1// SPDX-License-Identifier: GPL-2.0
2/*
3 * NVMe over Fabrics RDMA target.
4 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5 */
6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7#include <linux/atomic.h>
8#include <linux/blk-integrity.h>
9#include <linux/ctype.h>
10#include <linux/delay.h>
11#include <linux/err.h>
12#include <linux/init.h>
13#include <linux/module.h>
14#include <linux/nvme.h>
15#include <linux/slab.h>
16#include <linux/string.h>
17#include <linux/wait.h>
18#include <linux/inet.h>
19#include <asm/unaligned.h>
20
21#include <rdma/ib_verbs.h>
22#include <rdma/rdma_cm.h>
23#include <rdma/rw.h>
24#include <rdma/ib_cm.h>
25
26#include <linux/nvme-rdma.h>
27#include "nvmet.h"
28
29/*
30 * We allow at least 1 page, up to 4 SGEs, and up to 16KB of inline data
31 */
32#define NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE	PAGE_SIZE
33#define NVMET_RDMA_MAX_INLINE_SGE		4
34#define NVMET_RDMA_MAX_INLINE_DATA_SIZE		max_t(int, SZ_16K, PAGE_SIZE)
35
36/* Assume mpsmin == device_page_size == 4KB */
37#define NVMET_RDMA_MAX_MDTS			8
38#define NVMET_RDMA_MAX_METADATA_MDTS		5
39
40struct nvmet_rdma_srq;
41
42struct nvmet_rdma_cmd {
43	struct ib_sge		sge[NVMET_RDMA_MAX_INLINE_SGE + 1];
44	struct ib_cqe		cqe;
45	struct ib_recv_wr	wr;
46	struct scatterlist	inline_sg[NVMET_RDMA_MAX_INLINE_SGE];
47	struct nvme_command     *nvme_cmd;
48	struct nvmet_rdma_queue	*queue;
49	struct nvmet_rdma_srq   *nsrq;
50};
51
52enum {
53	NVMET_RDMA_REQ_INLINE_DATA	= (1 << 0),
54	NVMET_RDMA_REQ_INVALIDATE_RKEY	= (1 << 1),
55};
56
57struct nvmet_rdma_rsp {
58	struct ib_sge		send_sge;
59	struct ib_cqe		send_cqe;
60	struct ib_send_wr	send_wr;
61
62	struct nvmet_rdma_cmd	*cmd;
63	struct nvmet_rdma_queue	*queue;
64
65	struct ib_cqe		read_cqe;
66	struct ib_cqe		write_cqe;
67	struct rdma_rw_ctx	rw;
68
69	struct nvmet_req	req;
70
71	bool			allocated;
72	u8			n_rdma;
73	u32			flags;
74	u32			invalidate_rkey;
75
76	struct list_head	wait_list;
77	struct list_head	free_list;
78};
79
80enum nvmet_rdma_queue_state {
81	NVMET_RDMA_Q_CONNECTING,
82	NVMET_RDMA_Q_LIVE,
83	NVMET_RDMA_Q_DISCONNECTING,
84};
85
86struct nvmet_rdma_queue {
87	struct rdma_cm_id	*cm_id;
88	struct ib_qp		*qp;
89	struct nvmet_port	*port;
90	struct ib_cq		*cq;
91	atomic_t		sq_wr_avail;
92	struct nvmet_rdma_device *dev;
93	struct nvmet_rdma_srq   *nsrq;
94	spinlock_t		state_lock;
95	enum nvmet_rdma_queue_state state;
96	struct nvmet_cq		nvme_cq;
97	struct nvmet_sq		nvme_sq;
98
99	struct nvmet_rdma_rsp	*rsps;
100	struct list_head	free_rsps;
101	spinlock_t		rsps_lock;
102	struct nvmet_rdma_cmd	*cmds;
103
104	struct work_struct	release_work;
105	struct list_head	rsp_wait_list;
106	struct list_head	rsp_wr_wait_list;
107	spinlock_t		rsp_wr_wait_lock;
108
109	int			idx;
110	int			host_qid;
111	int			comp_vector;
112	int			recv_queue_size;
113	int			send_queue_size;
114
115	struct list_head	queue_list;
116};
117
118struct nvmet_rdma_port {
119	struct nvmet_port	*nport;
120	struct sockaddr_storage addr;
121	struct rdma_cm_id	*cm_id;
122	struct delayed_work	repair_work;
123};
124
125struct nvmet_rdma_srq {
126	struct ib_srq            *srq;
127	struct nvmet_rdma_cmd    *cmds;
128	struct nvmet_rdma_device *ndev;
129};
130
131struct nvmet_rdma_device {
132	struct ib_device	*device;
133	struct ib_pd		*pd;
134	struct nvmet_rdma_srq	**srqs;
135	int			srq_count;
136	size_t			srq_size;
137	struct kref		ref;
138	struct list_head	entry;
139	int			inline_data_size;
140	int			inline_page_count;
141};
142
143static bool nvmet_rdma_use_srq;
144module_param_named(use_srq, nvmet_rdma_use_srq, bool, 0444);
145MODULE_PARM_DESC(use_srq, "Use shared receive queue.");
146
147static int srq_size_set(const char *val, const struct kernel_param *kp);
148static const struct kernel_param_ops srq_size_ops = {
149	.set = srq_size_set,
150	.get = param_get_int,
151};
152
153static int nvmet_rdma_srq_size = 1024;
154module_param_cb(srq_size, &srq_size_ops, &nvmet_rdma_srq_size, 0644);
155MODULE_PARM_DESC(srq_size, "set Shared Receive Queue (SRQ) size, should >= 256 (default: 1024)");
156
157static DEFINE_IDA(nvmet_rdma_queue_ida);
158static LIST_HEAD(nvmet_rdma_queue_list);
159static DEFINE_MUTEX(nvmet_rdma_queue_mutex);
160
161static LIST_HEAD(device_list);
162static DEFINE_MUTEX(device_list_mutex);
163
164static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp);
165static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc);
166static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
167static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc);
168static void nvmet_rdma_write_data_done(struct ib_cq *cq, struct ib_wc *wc);
169static void nvmet_rdma_qp_event(struct ib_event *event, void *priv);
170static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue);
171static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev,
172				struct nvmet_rdma_rsp *r);
173static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev,
174				struct nvmet_rdma_rsp *r);
175
176static const struct nvmet_fabrics_ops nvmet_rdma_ops;
177
178static int srq_size_set(const char *val, const struct kernel_param *kp)
179{
180	int n = 0, ret;
181
182	ret = kstrtoint(val, 10, &n);
183	if (ret != 0 || n < 256)
184		return -EINVAL;
185
186	return param_set_int(val, kp);
187}
188
189static int num_pages(int len)
190{
191	return 1 + (((len - 1) & PAGE_MASK) >> PAGE_SHIFT);
192}
193
194static inline bool nvmet_rdma_need_data_in(struct nvmet_rdma_rsp *rsp)
195{
196	return nvme_is_write(rsp->req.cmd) &&
197		rsp->req.transfer_len &&
198		!(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA);
199}
200
201static inline bool nvmet_rdma_need_data_out(struct nvmet_rdma_rsp *rsp)
202{
203	return !nvme_is_write(rsp->req.cmd) &&
204		rsp->req.transfer_len &&
205		!rsp->req.cqe->status &&
206		!(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA);
207}
208
209static inline struct nvmet_rdma_rsp *
210nvmet_rdma_get_rsp(struct nvmet_rdma_queue *queue)
211{
212	struct nvmet_rdma_rsp *rsp;
213	unsigned long flags;
214
215	spin_lock_irqsave(&queue->rsps_lock, flags);
216	rsp = list_first_entry_or_null(&queue->free_rsps,
217				struct nvmet_rdma_rsp, free_list);
218	if (likely(rsp))
219		list_del(&rsp->free_list);
220	spin_unlock_irqrestore(&queue->rsps_lock, flags);
221
222	if (unlikely(!rsp)) {
223		int ret;
224
225		rsp = kzalloc(sizeof(*rsp), GFP_KERNEL);
226		if (unlikely(!rsp))
227			return NULL;
228		ret = nvmet_rdma_alloc_rsp(queue->dev, rsp);
229		if (unlikely(ret)) {
230			kfree(rsp);
231			return NULL;
232		}
233
234		rsp->allocated = true;
235	}
236
237	return rsp;
238}
239
240static inline void
241nvmet_rdma_put_rsp(struct nvmet_rdma_rsp *rsp)
242{
243	unsigned long flags;
244
245	if (unlikely(rsp->allocated)) {
246		nvmet_rdma_free_rsp(rsp->queue->dev, rsp);
247		kfree(rsp);
248		return;
249	}
250
251	spin_lock_irqsave(&rsp->queue->rsps_lock, flags);
252	list_add_tail(&rsp->free_list, &rsp->queue->free_rsps);
253	spin_unlock_irqrestore(&rsp->queue->rsps_lock, flags);
254}
255
256static void nvmet_rdma_free_inline_pages(struct nvmet_rdma_device *ndev,
257				struct nvmet_rdma_cmd *c)
258{
259	struct scatterlist *sg;
260	struct ib_sge *sge;
261	int i;
262
263	if (!ndev->inline_data_size)
264		return;
265
266	sg = c->inline_sg;
267	sge = &c->sge[1];
268
269	for (i = 0; i < ndev->inline_page_count; i++, sg++, sge++) {
270		if (sge->length)
271			ib_dma_unmap_page(ndev->device, sge->addr,
272					sge->length, DMA_FROM_DEVICE);
273		if (sg_page(sg))
274			__free_page(sg_page(sg));
275	}
276}
277
278static int nvmet_rdma_alloc_inline_pages(struct nvmet_rdma_device *ndev,
279				struct nvmet_rdma_cmd *c)
280{
281	struct scatterlist *sg;
282	struct ib_sge *sge;
283	struct page *pg;
284	int len;
285	int i;
286
287	if (!ndev->inline_data_size)
288		return 0;
289
290	sg = c->inline_sg;
291	sg_init_table(sg, ndev->inline_page_count);
292	sge = &c->sge[1];
293	len = ndev->inline_data_size;
294
295	for (i = 0; i < ndev->inline_page_count; i++, sg++, sge++) {
296		pg = alloc_page(GFP_KERNEL);
297		if (!pg)
298			goto out_err;
299		sg_assign_page(sg, pg);
300		sge->addr = ib_dma_map_page(ndev->device,
301			pg, 0, PAGE_SIZE, DMA_FROM_DEVICE);
302		if (ib_dma_mapping_error(ndev->device, sge->addr))
303			goto out_err;
304		sge->length = min_t(int, len, PAGE_SIZE);
305		sge->lkey = ndev->pd->local_dma_lkey;
306		len -= sge->length;
307	}
308
309	return 0;
310out_err:
311	for (; i >= 0; i--, sg--, sge--) {
312		if (sge->length)
313			ib_dma_unmap_page(ndev->device, sge->addr,
314					sge->length, DMA_FROM_DEVICE);
315		if (sg_page(sg))
316			__free_page(sg_page(sg));
317	}
318	return -ENOMEM;
319}
320
321static int nvmet_rdma_alloc_cmd(struct nvmet_rdma_device *ndev,
322			struct nvmet_rdma_cmd *c, bool admin)
323{
324	/* NVMe command / RDMA RECV */
325	c->nvme_cmd = kmalloc(sizeof(*c->nvme_cmd), GFP_KERNEL);
326	if (!c->nvme_cmd)
327		goto out;
328
329	c->sge[0].addr = ib_dma_map_single(ndev->device, c->nvme_cmd,
330			sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
331	if (ib_dma_mapping_error(ndev->device, c->sge[0].addr))
332		goto out_free_cmd;
333
334	c->sge[0].length = sizeof(*c->nvme_cmd);
335	c->sge[0].lkey = ndev->pd->local_dma_lkey;
336
337	if (!admin && nvmet_rdma_alloc_inline_pages(ndev, c))
338		goto out_unmap_cmd;
339
340	c->cqe.done = nvmet_rdma_recv_done;
341
342	c->wr.wr_cqe = &c->cqe;
343	c->wr.sg_list = c->sge;
344	c->wr.num_sge = admin ? 1 : ndev->inline_page_count + 1;
345
346	return 0;
347
348out_unmap_cmd:
349	ib_dma_unmap_single(ndev->device, c->sge[0].addr,
350			sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
351out_free_cmd:
352	kfree(c->nvme_cmd);
353
354out:
355	return -ENOMEM;
356}
357
358static void nvmet_rdma_free_cmd(struct nvmet_rdma_device *ndev,
359		struct nvmet_rdma_cmd *c, bool admin)
360{
361	if (!admin)
362		nvmet_rdma_free_inline_pages(ndev, c);
363	ib_dma_unmap_single(ndev->device, c->sge[0].addr,
364				sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
365	kfree(c->nvme_cmd);
366}
367
368static struct nvmet_rdma_cmd *
369nvmet_rdma_alloc_cmds(struct nvmet_rdma_device *ndev,
370		int nr_cmds, bool admin)
371{
372	struct nvmet_rdma_cmd *cmds;
373	int ret = -EINVAL, i;
374
375	cmds = kcalloc(nr_cmds, sizeof(struct nvmet_rdma_cmd), GFP_KERNEL);
376	if (!cmds)
377		goto out;
378
379	for (i = 0; i < nr_cmds; i++) {
380		ret = nvmet_rdma_alloc_cmd(ndev, cmds + i, admin);
381		if (ret)
382			goto out_free;
383	}
384
385	return cmds;
386
387out_free:
388	while (--i >= 0)
389		nvmet_rdma_free_cmd(ndev, cmds + i, admin);
390	kfree(cmds);
391out:
392	return ERR_PTR(ret);
393}
394
395static void nvmet_rdma_free_cmds(struct nvmet_rdma_device *ndev,
396		struct nvmet_rdma_cmd *cmds, int nr_cmds, bool admin)
397{
398	int i;
399
400	for (i = 0; i < nr_cmds; i++)
401		nvmet_rdma_free_cmd(ndev, cmds + i, admin);
402	kfree(cmds);
403}
404
405static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev,
406		struct nvmet_rdma_rsp *r)
407{
408	/* NVMe CQE / RDMA SEND */
409	r->req.cqe = kmalloc(sizeof(*r->req.cqe), GFP_KERNEL);
410	if (!r->req.cqe)
411		goto out;
412
413	r->send_sge.addr = ib_dma_map_single(ndev->device, r->req.cqe,
414			sizeof(*r->req.cqe), DMA_TO_DEVICE);
415	if (ib_dma_mapping_error(ndev->device, r->send_sge.addr))
416		goto out_free_rsp;
417
418	if (ib_dma_pci_p2p_dma_supported(ndev->device))
419		r->req.p2p_client = &ndev->device->dev;
420	r->send_sge.length = sizeof(*r->req.cqe);
421	r->send_sge.lkey = ndev->pd->local_dma_lkey;
422
423	r->send_cqe.done = nvmet_rdma_send_done;
424
425	r->send_wr.wr_cqe = &r->send_cqe;
426	r->send_wr.sg_list = &r->send_sge;
427	r->send_wr.num_sge = 1;
428	r->send_wr.send_flags = IB_SEND_SIGNALED;
429
430	/* Data In / RDMA READ */
431	r->read_cqe.done = nvmet_rdma_read_data_done;
432	/* Data Out / RDMA WRITE */
433	r->write_cqe.done = nvmet_rdma_write_data_done;
434
435	return 0;
436
437out_free_rsp:
438	kfree(r->req.cqe);
439out:
440	return -ENOMEM;
441}
442
443static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev,
444		struct nvmet_rdma_rsp *r)
445{
446	ib_dma_unmap_single(ndev->device, r->send_sge.addr,
447				sizeof(*r->req.cqe), DMA_TO_DEVICE);
448	kfree(r->req.cqe);
449}
450
451static int
452nvmet_rdma_alloc_rsps(struct nvmet_rdma_queue *queue)
453{
454	struct nvmet_rdma_device *ndev = queue->dev;
455	int nr_rsps = queue->recv_queue_size * 2;
456	int ret = -EINVAL, i;
457
458	queue->rsps = kcalloc(nr_rsps, sizeof(struct nvmet_rdma_rsp),
459			GFP_KERNEL);
460	if (!queue->rsps)
461		goto out;
462
463	for (i = 0; i < nr_rsps; i++) {
464		struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
465
466		ret = nvmet_rdma_alloc_rsp(ndev, rsp);
467		if (ret)
468			goto out_free;
469
470		list_add_tail(&rsp->free_list, &queue->free_rsps);
471	}
472
473	return 0;
474
475out_free:
476	while (--i >= 0) {
477		struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
478
479		list_del(&rsp->free_list);
480		nvmet_rdma_free_rsp(ndev, rsp);
481	}
482	kfree(queue->rsps);
483out:
484	return ret;
485}
486
487static void nvmet_rdma_free_rsps(struct nvmet_rdma_queue *queue)
488{
489	struct nvmet_rdma_device *ndev = queue->dev;
490	int i, nr_rsps = queue->recv_queue_size * 2;
491
492	for (i = 0; i < nr_rsps; i++) {
493		struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
494
495		list_del(&rsp->free_list);
496		nvmet_rdma_free_rsp(ndev, rsp);
497	}
498	kfree(queue->rsps);
499}
500
501static int nvmet_rdma_post_recv(struct nvmet_rdma_device *ndev,
502		struct nvmet_rdma_cmd *cmd)
503{
504	int ret;
505
506	ib_dma_sync_single_for_device(ndev->device,
507		cmd->sge[0].addr, cmd->sge[0].length,
508		DMA_FROM_DEVICE);
509
510	if (cmd->nsrq)
511		ret = ib_post_srq_recv(cmd->nsrq->srq, &cmd->wr, NULL);
512	else
513		ret = ib_post_recv(cmd->queue->qp, &cmd->wr, NULL);
514
515	if (unlikely(ret))
516		pr_err("post_recv cmd failed\n");
517
518	return ret;
519}
520
521static void nvmet_rdma_process_wr_wait_list(struct nvmet_rdma_queue *queue)
522{
523	spin_lock(&queue->rsp_wr_wait_lock);
524	while (!list_empty(&queue->rsp_wr_wait_list)) {
525		struct nvmet_rdma_rsp *rsp;
526		bool ret;
527
528		rsp = list_entry(queue->rsp_wr_wait_list.next,
529				struct nvmet_rdma_rsp, wait_list);
530		list_del(&rsp->wait_list);
531
532		spin_unlock(&queue->rsp_wr_wait_lock);
533		ret = nvmet_rdma_execute_command(rsp);
534		spin_lock(&queue->rsp_wr_wait_lock);
535
536		if (!ret) {
537			list_add(&rsp->wait_list, &queue->rsp_wr_wait_list);
538			break;
539		}
540	}
541	spin_unlock(&queue->rsp_wr_wait_lock);
542}
543
544static u16 nvmet_rdma_check_pi_status(struct ib_mr *sig_mr)
545{
546	struct ib_mr_status mr_status;
547	int ret;
548	u16 status = 0;
549
550	ret = ib_check_mr_status(sig_mr, IB_MR_CHECK_SIG_STATUS, &mr_status);
551	if (ret) {
552		pr_err("ib_check_mr_status failed, ret %d\n", ret);
553		return NVME_SC_INVALID_PI;
554	}
555
556	if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) {
557		switch (mr_status.sig_err.err_type) {
558		case IB_SIG_BAD_GUARD:
559			status = NVME_SC_GUARD_CHECK;
560			break;
561		case IB_SIG_BAD_REFTAG:
562			status = NVME_SC_REFTAG_CHECK;
563			break;
564		case IB_SIG_BAD_APPTAG:
565			status = NVME_SC_APPTAG_CHECK;
566			break;
567		}
568		pr_err("PI error found type %d expected 0x%x vs actual 0x%x\n",
569		       mr_status.sig_err.err_type,
570		       mr_status.sig_err.expected,
571		       mr_status.sig_err.actual);
572	}
573
574	return status;
575}
576
577static void nvmet_rdma_set_sig_domain(struct blk_integrity *bi,
578		struct nvme_command *cmd, struct ib_sig_domain *domain,
579		u16 control, u8 pi_type)
580{
581	domain->sig_type = IB_SIG_TYPE_T10_DIF;
582	domain->sig.dif.bg_type = IB_T10DIF_CRC;
583	domain->sig.dif.pi_interval = 1 << bi->interval_exp;
584	domain->sig.dif.ref_tag = le32_to_cpu(cmd->rw.reftag);
585	if (control & NVME_RW_PRINFO_PRCHK_REF)
586		domain->sig.dif.ref_remap = true;
587
588	domain->sig.dif.app_tag = le16_to_cpu(cmd->rw.apptag);
589	domain->sig.dif.apptag_check_mask = le16_to_cpu(cmd->rw.appmask);
590	domain->sig.dif.app_escape = true;
591	if (pi_type == NVME_NS_DPS_PI_TYPE3)
592		domain->sig.dif.ref_escape = true;
593}
594
595static void nvmet_rdma_set_sig_attrs(struct nvmet_req *req,
596				     struct ib_sig_attrs *sig_attrs)
597{
598	struct nvme_command *cmd = req->cmd;
599	u16 control = le16_to_cpu(cmd->rw.control);
600	u8 pi_type = req->ns->pi_type;
601	struct blk_integrity *bi;
602
603	bi = bdev_get_integrity(req->ns->bdev);
604
605	memset(sig_attrs, 0, sizeof(*sig_attrs));
606
607	if (control & NVME_RW_PRINFO_PRACT) {
608		/* for WRITE_INSERT/READ_STRIP no wire domain */
609		sig_attrs->wire.sig_type = IB_SIG_TYPE_NONE;
610		nvmet_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control,
611					  pi_type);
612		/* Clear the PRACT bit since HCA will generate/verify the PI */
613		control &= ~NVME_RW_PRINFO_PRACT;
614		cmd->rw.control = cpu_to_le16(control);
615		/* PI is added by the HW */
616		req->transfer_len += req->metadata_len;
617	} else {
618		/* for WRITE_PASS/READ_PASS both wire/memory domains exist */
619		nvmet_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
620					  pi_type);
621		nvmet_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control,
622					  pi_type);
623	}
624
625	if (control & NVME_RW_PRINFO_PRCHK_REF)
626		sig_attrs->check_mask |= IB_SIG_CHECK_REFTAG;
627	if (control & NVME_RW_PRINFO_PRCHK_GUARD)
628		sig_attrs->check_mask |= IB_SIG_CHECK_GUARD;
629	if (control & NVME_RW_PRINFO_PRCHK_APP)
630		sig_attrs->check_mask |= IB_SIG_CHECK_APPTAG;
631}
632
633static int nvmet_rdma_rw_ctx_init(struct nvmet_rdma_rsp *rsp, u64 addr, u32 key,
634				  struct ib_sig_attrs *sig_attrs)
635{
636	struct rdma_cm_id *cm_id = rsp->queue->cm_id;
637	struct nvmet_req *req = &rsp->req;
638	int ret;
639
640	if (req->metadata_len)
641		ret = rdma_rw_ctx_signature_init(&rsp->rw, cm_id->qp,
642			cm_id->port_num, req->sg, req->sg_cnt,
643			req->metadata_sg, req->metadata_sg_cnt, sig_attrs,
644			addr, key, nvmet_data_dir(req));
645	else
646		ret = rdma_rw_ctx_init(&rsp->rw, cm_id->qp, cm_id->port_num,
647				       req->sg, req->sg_cnt, 0, addr, key,
648				       nvmet_data_dir(req));
649
650	return ret;
651}
652
653static void nvmet_rdma_rw_ctx_destroy(struct nvmet_rdma_rsp *rsp)
654{
655	struct rdma_cm_id *cm_id = rsp->queue->cm_id;
656	struct nvmet_req *req = &rsp->req;
657
658	if (req->metadata_len)
659		rdma_rw_ctx_destroy_signature(&rsp->rw, cm_id->qp,
660			cm_id->port_num, req->sg, req->sg_cnt,
661			req->metadata_sg, req->metadata_sg_cnt,
662			nvmet_data_dir(req));
663	else
664		rdma_rw_ctx_destroy(&rsp->rw, cm_id->qp, cm_id->port_num,
665				    req->sg, req->sg_cnt, nvmet_data_dir(req));
666}
667
668static void nvmet_rdma_release_rsp(struct nvmet_rdma_rsp *rsp)
669{
670	struct nvmet_rdma_queue *queue = rsp->queue;
671
672	atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail);
673
674	if (rsp->n_rdma)
675		nvmet_rdma_rw_ctx_destroy(rsp);
676
677	if (rsp->req.sg != rsp->cmd->inline_sg)
678		nvmet_req_free_sgls(&rsp->req);
679
680	if (unlikely(!list_empty_careful(&queue->rsp_wr_wait_list)))
681		nvmet_rdma_process_wr_wait_list(queue);
682
683	nvmet_rdma_put_rsp(rsp);
684}
685
686static void nvmet_rdma_error_comp(struct nvmet_rdma_queue *queue)
687{
688	if (queue->nvme_sq.ctrl) {
689		nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl);
690	} else {
691		/*
692		 * we didn't setup the controller yet in case
693		 * of admin connect error, just disconnect and
694		 * cleanup the queue
695		 */
696		nvmet_rdma_queue_disconnect(queue);
697	}
698}
699
700static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
701{
702	struct nvmet_rdma_rsp *rsp =
703		container_of(wc->wr_cqe, struct nvmet_rdma_rsp, send_cqe);
704	struct nvmet_rdma_queue *queue = wc->qp->qp_context;
705
706	nvmet_rdma_release_rsp(rsp);
707
708	if (unlikely(wc->status != IB_WC_SUCCESS &&
709		     wc->status != IB_WC_WR_FLUSH_ERR)) {
710		pr_err("SEND for CQE 0x%p failed with status %s (%d).\n",
711			wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status);
712		nvmet_rdma_error_comp(queue);
713	}
714}
715
716static void nvmet_rdma_queue_response(struct nvmet_req *req)
717{
718	struct nvmet_rdma_rsp *rsp =
719		container_of(req, struct nvmet_rdma_rsp, req);
720	struct rdma_cm_id *cm_id = rsp->queue->cm_id;
721	struct ib_send_wr *first_wr;
722
723	if (rsp->flags & NVMET_RDMA_REQ_INVALIDATE_RKEY) {
724		rsp->send_wr.opcode = IB_WR_SEND_WITH_INV;
725		rsp->send_wr.ex.invalidate_rkey = rsp->invalidate_rkey;
726	} else {
727		rsp->send_wr.opcode = IB_WR_SEND;
728	}
729
730	if (nvmet_rdma_need_data_out(rsp)) {
731		if (rsp->req.metadata_len)
732			first_wr = rdma_rw_ctx_wrs(&rsp->rw, cm_id->qp,
733					cm_id->port_num, &rsp->write_cqe, NULL);
734		else
735			first_wr = rdma_rw_ctx_wrs(&rsp->rw, cm_id->qp,
736					cm_id->port_num, NULL, &rsp->send_wr);
737	} else {
738		first_wr = &rsp->send_wr;
739	}
740
741	nvmet_rdma_post_recv(rsp->queue->dev, rsp->cmd);
742
743	ib_dma_sync_single_for_device(rsp->queue->dev->device,
744		rsp->send_sge.addr, rsp->send_sge.length,
745		DMA_TO_DEVICE);
746
747	if (unlikely(ib_post_send(cm_id->qp, first_wr, NULL))) {
748		pr_err("sending cmd response failed\n");
749		nvmet_rdma_release_rsp(rsp);
750	}
751}
752
753static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc)
754{
755	struct nvmet_rdma_rsp *rsp =
756		container_of(wc->wr_cqe, struct nvmet_rdma_rsp, read_cqe);
757	struct nvmet_rdma_queue *queue = wc->qp->qp_context;
758	u16 status = 0;
759
760	WARN_ON(rsp->n_rdma <= 0);
761	atomic_add(rsp->n_rdma, &queue->sq_wr_avail);
762	rsp->n_rdma = 0;
763
764	if (unlikely(wc->status != IB_WC_SUCCESS)) {
765		nvmet_rdma_rw_ctx_destroy(rsp);
766		nvmet_req_uninit(&rsp->req);
767		nvmet_rdma_release_rsp(rsp);
768		if (wc->status != IB_WC_WR_FLUSH_ERR) {
769			pr_info("RDMA READ for CQE 0x%p failed with status %s (%d).\n",
770				wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status);
771			nvmet_rdma_error_comp(queue);
772		}
773		return;
774	}
775
776	if (rsp->req.metadata_len)
777		status = nvmet_rdma_check_pi_status(rsp->rw.reg->mr);
778	nvmet_rdma_rw_ctx_destroy(rsp);
779
780	if (unlikely(status))
781		nvmet_req_complete(&rsp->req, status);
782	else
783		rsp->req.execute(&rsp->req);
784}
785
786static void nvmet_rdma_write_data_done(struct ib_cq *cq, struct ib_wc *wc)
787{
788	struct nvmet_rdma_rsp *rsp =
789		container_of(wc->wr_cqe, struct nvmet_rdma_rsp, write_cqe);
790	struct nvmet_rdma_queue *queue = wc->qp->qp_context;
791	struct rdma_cm_id *cm_id = rsp->queue->cm_id;
792	u16 status;
793
794	if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY))
795		return;
796
797	WARN_ON(rsp->n_rdma <= 0);
798	atomic_add(rsp->n_rdma, &queue->sq_wr_avail);
799	rsp->n_rdma = 0;
800
801	if (unlikely(wc->status != IB_WC_SUCCESS)) {
802		nvmet_rdma_rw_ctx_destroy(rsp);
803		nvmet_req_uninit(&rsp->req);
804		nvmet_rdma_release_rsp(rsp);
805		if (wc->status != IB_WC_WR_FLUSH_ERR) {
806			pr_info("RDMA WRITE for CQE failed with status %s (%d).\n",
807				ib_wc_status_msg(wc->status), wc->status);
808			nvmet_rdma_error_comp(queue);
809		}
810		return;
811	}
812
813	/*
814	 * Upon RDMA completion check the signature status
815	 * - if succeeded send good NVMe response
816	 * - if failed send bad NVMe response with appropriate error
817	 */
818	status = nvmet_rdma_check_pi_status(rsp->rw.reg->mr);
819	if (unlikely(status))
820		rsp->req.cqe->status = cpu_to_le16(status << 1);
821	nvmet_rdma_rw_ctx_destroy(rsp);
822
823	if (unlikely(ib_post_send(cm_id->qp, &rsp->send_wr, NULL))) {
824		pr_err("sending cmd response failed\n");
825		nvmet_rdma_release_rsp(rsp);
826	}
827}
828
829static void nvmet_rdma_use_inline_sg(struct nvmet_rdma_rsp *rsp, u32 len,
830		u64 off)
831{
832	int sg_count = num_pages(len);
833	struct scatterlist *sg;
834	int i;
835
836	sg = rsp->cmd->inline_sg;
837	for (i = 0; i < sg_count; i++, sg++) {
838		if (i < sg_count - 1)
839			sg_unmark_end(sg);
840		else
841			sg_mark_end(sg);
842		sg->offset = off;
843		sg->length = min_t(int, len, PAGE_SIZE - off);
844		len -= sg->length;
845		if (!i)
846			off = 0;
847	}
848
849	rsp->req.sg = rsp->cmd->inline_sg;
850	rsp->req.sg_cnt = sg_count;
851}
852
853static u16 nvmet_rdma_map_sgl_inline(struct nvmet_rdma_rsp *rsp)
854{
855	struct nvme_sgl_desc *sgl = &rsp->req.cmd->common.dptr.sgl;
856	u64 off = le64_to_cpu(sgl->addr);
857	u32 len = le32_to_cpu(sgl->length);
858
859	if (!nvme_is_write(rsp->req.cmd)) {
860		rsp->req.error_loc =
861			offsetof(struct nvme_common_command, opcode);
862		return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
863	}
864
865	if (off + len > rsp->queue->dev->inline_data_size) {
866		pr_err("invalid inline data offset!\n");
867		return NVME_SC_SGL_INVALID_OFFSET | NVME_SC_DNR;
868	}
869
870	/* no data command? */
871	if (!len)
872		return 0;
873
874	nvmet_rdma_use_inline_sg(rsp, len, off);
875	rsp->flags |= NVMET_RDMA_REQ_INLINE_DATA;
876	rsp->req.transfer_len += len;
877	return 0;
878}
879
880static u16 nvmet_rdma_map_sgl_keyed(struct nvmet_rdma_rsp *rsp,
881		struct nvme_keyed_sgl_desc *sgl, bool invalidate)
882{
883	u64 addr = le64_to_cpu(sgl->addr);
884	u32 key = get_unaligned_le32(sgl->key);
885	struct ib_sig_attrs sig_attrs;
886	int ret;
887
888	rsp->req.transfer_len = get_unaligned_le24(sgl->length);
889
890	/* no data command? */
891	if (!rsp->req.transfer_len)
892		return 0;
893
894	if (rsp->req.metadata_len)
895		nvmet_rdma_set_sig_attrs(&rsp->req, &sig_attrs);
896
897	ret = nvmet_req_alloc_sgls(&rsp->req);
898	if (unlikely(ret < 0))
899		goto error_out;
900
901	ret = nvmet_rdma_rw_ctx_init(rsp, addr, key, &sig_attrs);
902	if (unlikely(ret < 0))
903		goto error_out;
904	rsp->n_rdma += ret;
905
906	if (invalidate) {
907		rsp->invalidate_rkey = key;
908		rsp->flags |= NVMET_RDMA_REQ_INVALIDATE_RKEY;
909	}
910
911	return 0;
912
913error_out:
914	rsp->req.transfer_len = 0;
915	return NVME_SC_INTERNAL;
916}
917
918static u16 nvmet_rdma_map_sgl(struct nvmet_rdma_rsp *rsp)
919{
920	struct nvme_keyed_sgl_desc *sgl = &rsp->req.cmd->common.dptr.ksgl;
921
922	switch (sgl->type >> 4) {
923	case NVME_SGL_FMT_DATA_DESC:
924		switch (sgl->type & 0xf) {
925		case NVME_SGL_FMT_OFFSET:
926			return nvmet_rdma_map_sgl_inline(rsp);
927		default:
928			pr_err("invalid SGL subtype: %#x\n", sgl->type);
929			rsp->req.error_loc =
930				offsetof(struct nvme_common_command, dptr);
931			return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
932		}
933	case NVME_KEY_SGL_FMT_DATA_DESC:
934		switch (sgl->type & 0xf) {
935		case NVME_SGL_FMT_ADDRESS | NVME_SGL_FMT_INVALIDATE:
936			return nvmet_rdma_map_sgl_keyed(rsp, sgl, true);
937		case NVME_SGL_FMT_ADDRESS:
938			return nvmet_rdma_map_sgl_keyed(rsp, sgl, false);
939		default:
940			pr_err("invalid SGL subtype: %#x\n", sgl->type);
941			rsp->req.error_loc =
942				offsetof(struct nvme_common_command, dptr);
943			return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
944		}
945	default:
946		pr_err("invalid SGL type: %#x\n", sgl->type);
947		rsp->req.error_loc = offsetof(struct nvme_common_command, dptr);
948		return NVME_SC_SGL_INVALID_TYPE | NVME_SC_DNR;
949	}
950}
951
952static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp)
953{
954	struct nvmet_rdma_queue *queue = rsp->queue;
955
956	if (unlikely(atomic_sub_return(1 + rsp->n_rdma,
957			&queue->sq_wr_avail) < 0)) {
958		pr_debug("IB send queue full (needed %d): queue %u cntlid %u\n",
959				1 + rsp->n_rdma, queue->idx,
960				queue->nvme_sq.ctrl->cntlid);
961		atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail);
962		return false;
963	}
964
965	if (nvmet_rdma_need_data_in(rsp)) {
966		if (rdma_rw_ctx_post(&rsp->rw, queue->qp,
967				queue->cm_id->port_num, &rsp->read_cqe, NULL))
968			nvmet_req_complete(&rsp->req, NVME_SC_DATA_XFER_ERROR);
969	} else {
970		rsp->req.execute(&rsp->req);
971	}
972
973	return true;
974}
975
976static void nvmet_rdma_handle_command(struct nvmet_rdma_queue *queue,
977		struct nvmet_rdma_rsp *cmd)
978{
979	u16 status;
980
981	ib_dma_sync_single_for_cpu(queue->dev->device,
982		cmd->cmd->sge[0].addr, cmd->cmd->sge[0].length,
983		DMA_FROM_DEVICE);
984	ib_dma_sync_single_for_cpu(queue->dev->device,
985		cmd->send_sge.addr, cmd->send_sge.length,
986		DMA_TO_DEVICE);
987
988	if (!nvmet_req_init(&cmd->req, &queue->nvme_cq,
989			&queue->nvme_sq, &nvmet_rdma_ops))
990		return;
991
992	status = nvmet_rdma_map_sgl(cmd);
993	if (status)
994		goto out_err;
995
996	if (unlikely(!nvmet_rdma_execute_command(cmd))) {
997		spin_lock(&queue->rsp_wr_wait_lock);
998		list_add_tail(&cmd->wait_list, &queue->rsp_wr_wait_list);
999		spin_unlock(&queue->rsp_wr_wait_lock);
1000	}
1001
1002	return;
1003
1004out_err:
1005	nvmet_req_complete(&cmd->req, status);
1006}
1007
1008static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1009{
1010	struct nvmet_rdma_cmd *cmd =
1011		container_of(wc->wr_cqe, struct nvmet_rdma_cmd, cqe);
1012	struct nvmet_rdma_queue *queue = wc->qp->qp_context;
1013	struct nvmet_rdma_rsp *rsp;
1014
1015	if (unlikely(wc->status != IB_WC_SUCCESS)) {
1016		if (wc->status != IB_WC_WR_FLUSH_ERR) {
1017			pr_err("RECV for CQE 0x%p failed with status %s (%d)\n",
1018				wc->wr_cqe, ib_wc_status_msg(wc->status),
1019				wc->status);
1020			nvmet_rdma_error_comp(queue);
1021		}
1022		return;
1023	}
1024
1025	if (unlikely(wc->byte_len < sizeof(struct nvme_command))) {
1026		pr_err("Ctrl Fatal Error: capsule size less than 64 bytes\n");
1027		nvmet_rdma_error_comp(queue);
1028		return;
1029	}
1030
1031	cmd->queue = queue;
1032	rsp = nvmet_rdma_get_rsp(queue);
1033	if (unlikely(!rsp)) {
1034		/*
1035		 * we get here only under memory pressure,
1036		 * silently drop and have the host retry
1037		 * as we can't even fail it.
1038		 */
1039		nvmet_rdma_post_recv(queue->dev, cmd);
1040		return;
1041	}
1042	rsp->queue = queue;
1043	rsp->cmd = cmd;
1044	rsp->flags = 0;
1045	rsp->req.cmd = cmd->nvme_cmd;
1046	rsp->req.port = queue->port;
1047	rsp->n_rdma = 0;
1048
1049	if (unlikely(queue->state != NVMET_RDMA_Q_LIVE)) {
1050		unsigned long flags;
1051
1052		spin_lock_irqsave(&queue->state_lock, flags);
1053		if (queue->state == NVMET_RDMA_Q_CONNECTING)
1054			list_add_tail(&rsp->wait_list, &queue->rsp_wait_list);
1055		else
1056			nvmet_rdma_put_rsp(rsp);
1057		spin_unlock_irqrestore(&queue->state_lock, flags);
1058		return;
1059	}
1060
1061	nvmet_rdma_handle_command(queue, rsp);
1062}
1063
1064static void nvmet_rdma_destroy_srq(struct nvmet_rdma_srq *nsrq)
1065{
1066	nvmet_rdma_free_cmds(nsrq->ndev, nsrq->cmds, nsrq->ndev->srq_size,
1067			     false);
1068	ib_destroy_srq(nsrq->srq);
1069
1070	kfree(nsrq);
1071}
1072
1073static void nvmet_rdma_destroy_srqs(struct nvmet_rdma_device *ndev)
1074{
1075	int i;
1076
1077	if (!ndev->srqs)
1078		return;
1079
1080	for (i = 0; i < ndev->srq_count; i++)
1081		nvmet_rdma_destroy_srq(ndev->srqs[i]);
1082
1083	kfree(ndev->srqs);
1084}
1085
1086static struct nvmet_rdma_srq *
1087nvmet_rdma_init_srq(struct nvmet_rdma_device *ndev)
1088{
1089	struct ib_srq_init_attr srq_attr = { NULL, };
1090	size_t srq_size = ndev->srq_size;
1091	struct nvmet_rdma_srq *nsrq;
1092	struct ib_srq *srq;
1093	int ret, i;
1094
1095	nsrq = kzalloc(sizeof(*nsrq), GFP_KERNEL);
1096	if (!nsrq)
1097		return ERR_PTR(-ENOMEM);
1098
1099	srq_attr.attr.max_wr = srq_size;
1100	srq_attr.attr.max_sge = 1 + ndev->inline_page_count;
1101	srq_attr.attr.srq_limit = 0;
1102	srq_attr.srq_type = IB_SRQT_BASIC;
1103	srq = ib_create_srq(ndev->pd, &srq_attr);
1104	if (IS_ERR(srq)) {
1105		ret = PTR_ERR(srq);
1106		goto out_free;
1107	}
1108
1109	nsrq->cmds = nvmet_rdma_alloc_cmds(ndev, srq_size, false);
1110	if (IS_ERR(nsrq->cmds)) {
1111		ret = PTR_ERR(nsrq->cmds);
1112		goto out_destroy_srq;
1113	}
1114
1115	nsrq->srq = srq;
1116	nsrq->ndev = ndev;
1117
1118	for (i = 0; i < srq_size; i++) {
1119		nsrq->cmds[i].nsrq = nsrq;
1120		ret = nvmet_rdma_post_recv(ndev, &nsrq->cmds[i]);
1121		if (ret)
1122			goto out_free_cmds;
1123	}
1124
1125	return nsrq;
1126
1127out_free_cmds:
1128	nvmet_rdma_free_cmds(ndev, nsrq->cmds, srq_size, false);
1129out_destroy_srq:
1130	ib_destroy_srq(srq);
1131out_free:
1132	kfree(nsrq);
1133	return ERR_PTR(ret);
1134}
1135
1136static int nvmet_rdma_init_srqs(struct nvmet_rdma_device *ndev)
1137{
1138	int i, ret;
1139
1140	if (!ndev->device->attrs.max_srq_wr || !ndev->device->attrs.max_srq) {
1141		/*
1142		 * If SRQs aren't supported we just go ahead and use normal
1143		 * non-shared receive queues.
1144		 */
1145		pr_info("SRQ requested but not supported.\n");
1146		return 0;
1147	}
1148
1149	ndev->srq_size = min(ndev->device->attrs.max_srq_wr,
1150			     nvmet_rdma_srq_size);
1151	ndev->srq_count = min(ndev->device->num_comp_vectors,
1152			      ndev->device->attrs.max_srq);
1153
1154	ndev->srqs = kcalloc(ndev->srq_count, sizeof(*ndev->srqs), GFP_KERNEL);
1155	if (!ndev->srqs)
1156		return -ENOMEM;
1157
1158	for (i = 0; i < ndev->srq_count; i++) {
1159		ndev->srqs[i] = nvmet_rdma_init_srq(ndev);
1160		if (IS_ERR(ndev->srqs[i])) {
1161			ret = PTR_ERR(ndev->srqs[i]);
1162			goto err_srq;
1163		}
1164	}
1165
1166	return 0;
1167
1168err_srq:
1169	while (--i >= 0)
1170		nvmet_rdma_destroy_srq(ndev->srqs[i]);
1171	kfree(ndev->srqs);
1172	return ret;
1173}
1174
1175static void nvmet_rdma_free_dev(struct kref *ref)
1176{
1177	struct nvmet_rdma_device *ndev =
1178		container_of(ref, struct nvmet_rdma_device, ref);
1179
1180	mutex_lock(&device_list_mutex);
1181	list_del(&ndev->entry);
1182	mutex_unlock(&device_list_mutex);
1183
1184	nvmet_rdma_destroy_srqs(ndev);
1185	ib_dealloc_pd(ndev->pd);
1186
1187	kfree(ndev);
1188}
1189
1190static struct nvmet_rdma_device *
1191nvmet_rdma_find_get_device(struct rdma_cm_id *cm_id)
1192{
1193	struct nvmet_rdma_port *port = cm_id->context;
1194	struct nvmet_port *nport = port->nport;
1195	struct nvmet_rdma_device *ndev;
1196	int inline_page_count;
1197	int inline_sge_count;
1198	int ret;
1199
1200	mutex_lock(&device_list_mutex);
1201	list_for_each_entry(ndev, &device_list, entry) {
1202		if (ndev->device->node_guid == cm_id->device->node_guid &&
1203		    kref_get_unless_zero(&ndev->ref))
1204			goto out_unlock;
1205	}
1206
1207	ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
1208	if (!ndev)
1209		goto out_err;
1210
1211	inline_page_count = num_pages(nport->inline_data_size);
1212	inline_sge_count = max(cm_id->device->attrs.max_sge_rd,
1213				cm_id->device->attrs.max_recv_sge) - 1;
1214	if (inline_page_count > inline_sge_count) {
1215		pr_warn("inline_data_size %d cannot be supported by device %s. Reducing to %lu.\n",
1216			nport->inline_data_size, cm_id->device->name,
1217			inline_sge_count * PAGE_SIZE);
1218		nport->inline_data_size = inline_sge_count * PAGE_SIZE;
1219		inline_page_count = inline_sge_count;
1220	}
1221	ndev->inline_data_size = nport->inline_data_size;
1222	ndev->inline_page_count = inline_page_count;
1223
1224	if (nport->pi_enable && !(cm_id->device->attrs.kernel_cap_flags &
1225				  IBK_INTEGRITY_HANDOVER)) {
1226		pr_warn("T10-PI is not supported by device %s. Disabling it\n",
1227			cm_id->device->name);
1228		nport->pi_enable = false;
1229	}
1230
1231	ndev->device = cm_id->device;
1232	kref_init(&ndev->ref);
1233
1234	ndev->pd = ib_alloc_pd(ndev->device, 0);
1235	if (IS_ERR(ndev->pd))
1236		goto out_free_dev;
1237
1238	if (nvmet_rdma_use_srq) {
1239		ret = nvmet_rdma_init_srqs(ndev);
1240		if (ret)
1241			goto out_free_pd;
1242	}
1243
1244	list_add(&ndev->entry, &device_list);
1245out_unlock:
1246	mutex_unlock(&device_list_mutex);
1247	pr_debug("added %s.\n", ndev->device->name);
1248	return ndev;
1249
1250out_free_pd:
1251	ib_dealloc_pd(ndev->pd);
1252out_free_dev:
1253	kfree(ndev);
1254out_err:
1255	mutex_unlock(&device_list_mutex);
1256	return NULL;
1257}
1258
1259static int nvmet_rdma_create_queue_ib(struct nvmet_rdma_queue *queue)
1260{
1261	struct ib_qp_init_attr qp_attr = { };
1262	struct nvmet_rdma_device *ndev = queue->dev;
1263	int nr_cqe, ret, i, factor;
1264
1265	/*
1266	 * Reserve CQ slots for RECV + RDMA_READ/RDMA_WRITE + RDMA_SEND.
1267	 */
1268	nr_cqe = queue->recv_queue_size + 2 * queue->send_queue_size;
1269
1270	queue->cq = ib_cq_pool_get(ndev->device, nr_cqe + 1,
1271				   queue->comp_vector, IB_POLL_WORKQUEUE);
1272	if (IS_ERR(queue->cq)) {
1273		ret = PTR_ERR(queue->cq);
1274		pr_err("failed to create CQ cqe= %d ret= %d\n",
1275		       nr_cqe + 1, ret);
1276		goto out;
1277	}
1278
1279	qp_attr.qp_context = queue;
1280	qp_attr.event_handler = nvmet_rdma_qp_event;
1281	qp_attr.send_cq = queue->cq;
1282	qp_attr.recv_cq = queue->cq;
1283	qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
1284	qp_attr.qp_type = IB_QPT_RC;
1285	/* +1 for drain */
1286	qp_attr.cap.max_send_wr = queue->send_queue_size + 1;
1287	factor = rdma_rw_mr_factor(ndev->device, queue->cm_id->port_num,
1288				   1 << NVMET_RDMA_MAX_MDTS);
1289	qp_attr.cap.max_rdma_ctxs = queue->send_queue_size * factor;
1290	qp_attr.cap.max_send_sge = max(ndev->device->attrs.max_sge_rd,
1291					ndev->device->attrs.max_send_sge);
1292
1293	if (queue->nsrq) {
1294		qp_attr.srq = queue->nsrq->srq;
1295	} else {
1296		/* +1 for drain */
1297		qp_attr.cap.max_recv_wr = 1 + queue->recv_queue_size;
1298		qp_attr.cap.max_recv_sge = 1 + ndev->inline_page_count;
1299	}
1300
1301	if (queue->port->pi_enable && queue->host_qid)
1302		qp_attr.create_flags |= IB_QP_CREATE_INTEGRITY_EN;
1303
1304	ret = rdma_create_qp(queue->cm_id, ndev->pd, &qp_attr);
1305	if (ret) {
1306		pr_err("failed to create_qp ret= %d\n", ret);
1307		goto err_destroy_cq;
1308	}
1309	queue->qp = queue->cm_id->qp;
1310
1311	atomic_set(&queue->sq_wr_avail, qp_attr.cap.max_send_wr);
1312
1313	pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n",
1314		 __func__, queue->cq->cqe, qp_attr.cap.max_send_sge,
1315		 qp_attr.cap.max_send_wr, queue->cm_id);
1316
1317	if (!queue->nsrq) {
1318		for (i = 0; i < queue->recv_queue_size; i++) {
1319			queue->cmds[i].queue = queue;
1320			ret = nvmet_rdma_post_recv(ndev, &queue->cmds[i]);
1321			if (ret)
1322				goto err_destroy_qp;
1323		}
1324	}
1325
1326out:
1327	return ret;
1328
1329err_destroy_qp:
1330	rdma_destroy_qp(queue->cm_id);
1331err_destroy_cq:
1332	ib_cq_pool_put(queue->cq, nr_cqe + 1);
1333	goto out;
1334}
1335
1336static void nvmet_rdma_destroy_queue_ib(struct nvmet_rdma_queue *queue)
1337{
1338	ib_drain_qp(queue->qp);
1339	if (queue->cm_id)
1340		rdma_destroy_id(queue->cm_id);
1341	ib_destroy_qp(queue->qp);
1342	ib_cq_pool_put(queue->cq, queue->recv_queue_size + 2 *
1343		       queue->send_queue_size + 1);
1344}
1345
1346static void nvmet_rdma_free_queue(struct nvmet_rdma_queue *queue)
1347{
1348	pr_debug("freeing queue %d\n", queue->idx);
1349
1350	nvmet_sq_destroy(&queue->nvme_sq);
1351
1352	nvmet_rdma_destroy_queue_ib(queue);
1353	if (!queue->nsrq) {
1354		nvmet_rdma_free_cmds(queue->dev, queue->cmds,
1355				queue->recv_queue_size,
1356				!queue->host_qid);
1357	}
1358	nvmet_rdma_free_rsps(queue);
1359	ida_free(&nvmet_rdma_queue_ida, queue->idx);
1360	kfree(queue);
1361}
1362
1363static void nvmet_rdma_release_queue_work(struct work_struct *w)
1364{
1365	struct nvmet_rdma_queue *queue =
1366		container_of(w, struct nvmet_rdma_queue, release_work);
1367	struct nvmet_rdma_device *dev = queue->dev;
1368
1369	nvmet_rdma_free_queue(queue);
1370
1371	kref_put(&dev->ref, nvmet_rdma_free_dev);
1372}
1373
1374static int
1375nvmet_rdma_parse_cm_connect_req(struct rdma_conn_param *conn,
1376				struct nvmet_rdma_queue *queue)
1377{
1378	struct nvme_rdma_cm_req *req;
1379
1380	req = (struct nvme_rdma_cm_req *)conn->private_data;
1381	if (!req || conn->private_data_len == 0)
1382		return NVME_RDMA_CM_INVALID_LEN;
1383
1384	if (le16_to_cpu(req->recfmt) != NVME_RDMA_CM_FMT_1_0)
1385		return NVME_RDMA_CM_INVALID_RECFMT;
1386
1387	queue->host_qid = le16_to_cpu(req->qid);
1388
1389	/*
1390	 * req->hsqsize corresponds to our recv queue size plus 1
1391	 * req->hrqsize corresponds to our send queue size
1392	 */
1393	queue->recv_queue_size = le16_to_cpu(req->hsqsize) + 1;
1394	queue->send_queue_size = le16_to_cpu(req->hrqsize);
1395
1396	if (!queue->host_qid && queue->recv_queue_size > NVME_AQ_DEPTH)
1397		return NVME_RDMA_CM_INVALID_HSQSIZE;
1398
1399	/* XXX: Should we enforce some kind of max for IO queues? */
1400
1401	return 0;
1402}
1403
1404static int nvmet_rdma_cm_reject(struct rdma_cm_id *cm_id,
1405				enum nvme_rdma_cm_status status)
1406{
1407	struct nvme_rdma_cm_rej rej;
1408
1409	pr_debug("rejecting connect request: status %d (%s)\n",
1410		 status, nvme_rdma_cm_msg(status));
1411
1412	rej.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1413	rej.sts = cpu_to_le16(status);
1414
1415	return rdma_reject(cm_id, (void *)&rej, sizeof(rej),
1416			   IB_CM_REJ_CONSUMER_DEFINED);
1417}
1418
1419static struct nvmet_rdma_queue *
1420nvmet_rdma_alloc_queue(struct nvmet_rdma_device *ndev,
1421		struct rdma_cm_id *cm_id,
1422		struct rdma_cm_event *event)
1423{
1424	struct nvmet_rdma_port *port = cm_id->context;
1425	struct nvmet_rdma_queue *queue;
1426	int ret;
1427
1428	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
1429	if (!queue) {
1430		ret = NVME_RDMA_CM_NO_RSC;
1431		goto out_reject;
1432	}
1433
1434	ret = nvmet_sq_init(&queue->nvme_sq);
1435	if (ret) {
1436		ret = NVME_RDMA_CM_NO_RSC;
1437		goto out_free_queue;
1438	}
1439
1440	ret = nvmet_rdma_parse_cm_connect_req(&event->param.conn, queue);
1441	if (ret)
1442		goto out_destroy_sq;
1443
1444	/*
1445	 * Schedules the actual release because calling rdma_destroy_id from
1446	 * inside a CM callback would trigger a deadlock. (great API design..)
1447	 */
1448	INIT_WORK(&queue->release_work, nvmet_rdma_release_queue_work);
1449	queue->dev = ndev;
1450	queue->cm_id = cm_id;
1451	queue->port = port->nport;
1452
1453	spin_lock_init(&queue->state_lock);
1454	queue->state = NVMET_RDMA_Q_CONNECTING;
1455	INIT_LIST_HEAD(&queue->rsp_wait_list);
1456	INIT_LIST_HEAD(&queue->rsp_wr_wait_list);
1457	spin_lock_init(&queue->rsp_wr_wait_lock);
1458	INIT_LIST_HEAD(&queue->free_rsps);
1459	spin_lock_init(&queue->rsps_lock);
1460	INIT_LIST_HEAD(&queue->queue_list);
1461
1462	queue->idx = ida_alloc(&nvmet_rdma_queue_ida, GFP_KERNEL);
1463	if (queue->idx < 0) {
1464		ret = NVME_RDMA_CM_NO_RSC;
1465		goto out_destroy_sq;
1466	}
1467
1468	/*
1469	 * Spread the io queues across completion vectors,
1470	 * but still keep all admin queues on vector 0.
1471	 */
1472	queue->comp_vector = !queue->host_qid ? 0 :
1473		queue->idx % ndev->device->num_comp_vectors;
1474
1475
1476	ret = nvmet_rdma_alloc_rsps(queue);
1477	if (ret) {
1478		ret = NVME_RDMA_CM_NO_RSC;
1479		goto out_ida_remove;
1480	}
1481
1482	if (ndev->srqs) {
1483		queue->nsrq = ndev->srqs[queue->comp_vector % ndev->srq_count];
1484	} else {
1485		queue->cmds = nvmet_rdma_alloc_cmds(ndev,
1486				queue->recv_queue_size,
1487				!queue->host_qid);
1488		if (IS_ERR(queue->cmds)) {
1489			ret = NVME_RDMA_CM_NO_RSC;
1490			goto out_free_responses;
1491		}
1492	}
1493
1494	ret = nvmet_rdma_create_queue_ib(queue);
1495	if (ret) {
1496		pr_err("%s: creating RDMA queue failed (%d).\n",
1497			__func__, ret);
1498		ret = NVME_RDMA_CM_NO_RSC;
1499		goto out_free_cmds;
1500	}
1501
1502	return queue;
1503
1504out_free_cmds:
1505	if (!queue->nsrq) {
1506		nvmet_rdma_free_cmds(queue->dev, queue->cmds,
1507				queue->recv_queue_size,
1508				!queue->host_qid);
1509	}
1510out_free_responses:
1511	nvmet_rdma_free_rsps(queue);
1512out_ida_remove:
1513	ida_free(&nvmet_rdma_queue_ida, queue->idx);
1514out_destroy_sq:
1515	nvmet_sq_destroy(&queue->nvme_sq);
1516out_free_queue:
1517	kfree(queue);
1518out_reject:
1519	nvmet_rdma_cm_reject(cm_id, ret);
1520	return NULL;
1521}
1522
1523static void nvmet_rdma_qp_event(struct ib_event *event, void *priv)
1524{
1525	struct nvmet_rdma_queue *queue = priv;
1526
1527	switch (event->event) {
1528	case IB_EVENT_COMM_EST:
1529		rdma_notify(queue->cm_id, event->event);
1530		break;
1531	case IB_EVENT_QP_LAST_WQE_REACHED:
1532		pr_debug("received last WQE reached event for queue=0x%p\n",
1533			 queue);
1534		break;
1535	default:
1536		pr_err("received IB QP event: %s (%d)\n",
1537		       ib_event_msg(event->event), event->event);
1538		break;
1539	}
1540}
1541
1542static int nvmet_rdma_cm_accept(struct rdma_cm_id *cm_id,
1543		struct nvmet_rdma_queue *queue,
1544		struct rdma_conn_param *p)
1545{
1546	struct rdma_conn_param  param = { };
1547	struct nvme_rdma_cm_rep priv = { };
1548	int ret = -ENOMEM;
1549
1550	param.rnr_retry_count = 7;
1551	param.flow_control = 1;
1552	param.initiator_depth = min_t(u8, p->initiator_depth,
1553		queue->dev->device->attrs.max_qp_init_rd_atom);
1554	param.private_data = &priv;
1555	param.private_data_len = sizeof(priv);
1556	priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1557	priv.crqsize = cpu_to_le16(queue->recv_queue_size);
1558
1559	ret = rdma_accept(cm_id, &param);
1560	if (ret)
1561		pr_err("rdma_accept failed (error code = %d)\n", ret);
1562
1563	return ret;
1564}
1565
1566static int nvmet_rdma_queue_connect(struct rdma_cm_id *cm_id,
1567		struct rdma_cm_event *event)
1568{
1569	struct nvmet_rdma_device *ndev;
1570	struct nvmet_rdma_queue *queue;
1571	int ret = -EINVAL;
1572
1573	ndev = nvmet_rdma_find_get_device(cm_id);
1574	if (!ndev) {
1575		nvmet_rdma_cm_reject(cm_id, NVME_RDMA_CM_NO_RSC);
1576		return -ECONNREFUSED;
1577	}
1578
1579	queue = nvmet_rdma_alloc_queue(ndev, cm_id, event);
1580	if (!queue) {
1581		ret = -ENOMEM;
1582		goto put_device;
1583	}
1584
1585	if (queue->host_qid == 0) {
1586		/* Let inflight controller teardown complete */
1587		flush_workqueue(nvmet_wq);
1588	}
1589
1590	ret = nvmet_rdma_cm_accept(cm_id, queue, &event->param.conn);
1591	if (ret) {
1592		/*
1593		 * Don't destroy the cm_id in free path, as we implicitly
1594		 * destroy the cm_id here with non-zero ret code.
1595		 */
1596		queue->cm_id = NULL;
1597		goto free_queue;
1598	}
1599
1600	mutex_lock(&nvmet_rdma_queue_mutex);
1601	list_add_tail(&queue->queue_list, &nvmet_rdma_queue_list);
1602	mutex_unlock(&nvmet_rdma_queue_mutex);
1603
1604	return 0;
1605
1606free_queue:
1607	nvmet_rdma_free_queue(queue);
1608put_device:
1609	kref_put(&ndev->ref, nvmet_rdma_free_dev);
1610
1611	return ret;
1612}
1613
1614static void nvmet_rdma_queue_established(struct nvmet_rdma_queue *queue)
1615{
1616	unsigned long flags;
1617
1618	spin_lock_irqsave(&queue->state_lock, flags);
1619	if (queue->state != NVMET_RDMA_Q_CONNECTING) {
1620		pr_warn("trying to establish a connected queue\n");
1621		goto out_unlock;
1622	}
1623	queue->state = NVMET_RDMA_Q_LIVE;
1624
1625	while (!list_empty(&queue->rsp_wait_list)) {
1626		struct nvmet_rdma_rsp *cmd;
1627
1628		cmd = list_first_entry(&queue->rsp_wait_list,
1629					struct nvmet_rdma_rsp, wait_list);
1630		list_del(&cmd->wait_list);
1631
1632		spin_unlock_irqrestore(&queue->state_lock, flags);
1633		nvmet_rdma_handle_command(queue, cmd);
1634		spin_lock_irqsave(&queue->state_lock, flags);
1635	}
1636
1637out_unlock:
1638	spin_unlock_irqrestore(&queue->state_lock, flags);
1639}
1640
1641static void __nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue)
1642{
1643	bool disconnect = false;
1644	unsigned long flags;
1645
1646	pr_debug("cm_id= %p queue->state= %d\n", queue->cm_id, queue->state);
1647
1648	spin_lock_irqsave(&queue->state_lock, flags);
1649	switch (queue->state) {
1650	case NVMET_RDMA_Q_CONNECTING:
1651		while (!list_empty(&queue->rsp_wait_list)) {
1652			struct nvmet_rdma_rsp *rsp;
1653
1654			rsp = list_first_entry(&queue->rsp_wait_list,
1655					       struct nvmet_rdma_rsp,
1656					       wait_list);
1657			list_del(&rsp->wait_list);
1658			nvmet_rdma_put_rsp(rsp);
1659		}
1660		fallthrough;
1661	case NVMET_RDMA_Q_LIVE:
1662		queue->state = NVMET_RDMA_Q_DISCONNECTING;
1663		disconnect = true;
1664		break;
1665	case NVMET_RDMA_Q_DISCONNECTING:
1666		break;
1667	}
1668	spin_unlock_irqrestore(&queue->state_lock, flags);
1669
1670	if (disconnect) {
1671		rdma_disconnect(queue->cm_id);
1672		queue_work(nvmet_wq, &queue->release_work);
1673	}
1674}
1675
1676static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue)
1677{
1678	bool disconnect = false;
1679
1680	mutex_lock(&nvmet_rdma_queue_mutex);
1681	if (!list_empty(&queue->queue_list)) {
1682		list_del_init(&queue->queue_list);
1683		disconnect = true;
1684	}
1685	mutex_unlock(&nvmet_rdma_queue_mutex);
1686
1687	if (disconnect)
1688		__nvmet_rdma_queue_disconnect(queue);
1689}
1690
1691static void nvmet_rdma_queue_connect_fail(struct rdma_cm_id *cm_id,
1692		struct nvmet_rdma_queue *queue)
1693{
1694	WARN_ON_ONCE(queue->state != NVMET_RDMA_Q_CONNECTING);
1695
1696	mutex_lock(&nvmet_rdma_queue_mutex);
1697	if (!list_empty(&queue->queue_list))
1698		list_del_init(&queue->queue_list);
1699	mutex_unlock(&nvmet_rdma_queue_mutex);
1700
1701	pr_err("failed to connect queue %d\n", queue->idx);
1702	queue_work(nvmet_wq, &queue->release_work);
1703}
1704
1705/**
1706 * nvmet_rdma_device_removal() - Handle RDMA device removal
1707 * @cm_id:	rdma_cm id, used for nvmet port
1708 * @queue:      nvmet rdma queue (cm id qp_context)
1709 *
1710 * DEVICE_REMOVAL event notifies us that the RDMA device is about
1711 * to unplug. Note that this event can be generated on a normal
1712 * queue cm_id and/or a device bound listener cm_id (where in this
1713 * case queue will be null).
1714 *
1715 * We registered an ib_client to handle device removal for queues,
1716 * so we only need to handle the listening port cm_ids. In this case
1717 * we nullify the priv to prevent double cm_id destruction and destroying
1718 * the cm_id implicitely by returning a non-zero rc to the callout.
1719 */
1720static int nvmet_rdma_device_removal(struct rdma_cm_id *cm_id,
1721		struct nvmet_rdma_queue *queue)
1722{
1723	struct nvmet_rdma_port *port;
1724
1725	if (queue) {
1726		/*
1727		 * This is a queue cm_id. we have registered
1728		 * an ib_client to handle queues removal
1729		 * so don't interfear and just return.
1730		 */
1731		return 0;
1732	}
1733
1734	port = cm_id->context;
1735
1736	/*
1737	 * This is a listener cm_id. Make sure that
1738	 * future remove_port won't invoke a double
1739	 * cm_id destroy. use atomic xchg to make sure
1740	 * we don't compete with remove_port.
1741	 */
1742	if (xchg(&port->cm_id, NULL) != cm_id)
1743		return 0;
1744
1745	/*
1746	 * We need to return 1 so that the core will destroy
1747	 * it's own ID.  What a great API design..
1748	 */
1749	return 1;
1750}
1751
1752static int nvmet_rdma_cm_handler(struct rdma_cm_id *cm_id,
1753		struct rdma_cm_event *event)
1754{
1755	struct nvmet_rdma_queue *queue = NULL;
1756	int ret = 0;
1757
1758	if (cm_id->qp)
1759		queue = cm_id->qp->qp_context;
1760
1761	pr_debug("%s (%d): status %d id %p\n",
1762		rdma_event_msg(event->event), event->event,
1763		event->status, cm_id);
1764
1765	switch (event->event) {
1766	case RDMA_CM_EVENT_CONNECT_REQUEST:
1767		ret = nvmet_rdma_queue_connect(cm_id, event);
1768		break;
1769	case RDMA_CM_EVENT_ESTABLISHED:
1770		nvmet_rdma_queue_established(queue);
1771		break;
1772	case RDMA_CM_EVENT_ADDR_CHANGE:
1773		if (!queue) {
1774			struct nvmet_rdma_port *port = cm_id->context;
1775
1776			queue_delayed_work(nvmet_wq, &port->repair_work, 0);
1777			break;
1778		}
1779		fallthrough;
1780	case RDMA_CM_EVENT_DISCONNECTED:
1781	case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1782		nvmet_rdma_queue_disconnect(queue);
1783		break;
1784	case RDMA_CM_EVENT_DEVICE_REMOVAL:
1785		ret = nvmet_rdma_device_removal(cm_id, queue);
1786		break;
1787	case RDMA_CM_EVENT_REJECTED:
1788		pr_debug("Connection rejected: %s\n",
1789			 rdma_reject_msg(cm_id, event->status));
1790		fallthrough;
1791	case RDMA_CM_EVENT_UNREACHABLE:
1792	case RDMA_CM_EVENT_CONNECT_ERROR:
1793		nvmet_rdma_queue_connect_fail(cm_id, queue);
1794		break;
1795	default:
1796		pr_err("received unrecognized RDMA CM event %d\n",
1797			event->event);
1798		break;
1799	}
1800
1801	return ret;
1802}
1803
1804static void nvmet_rdma_delete_ctrl(struct nvmet_ctrl *ctrl)
1805{
1806	struct nvmet_rdma_queue *queue;
1807
1808restart:
1809	mutex_lock(&nvmet_rdma_queue_mutex);
1810	list_for_each_entry(queue, &nvmet_rdma_queue_list, queue_list) {
1811		if (queue->nvme_sq.ctrl == ctrl) {
1812			list_del_init(&queue->queue_list);
1813			mutex_unlock(&nvmet_rdma_queue_mutex);
1814
1815			__nvmet_rdma_queue_disconnect(queue);
1816			goto restart;
1817		}
1818	}
1819	mutex_unlock(&nvmet_rdma_queue_mutex);
1820}
1821
1822static void nvmet_rdma_destroy_port_queues(struct nvmet_rdma_port *port)
1823{
1824	struct nvmet_rdma_queue *queue, *tmp;
1825	struct nvmet_port *nport = port->nport;
1826
1827	mutex_lock(&nvmet_rdma_queue_mutex);
1828	list_for_each_entry_safe(queue, tmp, &nvmet_rdma_queue_list,
1829				 queue_list) {
1830		if (queue->port != nport)
1831			continue;
1832
1833		list_del_init(&queue->queue_list);
1834		__nvmet_rdma_queue_disconnect(queue);
1835	}
1836	mutex_unlock(&nvmet_rdma_queue_mutex);
1837}
1838
1839static void nvmet_rdma_disable_port(struct nvmet_rdma_port *port)
1840{
1841	struct rdma_cm_id *cm_id = xchg(&port->cm_id, NULL);
1842
1843	if (cm_id)
1844		rdma_destroy_id(cm_id);
1845
1846	/*
1847	 * Destroy the remaining queues, which are not belong to any
1848	 * controller yet. Do it here after the RDMA-CM was destroyed
1849	 * guarantees that no new queue will be created.
1850	 */
1851	nvmet_rdma_destroy_port_queues(port);
1852}
1853
1854static int nvmet_rdma_enable_port(struct nvmet_rdma_port *port)
1855{
1856	struct sockaddr *addr = (struct sockaddr *)&port->addr;
1857	struct rdma_cm_id *cm_id;
1858	int ret;
1859
1860	cm_id = rdma_create_id(&init_net, nvmet_rdma_cm_handler, port,
1861			RDMA_PS_TCP, IB_QPT_RC);
1862	if (IS_ERR(cm_id)) {
1863		pr_err("CM ID creation failed\n");
1864		return PTR_ERR(cm_id);
1865	}
1866
1867	/*
1868	 * Allow both IPv4 and IPv6 sockets to bind a single port
1869	 * at the same time.
1870	 */
1871	ret = rdma_set_afonly(cm_id, 1);
1872	if (ret) {
1873		pr_err("rdma_set_afonly failed (%d)\n", ret);
1874		goto out_destroy_id;
1875	}
1876
1877	ret = rdma_bind_addr(cm_id, addr);
1878	if (ret) {
1879		pr_err("binding CM ID to %pISpcs failed (%d)\n", addr, ret);
1880		goto out_destroy_id;
1881	}
1882
1883	ret = rdma_listen(cm_id, 128);
1884	if (ret) {
1885		pr_err("listening to %pISpcs failed (%d)\n", addr, ret);
1886		goto out_destroy_id;
1887	}
1888
1889	port->cm_id = cm_id;
1890	return 0;
1891
1892out_destroy_id:
1893	rdma_destroy_id(cm_id);
1894	return ret;
1895}
1896
1897static void nvmet_rdma_repair_port_work(struct work_struct *w)
1898{
1899	struct nvmet_rdma_port *port = container_of(to_delayed_work(w),
1900			struct nvmet_rdma_port, repair_work);
1901	int ret;
1902
1903	nvmet_rdma_disable_port(port);
1904	ret = nvmet_rdma_enable_port(port);
1905	if (ret)
1906		queue_delayed_work(nvmet_wq, &port->repair_work, 5 * HZ);
1907}
1908
1909static int nvmet_rdma_add_port(struct nvmet_port *nport)
1910{
1911	struct nvmet_rdma_port *port;
1912	__kernel_sa_family_t af;
1913	int ret;
1914
1915	port = kzalloc(sizeof(*port), GFP_KERNEL);
1916	if (!port)
1917		return -ENOMEM;
1918
1919	nport->priv = port;
1920	port->nport = nport;
1921	INIT_DELAYED_WORK(&port->repair_work, nvmet_rdma_repair_port_work);
1922
1923	switch (nport->disc_addr.adrfam) {
1924	case NVMF_ADDR_FAMILY_IP4:
1925		af = AF_INET;
1926		break;
1927	case NVMF_ADDR_FAMILY_IP6:
1928		af = AF_INET6;
1929		break;
1930	default:
1931		pr_err("address family %d not supported\n",
1932			nport->disc_addr.adrfam);
1933		ret = -EINVAL;
1934		goto out_free_port;
1935	}
1936
1937	if (nport->inline_data_size < 0) {
1938		nport->inline_data_size = NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE;
1939	} else if (nport->inline_data_size > NVMET_RDMA_MAX_INLINE_DATA_SIZE) {
1940		pr_warn("inline_data_size %u is too large, reducing to %u\n",
1941			nport->inline_data_size,
1942			NVMET_RDMA_MAX_INLINE_DATA_SIZE);
1943		nport->inline_data_size = NVMET_RDMA_MAX_INLINE_DATA_SIZE;
1944	}
1945
1946	ret = inet_pton_with_scope(&init_net, af, nport->disc_addr.traddr,
1947			nport->disc_addr.trsvcid, &port->addr);
1948	if (ret) {
1949		pr_err("malformed ip/port passed: %s:%s\n",
1950			nport->disc_addr.traddr, nport->disc_addr.trsvcid);
1951		goto out_free_port;
1952	}
1953
1954	ret = nvmet_rdma_enable_port(port);
1955	if (ret)
1956		goto out_free_port;
1957
1958	pr_info("enabling port %d (%pISpcs)\n",
1959		le16_to_cpu(nport->disc_addr.portid),
1960		(struct sockaddr *)&port->addr);
1961
1962	return 0;
1963
1964out_free_port:
1965	kfree(port);
1966	return ret;
1967}
1968
1969static void nvmet_rdma_remove_port(struct nvmet_port *nport)
1970{
1971	struct nvmet_rdma_port *port = nport->priv;
1972
1973	cancel_delayed_work_sync(&port->repair_work);
1974	nvmet_rdma_disable_port(port);
1975	kfree(port);
1976}
1977
1978static void nvmet_rdma_disc_port_addr(struct nvmet_req *req,
1979		struct nvmet_port *nport, char *traddr)
1980{
1981	struct nvmet_rdma_port *port = nport->priv;
1982	struct rdma_cm_id *cm_id = port->cm_id;
1983
1984	if (inet_addr_is_any((struct sockaddr *)&cm_id->route.addr.src_addr)) {
1985		struct nvmet_rdma_rsp *rsp =
1986			container_of(req, struct nvmet_rdma_rsp, req);
1987		struct rdma_cm_id *req_cm_id = rsp->queue->cm_id;
1988		struct sockaddr *addr = (void *)&req_cm_id->route.addr.src_addr;
1989
1990		sprintf(traddr, "%pISc", addr);
1991	} else {
1992		memcpy(traddr, nport->disc_addr.traddr, NVMF_TRADDR_SIZE);
1993	}
1994}
1995
1996static u8 nvmet_rdma_get_mdts(const struct nvmet_ctrl *ctrl)
1997{
1998	if (ctrl->pi_support)
1999		return NVMET_RDMA_MAX_METADATA_MDTS;
2000	return NVMET_RDMA_MAX_MDTS;
2001}
2002
2003static u16 nvmet_rdma_get_max_queue_size(const struct nvmet_ctrl *ctrl)
2004{
2005	return NVME_RDMA_MAX_QUEUE_SIZE;
2006}
2007
2008static const struct nvmet_fabrics_ops nvmet_rdma_ops = {
2009	.owner			= THIS_MODULE,
2010	.type			= NVMF_TRTYPE_RDMA,
2011	.msdbd			= 1,
2012	.flags			= NVMF_KEYED_SGLS | NVMF_METADATA_SUPPORTED,
2013	.add_port		= nvmet_rdma_add_port,
2014	.remove_port		= nvmet_rdma_remove_port,
2015	.queue_response		= nvmet_rdma_queue_response,
2016	.delete_ctrl		= nvmet_rdma_delete_ctrl,
2017	.disc_traddr		= nvmet_rdma_disc_port_addr,
2018	.get_mdts		= nvmet_rdma_get_mdts,
2019	.get_max_queue_size	= nvmet_rdma_get_max_queue_size,
2020};
2021
2022static void nvmet_rdma_remove_one(struct ib_device *ib_device, void *client_data)
2023{
2024	struct nvmet_rdma_queue *queue, *tmp;
2025	struct nvmet_rdma_device *ndev;
2026	bool found = false;
2027
2028	mutex_lock(&device_list_mutex);
2029	list_for_each_entry(ndev, &device_list, entry) {
2030		if (ndev->device == ib_device) {
2031			found = true;
2032			break;
2033		}
2034	}
2035	mutex_unlock(&device_list_mutex);
2036
2037	if (!found)
2038		return;
2039
2040	/*
2041	 * IB Device that is used by nvmet controllers is being removed,
2042	 * delete all queues using this device.
2043	 */
2044	mutex_lock(&nvmet_rdma_queue_mutex);
2045	list_for_each_entry_safe(queue, tmp, &nvmet_rdma_queue_list,
2046				 queue_list) {
2047		if (queue->dev->device != ib_device)
2048			continue;
2049
2050		pr_info("Removing queue %d\n", queue->idx);
2051		list_del_init(&queue->queue_list);
2052		__nvmet_rdma_queue_disconnect(queue);
2053	}
2054	mutex_unlock(&nvmet_rdma_queue_mutex);
2055
2056	flush_workqueue(nvmet_wq);
2057}
2058
2059static struct ib_client nvmet_rdma_ib_client = {
2060	.name   = "nvmet_rdma",
2061	.remove = nvmet_rdma_remove_one
2062};
2063
2064static int __init nvmet_rdma_init(void)
2065{
2066	int ret;
2067
2068	ret = ib_register_client(&nvmet_rdma_ib_client);
2069	if (ret)
2070		return ret;
2071
2072	ret = nvmet_register_transport(&nvmet_rdma_ops);
2073	if (ret)
2074		goto err_ib_client;
2075
2076	return 0;
2077
2078err_ib_client:
2079	ib_unregister_client(&nvmet_rdma_ib_client);
2080	return ret;
2081}
2082
2083static void __exit nvmet_rdma_exit(void)
2084{
2085	nvmet_unregister_transport(&nvmet_rdma_ops);
2086	ib_unregister_client(&nvmet_rdma_ib_client);
2087	WARN_ON_ONCE(!list_empty(&nvmet_rdma_queue_list));
2088	ida_destroy(&nvmet_rdma_queue_ida);
2089}
2090
2091module_init(nvmet_rdma_init);
2092module_exit(nvmet_rdma_exit);
2093
2094MODULE_LICENSE("GPL v2");
2095MODULE_ALIAS("nvmet-transport-1"); /* 1 == NVMF_TRTYPE_RDMA */
2096