xref: /kernel/linux/linux-6.6/drivers/of/fdt.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Functions for working with the Flattened Device Tree data format
4 *
5 * Copyright 2009 Benjamin Herrenschmidt, IBM Corp
6 * benh@kernel.crashing.org
7 */
8
9#define pr_fmt(fmt)	"OF: fdt: " fmt
10
11#include <linux/crash_dump.h>
12#include <linux/crc32.h>
13#include <linux/kernel.h>
14#include <linux/initrd.h>
15#include <linux/memblock.h>
16#include <linux/mutex.h>
17#include <linux/of.h>
18#include <linux/of_fdt.h>
19#include <linux/of_reserved_mem.h>
20#include <linux/sizes.h>
21#include <linux/string.h>
22#include <linux/errno.h>
23#include <linux/slab.h>
24#include <linux/libfdt.h>
25#include <linux/debugfs.h>
26#include <linux/serial_core.h>
27#include <linux/sysfs.h>
28#include <linux/random.h>
29
30#include <asm/setup.h>  /* for COMMAND_LINE_SIZE */
31#include <asm/page.h>
32
33#include "of_private.h"
34
35/*
36 * of_fdt_limit_memory - limit the number of regions in the /memory node
37 * @limit: maximum entries
38 *
39 * Adjust the flattened device tree to have at most 'limit' number of
40 * memory entries in the /memory node. This function may be called
41 * any time after initial_boot_param is set.
42 */
43void __init of_fdt_limit_memory(int limit)
44{
45	int memory;
46	int len;
47	const void *val;
48	int nr_address_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
49	int nr_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
50	const __be32 *addr_prop;
51	const __be32 *size_prop;
52	int root_offset;
53	int cell_size;
54
55	root_offset = fdt_path_offset(initial_boot_params, "/");
56	if (root_offset < 0)
57		return;
58
59	addr_prop = fdt_getprop(initial_boot_params, root_offset,
60				"#address-cells", NULL);
61	if (addr_prop)
62		nr_address_cells = fdt32_to_cpu(*addr_prop);
63
64	size_prop = fdt_getprop(initial_boot_params, root_offset,
65				"#size-cells", NULL);
66	if (size_prop)
67		nr_size_cells = fdt32_to_cpu(*size_prop);
68
69	cell_size = sizeof(uint32_t)*(nr_address_cells + nr_size_cells);
70
71	memory = fdt_path_offset(initial_boot_params, "/memory");
72	if (memory > 0) {
73		val = fdt_getprop(initial_boot_params, memory, "reg", &len);
74		if (len > limit*cell_size) {
75			len = limit*cell_size;
76			pr_debug("Limiting number of entries to %d\n", limit);
77			fdt_setprop(initial_boot_params, memory, "reg", val,
78					len);
79		}
80	}
81}
82
83static bool of_fdt_device_is_available(const void *blob, unsigned long node)
84{
85	const char *status = fdt_getprop(blob, node, "status", NULL);
86
87	if (!status)
88		return true;
89
90	if (!strcmp(status, "ok") || !strcmp(status, "okay"))
91		return true;
92
93	return false;
94}
95
96static void *unflatten_dt_alloc(void **mem, unsigned long size,
97				       unsigned long align)
98{
99	void *res;
100
101	*mem = PTR_ALIGN(*mem, align);
102	res = *mem;
103	*mem += size;
104
105	return res;
106}
107
108static void populate_properties(const void *blob,
109				int offset,
110				void **mem,
111				struct device_node *np,
112				const char *nodename,
113				bool dryrun)
114{
115	struct property *pp, **pprev = NULL;
116	int cur;
117	bool has_name = false;
118
119	pprev = &np->properties;
120	for (cur = fdt_first_property_offset(blob, offset);
121	     cur >= 0;
122	     cur = fdt_next_property_offset(blob, cur)) {
123		const __be32 *val;
124		const char *pname;
125		u32 sz;
126
127		val = fdt_getprop_by_offset(blob, cur, &pname, &sz);
128		if (!val) {
129			pr_warn("Cannot locate property at 0x%x\n", cur);
130			continue;
131		}
132
133		if (!pname) {
134			pr_warn("Cannot find property name at 0x%x\n", cur);
135			continue;
136		}
137
138		if (!strcmp(pname, "name"))
139			has_name = true;
140
141		pp = unflatten_dt_alloc(mem, sizeof(struct property),
142					__alignof__(struct property));
143		if (dryrun)
144			continue;
145
146		/* We accept flattened tree phandles either in
147		 * ePAPR-style "phandle" properties, or the
148		 * legacy "linux,phandle" properties.  If both
149		 * appear and have different values, things
150		 * will get weird. Don't do that.
151		 */
152		if (!strcmp(pname, "phandle") ||
153		    !strcmp(pname, "linux,phandle")) {
154			if (!np->phandle)
155				np->phandle = be32_to_cpup(val);
156		}
157
158		/* And we process the "ibm,phandle" property
159		 * used in pSeries dynamic device tree
160		 * stuff
161		 */
162		if (!strcmp(pname, "ibm,phandle"))
163			np->phandle = be32_to_cpup(val);
164
165		pp->name   = (char *)pname;
166		pp->length = sz;
167		pp->value  = (__be32 *)val;
168		*pprev     = pp;
169		pprev      = &pp->next;
170	}
171
172	/* With version 0x10 we may not have the name property,
173	 * recreate it here from the unit name if absent
174	 */
175	if (!has_name) {
176		const char *p = nodename, *ps = p, *pa = NULL;
177		int len;
178
179		while (*p) {
180			if ((*p) == '@')
181				pa = p;
182			else if ((*p) == '/')
183				ps = p + 1;
184			p++;
185		}
186
187		if (pa < ps)
188			pa = p;
189		len = (pa - ps) + 1;
190		pp = unflatten_dt_alloc(mem, sizeof(struct property) + len,
191					__alignof__(struct property));
192		if (!dryrun) {
193			pp->name   = "name";
194			pp->length = len;
195			pp->value  = pp + 1;
196			*pprev     = pp;
197			memcpy(pp->value, ps, len - 1);
198			((char *)pp->value)[len - 1] = 0;
199			pr_debug("fixed up name for %s -> %s\n",
200				 nodename, (char *)pp->value);
201		}
202	}
203}
204
205static int populate_node(const void *blob,
206			  int offset,
207			  void **mem,
208			  struct device_node *dad,
209			  struct device_node **pnp,
210			  bool dryrun)
211{
212	struct device_node *np;
213	const char *pathp;
214	int len;
215
216	pathp = fdt_get_name(blob, offset, &len);
217	if (!pathp) {
218		*pnp = NULL;
219		return len;
220	}
221
222	len++;
223
224	np = unflatten_dt_alloc(mem, sizeof(struct device_node) + len,
225				__alignof__(struct device_node));
226	if (!dryrun) {
227		char *fn;
228		of_node_init(np);
229		np->full_name = fn = ((char *)np) + sizeof(*np);
230
231		memcpy(fn, pathp, len);
232
233		if (dad != NULL) {
234			np->parent = dad;
235			np->sibling = dad->child;
236			dad->child = np;
237		}
238	}
239
240	populate_properties(blob, offset, mem, np, pathp, dryrun);
241	if (!dryrun) {
242		np->name = of_get_property(np, "name", NULL);
243		if (!np->name)
244			np->name = "<NULL>";
245	}
246
247	*pnp = np;
248	return 0;
249}
250
251static void reverse_nodes(struct device_node *parent)
252{
253	struct device_node *child, *next;
254
255	/* In-depth first */
256	child = parent->child;
257	while (child) {
258		reverse_nodes(child);
259
260		child = child->sibling;
261	}
262
263	/* Reverse the nodes in the child list */
264	child = parent->child;
265	parent->child = NULL;
266	while (child) {
267		next = child->sibling;
268
269		child->sibling = parent->child;
270		parent->child = child;
271		child = next;
272	}
273}
274
275/**
276 * unflatten_dt_nodes - Alloc and populate a device_node from the flat tree
277 * @blob: The parent device tree blob
278 * @mem: Memory chunk to use for allocating device nodes and properties
279 * @dad: Parent struct device_node
280 * @nodepp: The device_node tree created by the call
281 *
282 * Return: The size of unflattened device tree or error code
283 */
284static int unflatten_dt_nodes(const void *blob,
285			      void *mem,
286			      struct device_node *dad,
287			      struct device_node **nodepp)
288{
289	struct device_node *root;
290	int offset = 0, depth = 0, initial_depth = 0;
291#define FDT_MAX_DEPTH	64
292	struct device_node *nps[FDT_MAX_DEPTH];
293	void *base = mem;
294	bool dryrun = !base;
295	int ret;
296
297	if (nodepp)
298		*nodepp = NULL;
299
300	/*
301	 * We're unflattening device sub-tree if @dad is valid. There are
302	 * possibly multiple nodes in the first level of depth. We need
303	 * set @depth to 1 to make fdt_next_node() happy as it bails
304	 * immediately when negative @depth is found. Otherwise, the device
305	 * nodes except the first one won't be unflattened successfully.
306	 */
307	if (dad)
308		depth = initial_depth = 1;
309
310	root = dad;
311	nps[depth] = dad;
312
313	for (offset = 0;
314	     offset >= 0 && depth >= initial_depth;
315	     offset = fdt_next_node(blob, offset, &depth)) {
316		if (WARN_ON_ONCE(depth >= FDT_MAX_DEPTH - 1))
317			continue;
318
319		if (!IS_ENABLED(CONFIG_OF_KOBJ) &&
320		    !of_fdt_device_is_available(blob, offset))
321			continue;
322
323		ret = populate_node(blob, offset, &mem, nps[depth],
324				   &nps[depth+1], dryrun);
325		if (ret < 0)
326			return ret;
327
328		if (!dryrun && nodepp && !*nodepp)
329			*nodepp = nps[depth+1];
330		if (!dryrun && !root)
331			root = nps[depth+1];
332	}
333
334	if (offset < 0 && offset != -FDT_ERR_NOTFOUND) {
335		pr_err("Error %d processing FDT\n", offset);
336		return -EINVAL;
337	}
338
339	/*
340	 * Reverse the child list. Some drivers assumes node order matches .dts
341	 * node order
342	 */
343	if (!dryrun)
344		reverse_nodes(root);
345
346	return mem - base;
347}
348
349/**
350 * __unflatten_device_tree - create tree of device_nodes from flat blob
351 * @blob: The blob to expand
352 * @dad: Parent device node
353 * @mynodes: The device_node tree created by the call
354 * @dt_alloc: An allocator that provides a virtual address to memory
355 * for the resulting tree
356 * @detached: if true set OF_DETACHED on @mynodes
357 *
358 * unflattens a device-tree, creating the tree of struct device_node. It also
359 * fills the "name" and "type" pointers of the nodes so the normal device-tree
360 * walking functions can be used.
361 *
362 * Return: NULL on failure or the memory chunk containing the unflattened
363 * device tree on success.
364 */
365void *__unflatten_device_tree(const void *blob,
366			      struct device_node *dad,
367			      struct device_node **mynodes,
368			      void *(*dt_alloc)(u64 size, u64 align),
369			      bool detached)
370{
371	int size;
372	void *mem;
373	int ret;
374
375	if (mynodes)
376		*mynodes = NULL;
377
378	pr_debug(" -> unflatten_device_tree()\n");
379
380	if (!blob) {
381		pr_debug("No device tree pointer\n");
382		return NULL;
383	}
384
385	pr_debug("Unflattening device tree:\n");
386	pr_debug("magic: %08x\n", fdt_magic(blob));
387	pr_debug("size: %08x\n", fdt_totalsize(blob));
388	pr_debug("version: %08x\n", fdt_version(blob));
389
390	if (fdt_check_header(blob)) {
391		pr_err("Invalid device tree blob header\n");
392		return NULL;
393	}
394
395	/* First pass, scan for size */
396	size = unflatten_dt_nodes(blob, NULL, dad, NULL);
397	if (size <= 0)
398		return NULL;
399
400	size = ALIGN(size, 4);
401	pr_debug("  size is %d, allocating...\n", size);
402
403	/* Allocate memory for the expanded device tree */
404	mem = dt_alloc(size + 4, __alignof__(struct device_node));
405	if (!mem)
406		return NULL;
407
408	memset(mem, 0, size);
409
410	*(__be32 *)(mem + size) = cpu_to_be32(0xdeadbeef);
411
412	pr_debug("  unflattening %p...\n", mem);
413
414	/* Second pass, do actual unflattening */
415	ret = unflatten_dt_nodes(blob, mem, dad, mynodes);
416
417	if (be32_to_cpup(mem + size) != 0xdeadbeef)
418		pr_warn("End of tree marker overwritten: %08x\n",
419			be32_to_cpup(mem + size));
420
421	if (ret <= 0)
422		return NULL;
423
424	if (detached && mynodes && *mynodes) {
425		of_node_set_flag(*mynodes, OF_DETACHED);
426		pr_debug("unflattened tree is detached\n");
427	}
428
429	pr_debug(" <- unflatten_device_tree()\n");
430	return mem;
431}
432
433static void *kernel_tree_alloc(u64 size, u64 align)
434{
435	return kzalloc(size, GFP_KERNEL);
436}
437
438static DEFINE_MUTEX(of_fdt_unflatten_mutex);
439
440/**
441 * of_fdt_unflatten_tree - create tree of device_nodes from flat blob
442 * @blob: Flat device tree blob
443 * @dad: Parent device node
444 * @mynodes: The device tree created by the call
445 *
446 * unflattens the device-tree passed by the firmware, creating the
447 * tree of struct device_node. It also fills the "name" and "type"
448 * pointers of the nodes so the normal device-tree walking functions
449 * can be used.
450 *
451 * Return: NULL on failure or the memory chunk containing the unflattened
452 * device tree on success.
453 */
454void *of_fdt_unflatten_tree(const unsigned long *blob,
455			    struct device_node *dad,
456			    struct device_node **mynodes)
457{
458	void *mem;
459
460	mutex_lock(&of_fdt_unflatten_mutex);
461	mem = __unflatten_device_tree(blob, dad, mynodes, &kernel_tree_alloc,
462				      true);
463	mutex_unlock(&of_fdt_unflatten_mutex);
464
465	return mem;
466}
467EXPORT_SYMBOL_GPL(of_fdt_unflatten_tree);
468
469/* Everything below here references initial_boot_params directly. */
470int __initdata dt_root_addr_cells;
471int __initdata dt_root_size_cells;
472
473void *initial_boot_params __ro_after_init;
474
475#ifdef CONFIG_OF_EARLY_FLATTREE
476
477static u32 of_fdt_crc32;
478
479static int __init early_init_dt_reserve_memory(phys_addr_t base,
480					       phys_addr_t size, bool nomap)
481{
482	if (nomap) {
483		/*
484		 * If the memory is already reserved (by another region), we
485		 * should not allow it to be marked nomap, but don't worry
486		 * if the region isn't memory as it won't be mapped.
487		 */
488		if (memblock_overlaps_region(&memblock.memory, base, size) &&
489		    memblock_is_region_reserved(base, size))
490			return -EBUSY;
491
492		return memblock_mark_nomap(base, size);
493	}
494	return memblock_reserve(base, size);
495}
496
497/*
498 * __reserved_mem_reserve_reg() - reserve all memory described in 'reg' property
499 */
500static int __init __reserved_mem_reserve_reg(unsigned long node,
501					     const char *uname)
502{
503	int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
504	phys_addr_t base, size;
505	int len;
506	const __be32 *prop;
507	int first = 1;
508	bool nomap;
509
510	prop = of_get_flat_dt_prop(node, "reg", &len);
511	if (!prop)
512		return -ENOENT;
513
514	if (len && len % t_len != 0) {
515		pr_err("Reserved memory: invalid reg property in '%s', skipping node.\n",
516		       uname);
517		return -EINVAL;
518	}
519
520	nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
521
522	while (len >= t_len) {
523		base = dt_mem_next_cell(dt_root_addr_cells, &prop);
524		size = dt_mem_next_cell(dt_root_size_cells, &prop);
525
526		if (size &&
527		    early_init_dt_reserve_memory(base, size, nomap) == 0)
528			pr_debug("Reserved memory: reserved region for node '%s': base %pa, size %lu MiB\n",
529				uname, &base, (unsigned long)(size / SZ_1M));
530		else
531			pr_err("Reserved memory: failed to reserve memory for node '%s': base %pa, size %lu MiB\n",
532			       uname, &base, (unsigned long)(size / SZ_1M));
533
534		len -= t_len;
535		if (first) {
536			fdt_reserved_mem_save_node(node, uname, base, size);
537			first = 0;
538		}
539	}
540	return 0;
541}
542
543/*
544 * __reserved_mem_check_root() - check if #size-cells, #address-cells provided
545 * in /reserved-memory matches the values supported by the current implementation,
546 * also check if ranges property has been provided
547 */
548static int __init __reserved_mem_check_root(unsigned long node)
549{
550	const __be32 *prop;
551
552	prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
553	if (!prop || be32_to_cpup(prop) != dt_root_size_cells)
554		return -EINVAL;
555
556	prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
557	if (!prop || be32_to_cpup(prop) != dt_root_addr_cells)
558		return -EINVAL;
559
560	prop = of_get_flat_dt_prop(node, "ranges", NULL);
561	if (!prop)
562		return -EINVAL;
563	return 0;
564}
565
566/*
567 * fdt_scan_reserved_mem() - scan a single FDT node for reserved memory
568 */
569static int __init fdt_scan_reserved_mem(void)
570{
571	int node, child;
572	const void *fdt = initial_boot_params;
573
574	node = fdt_path_offset(fdt, "/reserved-memory");
575	if (node < 0)
576		return -ENODEV;
577
578	if (__reserved_mem_check_root(node) != 0) {
579		pr_err("Reserved memory: unsupported node format, ignoring\n");
580		return -EINVAL;
581	}
582
583	fdt_for_each_subnode(child, fdt, node) {
584		const char *uname;
585		int err;
586
587		if (!of_fdt_device_is_available(fdt, child))
588			continue;
589
590		uname = fdt_get_name(fdt, child, NULL);
591
592		err = __reserved_mem_reserve_reg(child, uname);
593		if (err == -ENOENT && of_get_flat_dt_prop(child, "size", NULL))
594			fdt_reserved_mem_save_node(child, uname, 0, 0);
595	}
596	return 0;
597}
598
599/*
600 * fdt_reserve_elfcorehdr() - reserves memory for elf core header
601 *
602 * This function reserves the memory occupied by an elf core header
603 * described in the device tree. This region contains all the
604 * information about primary kernel's core image and is used by a dump
605 * capture kernel to access the system memory on primary kernel.
606 */
607static void __init fdt_reserve_elfcorehdr(void)
608{
609	if (!IS_ENABLED(CONFIG_CRASH_DUMP) || !elfcorehdr_size)
610		return;
611
612	if (memblock_is_region_reserved(elfcorehdr_addr, elfcorehdr_size)) {
613		pr_warn("elfcorehdr is overlapped\n");
614		return;
615	}
616
617	memblock_reserve(elfcorehdr_addr, elfcorehdr_size);
618
619	pr_info("Reserving %llu KiB of memory at 0x%llx for elfcorehdr\n",
620		elfcorehdr_size >> 10, elfcorehdr_addr);
621}
622
623/**
624 * early_init_fdt_scan_reserved_mem() - create reserved memory regions
625 *
626 * This function grabs memory from early allocator for device exclusive use
627 * defined in device tree structures. It should be called by arch specific code
628 * once the early allocator (i.e. memblock) has been fully activated.
629 */
630void __init early_init_fdt_scan_reserved_mem(void)
631{
632	int n;
633	u64 base, size;
634
635	if (!initial_boot_params)
636		return;
637
638	fdt_scan_reserved_mem();
639	fdt_reserve_elfcorehdr();
640
641	/* Process header /memreserve/ fields */
642	for (n = 0; ; n++) {
643		fdt_get_mem_rsv(initial_boot_params, n, &base, &size);
644		if (!size)
645			break;
646		memblock_reserve(base, size);
647	}
648
649	fdt_init_reserved_mem();
650}
651
652/**
653 * early_init_fdt_reserve_self() - reserve the memory used by the FDT blob
654 */
655void __init early_init_fdt_reserve_self(void)
656{
657	if (!initial_boot_params)
658		return;
659
660	/* Reserve the dtb region */
661	memblock_reserve(__pa(initial_boot_params),
662			 fdt_totalsize(initial_boot_params));
663}
664
665/**
666 * of_scan_flat_dt - scan flattened tree blob and call callback on each.
667 * @it: callback function
668 * @data: context data pointer
669 *
670 * This function is used to scan the flattened device-tree, it is
671 * used to extract the memory information at boot before we can
672 * unflatten the tree
673 */
674int __init of_scan_flat_dt(int (*it)(unsigned long node,
675				     const char *uname, int depth,
676				     void *data),
677			   void *data)
678{
679	const void *blob = initial_boot_params;
680	const char *pathp;
681	int offset, rc = 0, depth = -1;
682
683	if (!blob)
684		return 0;
685
686	for (offset = fdt_next_node(blob, -1, &depth);
687	     offset >= 0 && depth >= 0 && !rc;
688	     offset = fdt_next_node(blob, offset, &depth)) {
689
690		pathp = fdt_get_name(blob, offset, NULL);
691		rc = it(offset, pathp, depth, data);
692	}
693	return rc;
694}
695
696/**
697 * of_scan_flat_dt_subnodes - scan sub-nodes of a node call callback on each.
698 * @parent: parent node
699 * @it: callback function
700 * @data: context data pointer
701 *
702 * This function is used to scan sub-nodes of a node.
703 */
704int __init of_scan_flat_dt_subnodes(unsigned long parent,
705				    int (*it)(unsigned long node,
706					      const char *uname,
707					      void *data),
708				    void *data)
709{
710	const void *blob = initial_boot_params;
711	int node;
712
713	fdt_for_each_subnode(node, blob, parent) {
714		const char *pathp;
715		int rc;
716
717		pathp = fdt_get_name(blob, node, NULL);
718		rc = it(node, pathp, data);
719		if (rc)
720			return rc;
721	}
722	return 0;
723}
724
725/**
726 * of_get_flat_dt_subnode_by_name - get the subnode by given name
727 *
728 * @node: the parent node
729 * @uname: the name of subnode
730 * @return offset of the subnode, or -FDT_ERR_NOTFOUND if there is none
731 */
732
733int __init of_get_flat_dt_subnode_by_name(unsigned long node, const char *uname)
734{
735	return fdt_subnode_offset(initial_boot_params, node, uname);
736}
737
738/*
739 * of_get_flat_dt_root - find the root node in the flat blob
740 */
741unsigned long __init of_get_flat_dt_root(void)
742{
743	return 0;
744}
745
746/*
747 * of_get_flat_dt_prop - Given a node in the flat blob, return the property ptr
748 *
749 * This function can be used within scan_flattened_dt callback to get
750 * access to properties
751 */
752const void *__init of_get_flat_dt_prop(unsigned long node, const char *name,
753				       int *size)
754{
755	return fdt_getprop(initial_boot_params, node, name, size);
756}
757
758/**
759 * of_fdt_is_compatible - Return true if given node from the given blob has
760 * compat in its compatible list
761 * @blob: A device tree blob
762 * @node: node to test
763 * @compat: compatible string to compare with compatible list.
764 *
765 * Return: a non-zero value on match with smaller values returned for more
766 * specific compatible values.
767 */
768static int of_fdt_is_compatible(const void *blob,
769		      unsigned long node, const char *compat)
770{
771	const char *cp;
772	int cplen;
773	unsigned long l, score = 0;
774
775	cp = fdt_getprop(blob, node, "compatible", &cplen);
776	if (cp == NULL)
777		return 0;
778	while (cplen > 0) {
779		score++;
780		if (of_compat_cmp(cp, compat, strlen(compat)) == 0)
781			return score;
782		l = strlen(cp) + 1;
783		cp += l;
784		cplen -= l;
785	}
786
787	return 0;
788}
789
790/**
791 * of_flat_dt_is_compatible - Return true if given node has compat in compatible list
792 * @node: node to test
793 * @compat: compatible string to compare with compatible list.
794 */
795int __init of_flat_dt_is_compatible(unsigned long node, const char *compat)
796{
797	return of_fdt_is_compatible(initial_boot_params, node, compat);
798}
799
800/*
801 * of_flat_dt_match - Return true if node matches a list of compatible values
802 */
803static int __init of_flat_dt_match(unsigned long node, const char *const *compat)
804{
805	unsigned int tmp, score = 0;
806
807	if (!compat)
808		return 0;
809
810	while (*compat) {
811		tmp = of_fdt_is_compatible(initial_boot_params, node, *compat);
812		if (tmp && (score == 0 || (tmp < score)))
813			score = tmp;
814		compat++;
815	}
816
817	return score;
818}
819
820/*
821 * of_get_flat_dt_phandle - Given a node in the flat blob, return the phandle
822 */
823uint32_t __init of_get_flat_dt_phandle(unsigned long node)
824{
825	return fdt_get_phandle(initial_boot_params, node);
826}
827
828const char * __init of_flat_dt_get_machine_name(void)
829{
830	const char *name;
831	unsigned long dt_root = of_get_flat_dt_root();
832
833	name = of_get_flat_dt_prop(dt_root, "model", NULL);
834	if (!name)
835		name = of_get_flat_dt_prop(dt_root, "compatible", NULL);
836	return name;
837}
838
839/**
840 * of_flat_dt_match_machine - Iterate match tables to find matching machine.
841 *
842 * @default_match: A machine specific ptr to return in case of no match.
843 * @get_next_compat: callback function to return next compatible match table.
844 *
845 * Iterate through machine match tables to find the best match for the machine
846 * compatible string in the FDT.
847 */
848const void * __init of_flat_dt_match_machine(const void *default_match,
849		const void * (*get_next_compat)(const char * const**))
850{
851	const void *data = NULL;
852	const void *best_data = default_match;
853	const char *const *compat;
854	unsigned long dt_root;
855	unsigned int best_score = ~1, score = 0;
856
857	dt_root = of_get_flat_dt_root();
858	while ((data = get_next_compat(&compat))) {
859		score = of_flat_dt_match(dt_root, compat);
860		if (score > 0 && score < best_score) {
861			best_data = data;
862			best_score = score;
863		}
864	}
865	if (!best_data) {
866		const char *prop;
867		int size;
868
869		pr_err("\n unrecognized device tree list:\n[ ");
870
871		prop = of_get_flat_dt_prop(dt_root, "compatible", &size);
872		if (prop) {
873			while (size > 0) {
874				printk("'%s' ", prop);
875				size -= strlen(prop) + 1;
876				prop += strlen(prop) + 1;
877			}
878		}
879		printk("]\n\n");
880		return NULL;
881	}
882
883	pr_info("Machine model: %s\n", of_flat_dt_get_machine_name());
884
885	return best_data;
886}
887
888static void __early_init_dt_declare_initrd(unsigned long start,
889					   unsigned long end)
890{
891	/*
892	 * __va() is not yet available this early on some platforms. In that
893	 * case, the platform uses phys_initrd_start/phys_initrd_size instead
894	 * and does the VA conversion itself.
895	 */
896	if (!IS_ENABLED(CONFIG_ARM64) &&
897	    !(IS_ENABLED(CONFIG_RISCV) && IS_ENABLED(CONFIG_64BIT))) {
898		initrd_start = (unsigned long)__va(start);
899		initrd_end = (unsigned long)__va(end);
900		initrd_below_start_ok = 1;
901	}
902}
903
904/**
905 * early_init_dt_check_for_initrd - Decode initrd location from flat tree
906 * @node: reference to node containing initrd location ('chosen')
907 */
908static void __init early_init_dt_check_for_initrd(unsigned long node)
909{
910	u64 start, end;
911	int len;
912	const __be32 *prop;
913
914	if (!IS_ENABLED(CONFIG_BLK_DEV_INITRD))
915		return;
916
917	pr_debug("Looking for initrd properties... ");
918
919	prop = of_get_flat_dt_prop(node, "linux,initrd-start", &len);
920	if (!prop)
921		return;
922	start = of_read_number(prop, len/4);
923
924	prop = of_get_flat_dt_prop(node, "linux,initrd-end", &len);
925	if (!prop)
926		return;
927	end = of_read_number(prop, len/4);
928	if (start > end)
929		return;
930
931	__early_init_dt_declare_initrd(start, end);
932	phys_initrd_start = start;
933	phys_initrd_size = end - start;
934
935	pr_debug("initrd_start=0x%llx  initrd_end=0x%llx\n", start, end);
936}
937
938/**
939 * early_init_dt_check_for_elfcorehdr - Decode elfcorehdr location from flat
940 * tree
941 * @node: reference to node containing elfcorehdr location ('chosen')
942 */
943static void __init early_init_dt_check_for_elfcorehdr(unsigned long node)
944{
945	const __be32 *prop;
946	int len;
947
948	if (!IS_ENABLED(CONFIG_CRASH_DUMP))
949		return;
950
951	pr_debug("Looking for elfcorehdr property... ");
952
953	prop = of_get_flat_dt_prop(node, "linux,elfcorehdr", &len);
954	if (!prop || (len < (dt_root_addr_cells + dt_root_size_cells)))
955		return;
956
957	elfcorehdr_addr = dt_mem_next_cell(dt_root_addr_cells, &prop);
958	elfcorehdr_size = dt_mem_next_cell(dt_root_size_cells, &prop);
959
960	pr_debug("elfcorehdr_start=0x%llx elfcorehdr_size=0x%llx\n",
961		 elfcorehdr_addr, elfcorehdr_size);
962}
963
964static unsigned long chosen_node_offset = -FDT_ERR_NOTFOUND;
965
966/*
967 * The main usage of linux,usable-memory-range is for crash dump kernel.
968 * Originally, the number of usable-memory regions is one. Now there may
969 * be two regions, low region and high region.
970 * To make compatibility with existing user-space and older kdump, the low
971 * region is always the last range of linux,usable-memory-range if exist.
972 */
973#define MAX_USABLE_RANGES		2
974
975/**
976 * early_init_dt_check_for_usable_mem_range - Decode usable memory range
977 * location from flat tree
978 */
979void __init early_init_dt_check_for_usable_mem_range(void)
980{
981	struct memblock_region rgn[MAX_USABLE_RANGES] = {0};
982	const __be32 *prop, *endp;
983	int len, i;
984	unsigned long node = chosen_node_offset;
985
986	if ((long)node < 0)
987		return;
988
989	pr_debug("Looking for usable-memory-range property... ");
990
991	prop = of_get_flat_dt_prop(node, "linux,usable-memory-range", &len);
992	if (!prop || (len % (dt_root_addr_cells + dt_root_size_cells)))
993		return;
994
995	endp = prop + (len / sizeof(__be32));
996	for (i = 0; i < MAX_USABLE_RANGES && prop < endp; i++) {
997		rgn[i].base = dt_mem_next_cell(dt_root_addr_cells, &prop);
998		rgn[i].size = dt_mem_next_cell(dt_root_size_cells, &prop);
999
1000		pr_debug("cap_mem_regions[%d]: base=%pa, size=%pa\n",
1001			 i, &rgn[i].base, &rgn[i].size);
1002	}
1003
1004	memblock_cap_memory_range(rgn[0].base, rgn[0].size);
1005	for (i = 1; i < MAX_USABLE_RANGES && rgn[i].size; i++)
1006		memblock_add(rgn[i].base, rgn[i].size);
1007}
1008
1009#ifdef CONFIG_SERIAL_EARLYCON
1010
1011int __init early_init_dt_scan_chosen_stdout(void)
1012{
1013	int offset;
1014	const char *p, *q, *options = NULL;
1015	int l;
1016	const struct earlycon_id *match;
1017	const void *fdt = initial_boot_params;
1018	int ret;
1019
1020	offset = fdt_path_offset(fdt, "/chosen");
1021	if (offset < 0)
1022		offset = fdt_path_offset(fdt, "/chosen@0");
1023	if (offset < 0)
1024		return -ENOENT;
1025
1026	p = fdt_getprop(fdt, offset, "stdout-path", &l);
1027	if (!p)
1028		p = fdt_getprop(fdt, offset, "linux,stdout-path", &l);
1029	if (!p || !l)
1030		return -ENOENT;
1031
1032	q = strchrnul(p, ':');
1033	if (*q != '\0')
1034		options = q + 1;
1035	l = q - p;
1036
1037	/* Get the node specified by stdout-path */
1038	offset = fdt_path_offset_namelen(fdt, p, l);
1039	if (offset < 0) {
1040		pr_warn("earlycon: stdout-path %.*s not found\n", l, p);
1041		return 0;
1042	}
1043
1044	for (match = __earlycon_table; match < __earlycon_table_end; match++) {
1045		if (!match->compatible[0])
1046			continue;
1047
1048		if (fdt_node_check_compatible(fdt, offset, match->compatible))
1049			continue;
1050
1051		ret = of_setup_earlycon(match, offset, options);
1052		if (!ret || ret == -EALREADY)
1053			return 0;
1054	}
1055	return -ENODEV;
1056}
1057#endif
1058
1059/*
1060 * early_init_dt_scan_root - fetch the top level address and size cells
1061 */
1062int __init early_init_dt_scan_root(void)
1063{
1064	const __be32 *prop;
1065	const void *fdt = initial_boot_params;
1066	int node = fdt_path_offset(fdt, "/");
1067
1068	if (node < 0)
1069		return -ENODEV;
1070
1071	dt_root_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
1072	dt_root_addr_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
1073
1074	prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
1075	if (prop)
1076		dt_root_size_cells = be32_to_cpup(prop);
1077	pr_debug("dt_root_size_cells = %x\n", dt_root_size_cells);
1078
1079	prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
1080	if (prop)
1081		dt_root_addr_cells = be32_to_cpup(prop);
1082	pr_debug("dt_root_addr_cells = %x\n", dt_root_addr_cells);
1083
1084	return 0;
1085}
1086
1087u64 __init dt_mem_next_cell(int s, const __be32 **cellp)
1088{
1089	const __be32 *p = *cellp;
1090
1091	*cellp = p + s;
1092	return of_read_number(p, s);
1093}
1094
1095/*
1096 * early_init_dt_scan_memory - Look for and parse memory nodes
1097 */
1098int __init early_init_dt_scan_memory(void)
1099{
1100	int node, found_memory = 0;
1101	const void *fdt = initial_boot_params;
1102
1103	fdt_for_each_subnode(node, fdt, 0) {
1104		const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
1105		const __be32 *reg, *endp;
1106		int l;
1107		bool hotpluggable;
1108
1109		/* We are scanning "memory" nodes only */
1110		if (type == NULL || strcmp(type, "memory") != 0)
1111			continue;
1112
1113		if (!of_fdt_device_is_available(fdt, node))
1114			continue;
1115
1116		reg = of_get_flat_dt_prop(node, "linux,usable-memory", &l);
1117		if (reg == NULL)
1118			reg = of_get_flat_dt_prop(node, "reg", &l);
1119		if (reg == NULL)
1120			continue;
1121
1122		endp = reg + (l / sizeof(__be32));
1123		hotpluggable = of_get_flat_dt_prop(node, "hotpluggable", NULL);
1124
1125		pr_debug("memory scan node %s, reg size %d,\n",
1126			 fdt_get_name(fdt, node, NULL), l);
1127
1128		while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
1129			u64 base, size;
1130
1131			base = dt_mem_next_cell(dt_root_addr_cells, &reg);
1132			size = dt_mem_next_cell(dt_root_size_cells, &reg);
1133
1134			if (size == 0)
1135				continue;
1136			pr_debug(" - %llx, %llx\n", base, size);
1137
1138			early_init_dt_add_memory_arch(base, size);
1139
1140			found_memory = 1;
1141
1142			if (!hotpluggable)
1143				continue;
1144
1145			if (memblock_mark_hotplug(base, size))
1146				pr_warn("failed to mark hotplug range 0x%llx - 0x%llx\n",
1147					base, base + size);
1148		}
1149	}
1150	return found_memory;
1151}
1152
1153int __init early_init_dt_scan_chosen(char *cmdline)
1154{
1155	int l, node;
1156	const char *p;
1157	const void *rng_seed;
1158	const void *fdt = initial_boot_params;
1159
1160	node = fdt_path_offset(fdt, "/chosen");
1161	if (node < 0)
1162		node = fdt_path_offset(fdt, "/chosen@0");
1163	if (node < 0)
1164		/* Handle the cmdline config options even if no /chosen node */
1165		goto handle_cmdline;
1166
1167	chosen_node_offset = node;
1168
1169	early_init_dt_check_for_initrd(node);
1170	early_init_dt_check_for_elfcorehdr(node);
1171
1172	rng_seed = of_get_flat_dt_prop(node, "rng-seed", &l);
1173	if (rng_seed && l > 0) {
1174		add_bootloader_randomness(rng_seed, l);
1175
1176		/* try to clear seed so it won't be found. */
1177		fdt_nop_property(initial_boot_params, node, "rng-seed");
1178
1179		/* update CRC check value */
1180		of_fdt_crc32 = crc32_be(~0, initial_boot_params,
1181				fdt_totalsize(initial_boot_params));
1182	}
1183
1184	/* Retrieve command line */
1185	p = of_get_flat_dt_prop(node, "bootargs", &l);
1186	if (p != NULL && l > 0)
1187		strscpy(cmdline, p, min(l, COMMAND_LINE_SIZE));
1188
1189handle_cmdline:
1190	/*
1191	 * CONFIG_CMDLINE is meant to be a default in case nothing else
1192	 * managed to set the command line, unless CONFIG_CMDLINE_FORCE
1193	 * is set in which case we override whatever was found earlier.
1194	 */
1195#ifdef CONFIG_CMDLINE
1196#if defined(CONFIG_CMDLINE_EXTEND)
1197	strlcat(cmdline, " ", COMMAND_LINE_SIZE);
1198	strlcat(cmdline, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1199#elif defined(CONFIG_CMDLINE_FORCE)
1200	strscpy(cmdline, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1201#else
1202	/* No arguments from boot loader, use kernel's  cmdl*/
1203	if (!((char *)cmdline)[0])
1204		strscpy(cmdline, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1205#endif
1206#endif /* CONFIG_CMDLINE */
1207
1208	pr_debug("Command line is: %s\n", (char *)cmdline);
1209
1210	return 0;
1211}
1212
1213#ifndef MIN_MEMBLOCK_ADDR
1214#define MIN_MEMBLOCK_ADDR	__pa(PAGE_OFFSET)
1215#endif
1216#ifndef MAX_MEMBLOCK_ADDR
1217#define MAX_MEMBLOCK_ADDR	((phys_addr_t)~0)
1218#endif
1219
1220void __init __weak early_init_dt_add_memory_arch(u64 base, u64 size)
1221{
1222	const u64 phys_offset = MIN_MEMBLOCK_ADDR;
1223
1224	if (size < PAGE_SIZE - (base & ~PAGE_MASK)) {
1225		pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1226			base, base + size);
1227		return;
1228	}
1229
1230	if (!PAGE_ALIGNED(base)) {
1231		size -= PAGE_SIZE - (base & ~PAGE_MASK);
1232		base = PAGE_ALIGN(base);
1233	}
1234	size &= PAGE_MASK;
1235
1236	if (base > MAX_MEMBLOCK_ADDR) {
1237		pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1238			base, base + size);
1239		return;
1240	}
1241
1242	if (base + size - 1 > MAX_MEMBLOCK_ADDR) {
1243		pr_warn("Ignoring memory range 0x%llx - 0x%llx\n",
1244			((u64)MAX_MEMBLOCK_ADDR) + 1, base + size);
1245		size = MAX_MEMBLOCK_ADDR - base + 1;
1246	}
1247
1248	if (base + size < phys_offset) {
1249		pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1250			base, base + size);
1251		return;
1252	}
1253	if (base < phys_offset) {
1254		pr_warn("Ignoring memory range 0x%llx - 0x%llx\n",
1255			base, phys_offset);
1256		size -= phys_offset - base;
1257		base = phys_offset;
1258	}
1259	memblock_add(base, size);
1260}
1261
1262static void * __init early_init_dt_alloc_memory_arch(u64 size, u64 align)
1263{
1264	void *ptr = memblock_alloc(size, align);
1265
1266	if (!ptr)
1267		panic("%s: Failed to allocate %llu bytes align=0x%llx\n",
1268		      __func__, size, align);
1269
1270	return ptr;
1271}
1272
1273bool __init early_init_dt_verify(void *params)
1274{
1275	if (!params)
1276		return false;
1277
1278	/* check device tree validity */
1279	if (fdt_check_header(params))
1280		return false;
1281
1282	/* Setup flat device-tree pointer */
1283	initial_boot_params = params;
1284	of_fdt_crc32 = crc32_be(~0, initial_boot_params,
1285				fdt_totalsize(initial_boot_params));
1286	return true;
1287}
1288
1289
1290void __init early_init_dt_scan_nodes(void)
1291{
1292	int rc;
1293
1294	/* Initialize {size,address}-cells info */
1295	early_init_dt_scan_root();
1296
1297	/* Retrieve various information from the /chosen node */
1298	rc = early_init_dt_scan_chosen(boot_command_line);
1299	if (rc)
1300		pr_warn("No chosen node found, continuing without\n");
1301
1302	/* Setup memory, calling early_init_dt_add_memory_arch */
1303	early_init_dt_scan_memory();
1304
1305	/* Handle linux,usable-memory-range property */
1306	early_init_dt_check_for_usable_mem_range();
1307}
1308
1309bool __init early_init_dt_scan(void *params)
1310{
1311	bool status;
1312
1313	status = early_init_dt_verify(params);
1314	if (!status)
1315		return false;
1316
1317	early_init_dt_scan_nodes();
1318	return true;
1319}
1320
1321/**
1322 * unflatten_device_tree - create tree of device_nodes from flat blob
1323 *
1324 * unflattens the device-tree passed by the firmware, creating the
1325 * tree of struct device_node. It also fills the "name" and "type"
1326 * pointers of the nodes so the normal device-tree walking functions
1327 * can be used.
1328 */
1329void __init unflatten_device_tree(void)
1330{
1331	__unflatten_device_tree(initial_boot_params, NULL, &of_root,
1332				early_init_dt_alloc_memory_arch, false);
1333
1334	/* Get pointer to "/chosen" and "/aliases" nodes for use everywhere */
1335	of_alias_scan(early_init_dt_alloc_memory_arch);
1336
1337	unittest_unflatten_overlay_base();
1338}
1339
1340/**
1341 * unflatten_and_copy_device_tree - copy and create tree of device_nodes from flat blob
1342 *
1343 * Copies and unflattens the device-tree passed by the firmware, creating the
1344 * tree of struct device_node. It also fills the "name" and "type"
1345 * pointers of the nodes so the normal device-tree walking functions
1346 * can be used. This should only be used when the FDT memory has not been
1347 * reserved such is the case when the FDT is built-in to the kernel init
1348 * section. If the FDT memory is reserved already then unflatten_device_tree
1349 * should be used instead.
1350 */
1351void __init unflatten_and_copy_device_tree(void)
1352{
1353	int size;
1354	void *dt;
1355
1356	if (!initial_boot_params) {
1357		pr_warn("No valid device tree found, continuing without\n");
1358		return;
1359	}
1360
1361	size = fdt_totalsize(initial_boot_params);
1362	dt = early_init_dt_alloc_memory_arch(size,
1363					     roundup_pow_of_two(FDT_V17_SIZE));
1364
1365	if (dt) {
1366		memcpy(dt, initial_boot_params, size);
1367		initial_boot_params = dt;
1368	}
1369	unflatten_device_tree();
1370}
1371
1372#ifdef CONFIG_SYSFS
1373static ssize_t of_fdt_raw_read(struct file *filp, struct kobject *kobj,
1374			       struct bin_attribute *bin_attr,
1375			       char *buf, loff_t off, size_t count)
1376{
1377	memcpy(buf, initial_boot_params + off, count);
1378	return count;
1379}
1380
1381static int __init of_fdt_raw_init(void)
1382{
1383	static struct bin_attribute of_fdt_raw_attr =
1384		__BIN_ATTR(fdt, S_IRUSR, of_fdt_raw_read, NULL, 0);
1385
1386	if (!initial_boot_params)
1387		return 0;
1388
1389	if (of_fdt_crc32 != crc32_be(~0, initial_boot_params,
1390				     fdt_totalsize(initial_boot_params))) {
1391		pr_warn("not creating '/sys/firmware/fdt': CRC check failed\n");
1392		return 0;
1393	}
1394	of_fdt_raw_attr.size = fdt_totalsize(initial_boot_params);
1395	return sysfs_create_bin_file(firmware_kobj, &of_fdt_raw_attr);
1396}
1397late_initcall(of_fdt_raw_init);
1398#endif
1399
1400#endif /* CONFIG_OF_EARLY_FLATTREE */
1401