xref: /kernel/linux/linux-6.6/drivers/nvme/host/rdma.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * NVMe over Fabrics RDMA host code.
4 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5 */
6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7#include <linux/module.h>
8#include <linux/init.h>
9#include <linux/slab.h>
10#include <rdma/mr_pool.h>
11#include <linux/err.h>
12#include <linux/string.h>
13#include <linux/atomic.h>
14#include <linux/blk-mq.h>
15#include <linux/blk-integrity.h>
16#include <linux/types.h>
17#include <linux/list.h>
18#include <linux/mutex.h>
19#include <linux/scatterlist.h>
20#include <linux/nvme.h>
21#include <asm/unaligned.h>
22
23#include <rdma/ib_verbs.h>
24#include <rdma/rdma_cm.h>
25#include <linux/nvme-rdma.h>
26
27#include "nvme.h"
28#include "fabrics.h"
29
30
31#define NVME_RDMA_CM_TIMEOUT_MS		3000		/* 3 second */
32
33#define NVME_RDMA_MAX_SEGMENTS		256
34
35#define NVME_RDMA_MAX_INLINE_SEGMENTS	4
36
37#define NVME_RDMA_DATA_SGL_SIZE \
38	(sizeof(struct scatterlist) * NVME_INLINE_SG_CNT)
39#define NVME_RDMA_METADATA_SGL_SIZE \
40	(sizeof(struct scatterlist) * NVME_INLINE_METADATA_SG_CNT)
41
42struct nvme_rdma_device {
43	struct ib_device	*dev;
44	struct ib_pd		*pd;
45	struct kref		ref;
46	struct list_head	entry;
47	unsigned int		num_inline_segments;
48};
49
50struct nvme_rdma_qe {
51	struct ib_cqe		cqe;
52	void			*data;
53	u64			dma;
54};
55
56struct nvme_rdma_sgl {
57	int			nents;
58	struct sg_table		sg_table;
59};
60
61struct nvme_rdma_queue;
62struct nvme_rdma_request {
63	struct nvme_request	req;
64	struct ib_mr		*mr;
65	struct nvme_rdma_qe	sqe;
66	union nvme_result	result;
67	__le16			status;
68	refcount_t		ref;
69	struct ib_sge		sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
70	u32			num_sge;
71	struct ib_reg_wr	reg_wr;
72	struct ib_cqe		reg_cqe;
73	struct nvme_rdma_queue  *queue;
74	struct nvme_rdma_sgl	data_sgl;
75	struct nvme_rdma_sgl	*metadata_sgl;
76	bool			use_sig_mr;
77};
78
79enum nvme_rdma_queue_flags {
80	NVME_RDMA_Q_ALLOCATED		= 0,
81	NVME_RDMA_Q_LIVE		= 1,
82	NVME_RDMA_Q_TR_READY		= 2,
83};
84
85struct nvme_rdma_queue {
86	struct nvme_rdma_qe	*rsp_ring;
87	int			queue_size;
88	size_t			cmnd_capsule_len;
89	struct nvme_rdma_ctrl	*ctrl;
90	struct nvme_rdma_device	*device;
91	struct ib_cq		*ib_cq;
92	struct ib_qp		*qp;
93
94	unsigned long		flags;
95	struct rdma_cm_id	*cm_id;
96	int			cm_error;
97	struct completion	cm_done;
98	bool			pi_support;
99	int			cq_size;
100	struct mutex		queue_lock;
101};
102
103struct nvme_rdma_ctrl {
104	/* read only in the hot path */
105	struct nvme_rdma_queue	*queues;
106
107	/* other member variables */
108	struct blk_mq_tag_set	tag_set;
109	struct work_struct	err_work;
110
111	struct nvme_rdma_qe	async_event_sqe;
112
113	struct delayed_work	reconnect_work;
114
115	struct list_head	list;
116
117	struct blk_mq_tag_set	admin_tag_set;
118	struct nvme_rdma_device	*device;
119
120	u32			max_fr_pages;
121
122	struct sockaddr_storage addr;
123	struct sockaddr_storage src_addr;
124
125	struct nvme_ctrl	ctrl;
126	bool			use_inline_data;
127	u32			io_queues[HCTX_MAX_TYPES];
128};
129
130static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
131{
132	return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
133}
134
135static LIST_HEAD(device_list);
136static DEFINE_MUTEX(device_list_mutex);
137
138static LIST_HEAD(nvme_rdma_ctrl_list);
139static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
140
141/*
142 * Disabling this option makes small I/O goes faster, but is fundamentally
143 * unsafe.  With it turned off we will have to register a global rkey that
144 * allows read and write access to all physical memory.
145 */
146static bool register_always = true;
147module_param(register_always, bool, 0444);
148MODULE_PARM_DESC(register_always,
149	 "Use memory registration even for contiguous memory regions");
150
151static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
152		struct rdma_cm_event *event);
153static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
154static void nvme_rdma_complete_rq(struct request *rq);
155
156static const struct blk_mq_ops nvme_rdma_mq_ops;
157static const struct blk_mq_ops nvme_rdma_admin_mq_ops;
158
159static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
160{
161	return queue - queue->ctrl->queues;
162}
163
164static bool nvme_rdma_poll_queue(struct nvme_rdma_queue *queue)
165{
166	return nvme_rdma_queue_idx(queue) >
167		queue->ctrl->io_queues[HCTX_TYPE_DEFAULT] +
168		queue->ctrl->io_queues[HCTX_TYPE_READ];
169}
170
171static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
172{
173	return queue->cmnd_capsule_len - sizeof(struct nvme_command);
174}
175
176static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
177		size_t capsule_size, enum dma_data_direction dir)
178{
179	ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
180	kfree(qe->data);
181}
182
183static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
184		size_t capsule_size, enum dma_data_direction dir)
185{
186	qe->data = kzalloc(capsule_size, GFP_KERNEL);
187	if (!qe->data)
188		return -ENOMEM;
189
190	qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
191	if (ib_dma_mapping_error(ibdev, qe->dma)) {
192		kfree(qe->data);
193		qe->data = NULL;
194		return -ENOMEM;
195	}
196
197	return 0;
198}
199
200static void nvme_rdma_free_ring(struct ib_device *ibdev,
201		struct nvme_rdma_qe *ring, size_t ib_queue_size,
202		size_t capsule_size, enum dma_data_direction dir)
203{
204	int i;
205
206	for (i = 0; i < ib_queue_size; i++)
207		nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
208	kfree(ring);
209}
210
211static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
212		size_t ib_queue_size, size_t capsule_size,
213		enum dma_data_direction dir)
214{
215	struct nvme_rdma_qe *ring;
216	int i;
217
218	ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
219	if (!ring)
220		return NULL;
221
222	/*
223	 * Bind the CQEs (post recv buffers) DMA mapping to the RDMA queue
224	 * lifetime. It's safe, since any chage in the underlying RDMA device
225	 * will issue error recovery and queue re-creation.
226	 */
227	for (i = 0; i < ib_queue_size; i++) {
228		if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
229			goto out_free_ring;
230	}
231
232	return ring;
233
234out_free_ring:
235	nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
236	return NULL;
237}
238
239static void nvme_rdma_qp_event(struct ib_event *event, void *context)
240{
241	pr_debug("QP event %s (%d)\n",
242		 ib_event_msg(event->event), event->event);
243
244}
245
246static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
247{
248	int ret;
249
250	ret = wait_for_completion_interruptible(&queue->cm_done);
251	if (ret)
252		return ret;
253	WARN_ON_ONCE(queue->cm_error > 0);
254	return queue->cm_error;
255}
256
257static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
258{
259	struct nvme_rdma_device *dev = queue->device;
260	struct ib_qp_init_attr init_attr;
261	int ret;
262
263	memset(&init_attr, 0, sizeof(init_attr));
264	init_attr.event_handler = nvme_rdma_qp_event;
265	/* +1 for drain */
266	init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
267	/* +1 for drain */
268	init_attr.cap.max_recv_wr = queue->queue_size + 1;
269	init_attr.cap.max_recv_sge = 1;
270	init_attr.cap.max_send_sge = 1 + dev->num_inline_segments;
271	init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
272	init_attr.qp_type = IB_QPT_RC;
273	init_attr.send_cq = queue->ib_cq;
274	init_attr.recv_cq = queue->ib_cq;
275	if (queue->pi_support)
276		init_attr.create_flags |= IB_QP_CREATE_INTEGRITY_EN;
277	init_attr.qp_context = queue;
278
279	ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
280
281	queue->qp = queue->cm_id->qp;
282	return ret;
283}
284
285static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
286		struct request *rq, unsigned int hctx_idx)
287{
288	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
289
290	kfree(req->sqe.data);
291}
292
293static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
294		struct request *rq, unsigned int hctx_idx,
295		unsigned int numa_node)
296{
297	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(set->driver_data);
298	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
299	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
300	struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
301
302	nvme_req(rq)->ctrl = &ctrl->ctrl;
303	req->sqe.data = kzalloc(sizeof(struct nvme_command), GFP_KERNEL);
304	if (!req->sqe.data)
305		return -ENOMEM;
306
307	/* metadata nvme_rdma_sgl struct is located after command's data SGL */
308	if (queue->pi_support)
309		req->metadata_sgl = (void *)nvme_req(rq) +
310			sizeof(struct nvme_rdma_request) +
311			NVME_RDMA_DATA_SGL_SIZE;
312
313	req->queue = queue;
314	nvme_req(rq)->cmd = req->sqe.data;
315
316	return 0;
317}
318
319static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
320		unsigned int hctx_idx)
321{
322	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(data);
323	struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
324
325	BUG_ON(hctx_idx >= ctrl->ctrl.queue_count);
326
327	hctx->driver_data = queue;
328	return 0;
329}
330
331static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
332		unsigned int hctx_idx)
333{
334	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(data);
335	struct nvme_rdma_queue *queue = &ctrl->queues[0];
336
337	BUG_ON(hctx_idx != 0);
338
339	hctx->driver_data = queue;
340	return 0;
341}
342
343static void nvme_rdma_free_dev(struct kref *ref)
344{
345	struct nvme_rdma_device *ndev =
346		container_of(ref, struct nvme_rdma_device, ref);
347
348	mutex_lock(&device_list_mutex);
349	list_del(&ndev->entry);
350	mutex_unlock(&device_list_mutex);
351
352	ib_dealloc_pd(ndev->pd);
353	kfree(ndev);
354}
355
356static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
357{
358	kref_put(&dev->ref, nvme_rdma_free_dev);
359}
360
361static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
362{
363	return kref_get_unless_zero(&dev->ref);
364}
365
366static struct nvme_rdma_device *
367nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
368{
369	struct nvme_rdma_device *ndev;
370
371	mutex_lock(&device_list_mutex);
372	list_for_each_entry(ndev, &device_list, entry) {
373		if (ndev->dev->node_guid == cm_id->device->node_guid &&
374		    nvme_rdma_dev_get(ndev))
375			goto out_unlock;
376	}
377
378	ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
379	if (!ndev)
380		goto out_err;
381
382	ndev->dev = cm_id->device;
383	kref_init(&ndev->ref);
384
385	ndev->pd = ib_alloc_pd(ndev->dev,
386		register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
387	if (IS_ERR(ndev->pd))
388		goto out_free_dev;
389
390	if (!(ndev->dev->attrs.device_cap_flags &
391	      IB_DEVICE_MEM_MGT_EXTENSIONS)) {
392		dev_err(&ndev->dev->dev,
393			"Memory registrations not supported.\n");
394		goto out_free_pd;
395	}
396
397	ndev->num_inline_segments = min(NVME_RDMA_MAX_INLINE_SEGMENTS,
398					ndev->dev->attrs.max_send_sge - 1);
399	list_add(&ndev->entry, &device_list);
400out_unlock:
401	mutex_unlock(&device_list_mutex);
402	return ndev;
403
404out_free_pd:
405	ib_dealloc_pd(ndev->pd);
406out_free_dev:
407	kfree(ndev);
408out_err:
409	mutex_unlock(&device_list_mutex);
410	return NULL;
411}
412
413static void nvme_rdma_free_cq(struct nvme_rdma_queue *queue)
414{
415	if (nvme_rdma_poll_queue(queue))
416		ib_free_cq(queue->ib_cq);
417	else
418		ib_cq_pool_put(queue->ib_cq, queue->cq_size);
419}
420
421static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
422{
423	struct nvme_rdma_device *dev;
424	struct ib_device *ibdev;
425
426	if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags))
427		return;
428
429	dev = queue->device;
430	ibdev = dev->dev;
431
432	if (queue->pi_support)
433		ib_mr_pool_destroy(queue->qp, &queue->qp->sig_mrs);
434	ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
435
436	/*
437	 * The cm_id object might have been destroyed during RDMA connection
438	 * establishment error flow to avoid getting other cma events, thus
439	 * the destruction of the QP shouldn't use rdma_cm API.
440	 */
441	ib_destroy_qp(queue->qp);
442	nvme_rdma_free_cq(queue);
443
444	nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
445			sizeof(struct nvme_completion), DMA_FROM_DEVICE);
446
447	nvme_rdma_dev_put(dev);
448}
449
450static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev, bool pi_support)
451{
452	u32 max_page_list_len;
453
454	if (pi_support)
455		max_page_list_len = ibdev->attrs.max_pi_fast_reg_page_list_len;
456	else
457		max_page_list_len = ibdev->attrs.max_fast_reg_page_list_len;
458
459	return min_t(u32, NVME_RDMA_MAX_SEGMENTS, max_page_list_len - 1);
460}
461
462static int nvme_rdma_create_cq(struct ib_device *ibdev,
463		struct nvme_rdma_queue *queue)
464{
465	int ret, comp_vector, idx = nvme_rdma_queue_idx(queue);
466
467	/*
468	 * Spread I/O queues completion vectors according their queue index.
469	 * Admin queues can always go on completion vector 0.
470	 */
471	comp_vector = (idx == 0 ? idx : idx - 1) % ibdev->num_comp_vectors;
472
473	/* Polling queues need direct cq polling context */
474	if (nvme_rdma_poll_queue(queue))
475		queue->ib_cq = ib_alloc_cq(ibdev, queue, queue->cq_size,
476					   comp_vector, IB_POLL_DIRECT);
477	else
478		queue->ib_cq = ib_cq_pool_get(ibdev, queue->cq_size,
479					      comp_vector, IB_POLL_SOFTIRQ);
480
481	if (IS_ERR(queue->ib_cq)) {
482		ret = PTR_ERR(queue->ib_cq);
483		return ret;
484	}
485
486	return 0;
487}
488
489static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
490{
491	struct ib_device *ibdev;
492	const int send_wr_factor = 3;			/* MR, SEND, INV */
493	const int cq_factor = send_wr_factor + 1;	/* + RECV */
494	int ret, pages_per_mr;
495
496	queue->device = nvme_rdma_find_get_device(queue->cm_id);
497	if (!queue->device) {
498		dev_err(queue->cm_id->device->dev.parent,
499			"no client data found!\n");
500		return -ECONNREFUSED;
501	}
502	ibdev = queue->device->dev;
503
504	/* +1 for ib_drain_qp */
505	queue->cq_size = cq_factor * queue->queue_size + 1;
506
507	ret = nvme_rdma_create_cq(ibdev, queue);
508	if (ret)
509		goto out_put_dev;
510
511	ret = nvme_rdma_create_qp(queue, send_wr_factor);
512	if (ret)
513		goto out_destroy_ib_cq;
514
515	queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
516			sizeof(struct nvme_completion), DMA_FROM_DEVICE);
517	if (!queue->rsp_ring) {
518		ret = -ENOMEM;
519		goto out_destroy_qp;
520	}
521
522	/*
523	 * Currently we don't use SG_GAPS MR's so if the first entry is
524	 * misaligned we'll end up using two entries for a single data page,
525	 * so one additional entry is required.
526	 */
527	pages_per_mr = nvme_rdma_get_max_fr_pages(ibdev, queue->pi_support) + 1;
528	ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs,
529			      queue->queue_size,
530			      IB_MR_TYPE_MEM_REG,
531			      pages_per_mr, 0);
532	if (ret) {
533		dev_err(queue->ctrl->ctrl.device,
534			"failed to initialize MR pool sized %d for QID %d\n",
535			queue->queue_size, nvme_rdma_queue_idx(queue));
536		goto out_destroy_ring;
537	}
538
539	if (queue->pi_support) {
540		ret = ib_mr_pool_init(queue->qp, &queue->qp->sig_mrs,
541				      queue->queue_size, IB_MR_TYPE_INTEGRITY,
542				      pages_per_mr, pages_per_mr);
543		if (ret) {
544			dev_err(queue->ctrl->ctrl.device,
545				"failed to initialize PI MR pool sized %d for QID %d\n",
546				queue->queue_size, nvme_rdma_queue_idx(queue));
547			goto out_destroy_mr_pool;
548		}
549	}
550
551	set_bit(NVME_RDMA_Q_TR_READY, &queue->flags);
552
553	return 0;
554
555out_destroy_mr_pool:
556	ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
557out_destroy_ring:
558	nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
559			    sizeof(struct nvme_completion), DMA_FROM_DEVICE);
560out_destroy_qp:
561	rdma_destroy_qp(queue->cm_id);
562out_destroy_ib_cq:
563	nvme_rdma_free_cq(queue);
564out_put_dev:
565	nvme_rdma_dev_put(queue->device);
566	return ret;
567}
568
569static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl,
570		int idx, size_t queue_size)
571{
572	struct nvme_rdma_queue *queue;
573	struct sockaddr *src_addr = NULL;
574	int ret;
575
576	queue = &ctrl->queues[idx];
577	mutex_init(&queue->queue_lock);
578	queue->ctrl = ctrl;
579	if (idx && ctrl->ctrl.max_integrity_segments)
580		queue->pi_support = true;
581	else
582		queue->pi_support = false;
583	init_completion(&queue->cm_done);
584
585	if (idx > 0)
586		queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
587	else
588		queue->cmnd_capsule_len = sizeof(struct nvme_command);
589
590	queue->queue_size = queue_size;
591
592	queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
593			RDMA_PS_TCP, IB_QPT_RC);
594	if (IS_ERR(queue->cm_id)) {
595		dev_info(ctrl->ctrl.device,
596			"failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
597		ret = PTR_ERR(queue->cm_id);
598		goto out_destroy_mutex;
599	}
600
601	if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
602		src_addr = (struct sockaddr *)&ctrl->src_addr;
603
604	queue->cm_error = -ETIMEDOUT;
605	ret = rdma_resolve_addr(queue->cm_id, src_addr,
606			(struct sockaddr *)&ctrl->addr,
607			NVME_RDMA_CM_TIMEOUT_MS);
608	if (ret) {
609		dev_info(ctrl->ctrl.device,
610			"rdma_resolve_addr failed (%d).\n", ret);
611		goto out_destroy_cm_id;
612	}
613
614	ret = nvme_rdma_wait_for_cm(queue);
615	if (ret) {
616		dev_info(ctrl->ctrl.device,
617			"rdma connection establishment failed (%d)\n", ret);
618		goto out_destroy_cm_id;
619	}
620
621	set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags);
622
623	return 0;
624
625out_destroy_cm_id:
626	rdma_destroy_id(queue->cm_id);
627	nvme_rdma_destroy_queue_ib(queue);
628out_destroy_mutex:
629	mutex_destroy(&queue->queue_lock);
630	return ret;
631}
632
633static void __nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
634{
635	rdma_disconnect(queue->cm_id);
636	ib_drain_qp(queue->qp);
637}
638
639static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
640{
641	if (!test_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
642		return;
643
644	mutex_lock(&queue->queue_lock);
645	if (test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags))
646		__nvme_rdma_stop_queue(queue);
647	mutex_unlock(&queue->queue_lock);
648}
649
650static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
651{
652	if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
653		return;
654
655	rdma_destroy_id(queue->cm_id);
656	nvme_rdma_destroy_queue_ib(queue);
657	mutex_destroy(&queue->queue_lock);
658}
659
660static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
661{
662	int i;
663
664	for (i = 1; i < ctrl->ctrl.queue_count; i++)
665		nvme_rdma_free_queue(&ctrl->queues[i]);
666}
667
668static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl)
669{
670	int i;
671
672	for (i = 1; i < ctrl->ctrl.queue_count; i++)
673		nvme_rdma_stop_queue(&ctrl->queues[i]);
674}
675
676static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx)
677{
678	struct nvme_rdma_queue *queue = &ctrl->queues[idx];
679	int ret;
680
681	if (idx)
682		ret = nvmf_connect_io_queue(&ctrl->ctrl, idx);
683	else
684		ret = nvmf_connect_admin_queue(&ctrl->ctrl);
685
686	if (!ret) {
687		set_bit(NVME_RDMA_Q_LIVE, &queue->flags);
688	} else {
689		if (test_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
690			__nvme_rdma_stop_queue(queue);
691		dev_info(ctrl->ctrl.device,
692			"failed to connect queue: %d ret=%d\n", idx, ret);
693	}
694	return ret;
695}
696
697static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl,
698				     int first, int last)
699{
700	int i, ret = 0;
701
702	for (i = first; i < last; i++) {
703		ret = nvme_rdma_start_queue(ctrl, i);
704		if (ret)
705			goto out_stop_queues;
706	}
707
708	return 0;
709
710out_stop_queues:
711	for (i--; i >= first; i--)
712		nvme_rdma_stop_queue(&ctrl->queues[i]);
713	return ret;
714}
715
716static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl)
717{
718	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
719	unsigned int nr_io_queues;
720	int i, ret;
721
722	nr_io_queues = nvmf_nr_io_queues(opts);
723	ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
724	if (ret)
725		return ret;
726
727	if (nr_io_queues == 0) {
728		dev_err(ctrl->ctrl.device,
729			"unable to set any I/O queues\n");
730		return -ENOMEM;
731	}
732
733	ctrl->ctrl.queue_count = nr_io_queues + 1;
734	dev_info(ctrl->ctrl.device,
735		"creating %d I/O queues.\n", nr_io_queues);
736
737	nvmf_set_io_queues(opts, nr_io_queues, ctrl->io_queues);
738	for (i = 1; i < ctrl->ctrl.queue_count; i++) {
739		ret = nvme_rdma_alloc_queue(ctrl, i,
740				ctrl->ctrl.sqsize + 1);
741		if (ret)
742			goto out_free_queues;
743	}
744
745	return 0;
746
747out_free_queues:
748	for (i--; i >= 1; i--)
749		nvme_rdma_free_queue(&ctrl->queues[i]);
750
751	return ret;
752}
753
754static int nvme_rdma_alloc_tag_set(struct nvme_ctrl *ctrl)
755{
756	unsigned int cmd_size = sizeof(struct nvme_rdma_request) +
757				NVME_RDMA_DATA_SGL_SIZE;
758
759	if (ctrl->max_integrity_segments)
760		cmd_size += sizeof(struct nvme_rdma_sgl) +
761			    NVME_RDMA_METADATA_SGL_SIZE;
762
763	return nvme_alloc_io_tag_set(ctrl, &to_rdma_ctrl(ctrl)->tag_set,
764			&nvme_rdma_mq_ops,
765			ctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2,
766			cmd_size);
767}
768
769static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl)
770{
771	if (ctrl->async_event_sqe.data) {
772		cancel_work_sync(&ctrl->ctrl.async_event_work);
773		nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
774				sizeof(struct nvme_command), DMA_TO_DEVICE);
775		ctrl->async_event_sqe.data = NULL;
776	}
777	nvme_rdma_free_queue(&ctrl->queues[0]);
778}
779
780static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl,
781		bool new)
782{
783	bool pi_capable = false;
784	int error;
785
786	error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
787	if (error)
788		return error;
789
790	ctrl->device = ctrl->queues[0].device;
791	ctrl->ctrl.numa_node = ibdev_to_node(ctrl->device->dev);
792
793	/* T10-PI support */
794	if (ctrl->device->dev->attrs.kernel_cap_flags &
795	    IBK_INTEGRITY_HANDOVER)
796		pi_capable = true;
797
798	ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev,
799							pi_capable);
800
801	/*
802	 * Bind the async event SQE DMA mapping to the admin queue lifetime.
803	 * It's safe, since any chage in the underlying RDMA device will issue
804	 * error recovery and queue re-creation.
805	 */
806	error = nvme_rdma_alloc_qe(ctrl->device->dev, &ctrl->async_event_sqe,
807			sizeof(struct nvme_command), DMA_TO_DEVICE);
808	if (error)
809		goto out_free_queue;
810
811	if (new) {
812		error = nvme_alloc_admin_tag_set(&ctrl->ctrl,
813				&ctrl->admin_tag_set, &nvme_rdma_admin_mq_ops,
814				sizeof(struct nvme_rdma_request) +
815				NVME_RDMA_DATA_SGL_SIZE);
816		if (error)
817			goto out_free_async_qe;
818
819	}
820
821	error = nvme_rdma_start_queue(ctrl, 0);
822	if (error)
823		goto out_remove_admin_tag_set;
824
825	error = nvme_enable_ctrl(&ctrl->ctrl);
826	if (error)
827		goto out_stop_queue;
828
829	ctrl->ctrl.max_segments = ctrl->max_fr_pages;
830	ctrl->ctrl.max_hw_sectors = ctrl->max_fr_pages << (ilog2(SZ_4K) - 9);
831	if (pi_capable)
832		ctrl->ctrl.max_integrity_segments = ctrl->max_fr_pages;
833	else
834		ctrl->ctrl.max_integrity_segments = 0;
835
836	nvme_unquiesce_admin_queue(&ctrl->ctrl);
837
838	error = nvme_init_ctrl_finish(&ctrl->ctrl, false);
839	if (error)
840		goto out_quiesce_queue;
841
842	return 0;
843
844out_quiesce_queue:
845	nvme_quiesce_admin_queue(&ctrl->ctrl);
846	blk_sync_queue(ctrl->ctrl.admin_q);
847out_stop_queue:
848	nvme_rdma_stop_queue(&ctrl->queues[0]);
849	nvme_cancel_admin_tagset(&ctrl->ctrl);
850out_remove_admin_tag_set:
851	if (new)
852		nvme_remove_admin_tag_set(&ctrl->ctrl);
853out_free_async_qe:
854	if (ctrl->async_event_sqe.data) {
855		nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
856			sizeof(struct nvme_command), DMA_TO_DEVICE);
857		ctrl->async_event_sqe.data = NULL;
858	}
859out_free_queue:
860	nvme_rdma_free_queue(&ctrl->queues[0]);
861	return error;
862}
863
864static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new)
865{
866	int ret, nr_queues;
867
868	ret = nvme_rdma_alloc_io_queues(ctrl);
869	if (ret)
870		return ret;
871
872	if (new) {
873		ret = nvme_rdma_alloc_tag_set(&ctrl->ctrl);
874		if (ret)
875			goto out_free_io_queues;
876	}
877
878	/*
879	 * Only start IO queues for which we have allocated the tagset
880	 * and limitted it to the available queues. On reconnects, the
881	 * queue number might have changed.
882	 */
883	nr_queues = min(ctrl->tag_set.nr_hw_queues + 1, ctrl->ctrl.queue_count);
884	ret = nvme_rdma_start_io_queues(ctrl, 1, nr_queues);
885	if (ret)
886		goto out_cleanup_tagset;
887
888	if (!new) {
889		nvme_start_freeze(&ctrl->ctrl);
890		nvme_unquiesce_io_queues(&ctrl->ctrl);
891		if (!nvme_wait_freeze_timeout(&ctrl->ctrl, NVME_IO_TIMEOUT)) {
892			/*
893			 * If we timed out waiting for freeze we are likely to
894			 * be stuck.  Fail the controller initialization just
895			 * to be safe.
896			 */
897			ret = -ENODEV;
898			nvme_unfreeze(&ctrl->ctrl);
899			goto out_wait_freeze_timed_out;
900		}
901		blk_mq_update_nr_hw_queues(ctrl->ctrl.tagset,
902			ctrl->ctrl.queue_count - 1);
903		nvme_unfreeze(&ctrl->ctrl);
904	}
905
906	/*
907	 * If the number of queues has increased (reconnect case)
908	 * start all new queues now.
909	 */
910	ret = nvme_rdma_start_io_queues(ctrl, nr_queues,
911					ctrl->tag_set.nr_hw_queues + 1);
912	if (ret)
913		goto out_wait_freeze_timed_out;
914
915	return 0;
916
917out_wait_freeze_timed_out:
918	nvme_quiesce_io_queues(&ctrl->ctrl);
919	nvme_sync_io_queues(&ctrl->ctrl);
920	nvme_rdma_stop_io_queues(ctrl);
921out_cleanup_tagset:
922	nvme_cancel_tagset(&ctrl->ctrl);
923	if (new)
924		nvme_remove_io_tag_set(&ctrl->ctrl);
925out_free_io_queues:
926	nvme_rdma_free_io_queues(ctrl);
927	return ret;
928}
929
930static void nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl *ctrl,
931		bool remove)
932{
933	nvme_quiesce_admin_queue(&ctrl->ctrl);
934	blk_sync_queue(ctrl->ctrl.admin_q);
935	nvme_rdma_stop_queue(&ctrl->queues[0]);
936	nvme_cancel_admin_tagset(&ctrl->ctrl);
937	if (remove) {
938		nvme_unquiesce_admin_queue(&ctrl->ctrl);
939		nvme_remove_admin_tag_set(&ctrl->ctrl);
940	}
941	nvme_rdma_destroy_admin_queue(ctrl);
942}
943
944static void nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl *ctrl,
945		bool remove)
946{
947	if (ctrl->ctrl.queue_count > 1) {
948		nvme_quiesce_io_queues(&ctrl->ctrl);
949		nvme_sync_io_queues(&ctrl->ctrl);
950		nvme_rdma_stop_io_queues(ctrl);
951		nvme_cancel_tagset(&ctrl->ctrl);
952		if (remove) {
953			nvme_unquiesce_io_queues(&ctrl->ctrl);
954			nvme_remove_io_tag_set(&ctrl->ctrl);
955		}
956		nvme_rdma_free_io_queues(ctrl);
957	}
958}
959
960static void nvme_rdma_stop_ctrl(struct nvme_ctrl *nctrl)
961{
962	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
963
964	flush_work(&ctrl->err_work);
965	cancel_delayed_work_sync(&ctrl->reconnect_work);
966}
967
968static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
969{
970	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
971
972	if (list_empty(&ctrl->list))
973		goto free_ctrl;
974
975	mutex_lock(&nvme_rdma_ctrl_mutex);
976	list_del(&ctrl->list);
977	mutex_unlock(&nvme_rdma_ctrl_mutex);
978
979	nvmf_free_options(nctrl->opts);
980free_ctrl:
981	kfree(ctrl->queues);
982	kfree(ctrl);
983}
984
985static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)
986{
987	enum nvme_ctrl_state state = nvme_ctrl_state(&ctrl->ctrl);
988
989	/* If we are resetting/deleting then do nothing */
990	if (state != NVME_CTRL_CONNECTING) {
991		WARN_ON_ONCE(state == NVME_CTRL_NEW || state == NVME_CTRL_LIVE);
992		return;
993	}
994
995	if (nvmf_should_reconnect(&ctrl->ctrl)) {
996		dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
997			ctrl->ctrl.opts->reconnect_delay);
998		queue_delayed_work(nvme_wq, &ctrl->reconnect_work,
999				ctrl->ctrl.opts->reconnect_delay * HZ);
1000	} else {
1001		nvme_delete_ctrl(&ctrl->ctrl);
1002	}
1003}
1004
1005static int nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl *ctrl, bool new)
1006{
1007	int ret;
1008	bool changed;
1009
1010	ret = nvme_rdma_configure_admin_queue(ctrl, new);
1011	if (ret)
1012		return ret;
1013
1014	if (ctrl->ctrl.icdoff) {
1015		ret = -EOPNOTSUPP;
1016		dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
1017		goto destroy_admin;
1018	}
1019
1020	if (!(ctrl->ctrl.sgls & (1 << 2))) {
1021		ret = -EOPNOTSUPP;
1022		dev_err(ctrl->ctrl.device,
1023			"Mandatory keyed sgls are not supported!\n");
1024		goto destroy_admin;
1025	}
1026
1027	if (ctrl->ctrl.opts->queue_size > ctrl->ctrl.sqsize + 1) {
1028		dev_warn(ctrl->ctrl.device,
1029			"queue_size %zu > ctrl sqsize %u, clamping down\n",
1030			ctrl->ctrl.opts->queue_size, ctrl->ctrl.sqsize + 1);
1031	}
1032
1033	if (ctrl->ctrl.sqsize + 1 > NVME_RDMA_MAX_QUEUE_SIZE) {
1034		dev_warn(ctrl->ctrl.device,
1035			"ctrl sqsize %u > max queue size %u, clamping down\n",
1036			ctrl->ctrl.sqsize + 1, NVME_RDMA_MAX_QUEUE_SIZE);
1037		ctrl->ctrl.sqsize = NVME_RDMA_MAX_QUEUE_SIZE - 1;
1038	}
1039
1040	if (ctrl->ctrl.sqsize + 1 > ctrl->ctrl.maxcmd) {
1041		dev_warn(ctrl->ctrl.device,
1042			"sqsize %u > ctrl maxcmd %u, clamping down\n",
1043			ctrl->ctrl.sqsize + 1, ctrl->ctrl.maxcmd);
1044		ctrl->ctrl.sqsize = ctrl->ctrl.maxcmd - 1;
1045	}
1046
1047	if (ctrl->ctrl.sgls & (1 << 20))
1048		ctrl->use_inline_data = true;
1049
1050	if (ctrl->ctrl.queue_count > 1) {
1051		ret = nvme_rdma_configure_io_queues(ctrl, new);
1052		if (ret)
1053			goto destroy_admin;
1054	}
1055
1056	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1057	if (!changed) {
1058		/*
1059		 * state change failure is ok if we started ctrl delete,
1060		 * unless we're during creation of a new controller to
1061		 * avoid races with teardown flow.
1062		 */
1063		enum nvme_ctrl_state state = nvme_ctrl_state(&ctrl->ctrl);
1064
1065		WARN_ON_ONCE(state != NVME_CTRL_DELETING &&
1066			     state != NVME_CTRL_DELETING_NOIO);
1067		WARN_ON_ONCE(new);
1068		ret = -EINVAL;
1069		goto destroy_io;
1070	}
1071
1072	nvme_start_ctrl(&ctrl->ctrl);
1073	return 0;
1074
1075destroy_io:
1076	if (ctrl->ctrl.queue_count > 1) {
1077		nvme_quiesce_io_queues(&ctrl->ctrl);
1078		nvme_sync_io_queues(&ctrl->ctrl);
1079		nvme_rdma_stop_io_queues(ctrl);
1080		nvme_cancel_tagset(&ctrl->ctrl);
1081		if (new)
1082			nvme_remove_io_tag_set(&ctrl->ctrl);
1083		nvme_rdma_free_io_queues(ctrl);
1084	}
1085destroy_admin:
1086	nvme_quiesce_admin_queue(&ctrl->ctrl);
1087	blk_sync_queue(ctrl->ctrl.admin_q);
1088	nvme_rdma_stop_queue(&ctrl->queues[0]);
1089	nvme_cancel_admin_tagset(&ctrl->ctrl);
1090	if (new)
1091		nvme_remove_admin_tag_set(&ctrl->ctrl);
1092	nvme_rdma_destroy_admin_queue(ctrl);
1093	return ret;
1094}
1095
1096static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
1097{
1098	struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
1099			struct nvme_rdma_ctrl, reconnect_work);
1100
1101	++ctrl->ctrl.nr_reconnects;
1102
1103	if (nvme_rdma_setup_ctrl(ctrl, false))
1104		goto requeue;
1105
1106	dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n",
1107			ctrl->ctrl.nr_reconnects);
1108
1109	ctrl->ctrl.nr_reconnects = 0;
1110
1111	return;
1112
1113requeue:
1114	dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n",
1115			ctrl->ctrl.nr_reconnects);
1116	nvme_rdma_reconnect_or_remove(ctrl);
1117}
1118
1119static void nvme_rdma_error_recovery_work(struct work_struct *work)
1120{
1121	struct nvme_rdma_ctrl *ctrl = container_of(work,
1122			struct nvme_rdma_ctrl, err_work);
1123
1124	nvme_stop_keep_alive(&ctrl->ctrl);
1125	flush_work(&ctrl->ctrl.async_event_work);
1126	nvme_rdma_teardown_io_queues(ctrl, false);
1127	nvme_unquiesce_io_queues(&ctrl->ctrl);
1128	nvme_rdma_teardown_admin_queue(ctrl, false);
1129	nvme_unquiesce_admin_queue(&ctrl->ctrl);
1130	nvme_auth_stop(&ctrl->ctrl);
1131
1132	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
1133		/* state change failure is ok if we started ctrl delete */
1134		enum nvme_ctrl_state state = nvme_ctrl_state(&ctrl->ctrl);
1135
1136		WARN_ON_ONCE(state != NVME_CTRL_DELETING &&
1137			     state != NVME_CTRL_DELETING_NOIO);
1138		return;
1139	}
1140
1141	nvme_rdma_reconnect_or_remove(ctrl);
1142}
1143
1144static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
1145{
1146	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
1147		return;
1148
1149	dev_warn(ctrl->ctrl.device, "starting error recovery\n");
1150	queue_work(nvme_reset_wq, &ctrl->err_work);
1151}
1152
1153static void nvme_rdma_end_request(struct nvme_rdma_request *req)
1154{
1155	struct request *rq = blk_mq_rq_from_pdu(req);
1156
1157	if (!refcount_dec_and_test(&req->ref))
1158		return;
1159	if (!nvme_try_complete_req(rq, req->status, req->result))
1160		nvme_rdma_complete_rq(rq);
1161}
1162
1163static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
1164		const char *op)
1165{
1166	struct nvme_rdma_queue *queue = wc->qp->qp_context;
1167	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1168
1169	if (nvme_ctrl_state(&ctrl->ctrl) == NVME_CTRL_LIVE)
1170		dev_info(ctrl->ctrl.device,
1171			     "%s for CQE 0x%p failed with status %s (%d)\n",
1172			     op, wc->wr_cqe,
1173			     ib_wc_status_msg(wc->status), wc->status);
1174	nvme_rdma_error_recovery(ctrl);
1175}
1176
1177static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
1178{
1179	if (unlikely(wc->status != IB_WC_SUCCESS))
1180		nvme_rdma_wr_error(cq, wc, "MEMREG");
1181}
1182
1183static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
1184{
1185	struct nvme_rdma_request *req =
1186		container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe);
1187
1188	if (unlikely(wc->status != IB_WC_SUCCESS))
1189		nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
1190	else
1191		nvme_rdma_end_request(req);
1192}
1193
1194static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
1195		struct nvme_rdma_request *req)
1196{
1197	struct ib_send_wr wr = {
1198		.opcode		    = IB_WR_LOCAL_INV,
1199		.next		    = NULL,
1200		.num_sge	    = 0,
1201		.send_flags	    = IB_SEND_SIGNALED,
1202		.ex.invalidate_rkey = req->mr->rkey,
1203	};
1204
1205	req->reg_cqe.done = nvme_rdma_inv_rkey_done;
1206	wr.wr_cqe = &req->reg_cqe;
1207
1208	return ib_post_send(queue->qp, &wr, NULL);
1209}
1210
1211static void nvme_rdma_dma_unmap_req(struct ib_device *ibdev, struct request *rq)
1212{
1213	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1214
1215	if (blk_integrity_rq(rq)) {
1216		ib_dma_unmap_sg(ibdev, req->metadata_sgl->sg_table.sgl,
1217				req->metadata_sgl->nents, rq_dma_dir(rq));
1218		sg_free_table_chained(&req->metadata_sgl->sg_table,
1219				      NVME_INLINE_METADATA_SG_CNT);
1220	}
1221
1222	ib_dma_unmap_sg(ibdev, req->data_sgl.sg_table.sgl, req->data_sgl.nents,
1223			rq_dma_dir(rq));
1224	sg_free_table_chained(&req->data_sgl.sg_table, NVME_INLINE_SG_CNT);
1225}
1226
1227static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
1228		struct request *rq)
1229{
1230	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1231	struct nvme_rdma_device *dev = queue->device;
1232	struct ib_device *ibdev = dev->dev;
1233	struct list_head *pool = &queue->qp->rdma_mrs;
1234
1235	if (!blk_rq_nr_phys_segments(rq))
1236		return;
1237
1238	if (req->use_sig_mr)
1239		pool = &queue->qp->sig_mrs;
1240
1241	if (req->mr) {
1242		ib_mr_pool_put(queue->qp, pool, req->mr);
1243		req->mr = NULL;
1244	}
1245
1246	nvme_rdma_dma_unmap_req(ibdev, rq);
1247}
1248
1249static int nvme_rdma_set_sg_null(struct nvme_command *c)
1250{
1251	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1252
1253	sg->addr = 0;
1254	put_unaligned_le24(0, sg->length);
1255	put_unaligned_le32(0, sg->key);
1256	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1257	return 0;
1258}
1259
1260static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
1261		struct nvme_rdma_request *req, struct nvme_command *c,
1262		int count)
1263{
1264	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1265	struct ib_sge *sge = &req->sge[1];
1266	struct scatterlist *sgl;
1267	u32 len = 0;
1268	int i;
1269
1270	for_each_sg(req->data_sgl.sg_table.sgl, sgl, count, i) {
1271		sge->addr = sg_dma_address(sgl);
1272		sge->length = sg_dma_len(sgl);
1273		sge->lkey = queue->device->pd->local_dma_lkey;
1274		len += sge->length;
1275		sge++;
1276	}
1277
1278	sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
1279	sg->length = cpu_to_le32(len);
1280	sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
1281
1282	req->num_sge += count;
1283	return 0;
1284}
1285
1286static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
1287		struct nvme_rdma_request *req, struct nvme_command *c)
1288{
1289	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1290
1291	sg->addr = cpu_to_le64(sg_dma_address(req->data_sgl.sg_table.sgl));
1292	put_unaligned_le24(sg_dma_len(req->data_sgl.sg_table.sgl), sg->length);
1293	put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
1294	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1295	return 0;
1296}
1297
1298static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
1299		struct nvme_rdma_request *req, struct nvme_command *c,
1300		int count)
1301{
1302	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1303	int nr;
1304
1305	req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs);
1306	if (WARN_ON_ONCE(!req->mr))
1307		return -EAGAIN;
1308
1309	/*
1310	 * Align the MR to a 4K page size to match the ctrl page size and
1311	 * the block virtual boundary.
1312	 */
1313	nr = ib_map_mr_sg(req->mr, req->data_sgl.sg_table.sgl, count, NULL,
1314			  SZ_4K);
1315	if (unlikely(nr < count)) {
1316		ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1317		req->mr = NULL;
1318		if (nr < 0)
1319			return nr;
1320		return -EINVAL;
1321	}
1322
1323	ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1324
1325	req->reg_cqe.done = nvme_rdma_memreg_done;
1326	memset(&req->reg_wr, 0, sizeof(req->reg_wr));
1327	req->reg_wr.wr.opcode = IB_WR_REG_MR;
1328	req->reg_wr.wr.wr_cqe = &req->reg_cqe;
1329	req->reg_wr.wr.num_sge = 0;
1330	req->reg_wr.mr = req->mr;
1331	req->reg_wr.key = req->mr->rkey;
1332	req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
1333			     IB_ACCESS_REMOTE_READ |
1334			     IB_ACCESS_REMOTE_WRITE;
1335
1336	sg->addr = cpu_to_le64(req->mr->iova);
1337	put_unaligned_le24(req->mr->length, sg->length);
1338	put_unaligned_le32(req->mr->rkey, sg->key);
1339	sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
1340			NVME_SGL_FMT_INVALIDATE;
1341
1342	return 0;
1343}
1344
1345static void nvme_rdma_set_sig_domain(struct blk_integrity *bi,
1346		struct nvme_command *cmd, struct ib_sig_domain *domain,
1347		u16 control, u8 pi_type)
1348{
1349	domain->sig_type = IB_SIG_TYPE_T10_DIF;
1350	domain->sig.dif.bg_type = IB_T10DIF_CRC;
1351	domain->sig.dif.pi_interval = 1 << bi->interval_exp;
1352	domain->sig.dif.ref_tag = le32_to_cpu(cmd->rw.reftag);
1353	if (control & NVME_RW_PRINFO_PRCHK_REF)
1354		domain->sig.dif.ref_remap = true;
1355
1356	domain->sig.dif.app_tag = le16_to_cpu(cmd->rw.apptag);
1357	domain->sig.dif.apptag_check_mask = le16_to_cpu(cmd->rw.appmask);
1358	domain->sig.dif.app_escape = true;
1359	if (pi_type == NVME_NS_DPS_PI_TYPE3)
1360		domain->sig.dif.ref_escape = true;
1361}
1362
1363static void nvme_rdma_set_sig_attrs(struct blk_integrity *bi,
1364		struct nvme_command *cmd, struct ib_sig_attrs *sig_attrs,
1365		u8 pi_type)
1366{
1367	u16 control = le16_to_cpu(cmd->rw.control);
1368
1369	memset(sig_attrs, 0, sizeof(*sig_attrs));
1370	if (control & NVME_RW_PRINFO_PRACT) {
1371		/* for WRITE_INSERT/READ_STRIP no memory domain */
1372		sig_attrs->mem.sig_type = IB_SIG_TYPE_NONE;
1373		nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
1374					 pi_type);
1375		/* Clear the PRACT bit since HCA will generate/verify the PI */
1376		control &= ~NVME_RW_PRINFO_PRACT;
1377		cmd->rw.control = cpu_to_le16(control);
1378	} else {
1379		/* for WRITE_PASS/READ_PASS both wire/memory domains exist */
1380		nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
1381					 pi_type);
1382		nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control,
1383					 pi_type);
1384	}
1385}
1386
1387static void nvme_rdma_set_prot_checks(struct nvme_command *cmd, u8 *mask)
1388{
1389	*mask = 0;
1390	if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_REF)
1391		*mask |= IB_SIG_CHECK_REFTAG;
1392	if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_GUARD)
1393		*mask |= IB_SIG_CHECK_GUARD;
1394}
1395
1396static void nvme_rdma_sig_done(struct ib_cq *cq, struct ib_wc *wc)
1397{
1398	if (unlikely(wc->status != IB_WC_SUCCESS))
1399		nvme_rdma_wr_error(cq, wc, "SIG");
1400}
1401
1402static int nvme_rdma_map_sg_pi(struct nvme_rdma_queue *queue,
1403		struct nvme_rdma_request *req, struct nvme_command *c,
1404		int count, int pi_count)
1405{
1406	struct nvme_rdma_sgl *sgl = &req->data_sgl;
1407	struct ib_reg_wr *wr = &req->reg_wr;
1408	struct request *rq = blk_mq_rq_from_pdu(req);
1409	struct nvme_ns *ns = rq->q->queuedata;
1410	struct bio *bio = rq->bio;
1411	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1412	int nr;
1413
1414	req->mr = ib_mr_pool_get(queue->qp, &queue->qp->sig_mrs);
1415	if (WARN_ON_ONCE(!req->mr))
1416		return -EAGAIN;
1417
1418	nr = ib_map_mr_sg_pi(req->mr, sgl->sg_table.sgl, count, NULL,
1419			     req->metadata_sgl->sg_table.sgl, pi_count, NULL,
1420			     SZ_4K);
1421	if (unlikely(nr))
1422		goto mr_put;
1423
1424	nvme_rdma_set_sig_attrs(blk_get_integrity(bio->bi_bdev->bd_disk), c,
1425				req->mr->sig_attrs, ns->pi_type);
1426	nvme_rdma_set_prot_checks(c, &req->mr->sig_attrs->check_mask);
1427
1428	ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1429
1430	req->reg_cqe.done = nvme_rdma_sig_done;
1431	memset(wr, 0, sizeof(*wr));
1432	wr->wr.opcode = IB_WR_REG_MR_INTEGRITY;
1433	wr->wr.wr_cqe = &req->reg_cqe;
1434	wr->wr.num_sge = 0;
1435	wr->wr.send_flags = 0;
1436	wr->mr = req->mr;
1437	wr->key = req->mr->rkey;
1438	wr->access = IB_ACCESS_LOCAL_WRITE |
1439		     IB_ACCESS_REMOTE_READ |
1440		     IB_ACCESS_REMOTE_WRITE;
1441
1442	sg->addr = cpu_to_le64(req->mr->iova);
1443	put_unaligned_le24(req->mr->length, sg->length);
1444	put_unaligned_le32(req->mr->rkey, sg->key);
1445	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1446
1447	return 0;
1448
1449mr_put:
1450	ib_mr_pool_put(queue->qp, &queue->qp->sig_mrs, req->mr);
1451	req->mr = NULL;
1452	if (nr < 0)
1453		return nr;
1454	return -EINVAL;
1455}
1456
1457static int nvme_rdma_dma_map_req(struct ib_device *ibdev, struct request *rq,
1458		int *count, int *pi_count)
1459{
1460	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1461	int ret;
1462
1463	req->data_sgl.sg_table.sgl = (struct scatterlist *)(req + 1);
1464	ret = sg_alloc_table_chained(&req->data_sgl.sg_table,
1465			blk_rq_nr_phys_segments(rq), req->data_sgl.sg_table.sgl,
1466			NVME_INLINE_SG_CNT);
1467	if (ret)
1468		return -ENOMEM;
1469
1470	req->data_sgl.nents = blk_rq_map_sg(rq->q, rq,
1471					    req->data_sgl.sg_table.sgl);
1472
1473	*count = ib_dma_map_sg(ibdev, req->data_sgl.sg_table.sgl,
1474			       req->data_sgl.nents, rq_dma_dir(rq));
1475	if (unlikely(*count <= 0)) {
1476		ret = -EIO;
1477		goto out_free_table;
1478	}
1479
1480	if (blk_integrity_rq(rq)) {
1481		req->metadata_sgl->sg_table.sgl =
1482			(struct scatterlist *)(req->metadata_sgl + 1);
1483		ret = sg_alloc_table_chained(&req->metadata_sgl->sg_table,
1484				blk_rq_count_integrity_sg(rq->q, rq->bio),
1485				req->metadata_sgl->sg_table.sgl,
1486				NVME_INLINE_METADATA_SG_CNT);
1487		if (unlikely(ret)) {
1488			ret = -ENOMEM;
1489			goto out_unmap_sg;
1490		}
1491
1492		req->metadata_sgl->nents = blk_rq_map_integrity_sg(rq->q,
1493				rq->bio, req->metadata_sgl->sg_table.sgl);
1494		*pi_count = ib_dma_map_sg(ibdev,
1495					  req->metadata_sgl->sg_table.sgl,
1496					  req->metadata_sgl->nents,
1497					  rq_dma_dir(rq));
1498		if (unlikely(*pi_count <= 0)) {
1499			ret = -EIO;
1500			goto out_free_pi_table;
1501		}
1502	}
1503
1504	return 0;
1505
1506out_free_pi_table:
1507	sg_free_table_chained(&req->metadata_sgl->sg_table,
1508			      NVME_INLINE_METADATA_SG_CNT);
1509out_unmap_sg:
1510	ib_dma_unmap_sg(ibdev, req->data_sgl.sg_table.sgl, req->data_sgl.nents,
1511			rq_dma_dir(rq));
1512out_free_table:
1513	sg_free_table_chained(&req->data_sgl.sg_table, NVME_INLINE_SG_CNT);
1514	return ret;
1515}
1516
1517static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
1518		struct request *rq, struct nvme_command *c)
1519{
1520	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1521	struct nvme_rdma_device *dev = queue->device;
1522	struct ib_device *ibdev = dev->dev;
1523	int pi_count = 0;
1524	int count, ret;
1525
1526	req->num_sge = 1;
1527	refcount_set(&req->ref, 2); /* send and recv completions */
1528
1529	c->common.flags |= NVME_CMD_SGL_METABUF;
1530
1531	if (!blk_rq_nr_phys_segments(rq))
1532		return nvme_rdma_set_sg_null(c);
1533
1534	ret = nvme_rdma_dma_map_req(ibdev, rq, &count, &pi_count);
1535	if (unlikely(ret))
1536		return ret;
1537
1538	if (req->use_sig_mr) {
1539		ret = nvme_rdma_map_sg_pi(queue, req, c, count, pi_count);
1540		goto out;
1541	}
1542
1543	if (count <= dev->num_inline_segments) {
1544		if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
1545		    queue->ctrl->use_inline_data &&
1546		    blk_rq_payload_bytes(rq) <=
1547				nvme_rdma_inline_data_size(queue)) {
1548			ret = nvme_rdma_map_sg_inline(queue, req, c, count);
1549			goto out;
1550		}
1551
1552		if (count == 1 && dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
1553			ret = nvme_rdma_map_sg_single(queue, req, c);
1554			goto out;
1555		}
1556	}
1557
1558	ret = nvme_rdma_map_sg_fr(queue, req, c, count);
1559out:
1560	if (unlikely(ret))
1561		goto out_dma_unmap_req;
1562
1563	return 0;
1564
1565out_dma_unmap_req:
1566	nvme_rdma_dma_unmap_req(ibdev, rq);
1567	return ret;
1568}
1569
1570static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
1571{
1572	struct nvme_rdma_qe *qe =
1573		container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1574	struct nvme_rdma_request *req =
1575		container_of(qe, struct nvme_rdma_request, sqe);
1576
1577	if (unlikely(wc->status != IB_WC_SUCCESS))
1578		nvme_rdma_wr_error(cq, wc, "SEND");
1579	else
1580		nvme_rdma_end_request(req);
1581}
1582
1583static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1584		struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1585		struct ib_send_wr *first)
1586{
1587	struct ib_send_wr wr;
1588	int ret;
1589
1590	sge->addr   = qe->dma;
1591	sge->length = sizeof(struct nvme_command);
1592	sge->lkey   = queue->device->pd->local_dma_lkey;
1593
1594	wr.next       = NULL;
1595	wr.wr_cqe     = &qe->cqe;
1596	wr.sg_list    = sge;
1597	wr.num_sge    = num_sge;
1598	wr.opcode     = IB_WR_SEND;
1599	wr.send_flags = IB_SEND_SIGNALED;
1600
1601	if (first)
1602		first->next = &wr;
1603	else
1604		first = &wr;
1605
1606	ret = ib_post_send(queue->qp, first, NULL);
1607	if (unlikely(ret)) {
1608		dev_err(queue->ctrl->ctrl.device,
1609			     "%s failed with error code %d\n", __func__, ret);
1610	}
1611	return ret;
1612}
1613
1614static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1615		struct nvme_rdma_qe *qe)
1616{
1617	struct ib_recv_wr wr;
1618	struct ib_sge list;
1619	int ret;
1620
1621	list.addr   = qe->dma;
1622	list.length = sizeof(struct nvme_completion);
1623	list.lkey   = queue->device->pd->local_dma_lkey;
1624
1625	qe->cqe.done = nvme_rdma_recv_done;
1626
1627	wr.next     = NULL;
1628	wr.wr_cqe   = &qe->cqe;
1629	wr.sg_list  = &list;
1630	wr.num_sge  = 1;
1631
1632	ret = ib_post_recv(queue->qp, &wr, NULL);
1633	if (unlikely(ret)) {
1634		dev_err(queue->ctrl->ctrl.device,
1635			"%s failed with error code %d\n", __func__, ret);
1636	}
1637	return ret;
1638}
1639
1640static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1641{
1642	u32 queue_idx = nvme_rdma_queue_idx(queue);
1643
1644	if (queue_idx == 0)
1645		return queue->ctrl->admin_tag_set.tags[queue_idx];
1646	return queue->ctrl->tag_set.tags[queue_idx - 1];
1647}
1648
1649static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc)
1650{
1651	if (unlikely(wc->status != IB_WC_SUCCESS))
1652		nvme_rdma_wr_error(cq, wc, "ASYNC");
1653}
1654
1655static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg)
1656{
1657	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1658	struct nvme_rdma_queue *queue = &ctrl->queues[0];
1659	struct ib_device *dev = queue->device->dev;
1660	struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1661	struct nvme_command *cmd = sqe->data;
1662	struct ib_sge sge;
1663	int ret;
1664
1665	ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1666
1667	memset(cmd, 0, sizeof(*cmd));
1668	cmd->common.opcode = nvme_admin_async_event;
1669	cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1670	cmd->common.flags |= NVME_CMD_SGL_METABUF;
1671	nvme_rdma_set_sg_null(cmd);
1672
1673	sqe->cqe.done = nvme_rdma_async_done;
1674
1675	ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1676			DMA_TO_DEVICE);
1677
1678	ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL);
1679	WARN_ON_ONCE(ret);
1680}
1681
1682static void nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1683		struct nvme_completion *cqe, struct ib_wc *wc)
1684{
1685	struct request *rq;
1686	struct nvme_rdma_request *req;
1687
1688	rq = nvme_find_rq(nvme_rdma_tagset(queue), cqe->command_id);
1689	if (!rq) {
1690		dev_err(queue->ctrl->ctrl.device,
1691			"got bad command_id %#x on QP %#x\n",
1692			cqe->command_id, queue->qp->qp_num);
1693		nvme_rdma_error_recovery(queue->ctrl);
1694		return;
1695	}
1696	req = blk_mq_rq_to_pdu(rq);
1697
1698	req->status = cqe->status;
1699	req->result = cqe->result;
1700
1701	if (wc->wc_flags & IB_WC_WITH_INVALIDATE) {
1702		if (unlikely(!req->mr ||
1703			     wc->ex.invalidate_rkey != req->mr->rkey)) {
1704			dev_err(queue->ctrl->ctrl.device,
1705				"Bogus remote invalidation for rkey %#x\n",
1706				req->mr ? req->mr->rkey : 0);
1707			nvme_rdma_error_recovery(queue->ctrl);
1708		}
1709	} else if (req->mr) {
1710		int ret;
1711
1712		ret = nvme_rdma_inv_rkey(queue, req);
1713		if (unlikely(ret < 0)) {
1714			dev_err(queue->ctrl->ctrl.device,
1715				"Queueing INV WR for rkey %#x failed (%d)\n",
1716				req->mr->rkey, ret);
1717			nvme_rdma_error_recovery(queue->ctrl);
1718		}
1719		/* the local invalidation completion will end the request */
1720		return;
1721	}
1722
1723	nvme_rdma_end_request(req);
1724}
1725
1726static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1727{
1728	struct nvme_rdma_qe *qe =
1729		container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1730	struct nvme_rdma_queue *queue = wc->qp->qp_context;
1731	struct ib_device *ibdev = queue->device->dev;
1732	struct nvme_completion *cqe = qe->data;
1733	const size_t len = sizeof(struct nvme_completion);
1734
1735	if (unlikely(wc->status != IB_WC_SUCCESS)) {
1736		nvme_rdma_wr_error(cq, wc, "RECV");
1737		return;
1738	}
1739
1740	/* sanity checking for received data length */
1741	if (unlikely(wc->byte_len < len)) {
1742		dev_err(queue->ctrl->ctrl.device,
1743			"Unexpected nvme completion length(%d)\n", wc->byte_len);
1744		nvme_rdma_error_recovery(queue->ctrl);
1745		return;
1746	}
1747
1748	ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1749	/*
1750	 * AEN requests are special as they don't time out and can
1751	 * survive any kind of queue freeze and often don't respond to
1752	 * aborts.  We don't even bother to allocate a struct request
1753	 * for them but rather special case them here.
1754	 */
1755	if (unlikely(nvme_is_aen_req(nvme_rdma_queue_idx(queue),
1756				     cqe->command_id)))
1757		nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
1758				&cqe->result);
1759	else
1760		nvme_rdma_process_nvme_rsp(queue, cqe, wc);
1761	ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1762
1763	nvme_rdma_post_recv(queue, qe);
1764}
1765
1766static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1767{
1768	int ret, i;
1769
1770	for (i = 0; i < queue->queue_size; i++) {
1771		ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1772		if (ret)
1773			return ret;
1774	}
1775
1776	return 0;
1777}
1778
1779static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1780		struct rdma_cm_event *ev)
1781{
1782	struct rdma_cm_id *cm_id = queue->cm_id;
1783	int status = ev->status;
1784	const char *rej_msg;
1785	const struct nvme_rdma_cm_rej *rej_data;
1786	u8 rej_data_len;
1787
1788	rej_msg = rdma_reject_msg(cm_id, status);
1789	rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);
1790
1791	if (rej_data && rej_data_len >= sizeof(u16)) {
1792		u16 sts = le16_to_cpu(rej_data->sts);
1793
1794		dev_err(queue->ctrl->ctrl.device,
1795		      "Connect rejected: status %d (%s) nvme status %d (%s).\n",
1796		      status, rej_msg, sts, nvme_rdma_cm_msg(sts));
1797	} else {
1798		dev_err(queue->ctrl->ctrl.device,
1799			"Connect rejected: status %d (%s).\n", status, rej_msg);
1800	}
1801
1802	return -ECONNRESET;
1803}
1804
1805static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1806{
1807	struct nvme_ctrl *ctrl = &queue->ctrl->ctrl;
1808	int ret;
1809
1810	ret = nvme_rdma_create_queue_ib(queue);
1811	if (ret)
1812		return ret;
1813
1814	if (ctrl->opts->tos >= 0)
1815		rdma_set_service_type(queue->cm_id, ctrl->opts->tos);
1816	ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CM_TIMEOUT_MS);
1817	if (ret) {
1818		dev_err(ctrl->device, "rdma_resolve_route failed (%d).\n",
1819			queue->cm_error);
1820		goto out_destroy_queue;
1821	}
1822
1823	return 0;
1824
1825out_destroy_queue:
1826	nvme_rdma_destroy_queue_ib(queue);
1827	return ret;
1828}
1829
1830static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1831{
1832	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1833	struct rdma_conn_param param = { };
1834	struct nvme_rdma_cm_req priv = { };
1835	int ret;
1836
1837	param.qp_num = queue->qp->qp_num;
1838	param.flow_control = 1;
1839
1840	param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1841	/* maximum retry count */
1842	param.retry_count = 7;
1843	param.rnr_retry_count = 7;
1844	param.private_data = &priv;
1845	param.private_data_len = sizeof(priv);
1846
1847	priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1848	priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1849	/*
1850	 * set the admin queue depth to the minimum size
1851	 * specified by the Fabrics standard.
1852	 */
1853	if (priv.qid == 0) {
1854		priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH);
1855		priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
1856	} else {
1857		/*
1858		 * current interpretation of the fabrics spec
1859		 * is at minimum you make hrqsize sqsize+1, or a
1860		 * 1's based representation of sqsize.
1861		 */
1862		priv.hrqsize = cpu_to_le16(queue->queue_size);
1863		priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1864	}
1865
1866	ret = rdma_connect_locked(queue->cm_id, &param);
1867	if (ret) {
1868		dev_err(ctrl->ctrl.device,
1869			"rdma_connect_locked failed (%d).\n", ret);
1870		return ret;
1871	}
1872
1873	return 0;
1874}
1875
1876static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1877		struct rdma_cm_event *ev)
1878{
1879	struct nvme_rdma_queue *queue = cm_id->context;
1880	int cm_error = 0;
1881
1882	dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1883		rdma_event_msg(ev->event), ev->event,
1884		ev->status, cm_id);
1885
1886	switch (ev->event) {
1887	case RDMA_CM_EVENT_ADDR_RESOLVED:
1888		cm_error = nvme_rdma_addr_resolved(queue);
1889		break;
1890	case RDMA_CM_EVENT_ROUTE_RESOLVED:
1891		cm_error = nvme_rdma_route_resolved(queue);
1892		break;
1893	case RDMA_CM_EVENT_ESTABLISHED:
1894		queue->cm_error = nvme_rdma_conn_established(queue);
1895		/* complete cm_done regardless of success/failure */
1896		complete(&queue->cm_done);
1897		return 0;
1898	case RDMA_CM_EVENT_REJECTED:
1899		cm_error = nvme_rdma_conn_rejected(queue, ev);
1900		break;
1901	case RDMA_CM_EVENT_ROUTE_ERROR:
1902	case RDMA_CM_EVENT_CONNECT_ERROR:
1903	case RDMA_CM_EVENT_UNREACHABLE:
1904	case RDMA_CM_EVENT_ADDR_ERROR:
1905		dev_dbg(queue->ctrl->ctrl.device,
1906			"CM error event %d\n", ev->event);
1907		cm_error = -ECONNRESET;
1908		break;
1909	case RDMA_CM_EVENT_DISCONNECTED:
1910	case RDMA_CM_EVENT_ADDR_CHANGE:
1911	case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1912		dev_dbg(queue->ctrl->ctrl.device,
1913			"disconnect received - connection closed\n");
1914		nvme_rdma_error_recovery(queue->ctrl);
1915		break;
1916	case RDMA_CM_EVENT_DEVICE_REMOVAL:
1917		/* device removal is handled via the ib_client API */
1918		break;
1919	default:
1920		dev_err(queue->ctrl->ctrl.device,
1921			"Unexpected RDMA CM event (%d)\n", ev->event);
1922		nvme_rdma_error_recovery(queue->ctrl);
1923		break;
1924	}
1925
1926	if (cm_error) {
1927		queue->cm_error = cm_error;
1928		complete(&queue->cm_done);
1929	}
1930
1931	return 0;
1932}
1933
1934static void nvme_rdma_complete_timed_out(struct request *rq)
1935{
1936	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1937	struct nvme_rdma_queue *queue = req->queue;
1938
1939	nvme_rdma_stop_queue(queue);
1940	nvmf_complete_timed_out_request(rq);
1941}
1942
1943static enum blk_eh_timer_return nvme_rdma_timeout(struct request *rq)
1944{
1945	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1946	struct nvme_rdma_queue *queue = req->queue;
1947	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1948
1949	dev_warn(ctrl->ctrl.device, "I/O %d QID %d timeout\n",
1950		 rq->tag, nvme_rdma_queue_idx(queue));
1951
1952	if (nvme_ctrl_state(&ctrl->ctrl) != NVME_CTRL_LIVE) {
1953		/*
1954		 * If we are resetting, connecting or deleting we should
1955		 * complete immediately because we may block controller
1956		 * teardown or setup sequence
1957		 * - ctrl disable/shutdown fabrics requests
1958		 * - connect requests
1959		 * - initialization admin requests
1960		 * - I/O requests that entered after unquiescing and
1961		 *   the controller stopped responding
1962		 *
1963		 * All other requests should be cancelled by the error
1964		 * recovery work, so it's fine that we fail it here.
1965		 */
1966		nvme_rdma_complete_timed_out(rq);
1967		return BLK_EH_DONE;
1968	}
1969
1970	/*
1971	 * LIVE state should trigger the normal error recovery which will
1972	 * handle completing this request.
1973	 */
1974	nvme_rdma_error_recovery(ctrl);
1975	return BLK_EH_RESET_TIMER;
1976}
1977
1978static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
1979		const struct blk_mq_queue_data *bd)
1980{
1981	struct nvme_ns *ns = hctx->queue->queuedata;
1982	struct nvme_rdma_queue *queue = hctx->driver_data;
1983	struct request *rq = bd->rq;
1984	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1985	struct nvme_rdma_qe *sqe = &req->sqe;
1986	struct nvme_command *c = nvme_req(rq)->cmd;
1987	struct ib_device *dev;
1988	bool queue_ready = test_bit(NVME_RDMA_Q_LIVE, &queue->flags);
1989	blk_status_t ret;
1990	int err;
1991
1992	WARN_ON_ONCE(rq->tag < 0);
1993
1994	if (!nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
1995		return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq);
1996
1997	dev = queue->device->dev;
1998
1999	req->sqe.dma = ib_dma_map_single(dev, req->sqe.data,
2000					 sizeof(struct nvme_command),
2001					 DMA_TO_DEVICE);
2002	err = ib_dma_mapping_error(dev, req->sqe.dma);
2003	if (unlikely(err))
2004		return BLK_STS_RESOURCE;
2005
2006	ib_dma_sync_single_for_cpu(dev, sqe->dma,
2007			sizeof(struct nvme_command), DMA_TO_DEVICE);
2008
2009	ret = nvme_setup_cmd(ns, rq);
2010	if (ret)
2011		goto unmap_qe;
2012
2013	nvme_start_request(rq);
2014
2015	if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
2016	    queue->pi_support &&
2017	    (c->common.opcode == nvme_cmd_write ||
2018	     c->common.opcode == nvme_cmd_read) &&
2019	    nvme_ns_has_pi(ns))
2020		req->use_sig_mr = true;
2021	else
2022		req->use_sig_mr = false;
2023
2024	err = nvme_rdma_map_data(queue, rq, c);
2025	if (unlikely(err < 0)) {
2026		dev_err(queue->ctrl->ctrl.device,
2027			     "Failed to map data (%d)\n", err);
2028		goto err;
2029	}
2030
2031	sqe->cqe.done = nvme_rdma_send_done;
2032
2033	ib_dma_sync_single_for_device(dev, sqe->dma,
2034			sizeof(struct nvme_command), DMA_TO_DEVICE);
2035
2036	err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
2037			req->mr ? &req->reg_wr.wr : NULL);
2038	if (unlikely(err))
2039		goto err_unmap;
2040
2041	return BLK_STS_OK;
2042
2043err_unmap:
2044	nvme_rdma_unmap_data(queue, rq);
2045err:
2046	if (err == -EIO)
2047		ret = nvme_host_path_error(rq);
2048	else if (err == -ENOMEM || err == -EAGAIN)
2049		ret = BLK_STS_RESOURCE;
2050	else
2051		ret = BLK_STS_IOERR;
2052	nvme_cleanup_cmd(rq);
2053unmap_qe:
2054	ib_dma_unmap_single(dev, req->sqe.dma, sizeof(struct nvme_command),
2055			    DMA_TO_DEVICE);
2056	return ret;
2057}
2058
2059static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
2060{
2061	struct nvme_rdma_queue *queue = hctx->driver_data;
2062
2063	return ib_process_cq_direct(queue->ib_cq, -1);
2064}
2065
2066static void nvme_rdma_check_pi_status(struct nvme_rdma_request *req)
2067{
2068	struct request *rq = blk_mq_rq_from_pdu(req);
2069	struct ib_mr_status mr_status;
2070	int ret;
2071
2072	ret = ib_check_mr_status(req->mr, IB_MR_CHECK_SIG_STATUS, &mr_status);
2073	if (ret) {
2074		pr_err("ib_check_mr_status failed, ret %d\n", ret);
2075		nvme_req(rq)->status = NVME_SC_INVALID_PI;
2076		return;
2077	}
2078
2079	if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) {
2080		switch (mr_status.sig_err.err_type) {
2081		case IB_SIG_BAD_GUARD:
2082			nvme_req(rq)->status = NVME_SC_GUARD_CHECK;
2083			break;
2084		case IB_SIG_BAD_REFTAG:
2085			nvme_req(rq)->status = NVME_SC_REFTAG_CHECK;
2086			break;
2087		case IB_SIG_BAD_APPTAG:
2088			nvme_req(rq)->status = NVME_SC_APPTAG_CHECK;
2089			break;
2090		}
2091		pr_err("PI error found type %d expected 0x%x vs actual 0x%x\n",
2092		       mr_status.sig_err.err_type, mr_status.sig_err.expected,
2093		       mr_status.sig_err.actual);
2094	}
2095}
2096
2097static void nvme_rdma_complete_rq(struct request *rq)
2098{
2099	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
2100	struct nvme_rdma_queue *queue = req->queue;
2101	struct ib_device *ibdev = queue->device->dev;
2102
2103	if (req->use_sig_mr)
2104		nvme_rdma_check_pi_status(req);
2105
2106	nvme_rdma_unmap_data(queue, rq);
2107	ib_dma_unmap_single(ibdev, req->sqe.dma, sizeof(struct nvme_command),
2108			    DMA_TO_DEVICE);
2109	nvme_complete_rq(rq);
2110}
2111
2112static void nvme_rdma_map_queues(struct blk_mq_tag_set *set)
2113{
2114	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(set->driver_data);
2115
2116	nvmf_map_queues(set, &ctrl->ctrl, ctrl->io_queues);
2117}
2118
2119static const struct blk_mq_ops nvme_rdma_mq_ops = {
2120	.queue_rq	= nvme_rdma_queue_rq,
2121	.complete	= nvme_rdma_complete_rq,
2122	.init_request	= nvme_rdma_init_request,
2123	.exit_request	= nvme_rdma_exit_request,
2124	.init_hctx	= nvme_rdma_init_hctx,
2125	.timeout	= nvme_rdma_timeout,
2126	.map_queues	= nvme_rdma_map_queues,
2127	.poll		= nvme_rdma_poll,
2128};
2129
2130static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
2131	.queue_rq	= nvme_rdma_queue_rq,
2132	.complete	= nvme_rdma_complete_rq,
2133	.init_request	= nvme_rdma_init_request,
2134	.exit_request	= nvme_rdma_exit_request,
2135	.init_hctx	= nvme_rdma_init_admin_hctx,
2136	.timeout	= nvme_rdma_timeout,
2137};
2138
2139static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
2140{
2141	nvme_rdma_teardown_io_queues(ctrl, shutdown);
2142	nvme_quiesce_admin_queue(&ctrl->ctrl);
2143	nvme_disable_ctrl(&ctrl->ctrl, shutdown);
2144	nvme_rdma_teardown_admin_queue(ctrl, shutdown);
2145}
2146
2147static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl)
2148{
2149	nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true);
2150}
2151
2152static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
2153{
2154	struct nvme_rdma_ctrl *ctrl =
2155		container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work);
2156
2157	nvme_stop_ctrl(&ctrl->ctrl);
2158	nvme_rdma_shutdown_ctrl(ctrl, false);
2159
2160	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2161		/* state change failure should never happen */
2162		WARN_ON_ONCE(1);
2163		return;
2164	}
2165
2166	if (nvme_rdma_setup_ctrl(ctrl, false))
2167		goto out_fail;
2168
2169	return;
2170
2171out_fail:
2172	++ctrl->ctrl.nr_reconnects;
2173	nvme_rdma_reconnect_or_remove(ctrl);
2174}
2175
2176static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
2177	.name			= "rdma",
2178	.module			= THIS_MODULE,
2179	.flags			= NVME_F_FABRICS | NVME_F_METADATA_SUPPORTED,
2180	.reg_read32		= nvmf_reg_read32,
2181	.reg_read64		= nvmf_reg_read64,
2182	.reg_write32		= nvmf_reg_write32,
2183	.free_ctrl		= nvme_rdma_free_ctrl,
2184	.submit_async_event	= nvme_rdma_submit_async_event,
2185	.delete_ctrl		= nvme_rdma_delete_ctrl,
2186	.get_address		= nvmf_get_address,
2187	.stop_ctrl		= nvme_rdma_stop_ctrl,
2188};
2189
2190/*
2191 * Fails a connection request if it matches an existing controller
2192 * (association) with the same tuple:
2193 * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN>
2194 *
2195 * if local address is not specified in the request, it will match an
2196 * existing controller with all the other parameters the same and no
2197 * local port address specified as well.
2198 *
2199 * The ports don't need to be compared as they are intrinsically
2200 * already matched by the port pointers supplied.
2201 */
2202static bool
2203nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts)
2204{
2205	struct nvme_rdma_ctrl *ctrl;
2206	bool found = false;
2207
2208	mutex_lock(&nvme_rdma_ctrl_mutex);
2209	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2210		found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2211		if (found)
2212			break;
2213	}
2214	mutex_unlock(&nvme_rdma_ctrl_mutex);
2215
2216	return found;
2217}
2218
2219static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
2220		struct nvmf_ctrl_options *opts)
2221{
2222	struct nvme_rdma_ctrl *ctrl;
2223	int ret;
2224	bool changed;
2225
2226	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2227	if (!ctrl)
2228		return ERR_PTR(-ENOMEM);
2229	ctrl->ctrl.opts = opts;
2230	INIT_LIST_HEAD(&ctrl->list);
2231
2232	if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2233		opts->trsvcid =
2234			kstrdup(__stringify(NVME_RDMA_IP_PORT), GFP_KERNEL);
2235		if (!opts->trsvcid) {
2236			ret = -ENOMEM;
2237			goto out_free_ctrl;
2238		}
2239		opts->mask |= NVMF_OPT_TRSVCID;
2240	}
2241
2242	ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2243			opts->traddr, opts->trsvcid, &ctrl->addr);
2244	if (ret) {
2245		pr_err("malformed address passed: %s:%s\n",
2246			opts->traddr, opts->trsvcid);
2247		goto out_free_ctrl;
2248	}
2249
2250	if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2251		ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2252			opts->host_traddr, NULL, &ctrl->src_addr);
2253		if (ret) {
2254			pr_err("malformed src address passed: %s\n",
2255			       opts->host_traddr);
2256			goto out_free_ctrl;
2257		}
2258	}
2259
2260	if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) {
2261		ret = -EALREADY;
2262		goto out_free_ctrl;
2263	}
2264
2265	INIT_DELAYED_WORK(&ctrl->reconnect_work,
2266			nvme_rdma_reconnect_ctrl_work);
2267	INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
2268	INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work);
2269
2270	ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2271				opts->nr_poll_queues + 1;
2272	ctrl->ctrl.sqsize = opts->queue_size - 1;
2273	ctrl->ctrl.kato = opts->kato;
2274
2275	ret = -ENOMEM;
2276	ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2277				GFP_KERNEL);
2278	if (!ctrl->queues)
2279		goto out_free_ctrl;
2280
2281	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
2282				0 /* no quirks, we're perfect! */);
2283	if (ret)
2284		goto out_kfree_queues;
2285
2286	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING);
2287	WARN_ON_ONCE(!changed);
2288
2289	ret = nvme_rdma_setup_ctrl(ctrl, true);
2290	if (ret)
2291		goto out_uninit_ctrl;
2292
2293	dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n",
2294		nvmf_ctrl_subsysnqn(&ctrl->ctrl), &ctrl->addr);
2295
2296	mutex_lock(&nvme_rdma_ctrl_mutex);
2297	list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
2298	mutex_unlock(&nvme_rdma_ctrl_mutex);
2299
2300	return &ctrl->ctrl;
2301
2302out_uninit_ctrl:
2303	nvme_uninit_ctrl(&ctrl->ctrl);
2304	nvme_put_ctrl(&ctrl->ctrl);
2305	if (ret > 0)
2306		ret = -EIO;
2307	return ERR_PTR(ret);
2308out_kfree_queues:
2309	kfree(ctrl->queues);
2310out_free_ctrl:
2311	kfree(ctrl);
2312	return ERR_PTR(ret);
2313}
2314
2315static struct nvmf_transport_ops nvme_rdma_transport = {
2316	.name		= "rdma",
2317	.module		= THIS_MODULE,
2318	.required_opts	= NVMF_OPT_TRADDR,
2319	.allowed_opts	= NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2320			  NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2321			  NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2322			  NVMF_OPT_TOS,
2323	.create_ctrl	= nvme_rdma_create_ctrl,
2324};
2325
2326static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
2327{
2328	struct nvme_rdma_ctrl *ctrl;
2329	struct nvme_rdma_device *ndev;
2330	bool found = false;
2331
2332	mutex_lock(&device_list_mutex);
2333	list_for_each_entry(ndev, &device_list, entry) {
2334		if (ndev->dev == ib_device) {
2335			found = true;
2336			break;
2337		}
2338	}
2339	mutex_unlock(&device_list_mutex);
2340
2341	if (!found)
2342		return;
2343
2344	/* Delete all controllers using this device */
2345	mutex_lock(&nvme_rdma_ctrl_mutex);
2346	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2347		if (ctrl->device->dev != ib_device)
2348			continue;
2349		nvme_delete_ctrl(&ctrl->ctrl);
2350	}
2351	mutex_unlock(&nvme_rdma_ctrl_mutex);
2352
2353	flush_workqueue(nvme_delete_wq);
2354}
2355
2356static struct ib_client nvme_rdma_ib_client = {
2357	.name   = "nvme_rdma",
2358	.remove = nvme_rdma_remove_one
2359};
2360
2361static int __init nvme_rdma_init_module(void)
2362{
2363	int ret;
2364
2365	ret = ib_register_client(&nvme_rdma_ib_client);
2366	if (ret)
2367		return ret;
2368
2369	ret = nvmf_register_transport(&nvme_rdma_transport);
2370	if (ret)
2371		goto err_unreg_client;
2372
2373	return 0;
2374
2375err_unreg_client:
2376	ib_unregister_client(&nvme_rdma_ib_client);
2377	return ret;
2378}
2379
2380static void __exit nvme_rdma_cleanup_module(void)
2381{
2382	struct nvme_rdma_ctrl *ctrl;
2383
2384	nvmf_unregister_transport(&nvme_rdma_transport);
2385	ib_unregister_client(&nvme_rdma_ib_client);
2386
2387	mutex_lock(&nvme_rdma_ctrl_mutex);
2388	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list)
2389		nvme_delete_ctrl(&ctrl->ctrl);
2390	mutex_unlock(&nvme_rdma_ctrl_mutex);
2391	flush_workqueue(nvme_delete_wq);
2392}
2393
2394module_init(nvme_rdma_init_module);
2395module_exit(nvme_rdma_cleanup_module);
2396
2397MODULE_LICENSE("GPL v2");
2398