1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Common code for the NVMe target.
4 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5 */
6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7#include <linux/module.h>
8#include <linux/random.h>
9#include <linux/rculist.h>
10#include <linux/pci-p2pdma.h>
11#include <linux/scatterlist.h>
12
13#include <generated/utsrelease.h>
14
15#define CREATE_TRACE_POINTS
16#include "trace.h"
17
18#include "nvmet.h"
19
20struct kmem_cache *nvmet_bvec_cache;
21struct workqueue_struct *buffered_io_wq;
22struct workqueue_struct *zbd_wq;
23static const struct nvmet_fabrics_ops *nvmet_transports[NVMF_TRTYPE_MAX];
24static DEFINE_IDA(cntlid_ida);
25
26struct workqueue_struct *nvmet_wq;
27EXPORT_SYMBOL_GPL(nvmet_wq);
28
29/*
30 * This read/write semaphore is used to synchronize access to configuration
31 * information on a target system that will result in discovery log page
32 * information change for at least one host.
33 * The full list of resources to protected by this semaphore is:
34 *
35 *  - subsystems list
36 *  - per-subsystem allowed hosts list
37 *  - allow_any_host subsystem attribute
38 *  - nvmet_genctr
39 *  - the nvmet_transports array
40 *
41 * When updating any of those lists/structures write lock should be obtained,
42 * while when reading (popolating discovery log page or checking host-subsystem
43 * link) read lock is obtained to allow concurrent reads.
44 */
45DECLARE_RWSEM(nvmet_config_sem);
46
47u32 nvmet_ana_group_enabled[NVMET_MAX_ANAGRPS + 1];
48u64 nvmet_ana_chgcnt;
49DECLARE_RWSEM(nvmet_ana_sem);
50
51inline u16 errno_to_nvme_status(struct nvmet_req *req, int errno)
52{
53	switch (errno) {
54	case 0:
55		return NVME_SC_SUCCESS;
56	case -ENOSPC:
57		req->error_loc = offsetof(struct nvme_rw_command, length);
58		return NVME_SC_CAP_EXCEEDED | NVME_SC_DNR;
59	case -EREMOTEIO:
60		req->error_loc = offsetof(struct nvme_rw_command, slba);
61		return  NVME_SC_LBA_RANGE | NVME_SC_DNR;
62	case -EOPNOTSUPP:
63		req->error_loc = offsetof(struct nvme_common_command, opcode);
64		switch (req->cmd->common.opcode) {
65		case nvme_cmd_dsm:
66		case nvme_cmd_write_zeroes:
67			return NVME_SC_ONCS_NOT_SUPPORTED | NVME_SC_DNR;
68		default:
69			return NVME_SC_INVALID_OPCODE | NVME_SC_DNR;
70		}
71		break;
72	case -ENODATA:
73		req->error_loc = offsetof(struct nvme_rw_command, nsid);
74		return NVME_SC_ACCESS_DENIED;
75	case -EIO:
76		fallthrough;
77	default:
78		req->error_loc = offsetof(struct nvme_common_command, opcode);
79		return NVME_SC_INTERNAL | NVME_SC_DNR;
80	}
81}
82
83u16 nvmet_report_invalid_opcode(struct nvmet_req *req)
84{
85	pr_debug("unhandled cmd %d on qid %d\n", req->cmd->common.opcode,
86		 req->sq->qid);
87
88	req->error_loc = offsetof(struct nvme_common_command, opcode);
89	return NVME_SC_INVALID_OPCODE | NVME_SC_DNR;
90}
91
92static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
93		const char *subsysnqn);
94
95u16 nvmet_copy_to_sgl(struct nvmet_req *req, off_t off, const void *buf,
96		size_t len)
97{
98	if (sg_pcopy_from_buffer(req->sg, req->sg_cnt, buf, len, off) != len) {
99		req->error_loc = offsetof(struct nvme_common_command, dptr);
100		return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
101	}
102	return 0;
103}
104
105u16 nvmet_copy_from_sgl(struct nvmet_req *req, off_t off, void *buf, size_t len)
106{
107	if (sg_pcopy_to_buffer(req->sg, req->sg_cnt, buf, len, off) != len) {
108		req->error_loc = offsetof(struct nvme_common_command, dptr);
109		return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
110	}
111	return 0;
112}
113
114u16 nvmet_zero_sgl(struct nvmet_req *req, off_t off, size_t len)
115{
116	if (sg_zero_buffer(req->sg, req->sg_cnt, len, off) != len) {
117		req->error_loc = offsetof(struct nvme_common_command, dptr);
118		return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
119	}
120	return 0;
121}
122
123static u32 nvmet_max_nsid(struct nvmet_subsys *subsys)
124{
125	struct nvmet_ns *cur;
126	unsigned long idx;
127	u32 nsid = 0;
128
129	xa_for_each(&subsys->namespaces, idx, cur)
130		nsid = cur->nsid;
131
132	return nsid;
133}
134
135static u32 nvmet_async_event_result(struct nvmet_async_event *aen)
136{
137	return aen->event_type | (aen->event_info << 8) | (aen->log_page << 16);
138}
139
140static void nvmet_async_events_failall(struct nvmet_ctrl *ctrl)
141{
142	struct nvmet_req *req;
143
144	mutex_lock(&ctrl->lock);
145	while (ctrl->nr_async_event_cmds) {
146		req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
147		mutex_unlock(&ctrl->lock);
148		nvmet_req_complete(req, NVME_SC_INTERNAL | NVME_SC_DNR);
149		mutex_lock(&ctrl->lock);
150	}
151	mutex_unlock(&ctrl->lock);
152}
153
154static void nvmet_async_events_process(struct nvmet_ctrl *ctrl)
155{
156	struct nvmet_async_event *aen;
157	struct nvmet_req *req;
158
159	mutex_lock(&ctrl->lock);
160	while (ctrl->nr_async_event_cmds && !list_empty(&ctrl->async_events)) {
161		aen = list_first_entry(&ctrl->async_events,
162				       struct nvmet_async_event, entry);
163		req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
164		nvmet_set_result(req, nvmet_async_event_result(aen));
165
166		list_del(&aen->entry);
167		kfree(aen);
168
169		mutex_unlock(&ctrl->lock);
170		trace_nvmet_async_event(ctrl, req->cqe->result.u32);
171		nvmet_req_complete(req, 0);
172		mutex_lock(&ctrl->lock);
173	}
174	mutex_unlock(&ctrl->lock);
175}
176
177static void nvmet_async_events_free(struct nvmet_ctrl *ctrl)
178{
179	struct nvmet_async_event *aen, *tmp;
180
181	mutex_lock(&ctrl->lock);
182	list_for_each_entry_safe(aen, tmp, &ctrl->async_events, entry) {
183		list_del(&aen->entry);
184		kfree(aen);
185	}
186	mutex_unlock(&ctrl->lock);
187}
188
189static void nvmet_async_event_work(struct work_struct *work)
190{
191	struct nvmet_ctrl *ctrl =
192		container_of(work, struct nvmet_ctrl, async_event_work);
193
194	nvmet_async_events_process(ctrl);
195}
196
197void nvmet_add_async_event(struct nvmet_ctrl *ctrl, u8 event_type,
198		u8 event_info, u8 log_page)
199{
200	struct nvmet_async_event *aen;
201
202	aen = kmalloc(sizeof(*aen), GFP_KERNEL);
203	if (!aen)
204		return;
205
206	aen->event_type = event_type;
207	aen->event_info = event_info;
208	aen->log_page = log_page;
209
210	mutex_lock(&ctrl->lock);
211	list_add_tail(&aen->entry, &ctrl->async_events);
212	mutex_unlock(&ctrl->lock);
213
214	queue_work(nvmet_wq, &ctrl->async_event_work);
215}
216
217static void nvmet_add_to_changed_ns_log(struct nvmet_ctrl *ctrl, __le32 nsid)
218{
219	u32 i;
220
221	mutex_lock(&ctrl->lock);
222	if (ctrl->nr_changed_ns > NVME_MAX_CHANGED_NAMESPACES)
223		goto out_unlock;
224
225	for (i = 0; i < ctrl->nr_changed_ns; i++) {
226		if (ctrl->changed_ns_list[i] == nsid)
227			goto out_unlock;
228	}
229
230	if (ctrl->nr_changed_ns == NVME_MAX_CHANGED_NAMESPACES) {
231		ctrl->changed_ns_list[0] = cpu_to_le32(0xffffffff);
232		ctrl->nr_changed_ns = U32_MAX;
233		goto out_unlock;
234	}
235
236	ctrl->changed_ns_list[ctrl->nr_changed_ns++] = nsid;
237out_unlock:
238	mutex_unlock(&ctrl->lock);
239}
240
241void nvmet_ns_changed(struct nvmet_subsys *subsys, u32 nsid)
242{
243	struct nvmet_ctrl *ctrl;
244
245	lockdep_assert_held(&subsys->lock);
246
247	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
248		nvmet_add_to_changed_ns_log(ctrl, cpu_to_le32(nsid));
249		if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_NS_ATTR))
250			continue;
251		nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE,
252				NVME_AER_NOTICE_NS_CHANGED,
253				NVME_LOG_CHANGED_NS);
254	}
255}
256
257void nvmet_send_ana_event(struct nvmet_subsys *subsys,
258		struct nvmet_port *port)
259{
260	struct nvmet_ctrl *ctrl;
261
262	mutex_lock(&subsys->lock);
263	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
264		if (port && ctrl->port != port)
265			continue;
266		if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_ANA_CHANGE))
267			continue;
268		nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE,
269				NVME_AER_NOTICE_ANA, NVME_LOG_ANA);
270	}
271	mutex_unlock(&subsys->lock);
272}
273
274void nvmet_port_send_ana_event(struct nvmet_port *port)
275{
276	struct nvmet_subsys_link *p;
277
278	down_read(&nvmet_config_sem);
279	list_for_each_entry(p, &port->subsystems, entry)
280		nvmet_send_ana_event(p->subsys, port);
281	up_read(&nvmet_config_sem);
282}
283
284int nvmet_register_transport(const struct nvmet_fabrics_ops *ops)
285{
286	int ret = 0;
287
288	down_write(&nvmet_config_sem);
289	if (nvmet_transports[ops->type])
290		ret = -EINVAL;
291	else
292		nvmet_transports[ops->type] = ops;
293	up_write(&nvmet_config_sem);
294
295	return ret;
296}
297EXPORT_SYMBOL_GPL(nvmet_register_transport);
298
299void nvmet_unregister_transport(const struct nvmet_fabrics_ops *ops)
300{
301	down_write(&nvmet_config_sem);
302	nvmet_transports[ops->type] = NULL;
303	up_write(&nvmet_config_sem);
304}
305EXPORT_SYMBOL_GPL(nvmet_unregister_transport);
306
307void nvmet_port_del_ctrls(struct nvmet_port *port, struct nvmet_subsys *subsys)
308{
309	struct nvmet_ctrl *ctrl;
310
311	mutex_lock(&subsys->lock);
312	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
313		if (ctrl->port == port)
314			ctrl->ops->delete_ctrl(ctrl);
315	}
316	mutex_unlock(&subsys->lock);
317}
318
319int nvmet_enable_port(struct nvmet_port *port)
320{
321	const struct nvmet_fabrics_ops *ops;
322	int ret;
323
324	lockdep_assert_held(&nvmet_config_sem);
325
326	ops = nvmet_transports[port->disc_addr.trtype];
327	if (!ops) {
328		up_write(&nvmet_config_sem);
329		request_module("nvmet-transport-%d", port->disc_addr.trtype);
330		down_write(&nvmet_config_sem);
331		ops = nvmet_transports[port->disc_addr.trtype];
332		if (!ops) {
333			pr_err("transport type %d not supported\n",
334				port->disc_addr.trtype);
335			return -EINVAL;
336		}
337	}
338
339	if (!try_module_get(ops->owner))
340		return -EINVAL;
341
342	/*
343	 * If the user requested PI support and the transport isn't pi capable,
344	 * don't enable the port.
345	 */
346	if (port->pi_enable && !(ops->flags & NVMF_METADATA_SUPPORTED)) {
347		pr_err("T10-PI is not supported by transport type %d\n",
348		       port->disc_addr.trtype);
349		ret = -EINVAL;
350		goto out_put;
351	}
352
353	ret = ops->add_port(port);
354	if (ret)
355		goto out_put;
356
357	/* If the transport didn't set inline_data_size, then disable it. */
358	if (port->inline_data_size < 0)
359		port->inline_data_size = 0;
360
361	port->enabled = true;
362	port->tr_ops = ops;
363	return 0;
364
365out_put:
366	module_put(ops->owner);
367	return ret;
368}
369
370void nvmet_disable_port(struct nvmet_port *port)
371{
372	const struct nvmet_fabrics_ops *ops;
373
374	lockdep_assert_held(&nvmet_config_sem);
375
376	port->enabled = false;
377	port->tr_ops = NULL;
378
379	ops = nvmet_transports[port->disc_addr.trtype];
380	ops->remove_port(port);
381	module_put(ops->owner);
382}
383
384static void nvmet_keep_alive_timer(struct work_struct *work)
385{
386	struct nvmet_ctrl *ctrl = container_of(to_delayed_work(work),
387			struct nvmet_ctrl, ka_work);
388	bool reset_tbkas = ctrl->reset_tbkas;
389
390	ctrl->reset_tbkas = false;
391	if (reset_tbkas) {
392		pr_debug("ctrl %d reschedule traffic based keep-alive timer\n",
393			ctrl->cntlid);
394		queue_delayed_work(nvmet_wq, &ctrl->ka_work, ctrl->kato * HZ);
395		return;
396	}
397
398	pr_err("ctrl %d keep-alive timer (%d seconds) expired!\n",
399		ctrl->cntlid, ctrl->kato);
400
401	nvmet_ctrl_fatal_error(ctrl);
402}
403
404void nvmet_start_keep_alive_timer(struct nvmet_ctrl *ctrl)
405{
406	if (unlikely(ctrl->kato == 0))
407		return;
408
409	pr_debug("ctrl %d start keep-alive timer for %d secs\n",
410		ctrl->cntlid, ctrl->kato);
411
412	queue_delayed_work(nvmet_wq, &ctrl->ka_work, ctrl->kato * HZ);
413}
414
415void nvmet_stop_keep_alive_timer(struct nvmet_ctrl *ctrl)
416{
417	if (unlikely(ctrl->kato == 0))
418		return;
419
420	pr_debug("ctrl %d stop keep-alive\n", ctrl->cntlid);
421
422	cancel_delayed_work_sync(&ctrl->ka_work);
423}
424
425u16 nvmet_req_find_ns(struct nvmet_req *req)
426{
427	u32 nsid = le32_to_cpu(req->cmd->common.nsid);
428
429	req->ns = xa_load(&nvmet_req_subsys(req)->namespaces, nsid);
430	if (unlikely(!req->ns)) {
431		req->error_loc = offsetof(struct nvme_common_command, nsid);
432		return NVME_SC_INVALID_NS | NVME_SC_DNR;
433	}
434
435	percpu_ref_get(&req->ns->ref);
436	return NVME_SC_SUCCESS;
437}
438
439static void nvmet_destroy_namespace(struct percpu_ref *ref)
440{
441	struct nvmet_ns *ns = container_of(ref, struct nvmet_ns, ref);
442
443	complete(&ns->disable_done);
444}
445
446void nvmet_put_namespace(struct nvmet_ns *ns)
447{
448	percpu_ref_put(&ns->ref);
449}
450
451static void nvmet_ns_dev_disable(struct nvmet_ns *ns)
452{
453	nvmet_bdev_ns_disable(ns);
454	nvmet_file_ns_disable(ns);
455}
456
457static int nvmet_p2pmem_ns_enable(struct nvmet_ns *ns)
458{
459	int ret;
460	struct pci_dev *p2p_dev;
461
462	if (!ns->use_p2pmem)
463		return 0;
464
465	if (!ns->bdev) {
466		pr_err("peer-to-peer DMA is not supported by non-block device namespaces\n");
467		return -EINVAL;
468	}
469
470	if (!blk_queue_pci_p2pdma(ns->bdev->bd_disk->queue)) {
471		pr_err("peer-to-peer DMA is not supported by the driver of %s\n",
472		       ns->device_path);
473		return -EINVAL;
474	}
475
476	if (ns->p2p_dev) {
477		ret = pci_p2pdma_distance(ns->p2p_dev, nvmet_ns_dev(ns), true);
478		if (ret < 0)
479			return -EINVAL;
480	} else {
481		/*
482		 * Right now we just check that there is p2pmem available so
483		 * we can report an error to the user right away if there
484		 * is not. We'll find the actual device to use once we
485		 * setup the controller when the port's device is available.
486		 */
487
488		p2p_dev = pci_p2pmem_find(nvmet_ns_dev(ns));
489		if (!p2p_dev) {
490			pr_err("no peer-to-peer memory is available for %s\n",
491			       ns->device_path);
492			return -EINVAL;
493		}
494
495		pci_dev_put(p2p_dev);
496	}
497
498	return 0;
499}
500
501/*
502 * Note: ctrl->subsys->lock should be held when calling this function
503 */
504static void nvmet_p2pmem_ns_add_p2p(struct nvmet_ctrl *ctrl,
505				    struct nvmet_ns *ns)
506{
507	struct device *clients[2];
508	struct pci_dev *p2p_dev;
509	int ret;
510
511	if (!ctrl->p2p_client || !ns->use_p2pmem)
512		return;
513
514	if (ns->p2p_dev) {
515		ret = pci_p2pdma_distance(ns->p2p_dev, ctrl->p2p_client, true);
516		if (ret < 0)
517			return;
518
519		p2p_dev = pci_dev_get(ns->p2p_dev);
520	} else {
521		clients[0] = ctrl->p2p_client;
522		clients[1] = nvmet_ns_dev(ns);
523
524		p2p_dev = pci_p2pmem_find_many(clients, ARRAY_SIZE(clients));
525		if (!p2p_dev) {
526			pr_err("no peer-to-peer memory is available that's supported by %s and %s\n",
527			       dev_name(ctrl->p2p_client), ns->device_path);
528			return;
529		}
530	}
531
532	ret = radix_tree_insert(&ctrl->p2p_ns_map, ns->nsid, p2p_dev);
533	if (ret < 0)
534		pci_dev_put(p2p_dev);
535
536	pr_info("using p2pmem on %s for nsid %d\n", pci_name(p2p_dev),
537		ns->nsid);
538}
539
540bool nvmet_ns_revalidate(struct nvmet_ns *ns)
541{
542	loff_t oldsize = ns->size;
543
544	if (ns->bdev)
545		nvmet_bdev_ns_revalidate(ns);
546	else
547		nvmet_file_ns_revalidate(ns);
548
549	return oldsize != ns->size;
550}
551
552int nvmet_ns_enable(struct nvmet_ns *ns)
553{
554	struct nvmet_subsys *subsys = ns->subsys;
555	struct nvmet_ctrl *ctrl;
556	int ret;
557
558	mutex_lock(&subsys->lock);
559	ret = 0;
560
561	if (nvmet_is_passthru_subsys(subsys)) {
562		pr_info("cannot enable both passthru and regular namespaces for a single subsystem");
563		goto out_unlock;
564	}
565
566	if (ns->enabled)
567		goto out_unlock;
568
569	ret = -EMFILE;
570	if (subsys->nr_namespaces == NVMET_MAX_NAMESPACES)
571		goto out_unlock;
572
573	ret = nvmet_bdev_ns_enable(ns);
574	if (ret == -ENOTBLK)
575		ret = nvmet_file_ns_enable(ns);
576	if (ret)
577		goto out_unlock;
578
579	ret = nvmet_p2pmem_ns_enable(ns);
580	if (ret)
581		goto out_dev_disable;
582
583	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
584		nvmet_p2pmem_ns_add_p2p(ctrl, ns);
585
586	ret = percpu_ref_init(&ns->ref, nvmet_destroy_namespace,
587				0, GFP_KERNEL);
588	if (ret)
589		goto out_dev_put;
590
591	if (ns->nsid > subsys->max_nsid)
592		subsys->max_nsid = ns->nsid;
593
594	ret = xa_insert(&subsys->namespaces, ns->nsid, ns, GFP_KERNEL);
595	if (ret)
596		goto out_restore_subsys_maxnsid;
597
598	subsys->nr_namespaces++;
599
600	nvmet_ns_changed(subsys, ns->nsid);
601	ns->enabled = true;
602	ret = 0;
603out_unlock:
604	mutex_unlock(&subsys->lock);
605	return ret;
606
607out_restore_subsys_maxnsid:
608	subsys->max_nsid = nvmet_max_nsid(subsys);
609	percpu_ref_exit(&ns->ref);
610out_dev_put:
611	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
612		pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));
613out_dev_disable:
614	nvmet_ns_dev_disable(ns);
615	goto out_unlock;
616}
617
618void nvmet_ns_disable(struct nvmet_ns *ns)
619{
620	struct nvmet_subsys *subsys = ns->subsys;
621	struct nvmet_ctrl *ctrl;
622
623	mutex_lock(&subsys->lock);
624	if (!ns->enabled)
625		goto out_unlock;
626
627	ns->enabled = false;
628	xa_erase(&ns->subsys->namespaces, ns->nsid);
629	if (ns->nsid == subsys->max_nsid)
630		subsys->max_nsid = nvmet_max_nsid(subsys);
631
632	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
633		pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));
634
635	mutex_unlock(&subsys->lock);
636
637	/*
638	 * Now that we removed the namespaces from the lookup list, we
639	 * can kill the per_cpu ref and wait for any remaining references
640	 * to be dropped, as well as a RCU grace period for anyone only
641	 * using the namepace under rcu_read_lock().  Note that we can't
642	 * use call_rcu here as we need to ensure the namespaces have
643	 * been fully destroyed before unloading the module.
644	 */
645	percpu_ref_kill(&ns->ref);
646	synchronize_rcu();
647	wait_for_completion(&ns->disable_done);
648	percpu_ref_exit(&ns->ref);
649
650	mutex_lock(&subsys->lock);
651
652	subsys->nr_namespaces--;
653	nvmet_ns_changed(subsys, ns->nsid);
654	nvmet_ns_dev_disable(ns);
655out_unlock:
656	mutex_unlock(&subsys->lock);
657}
658
659void nvmet_ns_free(struct nvmet_ns *ns)
660{
661	nvmet_ns_disable(ns);
662
663	down_write(&nvmet_ana_sem);
664	nvmet_ana_group_enabled[ns->anagrpid]--;
665	up_write(&nvmet_ana_sem);
666
667	kfree(ns->device_path);
668	kfree(ns);
669}
670
671struct nvmet_ns *nvmet_ns_alloc(struct nvmet_subsys *subsys, u32 nsid)
672{
673	struct nvmet_ns *ns;
674
675	ns = kzalloc(sizeof(*ns), GFP_KERNEL);
676	if (!ns)
677		return NULL;
678
679	init_completion(&ns->disable_done);
680
681	ns->nsid = nsid;
682	ns->subsys = subsys;
683
684	down_write(&nvmet_ana_sem);
685	ns->anagrpid = NVMET_DEFAULT_ANA_GRPID;
686	nvmet_ana_group_enabled[ns->anagrpid]++;
687	up_write(&nvmet_ana_sem);
688
689	uuid_gen(&ns->uuid);
690	ns->buffered_io = false;
691	ns->csi = NVME_CSI_NVM;
692
693	return ns;
694}
695
696static void nvmet_update_sq_head(struct nvmet_req *req)
697{
698	if (req->sq->size) {
699		u32 old_sqhd, new_sqhd;
700
701		old_sqhd = READ_ONCE(req->sq->sqhd);
702		do {
703			new_sqhd = (old_sqhd + 1) % req->sq->size;
704		} while (!try_cmpxchg(&req->sq->sqhd, &old_sqhd, new_sqhd));
705	}
706	req->cqe->sq_head = cpu_to_le16(req->sq->sqhd & 0x0000FFFF);
707}
708
709static void nvmet_set_error(struct nvmet_req *req, u16 status)
710{
711	struct nvmet_ctrl *ctrl = req->sq->ctrl;
712	struct nvme_error_slot *new_error_slot;
713	unsigned long flags;
714
715	req->cqe->status = cpu_to_le16(status << 1);
716
717	if (!ctrl || req->error_loc == NVMET_NO_ERROR_LOC)
718		return;
719
720	spin_lock_irqsave(&ctrl->error_lock, flags);
721	ctrl->err_counter++;
722	new_error_slot =
723		&ctrl->slots[ctrl->err_counter % NVMET_ERROR_LOG_SLOTS];
724
725	new_error_slot->error_count = cpu_to_le64(ctrl->err_counter);
726	new_error_slot->sqid = cpu_to_le16(req->sq->qid);
727	new_error_slot->cmdid = cpu_to_le16(req->cmd->common.command_id);
728	new_error_slot->status_field = cpu_to_le16(status << 1);
729	new_error_slot->param_error_location = cpu_to_le16(req->error_loc);
730	new_error_slot->lba = cpu_to_le64(req->error_slba);
731	new_error_slot->nsid = req->cmd->common.nsid;
732	spin_unlock_irqrestore(&ctrl->error_lock, flags);
733
734	/* set the more bit for this request */
735	req->cqe->status |= cpu_to_le16(1 << 14);
736}
737
738static void __nvmet_req_complete(struct nvmet_req *req, u16 status)
739{
740	struct nvmet_ns *ns = req->ns;
741
742	if (!req->sq->sqhd_disabled)
743		nvmet_update_sq_head(req);
744	req->cqe->sq_id = cpu_to_le16(req->sq->qid);
745	req->cqe->command_id = req->cmd->common.command_id;
746
747	if (unlikely(status))
748		nvmet_set_error(req, status);
749
750	trace_nvmet_req_complete(req);
751
752	req->ops->queue_response(req);
753	if (ns)
754		nvmet_put_namespace(ns);
755}
756
757void nvmet_req_complete(struct nvmet_req *req, u16 status)
758{
759	struct nvmet_sq *sq = req->sq;
760
761	__nvmet_req_complete(req, status);
762	percpu_ref_put(&sq->ref);
763}
764EXPORT_SYMBOL_GPL(nvmet_req_complete);
765
766void nvmet_cq_setup(struct nvmet_ctrl *ctrl, struct nvmet_cq *cq,
767		u16 qid, u16 size)
768{
769	cq->qid = qid;
770	cq->size = size;
771}
772
773void nvmet_sq_setup(struct nvmet_ctrl *ctrl, struct nvmet_sq *sq,
774		u16 qid, u16 size)
775{
776	sq->sqhd = 0;
777	sq->qid = qid;
778	sq->size = size;
779
780	ctrl->sqs[qid] = sq;
781}
782
783static void nvmet_confirm_sq(struct percpu_ref *ref)
784{
785	struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);
786
787	complete(&sq->confirm_done);
788}
789
790void nvmet_sq_destroy(struct nvmet_sq *sq)
791{
792	struct nvmet_ctrl *ctrl = sq->ctrl;
793
794	/*
795	 * If this is the admin queue, complete all AERs so that our
796	 * queue doesn't have outstanding requests on it.
797	 */
798	if (ctrl && ctrl->sqs && ctrl->sqs[0] == sq)
799		nvmet_async_events_failall(ctrl);
800	percpu_ref_kill_and_confirm(&sq->ref, nvmet_confirm_sq);
801	wait_for_completion(&sq->confirm_done);
802	wait_for_completion(&sq->free_done);
803	percpu_ref_exit(&sq->ref);
804	nvmet_auth_sq_free(sq);
805
806	if (ctrl) {
807		/*
808		 * The teardown flow may take some time, and the host may not
809		 * send us keep-alive during this period, hence reset the
810		 * traffic based keep-alive timer so we don't trigger a
811		 * controller teardown as a result of a keep-alive expiration.
812		 */
813		ctrl->reset_tbkas = true;
814		sq->ctrl->sqs[sq->qid] = NULL;
815		nvmet_ctrl_put(ctrl);
816		sq->ctrl = NULL; /* allows reusing the queue later */
817	}
818}
819EXPORT_SYMBOL_GPL(nvmet_sq_destroy);
820
821static void nvmet_sq_free(struct percpu_ref *ref)
822{
823	struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);
824
825	complete(&sq->free_done);
826}
827
828int nvmet_sq_init(struct nvmet_sq *sq)
829{
830	int ret;
831
832	ret = percpu_ref_init(&sq->ref, nvmet_sq_free, 0, GFP_KERNEL);
833	if (ret) {
834		pr_err("percpu_ref init failed!\n");
835		return ret;
836	}
837	init_completion(&sq->free_done);
838	init_completion(&sq->confirm_done);
839	nvmet_auth_sq_init(sq);
840
841	return 0;
842}
843EXPORT_SYMBOL_GPL(nvmet_sq_init);
844
845static inline u16 nvmet_check_ana_state(struct nvmet_port *port,
846		struct nvmet_ns *ns)
847{
848	enum nvme_ana_state state = port->ana_state[ns->anagrpid];
849
850	if (unlikely(state == NVME_ANA_INACCESSIBLE))
851		return NVME_SC_ANA_INACCESSIBLE;
852	if (unlikely(state == NVME_ANA_PERSISTENT_LOSS))
853		return NVME_SC_ANA_PERSISTENT_LOSS;
854	if (unlikely(state == NVME_ANA_CHANGE))
855		return NVME_SC_ANA_TRANSITION;
856	return 0;
857}
858
859static inline u16 nvmet_io_cmd_check_access(struct nvmet_req *req)
860{
861	if (unlikely(req->ns->readonly)) {
862		switch (req->cmd->common.opcode) {
863		case nvme_cmd_read:
864		case nvme_cmd_flush:
865			break;
866		default:
867			return NVME_SC_NS_WRITE_PROTECTED;
868		}
869	}
870
871	return 0;
872}
873
874static u16 nvmet_parse_io_cmd(struct nvmet_req *req)
875{
876	struct nvme_command *cmd = req->cmd;
877	u16 ret;
878
879	if (nvme_is_fabrics(cmd))
880		return nvmet_parse_fabrics_io_cmd(req);
881
882	if (unlikely(!nvmet_check_auth_status(req)))
883		return NVME_SC_AUTH_REQUIRED | NVME_SC_DNR;
884
885	ret = nvmet_check_ctrl_status(req);
886	if (unlikely(ret))
887		return ret;
888
889	if (nvmet_is_passthru_req(req))
890		return nvmet_parse_passthru_io_cmd(req);
891
892	ret = nvmet_req_find_ns(req);
893	if (unlikely(ret))
894		return ret;
895
896	ret = nvmet_check_ana_state(req->port, req->ns);
897	if (unlikely(ret)) {
898		req->error_loc = offsetof(struct nvme_common_command, nsid);
899		return ret;
900	}
901	ret = nvmet_io_cmd_check_access(req);
902	if (unlikely(ret)) {
903		req->error_loc = offsetof(struct nvme_common_command, nsid);
904		return ret;
905	}
906
907	switch (req->ns->csi) {
908	case NVME_CSI_NVM:
909		if (req->ns->file)
910			return nvmet_file_parse_io_cmd(req);
911		return nvmet_bdev_parse_io_cmd(req);
912	case NVME_CSI_ZNS:
913		if (IS_ENABLED(CONFIG_BLK_DEV_ZONED))
914			return nvmet_bdev_zns_parse_io_cmd(req);
915		return NVME_SC_INVALID_IO_CMD_SET;
916	default:
917		return NVME_SC_INVALID_IO_CMD_SET;
918	}
919}
920
921bool nvmet_req_init(struct nvmet_req *req, struct nvmet_cq *cq,
922		struct nvmet_sq *sq, const struct nvmet_fabrics_ops *ops)
923{
924	u8 flags = req->cmd->common.flags;
925	u16 status;
926
927	req->cq = cq;
928	req->sq = sq;
929	req->ops = ops;
930	req->sg = NULL;
931	req->metadata_sg = NULL;
932	req->sg_cnt = 0;
933	req->metadata_sg_cnt = 0;
934	req->transfer_len = 0;
935	req->metadata_len = 0;
936	req->cqe->status = 0;
937	req->cqe->sq_head = 0;
938	req->ns = NULL;
939	req->error_loc = NVMET_NO_ERROR_LOC;
940	req->error_slba = 0;
941
942	/* no support for fused commands yet */
943	if (unlikely(flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND))) {
944		req->error_loc = offsetof(struct nvme_common_command, flags);
945		status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
946		goto fail;
947	}
948
949	/*
950	 * For fabrics, PSDT field shall describe metadata pointer (MPTR) that
951	 * contains an address of a single contiguous physical buffer that is
952	 * byte aligned.
953	 */
954	if (unlikely((flags & NVME_CMD_SGL_ALL) != NVME_CMD_SGL_METABUF)) {
955		req->error_loc = offsetof(struct nvme_common_command, flags);
956		status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
957		goto fail;
958	}
959
960	if (unlikely(!req->sq->ctrl))
961		/* will return an error for any non-connect command: */
962		status = nvmet_parse_connect_cmd(req);
963	else if (likely(req->sq->qid != 0))
964		status = nvmet_parse_io_cmd(req);
965	else
966		status = nvmet_parse_admin_cmd(req);
967
968	if (status)
969		goto fail;
970
971	trace_nvmet_req_init(req, req->cmd);
972
973	if (unlikely(!percpu_ref_tryget_live(&sq->ref))) {
974		status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
975		goto fail;
976	}
977
978	if (sq->ctrl)
979		sq->ctrl->reset_tbkas = true;
980
981	return true;
982
983fail:
984	__nvmet_req_complete(req, status);
985	return false;
986}
987EXPORT_SYMBOL_GPL(nvmet_req_init);
988
989void nvmet_req_uninit(struct nvmet_req *req)
990{
991	percpu_ref_put(&req->sq->ref);
992	if (req->ns)
993		nvmet_put_namespace(req->ns);
994}
995EXPORT_SYMBOL_GPL(nvmet_req_uninit);
996
997bool nvmet_check_transfer_len(struct nvmet_req *req, size_t len)
998{
999	if (unlikely(len != req->transfer_len)) {
1000		req->error_loc = offsetof(struct nvme_common_command, dptr);
1001		nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR);
1002		return false;
1003	}
1004
1005	return true;
1006}
1007EXPORT_SYMBOL_GPL(nvmet_check_transfer_len);
1008
1009bool nvmet_check_data_len_lte(struct nvmet_req *req, size_t data_len)
1010{
1011	if (unlikely(data_len > req->transfer_len)) {
1012		req->error_loc = offsetof(struct nvme_common_command, dptr);
1013		nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR);
1014		return false;
1015	}
1016
1017	return true;
1018}
1019
1020static unsigned int nvmet_data_transfer_len(struct nvmet_req *req)
1021{
1022	return req->transfer_len - req->metadata_len;
1023}
1024
1025static int nvmet_req_alloc_p2pmem_sgls(struct pci_dev *p2p_dev,
1026		struct nvmet_req *req)
1027{
1028	req->sg = pci_p2pmem_alloc_sgl(p2p_dev, &req->sg_cnt,
1029			nvmet_data_transfer_len(req));
1030	if (!req->sg)
1031		goto out_err;
1032
1033	if (req->metadata_len) {
1034		req->metadata_sg = pci_p2pmem_alloc_sgl(p2p_dev,
1035				&req->metadata_sg_cnt, req->metadata_len);
1036		if (!req->metadata_sg)
1037			goto out_free_sg;
1038	}
1039
1040	req->p2p_dev = p2p_dev;
1041
1042	return 0;
1043out_free_sg:
1044	pci_p2pmem_free_sgl(req->p2p_dev, req->sg);
1045out_err:
1046	return -ENOMEM;
1047}
1048
1049static struct pci_dev *nvmet_req_find_p2p_dev(struct nvmet_req *req)
1050{
1051	if (!IS_ENABLED(CONFIG_PCI_P2PDMA) ||
1052	    !req->sq->ctrl || !req->sq->qid || !req->ns)
1053		return NULL;
1054	return radix_tree_lookup(&req->sq->ctrl->p2p_ns_map, req->ns->nsid);
1055}
1056
1057int nvmet_req_alloc_sgls(struct nvmet_req *req)
1058{
1059	struct pci_dev *p2p_dev = nvmet_req_find_p2p_dev(req);
1060
1061	if (p2p_dev && !nvmet_req_alloc_p2pmem_sgls(p2p_dev, req))
1062		return 0;
1063
1064	req->sg = sgl_alloc(nvmet_data_transfer_len(req), GFP_KERNEL,
1065			    &req->sg_cnt);
1066	if (unlikely(!req->sg))
1067		goto out;
1068
1069	if (req->metadata_len) {
1070		req->metadata_sg = sgl_alloc(req->metadata_len, GFP_KERNEL,
1071					     &req->metadata_sg_cnt);
1072		if (unlikely(!req->metadata_sg))
1073			goto out_free;
1074	}
1075
1076	return 0;
1077out_free:
1078	sgl_free(req->sg);
1079out:
1080	return -ENOMEM;
1081}
1082EXPORT_SYMBOL_GPL(nvmet_req_alloc_sgls);
1083
1084void nvmet_req_free_sgls(struct nvmet_req *req)
1085{
1086	if (req->p2p_dev) {
1087		pci_p2pmem_free_sgl(req->p2p_dev, req->sg);
1088		if (req->metadata_sg)
1089			pci_p2pmem_free_sgl(req->p2p_dev, req->metadata_sg);
1090		req->p2p_dev = NULL;
1091	} else {
1092		sgl_free(req->sg);
1093		if (req->metadata_sg)
1094			sgl_free(req->metadata_sg);
1095	}
1096
1097	req->sg = NULL;
1098	req->metadata_sg = NULL;
1099	req->sg_cnt = 0;
1100	req->metadata_sg_cnt = 0;
1101}
1102EXPORT_SYMBOL_GPL(nvmet_req_free_sgls);
1103
1104static inline bool nvmet_cc_en(u32 cc)
1105{
1106	return (cc >> NVME_CC_EN_SHIFT) & 0x1;
1107}
1108
1109static inline u8 nvmet_cc_css(u32 cc)
1110{
1111	return (cc >> NVME_CC_CSS_SHIFT) & 0x7;
1112}
1113
1114static inline u8 nvmet_cc_mps(u32 cc)
1115{
1116	return (cc >> NVME_CC_MPS_SHIFT) & 0xf;
1117}
1118
1119static inline u8 nvmet_cc_ams(u32 cc)
1120{
1121	return (cc >> NVME_CC_AMS_SHIFT) & 0x7;
1122}
1123
1124static inline u8 nvmet_cc_shn(u32 cc)
1125{
1126	return (cc >> NVME_CC_SHN_SHIFT) & 0x3;
1127}
1128
1129static inline u8 nvmet_cc_iosqes(u32 cc)
1130{
1131	return (cc >> NVME_CC_IOSQES_SHIFT) & 0xf;
1132}
1133
1134static inline u8 nvmet_cc_iocqes(u32 cc)
1135{
1136	return (cc >> NVME_CC_IOCQES_SHIFT) & 0xf;
1137}
1138
1139static inline bool nvmet_css_supported(u8 cc_css)
1140{
1141	switch (cc_css << NVME_CC_CSS_SHIFT) {
1142	case NVME_CC_CSS_NVM:
1143	case NVME_CC_CSS_CSI:
1144		return true;
1145	default:
1146		return false;
1147	}
1148}
1149
1150static void nvmet_start_ctrl(struct nvmet_ctrl *ctrl)
1151{
1152	lockdep_assert_held(&ctrl->lock);
1153
1154	/*
1155	 * Only I/O controllers should verify iosqes,iocqes.
1156	 * Strictly speaking, the spec says a discovery controller
1157	 * should verify iosqes,iocqes are zeroed, however that
1158	 * would break backwards compatibility, so don't enforce it.
1159	 */
1160	if (!nvmet_is_disc_subsys(ctrl->subsys) &&
1161	    (nvmet_cc_iosqes(ctrl->cc) != NVME_NVM_IOSQES ||
1162	     nvmet_cc_iocqes(ctrl->cc) != NVME_NVM_IOCQES)) {
1163		ctrl->csts = NVME_CSTS_CFS;
1164		return;
1165	}
1166
1167	if (nvmet_cc_mps(ctrl->cc) != 0 ||
1168	    nvmet_cc_ams(ctrl->cc) != 0 ||
1169	    !nvmet_css_supported(nvmet_cc_css(ctrl->cc))) {
1170		ctrl->csts = NVME_CSTS_CFS;
1171		return;
1172	}
1173
1174	ctrl->csts = NVME_CSTS_RDY;
1175
1176	/*
1177	 * Controllers that are not yet enabled should not really enforce the
1178	 * keep alive timeout, but we still want to track a timeout and cleanup
1179	 * in case a host died before it enabled the controller.  Hence, simply
1180	 * reset the keep alive timer when the controller is enabled.
1181	 */
1182	if (ctrl->kato)
1183		mod_delayed_work(nvmet_wq, &ctrl->ka_work, ctrl->kato * HZ);
1184}
1185
1186static void nvmet_clear_ctrl(struct nvmet_ctrl *ctrl)
1187{
1188	lockdep_assert_held(&ctrl->lock);
1189
1190	/* XXX: tear down queues? */
1191	ctrl->csts &= ~NVME_CSTS_RDY;
1192	ctrl->cc = 0;
1193}
1194
1195void nvmet_update_cc(struct nvmet_ctrl *ctrl, u32 new)
1196{
1197	u32 old;
1198
1199	mutex_lock(&ctrl->lock);
1200	old = ctrl->cc;
1201	ctrl->cc = new;
1202
1203	if (nvmet_cc_en(new) && !nvmet_cc_en(old))
1204		nvmet_start_ctrl(ctrl);
1205	if (!nvmet_cc_en(new) && nvmet_cc_en(old))
1206		nvmet_clear_ctrl(ctrl);
1207	if (nvmet_cc_shn(new) && !nvmet_cc_shn(old)) {
1208		nvmet_clear_ctrl(ctrl);
1209		ctrl->csts |= NVME_CSTS_SHST_CMPLT;
1210	}
1211	if (!nvmet_cc_shn(new) && nvmet_cc_shn(old))
1212		ctrl->csts &= ~NVME_CSTS_SHST_CMPLT;
1213	mutex_unlock(&ctrl->lock);
1214}
1215
1216static void nvmet_init_cap(struct nvmet_ctrl *ctrl)
1217{
1218	/* command sets supported: NVMe command set: */
1219	ctrl->cap = (1ULL << 37);
1220	/* Controller supports one or more I/O Command Sets */
1221	ctrl->cap |= (1ULL << 43);
1222	/* CC.EN timeout in 500msec units: */
1223	ctrl->cap |= (15ULL << 24);
1224	/* maximum queue entries supported: */
1225	if (ctrl->ops->get_max_queue_size)
1226		ctrl->cap |= ctrl->ops->get_max_queue_size(ctrl) - 1;
1227	else
1228		ctrl->cap |= NVMET_QUEUE_SIZE - 1;
1229
1230	if (nvmet_is_passthru_subsys(ctrl->subsys))
1231		nvmet_passthrough_override_cap(ctrl);
1232}
1233
1234struct nvmet_ctrl *nvmet_ctrl_find_get(const char *subsysnqn,
1235				       const char *hostnqn, u16 cntlid,
1236				       struct nvmet_req *req)
1237{
1238	struct nvmet_ctrl *ctrl = NULL;
1239	struct nvmet_subsys *subsys;
1240
1241	subsys = nvmet_find_get_subsys(req->port, subsysnqn);
1242	if (!subsys) {
1243		pr_warn("connect request for invalid subsystem %s!\n",
1244			subsysnqn);
1245		req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
1246		goto out;
1247	}
1248
1249	mutex_lock(&subsys->lock);
1250	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
1251		if (ctrl->cntlid == cntlid) {
1252			if (strncmp(hostnqn, ctrl->hostnqn, NVMF_NQN_SIZE)) {
1253				pr_warn("hostnqn mismatch.\n");
1254				continue;
1255			}
1256			if (!kref_get_unless_zero(&ctrl->ref))
1257				continue;
1258
1259			/* ctrl found */
1260			goto found;
1261		}
1262	}
1263
1264	ctrl = NULL; /* ctrl not found */
1265	pr_warn("could not find controller %d for subsys %s / host %s\n",
1266		cntlid, subsysnqn, hostnqn);
1267	req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(cntlid);
1268
1269found:
1270	mutex_unlock(&subsys->lock);
1271	nvmet_subsys_put(subsys);
1272out:
1273	return ctrl;
1274}
1275
1276u16 nvmet_check_ctrl_status(struct nvmet_req *req)
1277{
1278	if (unlikely(!(req->sq->ctrl->cc & NVME_CC_ENABLE))) {
1279		pr_err("got cmd %d while CC.EN == 0 on qid = %d\n",
1280		       req->cmd->common.opcode, req->sq->qid);
1281		return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR;
1282	}
1283
1284	if (unlikely(!(req->sq->ctrl->csts & NVME_CSTS_RDY))) {
1285		pr_err("got cmd %d while CSTS.RDY == 0 on qid = %d\n",
1286		       req->cmd->common.opcode, req->sq->qid);
1287		return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR;
1288	}
1289
1290	if (unlikely(!nvmet_check_auth_status(req))) {
1291		pr_warn("qid %d not authenticated\n", req->sq->qid);
1292		return NVME_SC_AUTH_REQUIRED | NVME_SC_DNR;
1293	}
1294	return 0;
1295}
1296
1297bool nvmet_host_allowed(struct nvmet_subsys *subsys, const char *hostnqn)
1298{
1299	struct nvmet_host_link *p;
1300
1301	lockdep_assert_held(&nvmet_config_sem);
1302
1303	if (subsys->allow_any_host)
1304		return true;
1305
1306	if (nvmet_is_disc_subsys(subsys)) /* allow all access to disc subsys */
1307		return true;
1308
1309	list_for_each_entry(p, &subsys->hosts, entry) {
1310		if (!strcmp(nvmet_host_name(p->host), hostnqn))
1311			return true;
1312	}
1313
1314	return false;
1315}
1316
1317/*
1318 * Note: ctrl->subsys->lock should be held when calling this function
1319 */
1320static void nvmet_setup_p2p_ns_map(struct nvmet_ctrl *ctrl,
1321		struct nvmet_req *req)
1322{
1323	struct nvmet_ns *ns;
1324	unsigned long idx;
1325
1326	if (!req->p2p_client)
1327		return;
1328
1329	ctrl->p2p_client = get_device(req->p2p_client);
1330
1331	xa_for_each(&ctrl->subsys->namespaces, idx, ns)
1332		nvmet_p2pmem_ns_add_p2p(ctrl, ns);
1333}
1334
1335/*
1336 * Note: ctrl->subsys->lock should be held when calling this function
1337 */
1338static void nvmet_release_p2p_ns_map(struct nvmet_ctrl *ctrl)
1339{
1340	struct radix_tree_iter iter;
1341	void __rcu **slot;
1342
1343	radix_tree_for_each_slot(slot, &ctrl->p2p_ns_map, &iter, 0)
1344		pci_dev_put(radix_tree_deref_slot(slot));
1345
1346	put_device(ctrl->p2p_client);
1347}
1348
1349static void nvmet_fatal_error_handler(struct work_struct *work)
1350{
1351	struct nvmet_ctrl *ctrl =
1352			container_of(work, struct nvmet_ctrl, fatal_err_work);
1353
1354	pr_err("ctrl %d fatal error occurred!\n", ctrl->cntlid);
1355	ctrl->ops->delete_ctrl(ctrl);
1356}
1357
1358u16 nvmet_alloc_ctrl(const char *subsysnqn, const char *hostnqn,
1359		struct nvmet_req *req, u32 kato, struct nvmet_ctrl **ctrlp)
1360{
1361	struct nvmet_subsys *subsys;
1362	struct nvmet_ctrl *ctrl;
1363	int ret;
1364	u16 status;
1365
1366	status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
1367	subsys = nvmet_find_get_subsys(req->port, subsysnqn);
1368	if (!subsys) {
1369		pr_warn("connect request for invalid subsystem %s!\n",
1370			subsysnqn);
1371		req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
1372		req->error_loc = offsetof(struct nvme_common_command, dptr);
1373		goto out;
1374	}
1375
1376	down_read(&nvmet_config_sem);
1377	if (!nvmet_host_allowed(subsys, hostnqn)) {
1378		pr_info("connect by host %s for subsystem %s not allowed\n",
1379			hostnqn, subsysnqn);
1380		req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(hostnqn);
1381		up_read(&nvmet_config_sem);
1382		status = NVME_SC_CONNECT_INVALID_HOST | NVME_SC_DNR;
1383		req->error_loc = offsetof(struct nvme_common_command, dptr);
1384		goto out_put_subsystem;
1385	}
1386	up_read(&nvmet_config_sem);
1387
1388	status = NVME_SC_INTERNAL;
1389	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1390	if (!ctrl)
1391		goto out_put_subsystem;
1392	mutex_init(&ctrl->lock);
1393
1394	ctrl->port = req->port;
1395	ctrl->ops = req->ops;
1396
1397#ifdef CONFIG_NVME_TARGET_PASSTHRU
1398	/* By default, set loop targets to clear IDS by default */
1399	if (ctrl->port->disc_addr.trtype == NVMF_TRTYPE_LOOP)
1400		subsys->clear_ids = 1;
1401#endif
1402
1403	INIT_WORK(&ctrl->async_event_work, nvmet_async_event_work);
1404	INIT_LIST_HEAD(&ctrl->async_events);
1405	INIT_RADIX_TREE(&ctrl->p2p_ns_map, GFP_KERNEL);
1406	INIT_WORK(&ctrl->fatal_err_work, nvmet_fatal_error_handler);
1407	INIT_DELAYED_WORK(&ctrl->ka_work, nvmet_keep_alive_timer);
1408
1409	memcpy(ctrl->subsysnqn, subsysnqn, NVMF_NQN_SIZE);
1410	memcpy(ctrl->hostnqn, hostnqn, NVMF_NQN_SIZE);
1411
1412	kref_init(&ctrl->ref);
1413	ctrl->subsys = subsys;
1414	nvmet_init_cap(ctrl);
1415	WRITE_ONCE(ctrl->aen_enabled, NVMET_AEN_CFG_OPTIONAL);
1416
1417	ctrl->changed_ns_list = kmalloc_array(NVME_MAX_CHANGED_NAMESPACES,
1418			sizeof(__le32), GFP_KERNEL);
1419	if (!ctrl->changed_ns_list)
1420		goto out_free_ctrl;
1421
1422	ctrl->sqs = kcalloc(subsys->max_qid + 1,
1423			sizeof(struct nvmet_sq *),
1424			GFP_KERNEL);
1425	if (!ctrl->sqs)
1426		goto out_free_changed_ns_list;
1427
1428	if (subsys->cntlid_min > subsys->cntlid_max)
1429		goto out_free_sqs;
1430
1431	ret = ida_alloc_range(&cntlid_ida,
1432			     subsys->cntlid_min, subsys->cntlid_max,
1433			     GFP_KERNEL);
1434	if (ret < 0) {
1435		status = NVME_SC_CONNECT_CTRL_BUSY | NVME_SC_DNR;
1436		goto out_free_sqs;
1437	}
1438	ctrl->cntlid = ret;
1439
1440	/*
1441	 * Discovery controllers may use some arbitrary high value
1442	 * in order to cleanup stale discovery sessions
1443	 */
1444	if (nvmet_is_disc_subsys(ctrl->subsys) && !kato)
1445		kato = NVMET_DISC_KATO_MS;
1446
1447	/* keep-alive timeout in seconds */
1448	ctrl->kato = DIV_ROUND_UP(kato, 1000);
1449
1450	ctrl->err_counter = 0;
1451	spin_lock_init(&ctrl->error_lock);
1452
1453	nvmet_start_keep_alive_timer(ctrl);
1454
1455	mutex_lock(&subsys->lock);
1456	list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
1457	nvmet_setup_p2p_ns_map(ctrl, req);
1458	mutex_unlock(&subsys->lock);
1459
1460	*ctrlp = ctrl;
1461	return 0;
1462
1463out_free_sqs:
1464	kfree(ctrl->sqs);
1465out_free_changed_ns_list:
1466	kfree(ctrl->changed_ns_list);
1467out_free_ctrl:
1468	kfree(ctrl);
1469out_put_subsystem:
1470	nvmet_subsys_put(subsys);
1471out:
1472	return status;
1473}
1474
1475static void nvmet_ctrl_free(struct kref *ref)
1476{
1477	struct nvmet_ctrl *ctrl = container_of(ref, struct nvmet_ctrl, ref);
1478	struct nvmet_subsys *subsys = ctrl->subsys;
1479
1480	mutex_lock(&subsys->lock);
1481	nvmet_release_p2p_ns_map(ctrl);
1482	list_del(&ctrl->subsys_entry);
1483	mutex_unlock(&subsys->lock);
1484
1485	nvmet_stop_keep_alive_timer(ctrl);
1486
1487	flush_work(&ctrl->async_event_work);
1488	cancel_work_sync(&ctrl->fatal_err_work);
1489
1490	nvmet_destroy_auth(ctrl);
1491
1492	ida_free(&cntlid_ida, ctrl->cntlid);
1493
1494	nvmet_async_events_free(ctrl);
1495	kfree(ctrl->sqs);
1496	kfree(ctrl->changed_ns_list);
1497	kfree(ctrl);
1498
1499	nvmet_subsys_put(subsys);
1500}
1501
1502void nvmet_ctrl_put(struct nvmet_ctrl *ctrl)
1503{
1504	kref_put(&ctrl->ref, nvmet_ctrl_free);
1505}
1506
1507void nvmet_ctrl_fatal_error(struct nvmet_ctrl *ctrl)
1508{
1509	mutex_lock(&ctrl->lock);
1510	if (!(ctrl->csts & NVME_CSTS_CFS)) {
1511		ctrl->csts |= NVME_CSTS_CFS;
1512		queue_work(nvmet_wq, &ctrl->fatal_err_work);
1513	}
1514	mutex_unlock(&ctrl->lock);
1515}
1516EXPORT_SYMBOL_GPL(nvmet_ctrl_fatal_error);
1517
1518static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
1519		const char *subsysnqn)
1520{
1521	struct nvmet_subsys_link *p;
1522
1523	if (!port)
1524		return NULL;
1525
1526	if (!strcmp(NVME_DISC_SUBSYS_NAME, subsysnqn)) {
1527		if (!kref_get_unless_zero(&nvmet_disc_subsys->ref))
1528			return NULL;
1529		return nvmet_disc_subsys;
1530	}
1531
1532	down_read(&nvmet_config_sem);
1533	list_for_each_entry(p, &port->subsystems, entry) {
1534		if (!strncmp(p->subsys->subsysnqn, subsysnqn,
1535				NVMF_NQN_SIZE)) {
1536			if (!kref_get_unless_zero(&p->subsys->ref))
1537				break;
1538			up_read(&nvmet_config_sem);
1539			return p->subsys;
1540		}
1541	}
1542	up_read(&nvmet_config_sem);
1543	return NULL;
1544}
1545
1546struct nvmet_subsys *nvmet_subsys_alloc(const char *subsysnqn,
1547		enum nvme_subsys_type type)
1548{
1549	struct nvmet_subsys *subsys;
1550	char serial[NVMET_SN_MAX_SIZE / 2];
1551	int ret;
1552
1553	subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
1554	if (!subsys)
1555		return ERR_PTR(-ENOMEM);
1556
1557	subsys->ver = NVMET_DEFAULT_VS;
1558	/* generate a random serial number as our controllers are ephemeral: */
1559	get_random_bytes(&serial, sizeof(serial));
1560	bin2hex(subsys->serial, &serial, sizeof(serial));
1561
1562	subsys->model_number = kstrdup(NVMET_DEFAULT_CTRL_MODEL, GFP_KERNEL);
1563	if (!subsys->model_number) {
1564		ret = -ENOMEM;
1565		goto free_subsys;
1566	}
1567
1568	subsys->ieee_oui = 0;
1569
1570	subsys->firmware_rev = kstrndup(UTS_RELEASE, NVMET_FR_MAX_SIZE, GFP_KERNEL);
1571	if (!subsys->firmware_rev) {
1572		ret = -ENOMEM;
1573		goto free_mn;
1574	}
1575
1576	switch (type) {
1577	case NVME_NQN_NVME:
1578		subsys->max_qid = NVMET_NR_QUEUES;
1579		break;
1580	case NVME_NQN_DISC:
1581	case NVME_NQN_CURR:
1582		subsys->max_qid = 0;
1583		break;
1584	default:
1585		pr_err("%s: Unknown Subsystem type - %d\n", __func__, type);
1586		ret = -EINVAL;
1587		goto free_fr;
1588	}
1589	subsys->type = type;
1590	subsys->subsysnqn = kstrndup(subsysnqn, NVMF_NQN_SIZE,
1591			GFP_KERNEL);
1592	if (!subsys->subsysnqn) {
1593		ret = -ENOMEM;
1594		goto free_fr;
1595	}
1596	subsys->cntlid_min = NVME_CNTLID_MIN;
1597	subsys->cntlid_max = NVME_CNTLID_MAX;
1598	kref_init(&subsys->ref);
1599
1600	mutex_init(&subsys->lock);
1601	xa_init(&subsys->namespaces);
1602	INIT_LIST_HEAD(&subsys->ctrls);
1603	INIT_LIST_HEAD(&subsys->hosts);
1604
1605	return subsys;
1606
1607free_fr:
1608	kfree(subsys->firmware_rev);
1609free_mn:
1610	kfree(subsys->model_number);
1611free_subsys:
1612	kfree(subsys);
1613	return ERR_PTR(ret);
1614}
1615
1616static void nvmet_subsys_free(struct kref *ref)
1617{
1618	struct nvmet_subsys *subsys =
1619		container_of(ref, struct nvmet_subsys, ref);
1620
1621	WARN_ON_ONCE(!xa_empty(&subsys->namespaces));
1622
1623	xa_destroy(&subsys->namespaces);
1624	nvmet_passthru_subsys_free(subsys);
1625
1626	kfree(subsys->subsysnqn);
1627	kfree(subsys->model_number);
1628	kfree(subsys->firmware_rev);
1629	kfree(subsys);
1630}
1631
1632void nvmet_subsys_del_ctrls(struct nvmet_subsys *subsys)
1633{
1634	struct nvmet_ctrl *ctrl;
1635
1636	mutex_lock(&subsys->lock);
1637	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
1638		ctrl->ops->delete_ctrl(ctrl);
1639	mutex_unlock(&subsys->lock);
1640}
1641
1642void nvmet_subsys_put(struct nvmet_subsys *subsys)
1643{
1644	kref_put(&subsys->ref, nvmet_subsys_free);
1645}
1646
1647static int __init nvmet_init(void)
1648{
1649	int error = -ENOMEM;
1650
1651	nvmet_ana_group_enabled[NVMET_DEFAULT_ANA_GRPID] = 1;
1652
1653	nvmet_bvec_cache = kmem_cache_create("nvmet-bvec",
1654			NVMET_MAX_MPOOL_BVEC * sizeof(struct bio_vec), 0,
1655			SLAB_HWCACHE_ALIGN, NULL);
1656	if (!nvmet_bvec_cache)
1657		return -ENOMEM;
1658
1659	zbd_wq = alloc_workqueue("nvmet-zbd-wq", WQ_MEM_RECLAIM, 0);
1660	if (!zbd_wq)
1661		goto out_destroy_bvec_cache;
1662
1663	buffered_io_wq = alloc_workqueue("nvmet-buffered-io-wq",
1664			WQ_MEM_RECLAIM, 0);
1665	if (!buffered_io_wq)
1666		goto out_free_zbd_work_queue;
1667
1668	nvmet_wq = alloc_workqueue("nvmet-wq", WQ_MEM_RECLAIM, 0);
1669	if (!nvmet_wq)
1670		goto out_free_buffered_work_queue;
1671
1672	error = nvmet_init_discovery();
1673	if (error)
1674		goto out_free_nvmet_work_queue;
1675
1676	error = nvmet_init_configfs();
1677	if (error)
1678		goto out_exit_discovery;
1679	return 0;
1680
1681out_exit_discovery:
1682	nvmet_exit_discovery();
1683out_free_nvmet_work_queue:
1684	destroy_workqueue(nvmet_wq);
1685out_free_buffered_work_queue:
1686	destroy_workqueue(buffered_io_wq);
1687out_free_zbd_work_queue:
1688	destroy_workqueue(zbd_wq);
1689out_destroy_bvec_cache:
1690	kmem_cache_destroy(nvmet_bvec_cache);
1691	return error;
1692}
1693
1694static void __exit nvmet_exit(void)
1695{
1696	nvmet_exit_configfs();
1697	nvmet_exit_discovery();
1698	ida_destroy(&cntlid_ida);
1699	destroy_workqueue(nvmet_wq);
1700	destroy_workqueue(buffered_io_wq);
1701	destroy_workqueue(zbd_wq);
1702	kmem_cache_destroy(nvmet_bvec_cache);
1703
1704	BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_entry) != 1024);
1705	BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_hdr) != 1024);
1706}
1707
1708module_init(nvmet_init);
1709module_exit(nvmet_exit);
1710
1711MODULE_LICENSE("GPL v2");
1712