: 0 on success, -EINVAL if the property does not exist,
139 * -ENODATA if property does not have a value, and -EOVERFLOW if the
140 * property data isn't large enough.
141 *
142 * The out_value is modified only if a valid u32 value can be decoded.
143 */
144int of_property_read_u32_index(const struct device_node *np,
145				       const char *propname,
146				       u32 index, u32 *out_value)
147{
148	const u32 *val = of_find_property_value_of_size(np, propname,
149					((index + 1) * sizeof(*out_value)),
150					0,
151					NULL);
152
153	if (IS_ERR(val))
154		return PTR_ERR(val);
155
156	*out_value = be32_to_cpup(((__be32 *)val) + index);
157	return 0;
158}
159EXPORT_SYMBOL_GPL(of_property_read_u32_index);
160
161/**
162 * of_property_read_u64_index - Find and read a u64 from a multi-value property.
163 *
164 * @np:		device node from which the property value is to be read.
165 * @propname:	name of the property to be searched.
166 * @index:	index of the u64 in the list of values
167 * @out_value:	pointer to return value, modified only if no error.
168 *
169 * Search for a property in a device node and read nth 64-bit value from
170 * it.
171 *
172 * Return: 0 on success, -EINVAL if the property does not exist,
173 * -ENODATA if property does not have a value, and -EOVERFLOW if the
174 * property data isn't large enough.
175 *
176 * The out_value is modified only if a valid u64 value can be decoded.
177 */
178int of_property_read_u64_index(const struct device_node *np,
179				       const char *propname,
180				       u32 index, u64 *out_value)
181{
182	const u64 *val = of_find_property_value_of_size(np, propname,
183					((index + 1) * sizeof(*out_value)),
184					0, NULL);
185
186	if (IS_ERR(val))
187		return PTR_ERR(val);
188
189	*out_value = be64_to_cpup(((__be64 *)val) + index);
190	return 0;
191}
192EXPORT_SYMBOL_GPL(of_property_read_u64_index);
193
194/**
195 * of_property_read_variable_u8_array - Find and read an array of u8 from a
196 * property, with bounds on the minimum and maximum array size.
197 *
198 * @np:		device node from which the property value is to be read.
199 * @propname:	name of the property to be searched.
200 * @out_values:	pointer to found values.
201 * @sz_min:	minimum number of array elements to read
202 * @sz_max:	maximum number of array elements to read, if zero there is no
203 *		upper limit on the number of elements in the dts entry but only
204 *		sz_min will be read.
205 *
206 * Search for a property in a device node and read 8-bit value(s) from
207 * it.
208 *
209 * dts entry of array should be like:
210 *  ``property = /bits/ 8 <0x50 0x60 0x70>;``
211 *
212 * Return: The number of elements read on success, -EINVAL if the property
213 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
214 * if the property data is smaller than sz_min or longer than sz_max.
215 *
216 * The out_values is modified only if a valid u8 value can be decoded.
217 */
218int of_property_read_variable_u8_array(const struct device_node *np,
219					const char *propname, u8 *out_values,
220					size_t sz_min, size_t sz_max)
221{
222	size_t sz, count;
223	const u8 *val = of_find_property_value_of_size(np, propname,
224						(sz_min * sizeof(*out_values)),
225						(sz_max * sizeof(*out_values)),
226						&sz);
227
228	if (IS_ERR(val))
229		return PTR_ERR(val);
230
231	if (!sz_max)
232		sz = sz_min;
233	else
234		sz /= sizeof(*out_values);
235
236	count = sz;
237	while (count--)
238		*out_values++ = *val++;
239
240	return sz;
241}
242EXPORT_SYMBOL_GPL(of_property_read_variable_u8_array);
243
244/**
245 * of_property_read_variable_u16_array - Find and read an array of u16 from a
246 * property, with bounds on the minimum and maximum array size.
247 *
248 * @np:		device node from which the property value is to be read.
249 * @propname:	name of the property to be searched.
250 * @out_values:	pointer to found values.
251 * @sz_min:	minimum number of array elements to read
252 * @sz_max:	maximum number of array elements to read, if zero there is no
253 *		upper limit on the number of elements in the dts entry but only
254 *		sz_min will be read.
255 *
256 * Search for a property in a device node and read 16-bit value(s) from
257 * it.
258 *
259 * dts entry of array should be like:
260 *  ``property = /bits/ 16 <0x5000 0x6000 0x7000>;``
261 *
262 * Return: The number of elements read on success, -EINVAL if the property
263 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
264 * if the property data is smaller than sz_min or longer than sz_max.
265 *
266 * The out_values is modified only if a valid u16 value can be decoded.
267 */
268int of_property_read_variable_u16_array(const struct device_node *np,
269					const char *propname, u16 *out_values,
270					size_t sz_min, size_t sz_max)
271{
272	size_t sz, count;
273	const __be16 *val = of_find_property_value_of_size(np, propname,
274						(sz_min * sizeof(*out_values)),
275						(sz_max * sizeof(*out_values)),
276						&sz);
277
278	if (IS_ERR(val))
279		return PTR_ERR(val);
280
281	if (!sz_max)
282		sz = sz_min;
283	else
284		sz /= sizeof(*out_values);
285
286	count = sz;
287	while (count--)
288		*out_values++ = be16_to_cpup(val++);
289
290	return sz;
291}
292EXPORT_SYMBOL_GPL(of_property_read_variable_u16_array);
293
294/**
295 * of_property_read_variable_u32_array - Find and read an array of 32 bit
296 * integers from a property, with bounds on the minimum and maximum array size.
297 *
298 * @np:		device node from which the property value is to be read.
299 * @propname:	name of the property to be searched.
300 * @out_values:	pointer to return found values.
301 * @sz_min:	minimum number of array elements to read
302 * @sz_max:	maximum number of array elements to read, if zero there is no
303 *		upper limit on the number of elements in the dts entry but only
304 *		sz_min will be read.
305 *
306 * Search for a property in a device node and read 32-bit value(s) from
307 * it.
308 *
309 * Return: The number of elements read on success, -EINVAL if the property
310 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
311 * if the property data is smaller than sz_min or longer than sz_max.
312 *
313 * The out_values is modified only if a valid u32 value can be decoded.
314 */
315int of_property_read_variable_u32_array(const struct device_node *np,
316			       const char *propname, u32 *out_values,
317			       size_t sz_min, size_t sz_max)
318{
319	size_t sz, count;
320	const __be32 *val = of_find_property_value_of_size(np, propname,
321						(sz_min * sizeof(*out_values)),
322						(sz_max * sizeof(*out_values)),
323						&sz);
324
325	if (IS_ERR(val))
326		return PTR_ERR(val);
327
328	if (!sz_max)
329		sz = sz_min;
330	else
331		sz /= sizeof(*out_values);
332
333	count = sz;
334	while (count--)
335		*out_values++ = be32_to_cpup(val++);
336
337	return sz;
338}
339EXPORT_SYMBOL_GPL(of_property_read_variable_u32_array);
340
341/**
342 * of_property_read_u64 - Find and read a 64 bit integer from a property
343 * @np:		device node from which the property value is to be read.
344 * @propname:	name of the property to be searched.
345 * @out_value:	pointer to return value, modified only if return value is 0.
346 *
347 * Search for a property in a device node and read a 64-bit value from
348 * it.
349 *
350 * Return: 0 on success, -EINVAL if the property does not exist,
351 * -ENODATA if property does not have a value, and -EOVERFLOW if the
352 * property data isn't large enough.
353 *
354 * The out_value is modified only if a valid u64 value can be decoded.
355 */
356int of_property_read_u64(const struct device_node *np, const char *propname,
357			 u64 *out_value)
358{
359	const __be32 *val = of_find_property_value_of_size(np, propname,
360						sizeof(*out_value),
361						0,
362						NULL);
363
364	if (IS_ERR(val))
365		return PTR_ERR(val);
366
367	*out_value = of_read_number(val, 2);
368	return 0;
369}
370EXPORT_SYMBOL_GPL(of_property_read_u64);
371
372/**
373 * of_property_read_variable_u64_array - Find and read an array of 64 bit
374 * integers from a property, with bounds on the minimum and maximum array size.
375 *
376 * @np:		device node from which the property value is to be read.
377 * @propname:	name of the property to be searched.
378 * @out_values:	pointer to found values.
379 * @sz_min:	minimum number of array elements to read
380 * @sz_max:	maximum number of array elements to read, if zero there is no
381 *		upper limit on the number of elements in the dts entry but only
382 *		sz_min will be read.
383 *
384 * Search for a property in a device node and read 64-bit value(s) from
385 * it.
386 *
387 * Return: The number of elements read on success, -EINVAL if the property
388 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
389 * if the property data is smaller than sz_min or longer than sz_max.
390 *
391 * The out_values is modified only if a valid u64 value can be decoded.
392 */
393int of_property_read_variable_u64_array(const struct device_node *np,
394			       const char *propname, u64 *out_values,
395			       size_t sz_min, size_t sz_max)
396{
397	size_t sz, count;
398	const __be32 *val = of_find_property_value_of_size(np, propname,
399						(sz_min * sizeof(*out_values)),
400						(sz_max * sizeof(*out_values)),
401						&sz);
402
403	if (IS_ERR(val))
404		return PTR_ERR(val);
405
406	if (!sz_max)
407		sz = sz_min;
408	else
409		sz /= sizeof(*out_values);
410
411	count = sz;
412	while (count--) {
413		*out_values++ = of_read_number(val, 2);
414		val += 2;
415	}
416
417	return sz;
418}
419EXPORT_SYMBOL_GPL(of_property_read_variable_u64_array);
420
421/**
422 * of_property_read_string - Find and read a string from a property
423 * @np:		device node from which the property value is to be read.
424 * @propname:	name of the property to be searched.
425 * @out_string:	pointer to null terminated return string, modified only if
426 *		return value is 0.
427 *
428 * Search for a property in a device tree node and retrieve a null
429 * terminated string value (pointer to data, not a copy).
430 *
431 * Return: 0 on success, -EINVAL if the property does not exist, -ENODATA if
432 * property does not have a value, and -EILSEQ if the string is not
433 * null-terminated within the length of the property data.
434 *
435 * Note that the empty string "" has length of 1, thus -ENODATA cannot
436 * be interpreted as an empty string.
437 *
438 * The out_string pointer is modified only if a valid string can be decoded.
439 */
440int of_property_read_string(const struct device_node *np, const char *propname,
441				const char **out_string)
442{
443	const struct property *prop = of_find_property(np, propname, NULL);
444	if (!prop)
445		return -EINVAL;
446	if (!prop->length)
447		return -ENODATA;
448	if (strnlen(prop->value, prop->length) >= prop->length)
449		return -EILSEQ;
450	*out_string = prop->value;
451	return 0;
452}
453EXPORT_SYMBOL_GPL(of_property_read_string);
454
455/**
456 * of_property_match_string() - Find string in a list and return index
457 * @np: pointer to node containing string list property
458 * @propname: string list property name
459 * @string: pointer to string to search for in string list
460 *
461 * This function searches a string list property and returns the index
462 * of a specific string value.
463 */
464int of_property_match_string(const struct device_node *np, const char *propname,
465			     const char *string)
466{
467	const struct property *prop = of_find_property(np, propname, NULL);
468	size_t l;
469	int i;
470	const char *p, *end;
471
472	if (!prop)
473		return -EINVAL;
474	if (!prop->value)
475		return -ENODATA;
476
477	p = prop->value;
478	end = p + prop->length;
479
480	for (i = 0; p < end; i++, p += l) {
481		l = strnlen(p, end - p) + 1;
482		if (p + l > end)
483			return -EILSEQ;
484		pr_debug("comparing %s with %s\n", string, p);
485		if (strcmp(string, p) == 0)
486			return i; /* Found it; return index */
487	}
488	return -ENODATA;
489}
490EXPORT_SYMBOL_GPL(of_property_match_string);
491
492/**
493 * of_property_read_string_helper() - Utility helper for parsing string properties
494 * @np:		device node from which the property value is to be read.
495 * @propname:	name of the property to be searched.
496 * @out_strs:	output array of string pointers.
497 * @sz:		number of array elements to read.
498 * @skip:	Number of strings to skip over at beginning of list.
499 *
500 * Don't call this function directly. It is a utility helper for the
501 * of_property_read_string*() family of functions.
502 */
503int of_property_read_string_helper(const struct device_node *np,
504				   const char *propname, const char **out_strs,
505				   size_t sz, int skip)
506{
507	const struct property *prop = of_find_property(np, propname, NULL);
508	int l = 0, i = 0;
509	const char *p, *end;
510
511	if (!prop)
512		return -EINVAL;
513	if (!prop->value)
514		return -ENODATA;
515	p = prop->value;
516	end = p + prop->length;
517
518	for (i = 0; p < end && (!out_strs || i < skip + sz); i++, p += l) {
519		l = strnlen(p, end - p) + 1;
520		if (p + l > end)
521			return -EILSEQ;
522		if (out_strs && i >= skip)
523			*out_strs++ = p;
524	}
525	i -= skip;
526	return i <= 0 ? -ENODATA : i;
527}
528EXPORT_SYMBOL_GPL(of_property_read_string_helper);
529
530const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur,
531			       u32 *pu)
532{
533	const void *curv = cur;
534
535	if (!prop)
536		return NULL;
537
538	if (!cur) {
539		curv = prop->value;
540		goto out_val;
541	}
542
543	curv += sizeof(*cur);
544	if (curv >= prop->value + prop->length)
545		return NULL;
546
547out_val:
548	*pu = be32_to_cpup(curv);
549	return curv;
550}
551EXPORT_SYMBOL_GPL(of_prop_next_u32);
552
553const char *of_prop_next_string(struct property *prop, const char *cur)
554{
555	const void *curv = cur;
556
557	if (!prop)
558		return NULL;
559
560	if (!cur)
561		return prop->value;
562
563	curv += strlen(cur) + 1;
564	if (curv >= prop->value + prop->length)
565		return NULL;
566
567	return curv;
568}
569EXPORT_SYMBOL_GPL(of_prop_next_string);
570
571/**
572 * of_graph_parse_endpoint() - parse common endpoint node properties
573 * @node: pointer to endpoint device_node
574 * @endpoint: pointer to the OF endpoint data structure
575 *
576 * The caller should hold a reference to @node.
577 */
578int of_graph_parse_endpoint(const struct device_node *node,
579			    struct of_endpoint *endpoint)
580{
581	struct device_node *port_node = of_get_parent(node);
582
583	WARN_ONCE(!port_node, "%s(): endpoint %pOF has no parent node\n",
584		  __func__, node);
585
586	memset(endpoint, 0, sizeof(*endpoint));
587
588	endpoint->local_node = node;
589	/*
590	 * It doesn't matter whether the two calls below succeed.
591	 * If they don't then the default value 0 is used.
592	 */
593	of_property_read_u32(port_node, "reg", &endpoint->port);
594	of_property_read_u32(node, "reg", &endpoint->id);
595
596	of_node_put(port_node);
597
598	return 0;
599}
600EXPORT_SYMBOL(of_graph_parse_endpoint);
601
602/**
603 * of_graph_get_port_by_id() - get the port matching a given id
604 * @parent: pointer to the parent device node
605 * @id: id of the port
606 *
607 * Return: A 'port' node pointer with refcount incremented. The caller
608 * has to use of_node_put() on it when done.
609 */
610struct device_node *of_graph_get_port_by_id(struct device_node *parent, u32 id)
611{
612	struct device_node *node, *port;
613
614	node = of_get_child_by_name(parent, "ports");
615	if (node)
616		parent = node;
617
618	for_each_child_of_node(parent, port) {
619		u32 port_id = 0;
620
621		if (!of_node_name_eq(port, "port"))
622			continue;
623		of_property_read_u32(port, "reg", &port_id);
624		if (id == port_id)
625			break;
626	}
627
628	of_node_put(node);
629
630	return port;
631}
632EXPORT_SYMBOL(of_graph_get_port_by_id);
633
634/**
635 * of_graph_get_next_endpoint() - get next endpoint node
636 * @parent: pointer to the parent device node
637 * @prev: previous endpoint node, or NULL to get first
638 *
639 * Return: An 'endpoint' node pointer with refcount incremented. Refcount
640 * of the passed @prev node is decremented.
641 */
642struct device_node *of_graph_get_next_endpoint(const struct device_node *parent,
643					struct device_node *prev)
644{
645	struct device_node *endpoint;
646	struct device_node *port;
647
648	if (!parent)
649		return NULL;
650
651	/*
652	 * Start by locating the port node. If no previous endpoint is specified
653	 * search for the first port node, otherwise get the previous endpoint
654	 * parent port node.
655	 */
656	if (!prev) {
657		struct device_node *node;
658
659		node = of_get_child_by_name(parent, "ports");
660		if (node)
661			parent = node;
662
663		port = of_get_child_by_name(parent, "port");
664		of_node_put(node);
665
666		if (!port) {
667			pr_err("graph: no port node found in %pOF\n", parent);
668			return NULL;
669		}
670	} else {
671		port = of_get_parent(prev);
672		if (WARN_ONCE(!port, "%s(): endpoint %pOF has no parent node\n",
673			      __func__, prev))
674			return NULL;
675	}
676
677	while (1) {
678		/*
679		 * Now that we have a port node, get the next endpoint by
680		 * getting the next child. If the previous endpoint is NULL this
681		 * will return the first child.
682		 */
683		endpoint = of_get_next_child(port, prev);
684		if (endpoint) {
685			of_node_put(port);
686			return endpoint;
687		}
688
689		/* No more endpoints under this port, try the next one. */
690		prev = NULL;
691
692		do {
693			port = of_get_next_child(parent, port);
694			if (!port)
695				return NULL;
696		} while (!of_node_name_eq(port, "port"));
697	}
698}
699EXPORT_SYMBOL(of_graph_get_next_endpoint);
700
701/**
702 * of_graph_get_endpoint_by_regs() - get endpoint node of specific identifiers
703 * @parent: pointer to the parent device node
704 * @port_reg: identifier (value of reg property) of the parent port node
705 * @reg: identifier (value of reg property) of the endpoint node
706 *
707 * Return: An 'endpoint' node pointer which is identified by reg and at the same
708 * is the child of a port node identified by port_reg. reg and port_reg are
709 * ignored when they are -1. Use of_node_put() on the pointer when done.
710 */
711struct device_node *of_graph_get_endpoint_by_regs(
712	const struct device_node *parent, int port_reg, int reg)
713{
714	struct of_endpoint endpoint;
715	struct device_node *node = NULL;
716
717	for_each_endpoint_of_node(parent, node) {
718		of_graph_parse_endpoint(node, &endpoint);
719		if (((port_reg == -1) || (endpoint.port == port_reg)) &&
720			((reg == -1) || (endpoint.id == reg)))
721			return node;
722	}
723
724	return NULL;
725}
726EXPORT_SYMBOL(of_graph_get_endpoint_by_regs);
727
728/**
729 * of_graph_get_remote_endpoint() - get remote endpoint node
730 * @node: pointer to a local endpoint device_node
731 *
732 * Return: Remote endpoint node associated with remote endpoint node linked
733 *	   to @node. Use of_node_put() on it when done.
734 */
735struct device_node *of_graph_get_remote_endpoint(const struct device_node *node)
736{
737	/* Get remote endpoint node. */
738	return of_parse_phandle(node, "remote-endpoint", 0);
739}
740EXPORT_SYMBOL(of_graph_get_remote_endpoint);
741
742/**
743 * of_graph_get_port_parent() - get port's parent node
744 * @node: pointer to a local endpoint device_node
745 *
746 * Return: device node associated with endpoint node linked
747 *	   to @node. Use of_node_put() on it when done.
748 */
749struct device_node *of_graph_get_port_parent(struct device_node *node)
750{
751	unsigned int depth;
752
753	if (!node)
754		return NULL;
755
756	/*
757	 * Preserve usecount for passed in node as of_get_next_parent()
758	 * will do of_node_put() on it.
759	 */
760	of_node_get(node);
761
762	/* Walk 3 levels up only if there is 'ports' node. */
763	for (depth = 3; depth && node; depth--) {
764		node = of_get_next_parent(node);
765		if (depth == 2 && !of_node_name_eq(node, "ports") &&
766		    !of_node_name_eq(node, "in-ports") &&
767		    !of_node_name_eq(node, "out-ports"))
768			break;
769	}
770	return node;
771}
772EXPORT_SYMBOL(of_graph_get_port_parent);
773
774/**
775 * of_graph_get_remote_port_parent() - get remote port's parent node
776 * @node: pointer to a local endpoint device_node
777 *
778 * Return: Remote device node associated with remote endpoint node linked
779 *	   to @node. Use of_node_put() on it when done.
780 */
781struct device_node *of_graph_get_remote_port_parent(
782			       const struct device_node *node)
783{
784	struct device_node *np, *pp;
785
786	/* Get remote endpoint node. */
787	np = of_graph_get_remote_endpoint(node);
788
789	pp = of_graph_get_port_parent(np);
790
791	of_node_put(np);
792
793	return pp;
794}
795EXPORT_SYMBOL(of_graph_get_remote_port_parent);
796
797/**
798 * of_graph_get_remote_port() - get remote port node
799 * @node: pointer to a local endpoint device_node
800 *
801 * Return: Remote port node associated with remote endpoint node linked
802 * to @node. Use of_node_put() on it when done.
803 */
804struct device_node *of_graph_get_remote_port(const struct device_node *node)
805{
806	struct device_node *np;
807
808	/* Get remote endpoint node. */
809	np = of_graph_get_remote_endpoint(node);
810	if (!np)
811		return NULL;
812	return of_get_next_parent(np);
813}
814EXPORT_SYMBOL(of_graph_get_remote_port);
815
816int of_graph_get_endpoint_count(const struct device_node *np)
817{
818	struct device_node *endpoint;
819	int num = 0;
820
821	for_each_endpoint_of_node(np, endpoint)
822		num++;
823
824	return num;
825}
826EXPORT_SYMBOL(of_graph_get_endpoint_count);
827
828/**
829 * of_graph_get_remote_node() - get remote parent device_node for given port/endpoint
830 * @node: pointer to parent device_node containing graph port/endpoint
831 * @port: identifier (value of reg property) of the parent port node
832 * @endpoint: identifier (value of reg property) of the endpoint node
833 *
834 * Return: Remote device node associated with remote endpoint node linked
835 * to @node. Use of_node_put() on it when done.
836 */
837struct device_node *of_graph_get_remote_node(const struct device_node *node,
838					     u32 port, u32 endpoint)
839{
840	struct device_node *endpoint_node, *remote;
841
842	endpoint_node = of_graph_get_endpoint_by_regs(node, port, endpoint);
843	if (!endpoint_node) {
844		pr_debug("no valid endpoint (%d, %d) for node %pOF\n",
845			 port, endpoint, node);
846		return NULL;
847	}
848
849	remote = of_graph_get_remote_port_parent(endpoint_node);
850	of_node_put(endpoint_node);
851	if (!remote) {
852		pr_debug("no valid remote node\n");
853		return NULL;
854	}
855
856	if (!of_device_is_available(remote)) {
857		pr_debug("not available for remote node\n");
858		of_node_put(remote);
859		return NULL;
860	}
861
862	return remote;
863}
864EXPORT_SYMBOL(of_graph_get_remote_node);
865
866static struct fwnode_handle *of_fwnode_get(struct fwnode_handle *fwnode)
867{
868	return of_fwnode_handle(of_node_get(to_of_node(fwnode)));
869}
870
871static void of_fwnode_put(struct fwnode_handle *fwnode)
872{
873	of_node_put(to_of_node(fwnode));
874}
875
876static bool of_fwnode_device_is_available(const struct fwnode_handle *fwnode)
877{
878	return of_device_is_available(to_of_node(fwnode));
879}
880
881static bool of_fwnode_device_dma_supported(const struct fwnode_handle *fwnode)
882{
883	return true;
884}
885
886static enum dev_dma_attr
887of_fwnode_device_get_dma_attr(const struct fwnode_handle *fwnode)
888{
889	if (of_dma_is_coherent(to_of_node(fwnode)))
890		return DEV_DMA_COHERENT;
891	else
892		return DEV_DMA_NON_COHERENT;
893}
894
895static bool of_fwnode_property_present(const struct fwnode_handle *fwnode,
896				       const char *propname)
897{
898	return of_property_read_bool(to_of_node(fwnode), propname);
899}
900
901static int of_fwnode_property_read_int_array(const struct fwnode_handle *fwnode,
902					     const char *propname,
903					     unsigned int elem_size, void *val,
904					     size_t nval)
905{
906	const struct device_node *node = to_of_node(fwnode);
907
908	if (!val)
909		return of_property_count_elems_of_size(node, propname,
910						       elem_size);
911
912	switch (elem_size) {
913	case sizeof(u8):
914		return of_property_read_u8_array(node, propname, val, nval);
915	case sizeof(u16):
916		return of_property_read_u16_array(node, propname, val, nval);
917	case sizeof(u32):
918		return of_property_read_u32_array(node, propname, val, nval);
919	case sizeof(u64):
920		return of_property_read_u64_array(node, propname, val, nval);
921	}
922
923	return -ENXIO;
924}
925
926static int
927of_fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
928				     const char *propname, const char **val,
929				     size_t nval)
930{
931	const struct device_node *node = to_of_node(fwnode);
932
933	return val ?
934		of_property_read_string_array(node, propname, val, nval) :
935		of_property_count_strings(node, propname);
936}
937
938static const char *of_fwnode_get_name(const struct fwnode_handle *fwnode)
939{
940	return kbasename(to_of_node(fwnode)->full_name);
941}
942
943static const char *of_fwnode_get_name_prefix(const struct fwnode_handle *fwnode)
944{
945	/* Root needs no prefix here (its name is "/"). */
946	if (!to_of_node(fwnode)->parent)
947		return "";
948
949	return "/";
950}
951
952static struct fwnode_handle *
953of_fwnode_get_parent(const struct fwnode_handle *fwnode)
954{
955	return of_fwnode_handle(of_get_parent(to_of_node(fwnode)));
956}
957
958static struct fwnode_handle *
959of_fwnode_get_next_child_node(const struct fwnode_handle *fwnode,
960			      struct fwnode_handle *child)
961{
962	return of_fwnode_handle(of_get_next_available_child(to_of_node(fwnode),
963							    to_of_node(child)));
964}
965
966static struct fwnode_handle *
967of_fwnode_get_named_child_node(const struct fwnode_handle *fwnode,
968			       const char *childname)
969{
970	const struct device_node *node = to_of_node(fwnode);
971	struct device_node *child;
972
973	for_each_available_child_of_node(node, child)
974		if (of_node_name_eq(child, childname))
975			return of_fwnode_handle(child);
976
977	return NULL;
978}
979
980static int
981of_fwnode_get_reference_args(const struct fwnode_handle *fwnode,
982			     const char *prop, const char *nargs_prop,
983			     unsigned int nargs, unsigned int index,
984			     struct fwnode_reference_args *args)
985{
986	struct of_phandle_args of_args;
987	unsigned int i;
988	int ret;
989
990	if (nargs_prop)
991		ret = of_parse_phandle_with_args(to_of_node(fwnode), prop,
992						 nargs_prop, index, &of_args);
993	else
994		ret = of_parse_phandle_with_fixed_args(to_of_node(fwnode), prop,
995						       nargs, index, &of_args);
996	if (ret < 0)
997		return ret;
998	if (!args) {
999		of_node_put(of_args.np);
1000		return 0;
1001	}
1002
1003	args->nargs = of_args.args_count;
1004	args->fwnode = of_fwnode_handle(of_args.np);
1005
1006	for (i = 0; i < NR_FWNODE_REFERENCE_ARGS; i++)
1007		args->args[i] = i < of_args.args_count ? of_args.args[i] : 0;
1008
1009	return 0;
1010}
1011
1012static struct fwnode_handle *
1013of_fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode,
1014				  struct fwnode_handle *prev)
1015{
1016	return of_fwnode_handle(of_graph_get_next_endpoint(to_of_node(fwnode),
1017							   to_of_node(prev)));
1018}
1019
1020static struct fwnode_handle *
1021of_fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode)
1022{
1023	return of_fwnode_handle(
1024		of_graph_get_remote_endpoint(to_of_node(fwnode)));
1025}
1026
1027static struct fwnode_handle *
1028of_fwnode_graph_get_port_parent(struct fwnode_handle *fwnode)
1029{
1030	struct device_node *np;
1031
1032	/* Get the parent of the port */
1033	np = of_get_parent(to_of_node(fwnode));
1034	if (!np)
1035		return NULL;
1036
1037	/* Is this the "ports" node? If not, it's the port parent. */
1038	if (!of_node_name_eq(np, "ports"))
1039		return of_fwnode_handle(np);
1040
1041	return of_fwnode_handle(of_get_next_parent(np));
1042}
1043
1044static int of_fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode,
1045					  struct fwnode_endpoint *endpoint)
1046{
1047	const struct device_node *node = to_of_node(fwnode);
1048	struct device_node *port_node = of_get_parent(node);
1049
1050	endpoint->local_fwnode = fwnode;
1051
1052	of_property_read_u32(port_node, "reg", &endpoint->port);
1053	of_property_read_u32(node, "reg", &endpoint->id);
1054
1055	of_node_put(port_node);
1056
1057	return 0;
1058}
1059
1060static const void *
1061of_fwnode_device_get_match_data(const struct fwnode_handle *fwnode,
1062				const struct device *dev)
1063{
1064	return of_device_get_match_data(dev);
1065}
1066
1067static void of_link_to_phandle(struct device_node *con_np,
1068			      struct device_node *sup_np)
1069{
1070	struct device_node *tmp_np = of_node_get(sup_np);
1071
1072	/* Check that sup_np and its ancestors are available. */
1073	while (tmp_np) {
1074		if (of_fwnode_handle(tmp_np)->dev) {
1075			of_node_put(tmp_np);
1076			break;
1077		}
1078
1079		if (!of_device_is_available(tmp_np)) {
1080			of_node_put(tmp_np);
1081			return;
1082		}
1083
1084		tmp_np = of_get_next_parent(tmp_np);
1085	}
1086
1087	fwnode_link_add(of_fwnode_handle(con_np), of_fwnode_handle(sup_np));
1088}
1089
1090/**
1091 * parse_prop_cells - Property parsing function for suppliers
1092 *
1093 * @np:		Pointer to device tree node containing a list
1094 * @prop_name:	Name of property to be parsed. Expected to hold phandle values
1095 * @index:	For properties holding a list of phandles, this is the index
1096 *		into the list.
1097 * @list_name:	Property name that is known to contain list of phandle(s) to
1098 *		supplier(s)
1099 * @cells_name:	property name that specifies phandles' arguments count
1100 *
1101 * This is a helper function to parse properties that have a known fixed name
1102 * and are a list of phandles and phandle arguments.
1103 *
1104 * Returns:
1105 * - phandle node pointer with refcount incremented. Caller must of_node_put()
1106 *   on it when done.
1107 * - NULL if no phandle found at index
1108 */
1109static struct device_node *parse_prop_cells(struct device_node *np,
1110					    const char *prop_name, int index,
1111					    const char *list_name,
1112					    const char *cells_name)
1113{
1114	struct of_phandle_args sup_args;
1115
1116	if (strcmp(prop_name, list_name))
1117		return NULL;
1118
1119	if (__of_parse_phandle_with_args(np, list_name, cells_name, 0, index,
1120					 &sup_args))
1121		return NULL;
1122
1123	return sup_args.np;
1124}
1125
1126#define DEFINE_SIMPLE_PROP(fname, name, cells)				  \
1127static struct device_node *parse_##fname(struct device_node *np,	  \
1128					const char *prop_name, int index) \
1129{									  \
1130	return parse_prop_cells(np, prop_name, index, name, cells);	  \
1131}
1132
1133static int strcmp_suffix(const char *str, const char *suffix)
1134{
1135	unsigned int len, suffix_len;
1136
1137	len = strlen(str);
1138	suffix_len = strlen(suffix);
1139	if (len <= suffix_len)
1140		return -1;
1141	return strcmp(str + len - suffix_len, suffix);
1142}
1143
1144/**
1145 * parse_suffix_prop_cells - Suffix property parsing function for suppliers
1146 *
1147 * @np:		Pointer to device tree node containing a list
1148 * @prop_name:	Name of property to be parsed. Expected to hold phandle values
1149 * @index:	For properties holding a list of phandles, this is the index
1150 *		into the list.
1151 * @suffix:	Property suffix that is known to contain list of phandle(s) to
1152 *		supplier(s)
1153 * @cells_name:	property name that specifies phandles' arguments count
1154 *
1155 * This is a helper function to parse properties that have a known fixed suffix
1156 * and are a list of phandles and phandle arguments.
1157 *
1158 * Returns:
1159 * - phandle node pointer with refcount incremented. Caller must of_node_put()
1160 *   on it when done.
1161 * - NULL if no phandle found at index
1162 */
1163static struct device_node *parse_suffix_prop_cells(struct device_node *np,
1164					    const char *prop_name, int index,
1165					    const char *suffix,
1166					    const char *cells_name)
1167{
1168	struct of_phandle_args sup_args;
1169
1170	if (strcmp_suffix(prop_name, suffix))
1171		return NULL;
1172
1173	if (of_parse_phandle_with_args(np, prop_name, cells_name, index,
1174				       &sup_args))
1175		return NULL;
1176
1177	return sup_args.np;
1178}
1179
1180#define DEFINE_SUFFIX_PROP(fname, suffix, cells)			     \
1181static struct device_node *parse_##fname(struct device_node *np,	     \
1182					const char *prop_name, int index)    \
1183{									     \
1184	return parse_suffix_prop_cells(np, prop_name, index, suffix, cells); \
1185}
1186
1187/**
1188 * struct supplier_bindings - Property parsing functions for suppliers
1189 *
1190 * @parse_prop: function name
1191 *	parse_prop() finds the node corresponding to a supplier phandle
1192 * @parse_prop.np: Pointer to device node holding supplier phandle property
1193 * @parse_prop.prop_name: Name of property holding a phandle value
1194 * @parse_prop.index: For properties holding a list of phandles, this is the
1195 *		      index into the list
1196 * @get_con_dev: If the consumer node containing the property is never converted
1197 *		 to a struct device, implement this ops so fw_devlink can use it
1198 *		 to find the true consumer.
1199 * @optional: Describes whether a supplier is mandatory or not
1200 *
1201 * Returns:
1202 * parse_prop() return values are
1203 * - phandle node pointer with refcount incremented. Caller must of_node_put()
1204 *   on it when done.
1205 * - NULL if no phandle found at index
1206 */
1207struct supplier_bindings {
1208	struct device_node *(*parse_prop)(struct device_node *np,
1209					  const char *prop_name, int index);
1210	struct device_node *(*get_con_dev)(struct device_node *np);
1211	bool optional;
1212};
1213
1214DEFINE_SIMPLE_PROP(clocks, "clocks", "#clock-cells")
1215DEFINE_SIMPLE_PROP(interconnects, "interconnects", "#interconnect-cells")
1216DEFINE_SIMPLE_PROP(iommus, "iommus", "#iommu-cells")
1217DEFINE_SIMPLE_PROP(mboxes, "mboxes", "#mbox-cells")
1218DEFINE_SIMPLE_PROP(io_channels, "io-channels", "#io-channel-cells")
1219DEFINE_SIMPLE_PROP(interrupt_parent, "interrupt-parent", NULL)
1220DEFINE_SIMPLE_PROP(dmas, "dmas", "#dma-cells")
1221DEFINE_SIMPLE_PROP(power_domains, "power-domains", "#power-domain-cells")
1222DEFINE_SIMPLE_PROP(hwlocks, "hwlocks", "#hwlock-cells")
1223DEFINE_SIMPLE_PROP(extcon, "extcon", NULL)
1224DEFINE_SIMPLE_PROP(nvmem_cells, "nvmem-cells", "#nvmem-cell-cells")
1225DEFINE_SIMPLE_PROP(phys, "phys", "#phy-cells")
1226DEFINE_SIMPLE_PROP(wakeup_parent, "wakeup-parent", NULL)
1227DEFINE_SIMPLE_PROP(pinctrl0, "pinctrl-0", NULL)
1228DEFINE_SIMPLE_PROP(pinctrl1, "pinctrl-1", NULL)
1229DEFINE_SIMPLE_PROP(pinctrl2, "pinctrl-2", NULL)
1230DEFINE_SIMPLE_PROP(pinctrl3, "pinctrl-3", NULL)
1231DEFINE_SIMPLE_PROP(pinctrl4, "pinctrl-4", NULL)
1232DEFINE_SIMPLE_PROP(pinctrl5, "pinctrl-5", NULL)
1233DEFINE_SIMPLE_PROP(pinctrl6, "pinctrl-6", NULL)
1234DEFINE_SIMPLE_PROP(pinctrl7, "pinctrl-7", NULL)
1235DEFINE_SIMPLE_PROP(pinctrl8, "pinctrl-8", NULL)
1236DEFINE_SIMPLE_PROP(pwms, "pwms", "#pwm-cells")
1237DEFINE_SIMPLE_PROP(resets, "resets", "#reset-cells")
1238DEFINE_SIMPLE_PROP(leds, "leds", NULL)
1239DEFINE_SIMPLE_PROP(backlight, "backlight", NULL)
1240DEFINE_SIMPLE_PROP(panel, "panel", NULL)
1241DEFINE_SUFFIX_PROP(regulators, "-supply", NULL)
1242DEFINE_SUFFIX_PROP(gpio, "-gpio", "#gpio-cells")
1243
1244static struct device_node *parse_gpios(struct device_node *np,
1245				       const char *prop_name, int index)
1246{
1247	if (!strcmp_suffix(prop_name, ",nr-gpios"))
1248		return NULL;
1249
1250	return parse_suffix_prop_cells(np, prop_name, index, "-gpios",
1251				       "#gpio-cells");
1252}
1253
1254static struct device_node *parse_iommu_maps(struct device_node *np,
1255					    const char *prop_name, int index)
1256{
1257	if (strcmp(prop_name, "iommu-map"))
1258		return NULL;
1259
1260	return of_parse_phandle(np, prop_name, (index * 4) + 1);
1261}
1262
1263static struct device_node *parse_gpio_compat(struct device_node *np,
1264					     const char *prop_name, int index)
1265{
1266	struct of_phandle_args sup_args;
1267
1268	if (strcmp(prop_name, "gpio") && strcmp(prop_name, "gpios"))
1269		return NULL;
1270
1271	/*
1272	 * Ignore node with gpio-hog property since its gpios are all provided
1273	 * by its parent.
1274	 */
1275	if (of_property_read_bool(np, "gpio-hog"))
1276		return NULL;
1277
1278	if (of_parse_phandle_with_args(np, prop_name, "#gpio-cells", index,
1279				       &sup_args))
1280		return NULL;
1281
1282	return sup_args.np;
1283}
1284
1285static struct device_node *parse_interrupts(struct device_node *np,
1286					    const char *prop_name, int index)
1287{
1288	struct of_phandle_args sup_args;
1289
1290	if (!IS_ENABLED(CONFIG_OF_IRQ) || IS_ENABLED(CONFIG_PPC))
1291		return NULL;
1292
1293	if (strcmp(prop_name, "interrupts") &&
1294	    strcmp(prop_name, "interrupts-extended"))
1295		return NULL;
1296
1297	return of_irq_parse_one(np, index, &sup_args) ? NULL : sup_args.np;
1298}
1299
1300static struct device_node *parse_remote_endpoint(struct device_node *np,
1301						 const char *prop_name,
1302						 int index)
1303{
1304	/* Return NULL for index > 0 to signify end of remote-endpoints. */
1305	if (index > 0 || strcmp(prop_name, "remote-endpoint"))
1306		return NULL;
1307
1308	return of_graph_get_remote_port_parent(np);
1309}
1310
1311static const struct supplier_bindings of_supplier_bindings[] = {
1312	{ .parse_prop = parse_clocks, },
1313	{ .parse_prop = parse_interconnects, },
1314	{ .parse_prop = parse_iommus, .optional = true, },
1315	{ .parse_prop = parse_iommu_maps, .optional = true, },
1316	{ .parse_prop = parse_mboxes, },
1317	{ .parse_prop = parse_io_channels, },
1318	{ .parse_prop = parse_interrupt_parent, },
1319	{ .parse_prop = parse_dmas, .optional = true, },
1320	{ .parse_prop = parse_power_domains, },
1321	{ .parse_prop = parse_hwlocks, },
1322	{ .parse_prop = parse_extcon, },
1323	{ .parse_prop = parse_nvmem_cells, },
1324	{ .parse_prop = parse_phys, },
1325	{ .parse_prop = parse_wakeup_parent, },
1326	{ .parse_prop = parse_pinctrl0, },
1327	{ .parse_prop = parse_pinctrl1, },
1328	{ .parse_prop = parse_pinctrl2, },
1329	{ .parse_prop = parse_pinctrl3, },
1330	{ .parse_prop = parse_pinctrl4, },
1331	{ .parse_prop = parse_pinctrl5, },
1332	{ .parse_prop = parse_pinctrl6, },
1333	{ .parse_prop = parse_pinctrl7, },
1334	{ .parse_prop = parse_pinctrl8, },
1335	{
1336		.parse_prop = parse_remote_endpoint,
1337		.get_con_dev = of_graph_get_port_parent,
1338	},
1339	{ .parse_prop = parse_pwms, },
1340	{ .parse_prop = parse_resets, },
1341	{ .parse_prop = parse_leds, },
1342	{ .parse_prop = parse_backlight, },
1343	{ .parse_prop = parse_panel, },
1344	{ .parse_prop = parse_gpio_compat, },
1345	{ .parse_prop = parse_interrupts, },
1346	{ .parse_prop = parse_regulators, },
1347	{ .parse_prop = parse_gpio, },
1348	{ .parse_prop = parse_gpios, },
1349	{}
1350};
1351
1352/**
1353 * of_link_property - Create device links to suppliers listed in a property
1354 * @con_np: The consumer device tree node which contains the property
1355 * @prop_name: Name of property to be parsed
1356 *
1357 * This function checks if the property @prop_name that is present in the
1358 * @con_np device tree node is one of the known common device tree bindings
1359 * that list phandles to suppliers. If @prop_name isn't one, this function
1360 * doesn't do anything.
1361 *
1362 * If @prop_name is one, this function attempts to create fwnode links from the
1363 * consumer device tree node @con_np to all the suppliers device tree nodes
1364 * listed in @prop_name.
1365 *
1366 * Any failed attempt to create a fwnode link will NOT result in an immediate
1367 * return.  of_link_property() must create links to all the available supplier
1368 * device tree nodes even when attempts to create a link to one or more
1369 * suppliers fail.
1370 */
1371static int of_link_property(struct device_node *con_np, const char *prop_name)
1372{
1373	struct device_node *phandle;
1374	const struct supplier_bindings *s = of_supplier_bindings;
1375	unsigned int i = 0;
1376	bool matched = false;
1377
1378	/* Do not stop at first failed link, link all available suppliers. */
1379	while (!matched && s->parse_prop) {
1380		if (s->optional && !fw_devlink_is_strict()) {
1381			s++;
1382			continue;
1383		}
1384
1385		while ((phandle = s->parse_prop(con_np, prop_name, i))) {
1386			struct device_node *con_dev_np;
1387
1388			con_dev_np = s->get_con_dev
1389					? s->get_con_dev(con_np)
1390					: of_node_get(con_np);
1391			matched = true;
1392			i++;
1393			of_link_to_phandle(con_dev_np, phandle);
1394			of_node_put(phandle);
1395			of_node_put(con_dev_np);
1396		}
1397		s++;
1398	}
1399	return 0;
1400}
1401
1402static void __iomem *of_fwnode_iomap(struct fwnode_handle *fwnode, int index)
1403{
1404#ifdef CONFIG_OF_ADDRESS
1405	return of_iomap(to_of_node(fwnode), index);
1406#else
1407	return NULL;
1408#endif
1409}
1410
1411static int of_fwnode_irq_get(const struct fwnode_handle *fwnode,
1412			     unsigned int index)
1413{
1414	return of_irq_get(to_of_node(fwnode), index);
1415}
1416
1417static int of_fwnode_add_links(struct fwnode_handle *fwnode)
1418{
1419	struct property *p;
1420	struct device_node *con_np = to_of_node(fwnode);
1421
1422	if (IS_ENABLED(CONFIG_X86))
1423		return 0;
1424
1425	if (!con_np)
1426		return -EINVAL;
1427
1428	for_each_property_of_node(con_np, p)
1429		of_link_property(con_np, p->name);
1430
1431	return 0;
1432}
1433
1434const struct fwnode_operations of_fwnode_ops = {
1435	.get = of_fwnode_get,
1436	.put = of_fwnode_put,
1437	.device_is_available = of_fwnode_device_is_available,
1438	.device_get_match_data = of_fwnode_device_get_match_data,
1439	.device_dma_supported = of_fwnode_device_dma_supported,
1440	.device_get_dma_attr = of_fwnode_device_get_dma_attr,
1441	.property_present = of_fwnode_property_present,
1442	.property_read_int_array = of_fwnode_property_read_int_array,
1443	.property_read_string_array = of_fwnode_property_read_string_array,
1444	.get_name = of_fwnode_get_name,
1445	.get_name_prefix = of_fwnode_get_name_prefix,
1446	.get_parent = of_fwnode_get_parent,
1447	.get_next_child_node = of_fwnode_get_next_child_node,
1448	.get_named_child_node = of_fwnode_get_named_child_node,
1449	.get_reference_args = of_fwnode_get_reference_args,
1450	.graph_get_next_endpoint = of_fwnode_graph_get_next_endpoint,
1451	.graph_get_remote_endpoint = of_fwnode_graph_get_remote_endpoint,
1452	.graph_get_port_parent = of_fwnode_graph_get_port_parent,
1453	.graph_parse_endpoint = of_fwnode_graph_parse_endpoint,
1454	.iomap = of_fwnode_iomap,
1455	.irq_get = of_fwnode_irq_get,
1456	.add_links = of_fwnode_add_links,
1457};
1458EXPORT_SYMBOL_GPL(of_fwnode_ops);
1459