xref: /kernel/linux/linux-6.6/drivers/nvme/host/pci.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * NVM Express device driver
4 * Copyright (c) 2011-2014, Intel Corporation.
5 */
6
7#include <linux/acpi.h>
8#include <linux/async.h>
9#include <linux/blkdev.h>
10#include <linux/blk-mq.h>
11#include <linux/blk-mq-pci.h>
12#include <linux/blk-integrity.h>
13#include <linux/dmi.h>
14#include <linux/init.h>
15#include <linux/interrupt.h>
16#include <linux/io.h>
17#include <linux/kstrtox.h>
18#include <linux/memremap.h>
19#include <linux/mm.h>
20#include <linux/module.h>
21#include <linux/mutex.h>
22#include <linux/once.h>
23#include <linux/pci.h>
24#include <linux/suspend.h>
25#include <linux/t10-pi.h>
26#include <linux/types.h>
27#include <linux/io-64-nonatomic-lo-hi.h>
28#include <linux/io-64-nonatomic-hi-lo.h>
29#include <linux/sed-opal.h>
30#include <linux/pci-p2pdma.h>
31
32#include "trace.h"
33#include "nvme.h"
34
35#define SQ_SIZE(q)	((q)->q_depth << (q)->sqes)
36#define CQ_SIZE(q)	((q)->q_depth * sizeof(struct nvme_completion))
37
38#define SGES_PER_PAGE	(NVME_CTRL_PAGE_SIZE / sizeof(struct nvme_sgl_desc))
39
40/*
41 * These can be higher, but we need to ensure that any command doesn't
42 * require an sg allocation that needs more than a page of data.
43 */
44#define NVME_MAX_KB_SZ	8192
45#define NVME_MAX_SEGS	128
46#define NVME_MAX_NR_ALLOCATIONS	5
47
48static int use_threaded_interrupts;
49module_param(use_threaded_interrupts, int, 0444);
50
51static bool use_cmb_sqes = true;
52module_param(use_cmb_sqes, bool, 0444);
53MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
54
55static unsigned int max_host_mem_size_mb = 128;
56module_param(max_host_mem_size_mb, uint, 0444);
57MODULE_PARM_DESC(max_host_mem_size_mb,
58	"Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
59
60static unsigned int sgl_threshold = SZ_32K;
61module_param(sgl_threshold, uint, 0644);
62MODULE_PARM_DESC(sgl_threshold,
63		"Use SGLs when average request segment size is larger or equal to "
64		"this size. Use 0 to disable SGLs.");
65
66#define NVME_PCI_MIN_QUEUE_SIZE 2
67#define NVME_PCI_MAX_QUEUE_SIZE 4095
68static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
69static const struct kernel_param_ops io_queue_depth_ops = {
70	.set = io_queue_depth_set,
71	.get = param_get_uint,
72};
73
74static unsigned int io_queue_depth = 1024;
75module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
76MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096");
77
78static int io_queue_count_set(const char *val, const struct kernel_param *kp)
79{
80	unsigned int n;
81	int ret;
82
83	ret = kstrtouint(val, 10, &n);
84	if (ret != 0 || n > num_possible_cpus())
85		return -EINVAL;
86	return param_set_uint(val, kp);
87}
88
89static const struct kernel_param_ops io_queue_count_ops = {
90	.set = io_queue_count_set,
91	.get = param_get_uint,
92};
93
94static unsigned int write_queues;
95module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
96MODULE_PARM_DESC(write_queues,
97	"Number of queues to use for writes. If not set, reads and writes "
98	"will share a queue set.");
99
100static unsigned int poll_queues;
101module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
102MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
103
104static bool noacpi;
105module_param(noacpi, bool, 0444);
106MODULE_PARM_DESC(noacpi, "disable acpi bios quirks");
107
108struct nvme_dev;
109struct nvme_queue;
110
111static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
112static void nvme_delete_io_queues(struct nvme_dev *dev);
113static void nvme_update_attrs(struct nvme_dev *dev);
114
115/*
116 * Represents an NVM Express device.  Each nvme_dev is a PCI function.
117 */
118struct nvme_dev {
119	struct nvme_queue *queues;
120	struct blk_mq_tag_set tagset;
121	struct blk_mq_tag_set admin_tagset;
122	u32 __iomem *dbs;
123	struct device *dev;
124	struct dma_pool *prp_page_pool;
125	struct dma_pool *prp_small_pool;
126	unsigned online_queues;
127	unsigned max_qid;
128	unsigned io_queues[HCTX_MAX_TYPES];
129	unsigned int num_vecs;
130	u32 q_depth;
131	int io_sqes;
132	u32 db_stride;
133	void __iomem *bar;
134	unsigned long bar_mapped_size;
135	struct mutex shutdown_lock;
136	bool subsystem;
137	u64 cmb_size;
138	bool cmb_use_sqes;
139	u32 cmbsz;
140	u32 cmbloc;
141	struct nvme_ctrl ctrl;
142	u32 last_ps;
143	bool hmb;
144
145	mempool_t *iod_mempool;
146
147	/* shadow doorbell buffer support: */
148	__le32 *dbbuf_dbs;
149	dma_addr_t dbbuf_dbs_dma_addr;
150	__le32 *dbbuf_eis;
151	dma_addr_t dbbuf_eis_dma_addr;
152
153	/* host memory buffer support: */
154	u64 host_mem_size;
155	u32 nr_host_mem_descs;
156	dma_addr_t host_mem_descs_dma;
157	struct nvme_host_mem_buf_desc *host_mem_descs;
158	void **host_mem_desc_bufs;
159	unsigned int nr_allocated_queues;
160	unsigned int nr_write_queues;
161	unsigned int nr_poll_queues;
162};
163
164static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
165{
166	return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE,
167			NVME_PCI_MAX_QUEUE_SIZE);
168}
169
170static inline unsigned int sq_idx(unsigned int qid, u32 stride)
171{
172	return qid * 2 * stride;
173}
174
175static inline unsigned int cq_idx(unsigned int qid, u32 stride)
176{
177	return (qid * 2 + 1) * stride;
178}
179
180static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
181{
182	return container_of(ctrl, struct nvme_dev, ctrl);
183}
184
185/*
186 * An NVM Express queue.  Each device has at least two (one for admin
187 * commands and one for I/O commands).
188 */
189struct nvme_queue {
190	struct nvme_dev *dev;
191	spinlock_t sq_lock;
192	void *sq_cmds;
193	 /* only used for poll queues: */
194	spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
195	struct nvme_completion *cqes;
196	dma_addr_t sq_dma_addr;
197	dma_addr_t cq_dma_addr;
198	u32 __iomem *q_db;
199	u32 q_depth;
200	u16 cq_vector;
201	u16 sq_tail;
202	u16 last_sq_tail;
203	u16 cq_head;
204	u16 qid;
205	u8 cq_phase;
206	u8 sqes;
207	unsigned long flags;
208#define NVMEQ_ENABLED		0
209#define NVMEQ_SQ_CMB		1
210#define NVMEQ_DELETE_ERROR	2
211#define NVMEQ_POLLED		3
212	__le32 *dbbuf_sq_db;
213	__le32 *dbbuf_cq_db;
214	__le32 *dbbuf_sq_ei;
215	__le32 *dbbuf_cq_ei;
216	struct completion delete_done;
217};
218
219union nvme_descriptor {
220	struct nvme_sgl_desc	*sg_list;
221	__le64			*prp_list;
222};
223
224/*
225 * The nvme_iod describes the data in an I/O.
226 *
227 * The sg pointer contains the list of PRP/SGL chunk allocations in addition
228 * to the actual struct scatterlist.
229 */
230struct nvme_iod {
231	struct nvme_request req;
232	struct nvme_command cmd;
233	bool aborted;
234	s8 nr_allocations;	/* PRP list pool allocations. 0 means small
235				   pool in use */
236	unsigned int dma_len;	/* length of single DMA segment mapping */
237	dma_addr_t first_dma;
238	dma_addr_t meta_dma;
239	struct sg_table sgt;
240	union nvme_descriptor list[NVME_MAX_NR_ALLOCATIONS];
241};
242
243static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
244{
245	return dev->nr_allocated_queues * 8 * dev->db_stride;
246}
247
248static void nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
249{
250	unsigned int mem_size = nvme_dbbuf_size(dev);
251
252	if (!(dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP))
253		return;
254
255	if (dev->dbbuf_dbs) {
256		/*
257		 * Clear the dbbuf memory so the driver doesn't observe stale
258		 * values from the previous instantiation.
259		 */
260		memset(dev->dbbuf_dbs, 0, mem_size);
261		memset(dev->dbbuf_eis, 0, mem_size);
262		return;
263	}
264
265	dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
266					    &dev->dbbuf_dbs_dma_addr,
267					    GFP_KERNEL);
268	if (!dev->dbbuf_dbs)
269		goto fail;
270	dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
271					    &dev->dbbuf_eis_dma_addr,
272					    GFP_KERNEL);
273	if (!dev->dbbuf_eis)
274		goto fail_free_dbbuf_dbs;
275	return;
276
277fail_free_dbbuf_dbs:
278	dma_free_coherent(dev->dev, mem_size, dev->dbbuf_dbs,
279			  dev->dbbuf_dbs_dma_addr);
280	dev->dbbuf_dbs = NULL;
281fail:
282	dev_warn(dev->dev, "unable to allocate dma for dbbuf\n");
283}
284
285static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
286{
287	unsigned int mem_size = nvme_dbbuf_size(dev);
288
289	if (dev->dbbuf_dbs) {
290		dma_free_coherent(dev->dev, mem_size,
291				  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
292		dev->dbbuf_dbs = NULL;
293	}
294	if (dev->dbbuf_eis) {
295		dma_free_coherent(dev->dev, mem_size,
296				  dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
297		dev->dbbuf_eis = NULL;
298	}
299}
300
301static void nvme_dbbuf_init(struct nvme_dev *dev,
302			    struct nvme_queue *nvmeq, int qid)
303{
304	if (!dev->dbbuf_dbs || !qid)
305		return;
306
307	nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
308	nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
309	nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
310	nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
311}
312
313static void nvme_dbbuf_free(struct nvme_queue *nvmeq)
314{
315	if (!nvmeq->qid)
316		return;
317
318	nvmeq->dbbuf_sq_db = NULL;
319	nvmeq->dbbuf_cq_db = NULL;
320	nvmeq->dbbuf_sq_ei = NULL;
321	nvmeq->dbbuf_cq_ei = NULL;
322}
323
324static void nvme_dbbuf_set(struct nvme_dev *dev)
325{
326	struct nvme_command c = { };
327	unsigned int i;
328
329	if (!dev->dbbuf_dbs)
330		return;
331
332	c.dbbuf.opcode = nvme_admin_dbbuf;
333	c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
334	c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
335
336	if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
337		dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
338		/* Free memory and continue on */
339		nvme_dbbuf_dma_free(dev);
340
341		for (i = 1; i <= dev->online_queues; i++)
342			nvme_dbbuf_free(&dev->queues[i]);
343	}
344}
345
346static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
347{
348	return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
349}
350
351/* Update dbbuf and return true if an MMIO is required */
352static bool nvme_dbbuf_update_and_check_event(u16 value, __le32 *dbbuf_db,
353					      volatile __le32 *dbbuf_ei)
354{
355	if (dbbuf_db) {
356		u16 old_value, event_idx;
357
358		/*
359		 * Ensure that the queue is written before updating
360		 * the doorbell in memory
361		 */
362		wmb();
363
364		old_value = le32_to_cpu(*dbbuf_db);
365		*dbbuf_db = cpu_to_le32(value);
366
367		/*
368		 * Ensure that the doorbell is updated before reading the event
369		 * index from memory.  The controller needs to provide similar
370		 * ordering to ensure the envent index is updated before reading
371		 * the doorbell.
372		 */
373		mb();
374
375		event_idx = le32_to_cpu(*dbbuf_ei);
376		if (!nvme_dbbuf_need_event(event_idx, value, old_value))
377			return false;
378	}
379
380	return true;
381}
382
383/*
384 * Will slightly overestimate the number of pages needed.  This is OK
385 * as it only leads to a small amount of wasted memory for the lifetime of
386 * the I/O.
387 */
388static int nvme_pci_npages_prp(void)
389{
390	unsigned max_bytes = (NVME_MAX_KB_SZ * 1024) + NVME_CTRL_PAGE_SIZE;
391	unsigned nprps = DIV_ROUND_UP(max_bytes, NVME_CTRL_PAGE_SIZE);
392	return DIV_ROUND_UP(8 * nprps, NVME_CTRL_PAGE_SIZE - 8);
393}
394
395static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
396				unsigned int hctx_idx)
397{
398	struct nvme_dev *dev = to_nvme_dev(data);
399	struct nvme_queue *nvmeq = &dev->queues[0];
400
401	WARN_ON(hctx_idx != 0);
402	WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
403
404	hctx->driver_data = nvmeq;
405	return 0;
406}
407
408static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
409			  unsigned int hctx_idx)
410{
411	struct nvme_dev *dev = to_nvme_dev(data);
412	struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
413
414	WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
415	hctx->driver_data = nvmeq;
416	return 0;
417}
418
419static int nvme_pci_init_request(struct blk_mq_tag_set *set,
420		struct request *req, unsigned int hctx_idx,
421		unsigned int numa_node)
422{
423	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
424
425	nvme_req(req)->ctrl = set->driver_data;
426	nvme_req(req)->cmd = &iod->cmd;
427	return 0;
428}
429
430static int queue_irq_offset(struct nvme_dev *dev)
431{
432	/* if we have more than 1 vec, admin queue offsets us by 1 */
433	if (dev->num_vecs > 1)
434		return 1;
435
436	return 0;
437}
438
439static void nvme_pci_map_queues(struct blk_mq_tag_set *set)
440{
441	struct nvme_dev *dev = to_nvme_dev(set->driver_data);
442	int i, qoff, offset;
443
444	offset = queue_irq_offset(dev);
445	for (i = 0, qoff = 0; i < set->nr_maps; i++) {
446		struct blk_mq_queue_map *map = &set->map[i];
447
448		map->nr_queues = dev->io_queues[i];
449		if (!map->nr_queues) {
450			BUG_ON(i == HCTX_TYPE_DEFAULT);
451			continue;
452		}
453
454		/*
455		 * The poll queue(s) doesn't have an IRQ (and hence IRQ
456		 * affinity), so use the regular blk-mq cpu mapping
457		 */
458		map->queue_offset = qoff;
459		if (i != HCTX_TYPE_POLL && offset)
460			blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
461		else
462			blk_mq_map_queues(map);
463		qoff += map->nr_queues;
464		offset += map->nr_queues;
465	}
466}
467
468/*
469 * Write sq tail if we are asked to, or if the next command would wrap.
470 */
471static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
472{
473	if (!write_sq) {
474		u16 next_tail = nvmeq->sq_tail + 1;
475
476		if (next_tail == nvmeq->q_depth)
477			next_tail = 0;
478		if (next_tail != nvmeq->last_sq_tail)
479			return;
480	}
481
482	if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
483			nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
484		writel(nvmeq->sq_tail, nvmeq->q_db);
485	nvmeq->last_sq_tail = nvmeq->sq_tail;
486}
487
488static inline void nvme_sq_copy_cmd(struct nvme_queue *nvmeq,
489				    struct nvme_command *cmd)
490{
491	memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
492		absolute_pointer(cmd), sizeof(*cmd));
493	if (++nvmeq->sq_tail == nvmeq->q_depth)
494		nvmeq->sq_tail = 0;
495}
496
497static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
498{
499	struct nvme_queue *nvmeq = hctx->driver_data;
500
501	spin_lock(&nvmeq->sq_lock);
502	if (nvmeq->sq_tail != nvmeq->last_sq_tail)
503		nvme_write_sq_db(nvmeq, true);
504	spin_unlock(&nvmeq->sq_lock);
505}
506
507static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req,
508				     int nseg)
509{
510	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
511	unsigned int avg_seg_size;
512
513	avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
514
515	if (!nvme_ctrl_sgl_supported(&dev->ctrl))
516		return false;
517	if (!nvmeq->qid)
518		return false;
519	if (!sgl_threshold || avg_seg_size < sgl_threshold)
520		return false;
521	return true;
522}
523
524static void nvme_free_prps(struct nvme_dev *dev, struct request *req)
525{
526	const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
527	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
528	dma_addr_t dma_addr = iod->first_dma;
529	int i;
530
531	for (i = 0; i < iod->nr_allocations; i++) {
532		__le64 *prp_list = iod->list[i].prp_list;
533		dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]);
534
535		dma_pool_free(dev->prp_page_pool, prp_list, dma_addr);
536		dma_addr = next_dma_addr;
537	}
538}
539
540static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
541{
542	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
543
544	if (iod->dma_len) {
545		dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len,
546			       rq_dma_dir(req));
547		return;
548	}
549
550	WARN_ON_ONCE(!iod->sgt.nents);
551
552	dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
553
554	if (iod->nr_allocations == 0)
555		dma_pool_free(dev->prp_small_pool, iod->list[0].sg_list,
556			      iod->first_dma);
557	else if (iod->nr_allocations == 1)
558		dma_pool_free(dev->prp_page_pool, iod->list[0].sg_list,
559			      iod->first_dma);
560	else
561		nvme_free_prps(dev, req);
562	mempool_free(iod->sgt.sgl, dev->iod_mempool);
563}
564
565static void nvme_print_sgl(struct scatterlist *sgl, int nents)
566{
567	int i;
568	struct scatterlist *sg;
569
570	for_each_sg(sgl, sg, nents, i) {
571		dma_addr_t phys = sg_phys(sg);
572		pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
573			"dma_address:%pad dma_length:%d\n",
574			i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
575			sg_dma_len(sg));
576	}
577}
578
579static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
580		struct request *req, struct nvme_rw_command *cmnd)
581{
582	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
583	struct dma_pool *pool;
584	int length = blk_rq_payload_bytes(req);
585	struct scatterlist *sg = iod->sgt.sgl;
586	int dma_len = sg_dma_len(sg);
587	u64 dma_addr = sg_dma_address(sg);
588	int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1);
589	__le64 *prp_list;
590	dma_addr_t prp_dma;
591	int nprps, i;
592
593	length -= (NVME_CTRL_PAGE_SIZE - offset);
594	if (length <= 0) {
595		iod->first_dma = 0;
596		goto done;
597	}
598
599	dma_len -= (NVME_CTRL_PAGE_SIZE - offset);
600	if (dma_len) {
601		dma_addr += (NVME_CTRL_PAGE_SIZE - offset);
602	} else {
603		sg = sg_next(sg);
604		dma_addr = sg_dma_address(sg);
605		dma_len = sg_dma_len(sg);
606	}
607
608	if (length <= NVME_CTRL_PAGE_SIZE) {
609		iod->first_dma = dma_addr;
610		goto done;
611	}
612
613	nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE);
614	if (nprps <= (256 / 8)) {
615		pool = dev->prp_small_pool;
616		iod->nr_allocations = 0;
617	} else {
618		pool = dev->prp_page_pool;
619		iod->nr_allocations = 1;
620	}
621
622	prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
623	if (!prp_list) {
624		iod->nr_allocations = -1;
625		return BLK_STS_RESOURCE;
626	}
627	iod->list[0].prp_list = prp_list;
628	iod->first_dma = prp_dma;
629	i = 0;
630	for (;;) {
631		if (i == NVME_CTRL_PAGE_SIZE >> 3) {
632			__le64 *old_prp_list = prp_list;
633			prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
634			if (!prp_list)
635				goto free_prps;
636			iod->list[iod->nr_allocations++].prp_list = prp_list;
637			prp_list[0] = old_prp_list[i - 1];
638			old_prp_list[i - 1] = cpu_to_le64(prp_dma);
639			i = 1;
640		}
641		prp_list[i++] = cpu_to_le64(dma_addr);
642		dma_len -= NVME_CTRL_PAGE_SIZE;
643		dma_addr += NVME_CTRL_PAGE_SIZE;
644		length -= NVME_CTRL_PAGE_SIZE;
645		if (length <= 0)
646			break;
647		if (dma_len > 0)
648			continue;
649		if (unlikely(dma_len < 0))
650			goto bad_sgl;
651		sg = sg_next(sg);
652		dma_addr = sg_dma_address(sg);
653		dma_len = sg_dma_len(sg);
654	}
655done:
656	cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sgt.sgl));
657	cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
658	return BLK_STS_OK;
659free_prps:
660	nvme_free_prps(dev, req);
661	return BLK_STS_RESOURCE;
662bad_sgl:
663	WARN(DO_ONCE(nvme_print_sgl, iod->sgt.sgl, iod->sgt.nents),
664			"Invalid SGL for payload:%d nents:%d\n",
665			blk_rq_payload_bytes(req), iod->sgt.nents);
666	return BLK_STS_IOERR;
667}
668
669static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
670		struct scatterlist *sg)
671{
672	sge->addr = cpu_to_le64(sg_dma_address(sg));
673	sge->length = cpu_to_le32(sg_dma_len(sg));
674	sge->type = NVME_SGL_FMT_DATA_DESC << 4;
675}
676
677static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
678		dma_addr_t dma_addr, int entries)
679{
680	sge->addr = cpu_to_le64(dma_addr);
681	sge->length = cpu_to_le32(entries * sizeof(*sge));
682	sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
683}
684
685static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
686		struct request *req, struct nvme_rw_command *cmd)
687{
688	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
689	struct dma_pool *pool;
690	struct nvme_sgl_desc *sg_list;
691	struct scatterlist *sg = iod->sgt.sgl;
692	unsigned int entries = iod->sgt.nents;
693	dma_addr_t sgl_dma;
694	int i = 0;
695
696	/* setting the transfer type as SGL */
697	cmd->flags = NVME_CMD_SGL_METABUF;
698
699	if (entries == 1) {
700		nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
701		return BLK_STS_OK;
702	}
703
704	if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
705		pool = dev->prp_small_pool;
706		iod->nr_allocations = 0;
707	} else {
708		pool = dev->prp_page_pool;
709		iod->nr_allocations = 1;
710	}
711
712	sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
713	if (!sg_list) {
714		iod->nr_allocations = -1;
715		return BLK_STS_RESOURCE;
716	}
717
718	iod->list[0].sg_list = sg_list;
719	iod->first_dma = sgl_dma;
720
721	nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
722	do {
723		nvme_pci_sgl_set_data(&sg_list[i++], sg);
724		sg = sg_next(sg);
725	} while (--entries > 0);
726
727	return BLK_STS_OK;
728}
729
730static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
731		struct request *req, struct nvme_rw_command *cmnd,
732		struct bio_vec *bv)
733{
734	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
735	unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
736	unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset;
737
738	iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
739	if (dma_mapping_error(dev->dev, iod->first_dma))
740		return BLK_STS_RESOURCE;
741	iod->dma_len = bv->bv_len;
742
743	cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
744	if (bv->bv_len > first_prp_len)
745		cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
746	else
747		cmnd->dptr.prp2 = 0;
748	return BLK_STS_OK;
749}
750
751static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
752		struct request *req, struct nvme_rw_command *cmnd,
753		struct bio_vec *bv)
754{
755	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
756
757	iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
758	if (dma_mapping_error(dev->dev, iod->first_dma))
759		return BLK_STS_RESOURCE;
760	iod->dma_len = bv->bv_len;
761
762	cmnd->flags = NVME_CMD_SGL_METABUF;
763	cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
764	cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
765	cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
766	return BLK_STS_OK;
767}
768
769static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
770		struct nvme_command *cmnd)
771{
772	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
773	blk_status_t ret = BLK_STS_RESOURCE;
774	int rc;
775
776	if (blk_rq_nr_phys_segments(req) == 1) {
777		struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
778		struct bio_vec bv = req_bvec(req);
779
780		if (!is_pci_p2pdma_page(bv.bv_page)) {
781			if (bv.bv_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2)
782				return nvme_setup_prp_simple(dev, req,
783							     &cmnd->rw, &bv);
784
785			if (nvmeq->qid && sgl_threshold &&
786			    nvme_ctrl_sgl_supported(&dev->ctrl))
787				return nvme_setup_sgl_simple(dev, req,
788							     &cmnd->rw, &bv);
789		}
790	}
791
792	iod->dma_len = 0;
793	iod->sgt.sgl = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
794	if (!iod->sgt.sgl)
795		return BLK_STS_RESOURCE;
796	sg_init_table(iod->sgt.sgl, blk_rq_nr_phys_segments(req));
797	iod->sgt.orig_nents = blk_rq_map_sg(req->q, req, iod->sgt.sgl);
798	if (!iod->sgt.orig_nents)
799		goto out_free_sg;
800
801	rc = dma_map_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req),
802			     DMA_ATTR_NO_WARN);
803	if (rc) {
804		if (rc == -EREMOTEIO)
805			ret = BLK_STS_TARGET;
806		goto out_free_sg;
807	}
808
809	if (nvme_pci_use_sgls(dev, req, iod->sgt.nents))
810		ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw);
811	else
812		ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
813	if (ret != BLK_STS_OK)
814		goto out_unmap_sg;
815	return BLK_STS_OK;
816
817out_unmap_sg:
818	dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
819out_free_sg:
820	mempool_free(iod->sgt.sgl, dev->iod_mempool);
821	return ret;
822}
823
824static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
825		struct nvme_command *cmnd)
826{
827	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
828
829	iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req),
830			rq_dma_dir(req), 0);
831	if (dma_mapping_error(dev->dev, iod->meta_dma))
832		return BLK_STS_IOERR;
833	cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
834	return BLK_STS_OK;
835}
836
837static blk_status_t nvme_prep_rq(struct nvme_dev *dev, struct request *req)
838{
839	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
840	blk_status_t ret;
841
842	iod->aborted = false;
843	iod->nr_allocations = -1;
844	iod->sgt.nents = 0;
845
846	ret = nvme_setup_cmd(req->q->queuedata, req);
847	if (ret)
848		return ret;
849
850	if (blk_rq_nr_phys_segments(req)) {
851		ret = nvme_map_data(dev, req, &iod->cmd);
852		if (ret)
853			goto out_free_cmd;
854	}
855
856	if (blk_integrity_rq(req)) {
857		ret = nvme_map_metadata(dev, req, &iod->cmd);
858		if (ret)
859			goto out_unmap_data;
860	}
861
862	nvme_start_request(req);
863	return BLK_STS_OK;
864out_unmap_data:
865	nvme_unmap_data(dev, req);
866out_free_cmd:
867	nvme_cleanup_cmd(req);
868	return ret;
869}
870
871/*
872 * NOTE: ns is NULL when called on the admin queue.
873 */
874static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
875			 const struct blk_mq_queue_data *bd)
876{
877	struct nvme_queue *nvmeq = hctx->driver_data;
878	struct nvme_dev *dev = nvmeq->dev;
879	struct request *req = bd->rq;
880	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
881	blk_status_t ret;
882
883	/*
884	 * We should not need to do this, but we're still using this to
885	 * ensure we can drain requests on a dying queue.
886	 */
887	if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
888		return BLK_STS_IOERR;
889
890	if (unlikely(!nvme_check_ready(&dev->ctrl, req, true)))
891		return nvme_fail_nonready_command(&dev->ctrl, req);
892
893	ret = nvme_prep_rq(dev, req);
894	if (unlikely(ret))
895		return ret;
896	spin_lock(&nvmeq->sq_lock);
897	nvme_sq_copy_cmd(nvmeq, &iod->cmd);
898	nvme_write_sq_db(nvmeq, bd->last);
899	spin_unlock(&nvmeq->sq_lock);
900	return BLK_STS_OK;
901}
902
903static void nvme_submit_cmds(struct nvme_queue *nvmeq, struct request **rqlist)
904{
905	spin_lock(&nvmeq->sq_lock);
906	while (!rq_list_empty(*rqlist)) {
907		struct request *req = rq_list_pop(rqlist);
908		struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
909
910		nvme_sq_copy_cmd(nvmeq, &iod->cmd);
911	}
912	nvme_write_sq_db(nvmeq, true);
913	spin_unlock(&nvmeq->sq_lock);
914}
915
916static bool nvme_prep_rq_batch(struct nvme_queue *nvmeq, struct request *req)
917{
918	/*
919	 * We should not need to do this, but we're still using this to
920	 * ensure we can drain requests on a dying queue.
921	 */
922	if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
923		return false;
924	if (unlikely(!nvme_check_ready(&nvmeq->dev->ctrl, req, true)))
925		return false;
926
927	req->mq_hctx->tags->rqs[req->tag] = req;
928	return nvme_prep_rq(nvmeq->dev, req) == BLK_STS_OK;
929}
930
931static void nvme_queue_rqs(struct request **rqlist)
932{
933	struct request *req, *next, *prev = NULL;
934	struct request *requeue_list = NULL;
935
936	rq_list_for_each_safe(rqlist, req, next) {
937		struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
938
939		if (!nvme_prep_rq_batch(nvmeq, req)) {
940			/* detach 'req' and add to remainder list */
941			rq_list_move(rqlist, &requeue_list, req, prev);
942
943			req = prev;
944			if (!req)
945				continue;
946		}
947
948		if (!next || req->mq_hctx != next->mq_hctx) {
949			/* detach rest of list, and submit */
950			req->rq_next = NULL;
951			nvme_submit_cmds(nvmeq, rqlist);
952			*rqlist = next;
953			prev = NULL;
954		} else
955			prev = req;
956	}
957
958	*rqlist = requeue_list;
959}
960
961static __always_inline void nvme_pci_unmap_rq(struct request *req)
962{
963	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
964	struct nvme_dev *dev = nvmeq->dev;
965
966	if (blk_integrity_rq(req)) {
967	        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
968
969		dma_unmap_page(dev->dev, iod->meta_dma,
970			       rq_integrity_vec(req)->bv_len, rq_dma_dir(req));
971	}
972
973	if (blk_rq_nr_phys_segments(req))
974		nvme_unmap_data(dev, req);
975}
976
977static void nvme_pci_complete_rq(struct request *req)
978{
979	nvme_pci_unmap_rq(req);
980	nvme_complete_rq(req);
981}
982
983static void nvme_pci_complete_batch(struct io_comp_batch *iob)
984{
985	nvme_complete_batch(iob, nvme_pci_unmap_rq);
986}
987
988/* We read the CQE phase first to check if the rest of the entry is valid */
989static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
990{
991	struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
992
993	return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
994}
995
996static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
997{
998	u16 head = nvmeq->cq_head;
999
1000	if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
1001					      nvmeq->dbbuf_cq_ei))
1002		writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
1003}
1004
1005static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
1006{
1007	if (!nvmeq->qid)
1008		return nvmeq->dev->admin_tagset.tags[0];
1009	return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
1010}
1011
1012static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
1013				   struct io_comp_batch *iob, u16 idx)
1014{
1015	struct nvme_completion *cqe = &nvmeq->cqes[idx];
1016	__u16 command_id = READ_ONCE(cqe->command_id);
1017	struct request *req;
1018
1019	/*
1020	 * AEN requests are special as they don't time out and can
1021	 * survive any kind of queue freeze and often don't respond to
1022	 * aborts.  We don't even bother to allocate a struct request
1023	 * for them but rather special case them here.
1024	 */
1025	if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) {
1026		nvme_complete_async_event(&nvmeq->dev->ctrl,
1027				cqe->status, &cqe->result);
1028		return;
1029	}
1030
1031	req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id);
1032	if (unlikely(!req)) {
1033		dev_warn(nvmeq->dev->ctrl.device,
1034			"invalid id %d completed on queue %d\n",
1035			command_id, le16_to_cpu(cqe->sq_id));
1036		return;
1037	}
1038
1039	trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
1040	if (!nvme_try_complete_req(req, cqe->status, cqe->result) &&
1041	    !blk_mq_add_to_batch(req, iob, nvme_req(req)->status,
1042					nvme_pci_complete_batch))
1043		nvme_pci_complete_rq(req);
1044}
1045
1046static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1047{
1048	u32 tmp = nvmeq->cq_head + 1;
1049
1050	if (tmp == nvmeq->q_depth) {
1051		nvmeq->cq_head = 0;
1052		nvmeq->cq_phase ^= 1;
1053	} else {
1054		nvmeq->cq_head = tmp;
1055	}
1056}
1057
1058static inline int nvme_poll_cq(struct nvme_queue *nvmeq,
1059			       struct io_comp_batch *iob)
1060{
1061	int found = 0;
1062
1063	while (nvme_cqe_pending(nvmeq)) {
1064		found++;
1065		/*
1066		 * load-load control dependency between phase and the rest of
1067		 * the cqe requires a full read memory barrier
1068		 */
1069		dma_rmb();
1070		nvme_handle_cqe(nvmeq, iob, nvmeq->cq_head);
1071		nvme_update_cq_head(nvmeq);
1072	}
1073
1074	if (found)
1075		nvme_ring_cq_doorbell(nvmeq);
1076	return found;
1077}
1078
1079static irqreturn_t nvme_irq(int irq, void *data)
1080{
1081	struct nvme_queue *nvmeq = data;
1082	DEFINE_IO_COMP_BATCH(iob);
1083
1084	if (nvme_poll_cq(nvmeq, &iob)) {
1085		if (!rq_list_empty(iob.req_list))
1086			nvme_pci_complete_batch(&iob);
1087		return IRQ_HANDLED;
1088	}
1089	return IRQ_NONE;
1090}
1091
1092static irqreturn_t nvme_irq_check(int irq, void *data)
1093{
1094	struct nvme_queue *nvmeq = data;
1095
1096	if (nvme_cqe_pending(nvmeq))
1097		return IRQ_WAKE_THREAD;
1098	return IRQ_NONE;
1099}
1100
1101/*
1102 * Poll for completions for any interrupt driven queue
1103 * Can be called from any context.
1104 */
1105static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
1106{
1107	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1108
1109	WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
1110
1111	disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1112	nvme_poll_cq(nvmeq, NULL);
1113	enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1114}
1115
1116static int nvme_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1117{
1118	struct nvme_queue *nvmeq = hctx->driver_data;
1119	bool found;
1120
1121	if (!nvme_cqe_pending(nvmeq))
1122		return 0;
1123
1124	spin_lock(&nvmeq->cq_poll_lock);
1125	found = nvme_poll_cq(nvmeq, iob);
1126	spin_unlock(&nvmeq->cq_poll_lock);
1127
1128	return found;
1129}
1130
1131static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1132{
1133	struct nvme_dev *dev = to_nvme_dev(ctrl);
1134	struct nvme_queue *nvmeq = &dev->queues[0];
1135	struct nvme_command c = { };
1136
1137	c.common.opcode = nvme_admin_async_event;
1138	c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1139
1140	spin_lock(&nvmeq->sq_lock);
1141	nvme_sq_copy_cmd(nvmeq, &c);
1142	nvme_write_sq_db(nvmeq, true);
1143	spin_unlock(&nvmeq->sq_lock);
1144}
1145
1146static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1147{
1148	struct nvme_command c = { };
1149
1150	c.delete_queue.opcode = opcode;
1151	c.delete_queue.qid = cpu_to_le16(id);
1152
1153	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1154}
1155
1156static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1157		struct nvme_queue *nvmeq, s16 vector)
1158{
1159	struct nvme_command c = { };
1160	int flags = NVME_QUEUE_PHYS_CONTIG;
1161
1162	if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1163		flags |= NVME_CQ_IRQ_ENABLED;
1164
1165	/*
1166	 * Note: we (ab)use the fact that the prp fields survive if no data
1167	 * is attached to the request.
1168	 */
1169	c.create_cq.opcode = nvme_admin_create_cq;
1170	c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1171	c.create_cq.cqid = cpu_to_le16(qid);
1172	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1173	c.create_cq.cq_flags = cpu_to_le16(flags);
1174	c.create_cq.irq_vector = cpu_to_le16(vector);
1175
1176	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1177}
1178
1179static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1180						struct nvme_queue *nvmeq)
1181{
1182	struct nvme_ctrl *ctrl = &dev->ctrl;
1183	struct nvme_command c = { };
1184	int flags = NVME_QUEUE_PHYS_CONTIG;
1185
1186	/*
1187	 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1188	 * set. Since URGENT priority is zeroes, it makes all queues
1189	 * URGENT.
1190	 */
1191	if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1192		flags |= NVME_SQ_PRIO_MEDIUM;
1193
1194	/*
1195	 * Note: we (ab)use the fact that the prp fields survive if no data
1196	 * is attached to the request.
1197	 */
1198	c.create_sq.opcode = nvme_admin_create_sq;
1199	c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1200	c.create_sq.sqid = cpu_to_le16(qid);
1201	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1202	c.create_sq.sq_flags = cpu_to_le16(flags);
1203	c.create_sq.cqid = cpu_to_le16(qid);
1204
1205	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1206}
1207
1208static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1209{
1210	return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1211}
1212
1213static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1214{
1215	return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1216}
1217
1218static enum rq_end_io_ret abort_endio(struct request *req, blk_status_t error)
1219{
1220	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1221
1222	dev_warn(nvmeq->dev->ctrl.device,
1223		 "Abort status: 0x%x", nvme_req(req)->status);
1224	atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1225	blk_mq_free_request(req);
1226	return RQ_END_IO_NONE;
1227}
1228
1229static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1230{
1231	/* If true, indicates loss of adapter communication, possibly by a
1232	 * NVMe Subsystem reset.
1233	 */
1234	bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1235
1236	/* If there is a reset/reinit ongoing, we shouldn't reset again. */
1237	switch (nvme_ctrl_state(&dev->ctrl)) {
1238	case NVME_CTRL_RESETTING:
1239	case NVME_CTRL_CONNECTING:
1240		return false;
1241	default:
1242		break;
1243	}
1244
1245	/* We shouldn't reset unless the controller is on fatal error state
1246	 * _or_ if we lost the communication with it.
1247	 */
1248	if (!(csts & NVME_CSTS_CFS) && !nssro)
1249		return false;
1250
1251	return true;
1252}
1253
1254static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1255{
1256	/* Read a config register to help see what died. */
1257	u16 pci_status;
1258	int result;
1259
1260	result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1261				      &pci_status);
1262	if (result == PCIBIOS_SUCCESSFUL)
1263		dev_warn(dev->ctrl.device,
1264			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1265			 csts, pci_status);
1266	else
1267		dev_warn(dev->ctrl.device,
1268			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1269			 csts, result);
1270
1271	if (csts != ~0)
1272		return;
1273
1274	dev_warn(dev->ctrl.device,
1275		 "Does your device have a faulty power saving mode enabled?\n");
1276	dev_warn(dev->ctrl.device,
1277		 "Try \"nvme_core.default_ps_max_latency_us=0 pcie_aspm=off\" and report a bug\n");
1278}
1279
1280static enum blk_eh_timer_return nvme_timeout(struct request *req)
1281{
1282	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1283	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1284	struct nvme_dev *dev = nvmeq->dev;
1285	struct request *abort_req;
1286	struct nvme_command cmd = { };
1287	u32 csts = readl(dev->bar + NVME_REG_CSTS);
1288
1289	/* If PCI error recovery process is happening, we cannot reset or
1290	 * the recovery mechanism will surely fail.
1291	 */
1292	mb();
1293	if (pci_channel_offline(to_pci_dev(dev->dev)))
1294		return BLK_EH_RESET_TIMER;
1295
1296	/*
1297	 * Reset immediately if the controller is failed
1298	 */
1299	if (nvme_should_reset(dev, csts)) {
1300		nvme_warn_reset(dev, csts);
1301		goto disable;
1302	}
1303
1304	/*
1305	 * Did we miss an interrupt?
1306	 */
1307	if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
1308		nvme_poll(req->mq_hctx, NULL);
1309	else
1310		nvme_poll_irqdisable(nvmeq);
1311
1312	if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT) {
1313		dev_warn(dev->ctrl.device,
1314			 "I/O %d QID %d timeout, completion polled\n",
1315			 req->tag, nvmeq->qid);
1316		return BLK_EH_DONE;
1317	}
1318
1319	/*
1320	 * Shutdown immediately if controller times out while starting. The
1321	 * reset work will see the pci device disabled when it gets the forced
1322	 * cancellation error. All outstanding requests are completed on
1323	 * shutdown, so we return BLK_EH_DONE.
1324	 */
1325	switch (nvme_ctrl_state(&dev->ctrl)) {
1326	case NVME_CTRL_CONNECTING:
1327		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1328		fallthrough;
1329	case NVME_CTRL_DELETING:
1330		dev_warn_ratelimited(dev->ctrl.device,
1331			 "I/O %d QID %d timeout, disable controller\n",
1332			 req->tag, nvmeq->qid);
1333		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1334		nvme_dev_disable(dev, true);
1335		return BLK_EH_DONE;
1336	case NVME_CTRL_RESETTING:
1337		return BLK_EH_RESET_TIMER;
1338	default:
1339		break;
1340	}
1341
1342	/*
1343	 * Shutdown the controller immediately and schedule a reset if the
1344	 * command was already aborted once before and still hasn't been
1345	 * returned to the driver, or if this is the admin queue.
1346	 */
1347	if (!nvmeq->qid || iod->aborted) {
1348		dev_warn(dev->ctrl.device,
1349			 "I/O %d QID %d timeout, reset controller\n",
1350			 req->tag, nvmeq->qid);
1351		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1352		goto disable;
1353	}
1354
1355	if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1356		atomic_inc(&dev->ctrl.abort_limit);
1357		return BLK_EH_RESET_TIMER;
1358	}
1359	iod->aborted = true;
1360
1361	cmd.abort.opcode = nvme_admin_abort_cmd;
1362	cmd.abort.cid = nvme_cid(req);
1363	cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1364
1365	dev_warn(nvmeq->dev->ctrl.device,
1366		"I/O %d (%s) QID %d timeout, aborting\n",
1367		 req->tag,
1368		 nvme_get_opcode_str(nvme_req(req)->cmd->common.opcode),
1369		 nvmeq->qid);
1370
1371	abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, nvme_req_op(&cmd),
1372					 BLK_MQ_REQ_NOWAIT);
1373	if (IS_ERR(abort_req)) {
1374		atomic_inc(&dev->ctrl.abort_limit);
1375		return BLK_EH_RESET_TIMER;
1376	}
1377	nvme_init_request(abort_req, &cmd);
1378
1379	abort_req->end_io = abort_endio;
1380	abort_req->end_io_data = NULL;
1381	blk_execute_rq_nowait(abort_req, false);
1382
1383	/*
1384	 * The aborted req will be completed on receiving the abort req.
1385	 * We enable the timer again. If hit twice, it'll cause a device reset,
1386	 * as the device then is in a faulty state.
1387	 */
1388	return BLK_EH_RESET_TIMER;
1389
1390disable:
1391	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING))
1392		return BLK_EH_DONE;
1393
1394	nvme_dev_disable(dev, false);
1395	if (nvme_try_sched_reset(&dev->ctrl))
1396		nvme_unquiesce_io_queues(&dev->ctrl);
1397	return BLK_EH_DONE;
1398}
1399
1400static void nvme_free_queue(struct nvme_queue *nvmeq)
1401{
1402	dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1403				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1404	if (!nvmeq->sq_cmds)
1405		return;
1406
1407	if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1408		pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1409				nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1410	} else {
1411		dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1412				nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1413	}
1414}
1415
1416static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1417{
1418	int i;
1419
1420	for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1421		dev->ctrl.queue_count--;
1422		nvme_free_queue(&dev->queues[i]);
1423	}
1424}
1425
1426static void nvme_suspend_queue(struct nvme_dev *dev, unsigned int qid)
1427{
1428	struct nvme_queue *nvmeq = &dev->queues[qid];
1429
1430	if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1431		return;
1432
1433	/* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1434	mb();
1435
1436	nvmeq->dev->online_queues--;
1437	if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1438		nvme_quiesce_admin_queue(&nvmeq->dev->ctrl);
1439	if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1440		pci_free_irq(to_pci_dev(dev->dev), nvmeq->cq_vector, nvmeq);
1441}
1442
1443static void nvme_suspend_io_queues(struct nvme_dev *dev)
1444{
1445	int i;
1446
1447	for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1448		nvme_suspend_queue(dev, i);
1449}
1450
1451/*
1452 * Called only on a device that has been disabled and after all other threads
1453 * that can check this device's completion queues have synced, except
1454 * nvme_poll(). This is the last chance for the driver to see a natural
1455 * completion before nvme_cancel_request() terminates all incomplete requests.
1456 */
1457static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1458{
1459	int i;
1460
1461	for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
1462		spin_lock(&dev->queues[i].cq_poll_lock);
1463		nvme_poll_cq(&dev->queues[i], NULL);
1464		spin_unlock(&dev->queues[i].cq_poll_lock);
1465	}
1466}
1467
1468static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1469				int entry_size)
1470{
1471	int q_depth = dev->q_depth;
1472	unsigned q_size_aligned = roundup(q_depth * entry_size,
1473					  NVME_CTRL_PAGE_SIZE);
1474
1475	if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1476		u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1477
1478		mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE);
1479		q_depth = div_u64(mem_per_q, entry_size);
1480
1481		/*
1482		 * Ensure the reduced q_depth is above some threshold where it
1483		 * would be better to map queues in system memory with the
1484		 * original depth
1485		 */
1486		if (q_depth < 64)
1487			return -ENOMEM;
1488	}
1489
1490	return q_depth;
1491}
1492
1493static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1494				int qid)
1495{
1496	struct pci_dev *pdev = to_pci_dev(dev->dev);
1497
1498	if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1499		nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1500		if (nvmeq->sq_cmds) {
1501			nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1502							nvmeq->sq_cmds);
1503			if (nvmeq->sq_dma_addr) {
1504				set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1505				return 0;
1506			}
1507
1508			pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1509		}
1510	}
1511
1512	nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1513				&nvmeq->sq_dma_addr, GFP_KERNEL);
1514	if (!nvmeq->sq_cmds)
1515		return -ENOMEM;
1516	return 0;
1517}
1518
1519static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1520{
1521	struct nvme_queue *nvmeq = &dev->queues[qid];
1522
1523	if (dev->ctrl.queue_count > qid)
1524		return 0;
1525
1526	nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1527	nvmeq->q_depth = depth;
1528	nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1529					 &nvmeq->cq_dma_addr, GFP_KERNEL);
1530	if (!nvmeq->cqes)
1531		goto free_nvmeq;
1532
1533	if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1534		goto free_cqdma;
1535
1536	nvmeq->dev = dev;
1537	spin_lock_init(&nvmeq->sq_lock);
1538	spin_lock_init(&nvmeq->cq_poll_lock);
1539	nvmeq->cq_head = 0;
1540	nvmeq->cq_phase = 1;
1541	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1542	nvmeq->qid = qid;
1543	dev->ctrl.queue_count++;
1544
1545	return 0;
1546
1547 free_cqdma:
1548	dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1549			  nvmeq->cq_dma_addr);
1550 free_nvmeq:
1551	return -ENOMEM;
1552}
1553
1554static int queue_request_irq(struct nvme_queue *nvmeq)
1555{
1556	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1557	int nr = nvmeq->dev->ctrl.instance;
1558
1559	if (use_threaded_interrupts) {
1560		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1561				nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1562	} else {
1563		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1564				NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1565	}
1566}
1567
1568static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1569{
1570	struct nvme_dev *dev = nvmeq->dev;
1571
1572	nvmeq->sq_tail = 0;
1573	nvmeq->last_sq_tail = 0;
1574	nvmeq->cq_head = 0;
1575	nvmeq->cq_phase = 1;
1576	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1577	memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
1578	nvme_dbbuf_init(dev, nvmeq, qid);
1579	dev->online_queues++;
1580	wmb(); /* ensure the first interrupt sees the initialization */
1581}
1582
1583/*
1584 * Try getting shutdown_lock while setting up IO queues.
1585 */
1586static int nvme_setup_io_queues_trylock(struct nvme_dev *dev)
1587{
1588	/*
1589	 * Give up if the lock is being held by nvme_dev_disable.
1590	 */
1591	if (!mutex_trylock(&dev->shutdown_lock))
1592		return -ENODEV;
1593
1594	/*
1595	 * Controller is in wrong state, fail early.
1596	 */
1597	if (nvme_ctrl_state(&dev->ctrl) != NVME_CTRL_CONNECTING) {
1598		mutex_unlock(&dev->shutdown_lock);
1599		return -ENODEV;
1600	}
1601
1602	return 0;
1603}
1604
1605static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1606{
1607	struct nvme_dev *dev = nvmeq->dev;
1608	int result;
1609	u16 vector = 0;
1610
1611	clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1612
1613	/*
1614	 * A queue's vector matches the queue identifier unless the controller
1615	 * has only one vector available.
1616	 */
1617	if (!polled)
1618		vector = dev->num_vecs == 1 ? 0 : qid;
1619	else
1620		set_bit(NVMEQ_POLLED, &nvmeq->flags);
1621
1622	result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1623	if (result)
1624		return result;
1625
1626	result = adapter_alloc_sq(dev, qid, nvmeq);
1627	if (result < 0)
1628		return result;
1629	if (result)
1630		goto release_cq;
1631
1632	nvmeq->cq_vector = vector;
1633
1634	result = nvme_setup_io_queues_trylock(dev);
1635	if (result)
1636		return result;
1637	nvme_init_queue(nvmeq, qid);
1638	if (!polled) {
1639		result = queue_request_irq(nvmeq);
1640		if (result < 0)
1641			goto release_sq;
1642	}
1643
1644	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1645	mutex_unlock(&dev->shutdown_lock);
1646	return result;
1647
1648release_sq:
1649	dev->online_queues--;
1650	mutex_unlock(&dev->shutdown_lock);
1651	adapter_delete_sq(dev, qid);
1652release_cq:
1653	adapter_delete_cq(dev, qid);
1654	return result;
1655}
1656
1657static const struct blk_mq_ops nvme_mq_admin_ops = {
1658	.queue_rq	= nvme_queue_rq,
1659	.complete	= nvme_pci_complete_rq,
1660	.init_hctx	= nvme_admin_init_hctx,
1661	.init_request	= nvme_pci_init_request,
1662	.timeout	= nvme_timeout,
1663};
1664
1665static const struct blk_mq_ops nvme_mq_ops = {
1666	.queue_rq	= nvme_queue_rq,
1667	.queue_rqs	= nvme_queue_rqs,
1668	.complete	= nvme_pci_complete_rq,
1669	.commit_rqs	= nvme_commit_rqs,
1670	.init_hctx	= nvme_init_hctx,
1671	.init_request	= nvme_pci_init_request,
1672	.map_queues	= nvme_pci_map_queues,
1673	.timeout	= nvme_timeout,
1674	.poll		= nvme_poll,
1675};
1676
1677static void nvme_dev_remove_admin(struct nvme_dev *dev)
1678{
1679	if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1680		/*
1681		 * If the controller was reset during removal, it's possible
1682		 * user requests may be waiting on a stopped queue. Start the
1683		 * queue to flush these to completion.
1684		 */
1685		nvme_unquiesce_admin_queue(&dev->ctrl);
1686		nvme_remove_admin_tag_set(&dev->ctrl);
1687	}
1688}
1689
1690static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1691{
1692	return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1693}
1694
1695static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1696{
1697	struct pci_dev *pdev = to_pci_dev(dev->dev);
1698
1699	if (size <= dev->bar_mapped_size)
1700		return 0;
1701	if (size > pci_resource_len(pdev, 0))
1702		return -ENOMEM;
1703	if (dev->bar)
1704		iounmap(dev->bar);
1705	dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1706	if (!dev->bar) {
1707		dev->bar_mapped_size = 0;
1708		return -ENOMEM;
1709	}
1710	dev->bar_mapped_size = size;
1711	dev->dbs = dev->bar + NVME_REG_DBS;
1712
1713	return 0;
1714}
1715
1716static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1717{
1718	int result;
1719	u32 aqa;
1720	struct nvme_queue *nvmeq;
1721
1722	result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1723	if (result < 0)
1724		return result;
1725
1726	dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1727				NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1728
1729	if (dev->subsystem &&
1730	    (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1731		writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1732
1733	/*
1734	 * If the device has been passed off to us in an enabled state, just
1735	 * clear the enabled bit.  The spec says we should set the 'shutdown
1736	 * notification bits', but doing so may cause the device to complete
1737	 * commands to the admin queue ... and we don't know what memory that
1738	 * might be pointing at!
1739	 */
1740	result = nvme_disable_ctrl(&dev->ctrl, false);
1741	if (result < 0)
1742		return result;
1743
1744	result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1745	if (result)
1746		return result;
1747
1748	dev->ctrl.numa_node = dev_to_node(dev->dev);
1749
1750	nvmeq = &dev->queues[0];
1751	aqa = nvmeq->q_depth - 1;
1752	aqa |= aqa << 16;
1753
1754	writel(aqa, dev->bar + NVME_REG_AQA);
1755	lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1756	lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1757
1758	result = nvme_enable_ctrl(&dev->ctrl);
1759	if (result)
1760		return result;
1761
1762	nvmeq->cq_vector = 0;
1763	nvme_init_queue(nvmeq, 0);
1764	result = queue_request_irq(nvmeq);
1765	if (result) {
1766		dev->online_queues--;
1767		return result;
1768	}
1769
1770	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1771	return result;
1772}
1773
1774static int nvme_create_io_queues(struct nvme_dev *dev)
1775{
1776	unsigned i, max, rw_queues;
1777	int ret = 0;
1778
1779	for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1780		if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1781			ret = -ENOMEM;
1782			break;
1783		}
1784	}
1785
1786	max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1787	if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1788		rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1789				dev->io_queues[HCTX_TYPE_READ];
1790	} else {
1791		rw_queues = max;
1792	}
1793
1794	for (i = dev->online_queues; i <= max; i++) {
1795		bool polled = i > rw_queues;
1796
1797		ret = nvme_create_queue(&dev->queues[i], i, polled);
1798		if (ret)
1799			break;
1800	}
1801
1802	/*
1803	 * Ignore failing Create SQ/CQ commands, we can continue with less
1804	 * than the desired amount of queues, and even a controller without
1805	 * I/O queues can still be used to issue admin commands.  This might
1806	 * be useful to upgrade a buggy firmware for example.
1807	 */
1808	return ret >= 0 ? 0 : ret;
1809}
1810
1811static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1812{
1813	u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1814
1815	return 1ULL << (12 + 4 * szu);
1816}
1817
1818static u32 nvme_cmb_size(struct nvme_dev *dev)
1819{
1820	return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1821}
1822
1823static void nvme_map_cmb(struct nvme_dev *dev)
1824{
1825	u64 size, offset;
1826	resource_size_t bar_size;
1827	struct pci_dev *pdev = to_pci_dev(dev->dev);
1828	int bar;
1829
1830	if (dev->cmb_size)
1831		return;
1832
1833	if (NVME_CAP_CMBS(dev->ctrl.cap))
1834		writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC);
1835
1836	dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1837	if (!dev->cmbsz)
1838		return;
1839	dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1840
1841	size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1842	offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1843	bar = NVME_CMB_BIR(dev->cmbloc);
1844	bar_size = pci_resource_len(pdev, bar);
1845
1846	if (offset > bar_size)
1847		return;
1848
1849	/*
1850	 * Tell the controller about the host side address mapping the CMB,
1851	 * and enable CMB decoding for the NVMe 1.4+ scheme:
1852	 */
1853	if (NVME_CAP_CMBS(dev->ctrl.cap)) {
1854		hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE |
1855			     (pci_bus_address(pdev, bar) + offset),
1856			     dev->bar + NVME_REG_CMBMSC);
1857	}
1858
1859	/*
1860	 * Controllers may support a CMB size larger than their BAR,
1861	 * for example, due to being behind a bridge. Reduce the CMB to
1862	 * the reported size of the BAR
1863	 */
1864	if (size > bar_size - offset)
1865		size = bar_size - offset;
1866
1867	if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1868		dev_warn(dev->ctrl.device,
1869			 "failed to register the CMB\n");
1870		return;
1871	}
1872
1873	dev->cmb_size = size;
1874	dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1875
1876	if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1877			(NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1878		pci_p2pmem_publish(pdev, true);
1879
1880	nvme_update_attrs(dev);
1881}
1882
1883static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1884{
1885	u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT;
1886	u64 dma_addr = dev->host_mem_descs_dma;
1887	struct nvme_command c = { };
1888	int ret;
1889
1890	c.features.opcode	= nvme_admin_set_features;
1891	c.features.fid		= cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1892	c.features.dword11	= cpu_to_le32(bits);
1893	c.features.dword12	= cpu_to_le32(host_mem_size);
1894	c.features.dword13	= cpu_to_le32(lower_32_bits(dma_addr));
1895	c.features.dword14	= cpu_to_le32(upper_32_bits(dma_addr));
1896	c.features.dword15	= cpu_to_le32(dev->nr_host_mem_descs);
1897
1898	ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1899	if (ret) {
1900		dev_warn(dev->ctrl.device,
1901			 "failed to set host mem (err %d, flags %#x).\n",
1902			 ret, bits);
1903	} else
1904		dev->hmb = bits & NVME_HOST_MEM_ENABLE;
1905
1906	return ret;
1907}
1908
1909static void nvme_free_host_mem(struct nvme_dev *dev)
1910{
1911	int i;
1912
1913	for (i = 0; i < dev->nr_host_mem_descs; i++) {
1914		struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1915		size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE;
1916
1917		dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
1918			       le64_to_cpu(desc->addr),
1919			       DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1920	}
1921
1922	kfree(dev->host_mem_desc_bufs);
1923	dev->host_mem_desc_bufs = NULL;
1924	dma_free_coherent(dev->dev,
1925			dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1926			dev->host_mem_descs, dev->host_mem_descs_dma);
1927	dev->host_mem_descs = NULL;
1928	dev->nr_host_mem_descs = 0;
1929}
1930
1931static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1932		u32 chunk_size)
1933{
1934	struct nvme_host_mem_buf_desc *descs;
1935	u32 max_entries, len;
1936	dma_addr_t descs_dma;
1937	int i = 0;
1938	void **bufs;
1939	u64 size, tmp;
1940
1941	tmp = (preferred + chunk_size - 1);
1942	do_div(tmp, chunk_size);
1943	max_entries = tmp;
1944
1945	if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1946		max_entries = dev->ctrl.hmmaxd;
1947
1948	descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs),
1949				   &descs_dma, GFP_KERNEL);
1950	if (!descs)
1951		goto out;
1952
1953	bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1954	if (!bufs)
1955		goto out_free_descs;
1956
1957	for (size = 0; size < preferred && i < max_entries; size += len) {
1958		dma_addr_t dma_addr;
1959
1960		len = min_t(u64, chunk_size, preferred - size);
1961		bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1962				DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1963		if (!bufs[i])
1964			break;
1965
1966		descs[i].addr = cpu_to_le64(dma_addr);
1967		descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE);
1968		i++;
1969	}
1970
1971	if (!size)
1972		goto out_free_bufs;
1973
1974	dev->nr_host_mem_descs = i;
1975	dev->host_mem_size = size;
1976	dev->host_mem_descs = descs;
1977	dev->host_mem_descs_dma = descs_dma;
1978	dev->host_mem_desc_bufs = bufs;
1979	return 0;
1980
1981out_free_bufs:
1982	while (--i >= 0) {
1983		size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE;
1984
1985		dma_free_attrs(dev->dev, size, bufs[i],
1986			       le64_to_cpu(descs[i].addr),
1987			       DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1988	}
1989
1990	kfree(bufs);
1991out_free_descs:
1992	dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
1993			descs_dma);
1994out:
1995	dev->host_mem_descs = NULL;
1996	return -ENOMEM;
1997}
1998
1999static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
2000{
2001	u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
2002	u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
2003	u64 chunk_size;
2004
2005	/* start big and work our way down */
2006	for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) {
2007		if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
2008			if (!min || dev->host_mem_size >= min)
2009				return 0;
2010			nvme_free_host_mem(dev);
2011		}
2012	}
2013
2014	return -ENOMEM;
2015}
2016
2017static int nvme_setup_host_mem(struct nvme_dev *dev)
2018{
2019	u64 max = (u64)max_host_mem_size_mb * SZ_1M;
2020	u64 preferred = (u64)dev->ctrl.hmpre * 4096;
2021	u64 min = (u64)dev->ctrl.hmmin * 4096;
2022	u32 enable_bits = NVME_HOST_MEM_ENABLE;
2023	int ret;
2024
2025	if (!dev->ctrl.hmpre)
2026		return 0;
2027
2028	preferred = min(preferred, max);
2029	if (min > max) {
2030		dev_warn(dev->ctrl.device,
2031			"min host memory (%lld MiB) above limit (%d MiB).\n",
2032			min >> ilog2(SZ_1M), max_host_mem_size_mb);
2033		nvme_free_host_mem(dev);
2034		return 0;
2035	}
2036
2037	/*
2038	 * If we already have a buffer allocated check if we can reuse it.
2039	 */
2040	if (dev->host_mem_descs) {
2041		if (dev->host_mem_size >= min)
2042			enable_bits |= NVME_HOST_MEM_RETURN;
2043		else
2044			nvme_free_host_mem(dev);
2045	}
2046
2047	if (!dev->host_mem_descs) {
2048		if (nvme_alloc_host_mem(dev, min, preferred)) {
2049			dev_warn(dev->ctrl.device,
2050				"failed to allocate host memory buffer.\n");
2051			return 0; /* controller must work without HMB */
2052		}
2053
2054		dev_info(dev->ctrl.device,
2055			"allocated %lld MiB host memory buffer.\n",
2056			dev->host_mem_size >> ilog2(SZ_1M));
2057	}
2058
2059	ret = nvme_set_host_mem(dev, enable_bits);
2060	if (ret)
2061		nvme_free_host_mem(dev);
2062	return ret;
2063}
2064
2065static ssize_t cmb_show(struct device *dev, struct device_attribute *attr,
2066		char *buf)
2067{
2068	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2069
2070	return sysfs_emit(buf, "cmbloc : x%08x\ncmbsz  : x%08x\n",
2071		       ndev->cmbloc, ndev->cmbsz);
2072}
2073static DEVICE_ATTR_RO(cmb);
2074
2075static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr,
2076		char *buf)
2077{
2078	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2079
2080	return sysfs_emit(buf, "%u\n", ndev->cmbloc);
2081}
2082static DEVICE_ATTR_RO(cmbloc);
2083
2084static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr,
2085		char *buf)
2086{
2087	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2088
2089	return sysfs_emit(buf, "%u\n", ndev->cmbsz);
2090}
2091static DEVICE_ATTR_RO(cmbsz);
2092
2093static ssize_t hmb_show(struct device *dev, struct device_attribute *attr,
2094			char *buf)
2095{
2096	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2097
2098	return sysfs_emit(buf, "%d\n", ndev->hmb);
2099}
2100
2101static ssize_t hmb_store(struct device *dev, struct device_attribute *attr,
2102			 const char *buf, size_t count)
2103{
2104	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2105	bool new;
2106	int ret;
2107
2108	if (kstrtobool(buf, &new) < 0)
2109		return -EINVAL;
2110
2111	if (new == ndev->hmb)
2112		return count;
2113
2114	if (new) {
2115		ret = nvme_setup_host_mem(ndev);
2116	} else {
2117		ret = nvme_set_host_mem(ndev, 0);
2118		if (!ret)
2119			nvme_free_host_mem(ndev);
2120	}
2121
2122	if (ret < 0)
2123		return ret;
2124
2125	return count;
2126}
2127static DEVICE_ATTR_RW(hmb);
2128
2129static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj,
2130		struct attribute *a, int n)
2131{
2132	struct nvme_ctrl *ctrl =
2133		dev_get_drvdata(container_of(kobj, struct device, kobj));
2134	struct nvme_dev *dev = to_nvme_dev(ctrl);
2135
2136	if (a == &dev_attr_cmb.attr ||
2137	    a == &dev_attr_cmbloc.attr ||
2138	    a == &dev_attr_cmbsz.attr) {
2139	    	if (!dev->cmbsz)
2140			return 0;
2141	}
2142	if (a == &dev_attr_hmb.attr && !ctrl->hmpre)
2143		return 0;
2144
2145	return a->mode;
2146}
2147
2148static struct attribute *nvme_pci_attrs[] = {
2149	&dev_attr_cmb.attr,
2150	&dev_attr_cmbloc.attr,
2151	&dev_attr_cmbsz.attr,
2152	&dev_attr_hmb.attr,
2153	NULL,
2154};
2155
2156static const struct attribute_group nvme_pci_dev_attrs_group = {
2157	.attrs		= nvme_pci_attrs,
2158	.is_visible	= nvme_pci_attrs_are_visible,
2159};
2160
2161static const struct attribute_group *nvme_pci_dev_attr_groups[] = {
2162	&nvme_dev_attrs_group,
2163	&nvme_pci_dev_attrs_group,
2164	NULL,
2165};
2166
2167static void nvme_update_attrs(struct nvme_dev *dev)
2168{
2169	sysfs_update_group(&dev->ctrl.device->kobj, &nvme_pci_dev_attrs_group);
2170}
2171
2172/*
2173 * nirqs is the number of interrupts available for write and read
2174 * queues. The core already reserved an interrupt for the admin queue.
2175 */
2176static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2177{
2178	struct nvme_dev *dev = affd->priv;
2179	unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
2180
2181	/*
2182	 * If there is no interrupt available for queues, ensure that
2183	 * the default queue is set to 1. The affinity set size is
2184	 * also set to one, but the irq core ignores it for this case.
2185	 *
2186	 * If only one interrupt is available or 'write_queue' == 0, combine
2187	 * write and read queues.
2188	 *
2189	 * If 'write_queues' > 0, ensure it leaves room for at least one read
2190	 * queue.
2191	 */
2192	if (!nrirqs) {
2193		nrirqs = 1;
2194		nr_read_queues = 0;
2195	} else if (nrirqs == 1 || !nr_write_queues) {
2196		nr_read_queues = 0;
2197	} else if (nr_write_queues >= nrirqs) {
2198		nr_read_queues = 1;
2199	} else {
2200		nr_read_queues = nrirqs - nr_write_queues;
2201	}
2202
2203	dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2204	affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2205	dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2206	affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2207	affd->nr_sets = nr_read_queues ? 2 : 1;
2208}
2209
2210static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2211{
2212	struct pci_dev *pdev = to_pci_dev(dev->dev);
2213	struct irq_affinity affd = {
2214		.pre_vectors	= 1,
2215		.calc_sets	= nvme_calc_irq_sets,
2216		.priv		= dev,
2217	};
2218	unsigned int irq_queues, poll_queues;
2219
2220	/*
2221	 * Poll queues don't need interrupts, but we need at least one I/O queue
2222	 * left over for non-polled I/O.
2223	 */
2224	poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1);
2225	dev->io_queues[HCTX_TYPE_POLL] = poll_queues;
2226
2227	/*
2228	 * Initialize for the single interrupt case, will be updated in
2229	 * nvme_calc_irq_sets().
2230	 */
2231	dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2232	dev->io_queues[HCTX_TYPE_READ] = 0;
2233
2234	/*
2235	 * We need interrupts for the admin queue and each non-polled I/O queue,
2236	 * but some Apple controllers require all queues to use the first
2237	 * vector.
2238	 */
2239	irq_queues = 1;
2240	if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR))
2241		irq_queues += (nr_io_queues - poll_queues);
2242	return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues,
2243			      PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
2244}
2245
2246static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
2247{
2248	/*
2249	 * If tags are shared with admin queue (Apple bug), then
2250	 * make sure we only use one IO queue.
2251	 */
2252	if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2253		return 1;
2254	return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues;
2255}
2256
2257static int nvme_setup_io_queues(struct nvme_dev *dev)
2258{
2259	struct nvme_queue *adminq = &dev->queues[0];
2260	struct pci_dev *pdev = to_pci_dev(dev->dev);
2261	unsigned int nr_io_queues;
2262	unsigned long size;
2263	int result;
2264
2265	/*
2266	 * Sample the module parameters once at reset time so that we have
2267	 * stable values to work with.
2268	 */
2269	dev->nr_write_queues = write_queues;
2270	dev->nr_poll_queues = poll_queues;
2271
2272	nr_io_queues = dev->nr_allocated_queues - 1;
2273	result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2274	if (result < 0)
2275		return result;
2276
2277	if (nr_io_queues == 0)
2278		return 0;
2279
2280	/*
2281	 * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions
2282	 * from set to unset. If there is a window to it is truely freed,
2283	 * pci_free_irq_vectors() jumping into this window will crash.
2284	 * And take lock to avoid racing with pci_free_irq_vectors() in
2285	 * nvme_dev_disable() path.
2286	 */
2287	result = nvme_setup_io_queues_trylock(dev);
2288	if (result)
2289		return result;
2290	if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2291		pci_free_irq(pdev, 0, adminq);
2292
2293	if (dev->cmb_use_sqes) {
2294		result = nvme_cmb_qdepth(dev, nr_io_queues,
2295				sizeof(struct nvme_command));
2296		if (result > 0) {
2297			dev->q_depth = result;
2298			dev->ctrl.sqsize = result - 1;
2299		} else {
2300			dev->cmb_use_sqes = false;
2301		}
2302	}
2303
2304	do {
2305		size = db_bar_size(dev, nr_io_queues);
2306		result = nvme_remap_bar(dev, size);
2307		if (!result)
2308			break;
2309		if (!--nr_io_queues) {
2310			result = -ENOMEM;
2311			goto out_unlock;
2312		}
2313	} while (1);
2314	adminq->q_db = dev->dbs;
2315
2316 retry:
2317	/* Deregister the admin queue's interrupt */
2318	if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2319		pci_free_irq(pdev, 0, adminq);
2320
2321	/*
2322	 * If we enable msix early due to not intx, disable it again before
2323	 * setting up the full range we need.
2324	 */
2325	pci_free_irq_vectors(pdev);
2326
2327	result = nvme_setup_irqs(dev, nr_io_queues);
2328	if (result <= 0) {
2329		result = -EIO;
2330		goto out_unlock;
2331	}
2332
2333	dev->num_vecs = result;
2334	result = max(result - 1, 1);
2335	dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2336
2337	/*
2338	 * Should investigate if there's a performance win from allocating
2339	 * more queues than interrupt vectors; it might allow the submission
2340	 * path to scale better, even if the receive path is limited by the
2341	 * number of interrupts.
2342	 */
2343	result = queue_request_irq(adminq);
2344	if (result)
2345		goto out_unlock;
2346	set_bit(NVMEQ_ENABLED, &adminq->flags);
2347	mutex_unlock(&dev->shutdown_lock);
2348
2349	result = nvme_create_io_queues(dev);
2350	if (result || dev->online_queues < 2)
2351		return result;
2352
2353	if (dev->online_queues - 1 < dev->max_qid) {
2354		nr_io_queues = dev->online_queues - 1;
2355		nvme_delete_io_queues(dev);
2356		result = nvme_setup_io_queues_trylock(dev);
2357		if (result)
2358			return result;
2359		nvme_suspend_io_queues(dev);
2360		goto retry;
2361	}
2362	dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2363					dev->io_queues[HCTX_TYPE_DEFAULT],
2364					dev->io_queues[HCTX_TYPE_READ],
2365					dev->io_queues[HCTX_TYPE_POLL]);
2366	return 0;
2367out_unlock:
2368	mutex_unlock(&dev->shutdown_lock);
2369	return result;
2370}
2371
2372static enum rq_end_io_ret nvme_del_queue_end(struct request *req,
2373					     blk_status_t error)
2374{
2375	struct nvme_queue *nvmeq = req->end_io_data;
2376
2377	blk_mq_free_request(req);
2378	complete(&nvmeq->delete_done);
2379	return RQ_END_IO_NONE;
2380}
2381
2382static enum rq_end_io_ret nvme_del_cq_end(struct request *req,
2383					  blk_status_t error)
2384{
2385	struct nvme_queue *nvmeq = req->end_io_data;
2386
2387	if (error)
2388		set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2389
2390	return nvme_del_queue_end(req, error);
2391}
2392
2393static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2394{
2395	struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2396	struct request *req;
2397	struct nvme_command cmd = { };
2398
2399	cmd.delete_queue.opcode = opcode;
2400	cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2401
2402	req = blk_mq_alloc_request(q, nvme_req_op(&cmd), BLK_MQ_REQ_NOWAIT);
2403	if (IS_ERR(req))
2404		return PTR_ERR(req);
2405	nvme_init_request(req, &cmd);
2406
2407	if (opcode == nvme_admin_delete_cq)
2408		req->end_io = nvme_del_cq_end;
2409	else
2410		req->end_io = nvme_del_queue_end;
2411	req->end_io_data = nvmeq;
2412
2413	init_completion(&nvmeq->delete_done);
2414	blk_execute_rq_nowait(req, false);
2415	return 0;
2416}
2417
2418static bool __nvme_delete_io_queues(struct nvme_dev *dev, u8 opcode)
2419{
2420	int nr_queues = dev->online_queues - 1, sent = 0;
2421	unsigned long timeout;
2422
2423 retry:
2424	timeout = NVME_ADMIN_TIMEOUT;
2425	while (nr_queues > 0) {
2426		if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2427			break;
2428		nr_queues--;
2429		sent++;
2430	}
2431	while (sent) {
2432		struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2433
2434		timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2435				timeout);
2436		if (timeout == 0)
2437			return false;
2438
2439		sent--;
2440		if (nr_queues)
2441			goto retry;
2442	}
2443	return true;
2444}
2445
2446static void nvme_delete_io_queues(struct nvme_dev *dev)
2447{
2448	if (__nvme_delete_io_queues(dev, nvme_admin_delete_sq))
2449		__nvme_delete_io_queues(dev, nvme_admin_delete_cq);
2450}
2451
2452static unsigned int nvme_pci_nr_maps(struct nvme_dev *dev)
2453{
2454	if (dev->io_queues[HCTX_TYPE_POLL])
2455		return 3;
2456	if (dev->io_queues[HCTX_TYPE_READ])
2457		return 2;
2458	return 1;
2459}
2460
2461static void nvme_pci_update_nr_queues(struct nvme_dev *dev)
2462{
2463	blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2464	/* free previously allocated queues that are no longer usable */
2465	nvme_free_queues(dev, dev->online_queues);
2466}
2467
2468static int nvme_pci_enable(struct nvme_dev *dev)
2469{
2470	int result = -ENOMEM;
2471	struct pci_dev *pdev = to_pci_dev(dev->dev);
2472
2473	if (pci_enable_device_mem(pdev))
2474		return result;
2475
2476	pci_set_master(pdev);
2477
2478	if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2479		result = -ENODEV;
2480		goto disable;
2481	}
2482
2483	/*
2484	 * Some devices and/or platforms don't advertise or work with INTx
2485	 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2486	 * adjust this later.
2487	 */
2488	result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2489	if (result < 0)
2490		goto disable;
2491
2492	dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2493
2494	dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2495				io_queue_depth);
2496	dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2497	dev->dbs = dev->bar + 4096;
2498
2499	/*
2500	 * Some Apple controllers require a non-standard SQE size.
2501	 * Interestingly they also seem to ignore the CC:IOSQES register
2502	 * so we don't bother updating it here.
2503	 */
2504	if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2505		dev->io_sqes = 7;
2506	else
2507		dev->io_sqes = NVME_NVM_IOSQES;
2508
2509	/*
2510	 * Temporary fix for the Apple controller found in the MacBook8,1 and
2511	 * some MacBook7,1 to avoid controller resets and data loss.
2512	 */
2513	if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2514		dev->q_depth = 2;
2515		dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2516			"set queue depth=%u to work around controller resets\n",
2517			dev->q_depth);
2518	} else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2519		   (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2520		   NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2521		dev->q_depth = 64;
2522		dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2523                        "set queue depth=%u\n", dev->q_depth);
2524	}
2525
2526	/*
2527	 * Controllers with the shared tags quirk need the IO queue to be
2528	 * big enough so that we get 32 tags for the admin queue
2529	 */
2530	if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2531	    (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2532		dev->q_depth = NVME_AQ_DEPTH + 2;
2533		dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2534			 dev->q_depth);
2535	}
2536	dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
2537
2538	nvme_map_cmb(dev);
2539
2540	pci_save_state(pdev);
2541
2542	result = nvme_pci_configure_admin_queue(dev);
2543	if (result)
2544		goto free_irq;
2545	return result;
2546
2547 free_irq:
2548	pci_free_irq_vectors(pdev);
2549 disable:
2550	pci_disable_device(pdev);
2551	return result;
2552}
2553
2554static void nvme_dev_unmap(struct nvme_dev *dev)
2555{
2556	if (dev->bar)
2557		iounmap(dev->bar);
2558	pci_release_mem_regions(to_pci_dev(dev->dev));
2559}
2560
2561static bool nvme_pci_ctrl_is_dead(struct nvme_dev *dev)
2562{
2563	struct pci_dev *pdev = to_pci_dev(dev->dev);
2564	u32 csts;
2565
2566	if (!pci_is_enabled(pdev) || !pci_device_is_present(pdev))
2567		return true;
2568	if (pdev->error_state != pci_channel_io_normal)
2569		return true;
2570
2571	csts = readl(dev->bar + NVME_REG_CSTS);
2572	return (csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY);
2573}
2574
2575static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2576{
2577	enum nvme_ctrl_state state = nvme_ctrl_state(&dev->ctrl);
2578	struct pci_dev *pdev = to_pci_dev(dev->dev);
2579	bool dead;
2580
2581	mutex_lock(&dev->shutdown_lock);
2582	dead = nvme_pci_ctrl_is_dead(dev);
2583	if (state == NVME_CTRL_LIVE || state == NVME_CTRL_RESETTING) {
2584		if (pci_is_enabled(pdev))
2585			nvme_start_freeze(&dev->ctrl);
2586		/*
2587		 * Give the controller a chance to complete all entered requests
2588		 * if doing a safe shutdown.
2589		 */
2590		if (!dead && shutdown)
2591			nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2592	}
2593
2594	nvme_quiesce_io_queues(&dev->ctrl);
2595
2596	if (!dead && dev->ctrl.queue_count > 0) {
2597		nvme_delete_io_queues(dev);
2598		nvme_disable_ctrl(&dev->ctrl, shutdown);
2599		nvme_poll_irqdisable(&dev->queues[0]);
2600	}
2601	nvme_suspend_io_queues(dev);
2602	nvme_suspend_queue(dev, 0);
2603	pci_free_irq_vectors(pdev);
2604	if (pci_is_enabled(pdev))
2605		pci_disable_device(pdev);
2606	nvme_reap_pending_cqes(dev);
2607
2608	nvme_cancel_tagset(&dev->ctrl);
2609	nvme_cancel_admin_tagset(&dev->ctrl);
2610
2611	/*
2612	 * The driver will not be starting up queues again if shutting down so
2613	 * must flush all entered requests to their failed completion to avoid
2614	 * deadlocking blk-mq hot-cpu notifier.
2615	 */
2616	if (shutdown) {
2617		nvme_unquiesce_io_queues(&dev->ctrl);
2618		if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2619			nvme_unquiesce_admin_queue(&dev->ctrl);
2620	}
2621	mutex_unlock(&dev->shutdown_lock);
2622}
2623
2624static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
2625{
2626	if (!nvme_wait_reset(&dev->ctrl))
2627		return -EBUSY;
2628	nvme_dev_disable(dev, shutdown);
2629	return 0;
2630}
2631
2632static int nvme_setup_prp_pools(struct nvme_dev *dev)
2633{
2634	dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2635						NVME_CTRL_PAGE_SIZE,
2636						NVME_CTRL_PAGE_SIZE, 0);
2637	if (!dev->prp_page_pool)
2638		return -ENOMEM;
2639
2640	/* Optimisation for I/Os between 4k and 128k */
2641	dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2642						256, 256, 0);
2643	if (!dev->prp_small_pool) {
2644		dma_pool_destroy(dev->prp_page_pool);
2645		return -ENOMEM;
2646	}
2647	return 0;
2648}
2649
2650static void nvme_release_prp_pools(struct nvme_dev *dev)
2651{
2652	dma_pool_destroy(dev->prp_page_pool);
2653	dma_pool_destroy(dev->prp_small_pool);
2654}
2655
2656static int nvme_pci_alloc_iod_mempool(struct nvme_dev *dev)
2657{
2658	size_t alloc_size = sizeof(struct scatterlist) * NVME_MAX_SEGS;
2659
2660	dev->iod_mempool = mempool_create_node(1,
2661			mempool_kmalloc, mempool_kfree,
2662			(void *)alloc_size, GFP_KERNEL,
2663			dev_to_node(dev->dev));
2664	if (!dev->iod_mempool)
2665		return -ENOMEM;
2666	return 0;
2667}
2668
2669static void nvme_free_tagset(struct nvme_dev *dev)
2670{
2671	if (dev->tagset.tags)
2672		nvme_remove_io_tag_set(&dev->ctrl);
2673	dev->ctrl.tagset = NULL;
2674}
2675
2676/* pairs with nvme_pci_alloc_dev */
2677static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2678{
2679	struct nvme_dev *dev = to_nvme_dev(ctrl);
2680
2681	nvme_free_tagset(dev);
2682	put_device(dev->dev);
2683	kfree(dev->queues);
2684	kfree(dev);
2685}
2686
2687static void nvme_reset_work(struct work_struct *work)
2688{
2689	struct nvme_dev *dev =
2690		container_of(work, struct nvme_dev, ctrl.reset_work);
2691	bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2692	int result;
2693
2694	if (nvme_ctrl_state(&dev->ctrl) != NVME_CTRL_RESETTING) {
2695		dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n",
2696			 dev->ctrl.state);
2697		result = -ENODEV;
2698		goto out;
2699	}
2700
2701	/*
2702	 * If we're called to reset a live controller first shut it down before
2703	 * moving on.
2704	 */
2705	if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2706		nvme_dev_disable(dev, false);
2707	nvme_sync_queues(&dev->ctrl);
2708
2709	mutex_lock(&dev->shutdown_lock);
2710	result = nvme_pci_enable(dev);
2711	if (result)
2712		goto out_unlock;
2713	nvme_unquiesce_admin_queue(&dev->ctrl);
2714	mutex_unlock(&dev->shutdown_lock);
2715
2716	/*
2717	 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2718	 * initializing procedure here.
2719	 */
2720	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2721		dev_warn(dev->ctrl.device,
2722			"failed to mark controller CONNECTING\n");
2723		result = -EBUSY;
2724		goto out;
2725	}
2726
2727	result = nvme_init_ctrl_finish(&dev->ctrl, was_suspend);
2728	if (result)
2729		goto out;
2730
2731	nvme_dbbuf_dma_alloc(dev);
2732
2733	result = nvme_setup_host_mem(dev);
2734	if (result < 0)
2735		goto out;
2736
2737	result = nvme_setup_io_queues(dev);
2738	if (result)
2739		goto out;
2740
2741	/*
2742	 * Freeze and update the number of I/O queues as thos might have
2743	 * changed.  If there are no I/O queues left after this reset, keep the
2744	 * controller around but remove all namespaces.
2745	 */
2746	if (dev->online_queues > 1) {
2747		nvme_unquiesce_io_queues(&dev->ctrl);
2748		nvme_wait_freeze(&dev->ctrl);
2749		nvme_pci_update_nr_queues(dev);
2750		nvme_dbbuf_set(dev);
2751		nvme_unfreeze(&dev->ctrl);
2752	} else {
2753		dev_warn(dev->ctrl.device, "IO queues lost\n");
2754		nvme_mark_namespaces_dead(&dev->ctrl);
2755		nvme_unquiesce_io_queues(&dev->ctrl);
2756		nvme_remove_namespaces(&dev->ctrl);
2757		nvme_free_tagset(dev);
2758	}
2759
2760	/*
2761	 * If only admin queue live, keep it to do further investigation or
2762	 * recovery.
2763	 */
2764	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2765		dev_warn(dev->ctrl.device,
2766			"failed to mark controller live state\n");
2767		result = -ENODEV;
2768		goto out;
2769	}
2770
2771	nvme_start_ctrl(&dev->ctrl);
2772	return;
2773
2774 out_unlock:
2775	mutex_unlock(&dev->shutdown_lock);
2776 out:
2777	/*
2778	 * Set state to deleting now to avoid blocking nvme_wait_reset(), which
2779	 * may be holding this pci_dev's device lock.
2780	 */
2781	dev_warn(dev->ctrl.device, "Disabling device after reset failure: %d\n",
2782		 result);
2783	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2784	nvme_dev_disable(dev, true);
2785	nvme_sync_queues(&dev->ctrl);
2786	nvme_mark_namespaces_dead(&dev->ctrl);
2787	nvme_unquiesce_io_queues(&dev->ctrl);
2788	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2789}
2790
2791static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2792{
2793	*val = readl(to_nvme_dev(ctrl)->bar + off);
2794	return 0;
2795}
2796
2797static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2798{
2799	writel(val, to_nvme_dev(ctrl)->bar + off);
2800	return 0;
2801}
2802
2803static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2804{
2805	*val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
2806	return 0;
2807}
2808
2809static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2810{
2811	struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2812
2813	return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
2814}
2815
2816static void nvme_pci_print_device_info(struct nvme_ctrl *ctrl)
2817{
2818	struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2819	struct nvme_subsystem *subsys = ctrl->subsys;
2820
2821	dev_err(ctrl->device,
2822		"VID:DID %04x:%04x model:%.*s firmware:%.*s\n",
2823		pdev->vendor, pdev->device,
2824		nvme_strlen(subsys->model, sizeof(subsys->model)),
2825		subsys->model, nvme_strlen(subsys->firmware_rev,
2826					   sizeof(subsys->firmware_rev)),
2827		subsys->firmware_rev);
2828}
2829
2830static bool nvme_pci_supports_pci_p2pdma(struct nvme_ctrl *ctrl)
2831{
2832	struct nvme_dev *dev = to_nvme_dev(ctrl);
2833
2834	return dma_pci_p2pdma_supported(dev->dev);
2835}
2836
2837static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2838	.name			= "pcie",
2839	.module			= THIS_MODULE,
2840	.flags			= NVME_F_METADATA_SUPPORTED,
2841	.dev_attr_groups	= nvme_pci_dev_attr_groups,
2842	.reg_read32		= nvme_pci_reg_read32,
2843	.reg_write32		= nvme_pci_reg_write32,
2844	.reg_read64		= nvme_pci_reg_read64,
2845	.free_ctrl		= nvme_pci_free_ctrl,
2846	.submit_async_event	= nvme_pci_submit_async_event,
2847	.get_address		= nvme_pci_get_address,
2848	.print_device_info	= nvme_pci_print_device_info,
2849	.supports_pci_p2pdma	= nvme_pci_supports_pci_p2pdma,
2850};
2851
2852static int nvme_dev_map(struct nvme_dev *dev)
2853{
2854	struct pci_dev *pdev = to_pci_dev(dev->dev);
2855
2856	if (pci_request_mem_regions(pdev, "nvme"))
2857		return -ENODEV;
2858
2859	if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2860		goto release;
2861
2862	return 0;
2863  release:
2864	pci_release_mem_regions(pdev);
2865	return -ENODEV;
2866}
2867
2868static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2869{
2870	if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2871		/*
2872		 * Several Samsung devices seem to drop off the PCIe bus
2873		 * randomly when APST is on and uses the deepest sleep state.
2874		 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2875		 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2876		 * 950 PRO 256GB", but it seems to be restricted to two Dell
2877		 * laptops.
2878		 */
2879		if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2880		    (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2881		     dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2882			return NVME_QUIRK_NO_DEEPEST_PS;
2883	} else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2884		/*
2885		 * Samsung SSD 960 EVO drops off the PCIe bus after system
2886		 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2887		 * within few minutes after bootup on a Coffee Lake board -
2888		 * ASUS PRIME Z370-A
2889		 */
2890		if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2891		    (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2892		     dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
2893			return NVME_QUIRK_NO_APST;
2894	} else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
2895		    pdev->device == 0xa808 || pdev->device == 0xa809)) ||
2896		   (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
2897		/*
2898		 * Forcing to use host managed nvme power settings for
2899		 * lowest idle power with quick resume latency on
2900		 * Samsung and Toshiba SSDs based on suspend behavior
2901		 * on Coffee Lake board for LENOVO C640
2902		 */
2903		if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
2904		     dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
2905			return NVME_QUIRK_SIMPLE_SUSPEND;
2906	} else if (pdev->vendor == 0x2646 && (pdev->device == 0x2263 ||
2907		   pdev->device == 0x500f)) {
2908		/*
2909		 * Exclude some Kingston NV1 and A2000 devices from
2910		 * NVME_QUIRK_SIMPLE_SUSPEND. Do a full suspend to save a
2911		 * lot fo energy with s2idle sleep on some TUXEDO platforms.
2912		 */
2913		if (dmi_match(DMI_BOARD_NAME, "NS5X_NS7XAU") ||
2914		    dmi_match(DMI_BOARD_NAME, "NS5x_7xAU") ||
2915		    dmi_match(DMI_BOARD_NAME, "NS5x_7xPU") ||
2916		    dmi_match(DMI_BOARD_NAME, "PH4PRX1_PH6PRX1"))
2917			return NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND;
2918	}
2919
2920	return 0;
2921}
2922
2923static struct nvme_dev *nvme_pci_alloc_dev(struct pci_dev *pdev,
2924		const struct pci_device_id *id)
2925{
2926	unsigned long quirks = id->driver_data;
2927	int node = dev_to_node(&pdev->dev);
2928	struct nvme_dev *dev;
2929	int ret = -ENOMEM;
2930
2931	dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2932	if (!dev)
2933		return ERR_PTR(-ENOMEM);
2934	INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2935	mutex_init(&dev->shutdown_lock);
2936
2937	dev->nr_write_queues = write_queues;
2938	dev->nr_poll_queues = poll_queues;
2939	dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
2940	dev->queues = kcalloc_node(dev->nr_allocated_queues,
2941			sizeof(struct nvme_queue), GFP_KERNEL, node);
2942	if (!dev->queues)
2943		goto out_free_dev;
2944
2945	dev->dev = get_device(&pdev->dev);
2946
2947	quirks |= check_vendor_combination_bug(pdev);
2948	if (!noacpi &&
2949	    !(quirks & NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND) &&
2950	    acpi_storage_d3(&pdev->dev)) {
2951		/*
2952		 * Some systems use a bios work around to ask for D3 on
2953		 * platforms that support kernel managed suspend.
2954		 */
2955		dev_info(&pdev->dev,
2956			 "platform quirk: setting simple suspend\n");
2957		quirks |= NVME_QUIRK_SIMPLE_SUSPEND;
2958	}
2959	ret = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2960			     quirks);
2961	if (ret)
2962		goto out_put_device;
2963
2964	if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48)
2965		dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48));
2966	else
2967		dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2968	dma_set_min_align_mask(&pdev->dev, NVME_CTRL_PAGE_SIZE - 1);
2969	dma_set_max_seg_size(&pdev->dev, 0xffffffff);
2970
2971	/*
2972	 * Limit the max command size to prevent iod->sg allocations going
2973	 * over a single page.
2974	 */
2975	dev->ctrl.max_hw_sectors = min_t(u32,
2976		NVME_MAX_KB_SZ << 1, dma_opt_mapping_size(&pdev->dev) >> 9);
2977	dev->ctrl.max_segments = NVME_MAX_SEGS;
2978
2979	/*
2980	 * There is no support for SGLs for metadata (yet), so we are limited to
2981	 * a single integrity segment for the separate metadata pointer.
2982	 */
2983	dev->ctrl.max_integrity_segments = 1;
2984	return dev;
2985
2986out_put_device:
2987	put_device(dev->dev);
2988	kfree(dev->queues);
2989out_free_dev:
2990	kfree(dev);
2991	return ERR_PTR(ret);
2992}
2993
2994static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2995{
2996	struct nvme_dev *dev;
2997	int result = -ENOMEM;
2998
2999	dev = nvme_pci_alloc_dev(pdev, id);
3000	if (IS_ERR(dev))
3001		return PTR_ERR(dev);
3002
3003	result = nvme_dev_map(dev);
3004	if (result)
3005		goto out_uninit_ctrl;
3006
3007	result = nvme_setup_prp_pools(dev);
3008	if (result)
3009		goto out_dev_unmap;
3010
3011	result = nvme_pci_alloc_iod_mempool(dev);
3012	if (result)
3013		goto out_release_prp_pools;
3014
3015	dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
3016
3017	result = nvme_pci_enable(dev);
3018	if (result)
3019		goto out_release_iod_mempool;
3020
3021	result = nvme_alloc_admin_tag_set(&dev->ctrl, &dev->admin_tagset,
3022				&nvme_mq_admin_ops, sizeof(struct nvme_iod));
3023	if (result)
3024		goto out_disable;
3025
3026	/*
3027	 * Mark the controller as connecting before sending admin commands to
3028	 * allow the timeout handler to do the right thing.
3029	 */
3030	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
3031		dev_warn(dev->ctrl.device,
3032			"failed to mark controller CONNECTING\n");
3033		result = -EBUSY;
3034		goto out_disable;
3035	}
3036
3037	result = nvme_init_ctrl_finish(&dev->ctrl, false);
3038	if (result)
3039		goto out_disable;
3040
3041	nvme_dbbuf_dma_alloc(dev);
3042
3043	result = nvme_setup_host_mem(dev);
3044	if (result < 0)
3045		goto out_disable;
3046
3047	result = nvme_setup_io_queues(dev);
3048	if (result)
3049		goto out_disable;
3050
3051	if (dev->online_queues > 1) {
3052		nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops,
3053				nvme_pci_nr_maps(dev), sizeof(struct nvme_iod));
3054		nvme_dbbuf_set(dev);
3055	}
3056
3057	if (!dev->ctrl.tagset)
3058		dev_warn(dev->ctrl.device, "IO queues not created\n");
3059
3060	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
3061		dev_warn(dev->ctrl.device,
3062			"failed to mark controller live state\n");
3063		result = -ENODEV;
3064		goto out_disable;
3065	}
3066
3067	pci_set_drvdata(pdev, dev);
3068
3069	nvme_start_ctrl(&dev->ctrl);
3070	nvme_put_ctrl(&dev->ctrl);
3071	flush_work(&dev->ctrl.scan_work);
3072	return 0;
3073
3074out_disable:
3075	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3076	nvme_dev_disable(dev, true);
3077	nvme_free_host_mem(dev);
3078	nvme_dev_remove_admin(dev);
3079	nvme_dbbuf_dma_free(dev);
3080	nvme_free_queues(dev, 0);
3081out_release_iod_mempool:
3082	mempool_destroy(dev->iod_mempool);
3083out_release_prp_pools:
3084	nvme_release_prp_pools(dev);
3085out_dev_unmap:
3086	nvme_dev_unmap(dev);
3087out_uninit_ctrl:
3088	nvme_uninit_ctrl(&dev->ctrl);
3089	nvme_put_ctrl(&dev->ctrl);
3090	return result;
3091}
3092
3093static void nvme_reset_prepare(struct pci_dev *pdev)
3094{
3095	struct nvme_dev *dev = pci_get_drvdata(pdev);
3096
3097	/*
3098	 * We don't need to check the return value from waiting for the reset
3099	 * state as pci_dev device lock is held, making it impossible to race
3100	 * with ->remove().
3101	 */
3102	nvme_disable_prepare_reset(dev, false);
3103	nvme_sync_queues(&dev->ctrl);
3104}
3105
3106static void nvme_reset_done(struct pci_dev *pdev)
3107{
3108	struct nvme_dev *dev = pci_get_drvdata(pdev);
3109
3110	if (!nvme_try_sched_reset(&dev->ctrl))
3111		flush_work(&dev->ctrl.reset_work);
3112}
3113
3114static void nvme_shutdown(struct pci_dev *pdev)
3115{
3116	struct nvme_dev *dev = pci_get_drvdata(pdev);
3117
3118	nvme_disable_prepare_reset(dev, true);
3119}
3120
3121/*
3122 * The driver's remove may be called on a device in a partially initialized
3123 * state. This function must not have any dependencies on the device state in
3124 * order to proceed.
3125 */
3126static void nvme_remove(struct pci_dev *pdev)
3127{
3128	struct nvme_dev *dev = pci_get_drvdata(pdev);
3129
3130	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3131	pci_set_drvdata(pdev, NULL);
3132
3133	if (!pci_device_is_present(pdev)) {
3134		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
3135		nvme_dev_disable(dev, true);
3136	}
3137
3138	flush_work(&dev->ctrl.reset_work);
3139	nvme_stop_ctrl(&dev->ctrl);
3140	nvme_remove_namespaces(&dev->ctrl);
3141	nvme_dev_disable(dev, true);
3142	nvme_free_host_mem(dev);
3143	nvme_dev_remove_admin(dev);
3144	nvme_dbbuf_dma_free(dev);
3145	nvme_free_queues(dev, 0);
3146	mempool_destroy(dev->iod_mempool);
3147	nvme_release_prp_pools(dev);
3148	nvme_dev_unmap(dev);
3149	nvme_uninit_ctrl(&dev->ctrl);
3150}
3151
3152#ifdef CONFIG_PM_SLEEP
3153static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
3154{
3155	return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
3156}
3157
3158static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
3159{
3160	return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
3161}
3162
3163static int nvme_resume(struct device *dev)
3164{
3165	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3166	struct nvme_ctrl *ctrl = &ndev->ctrl;
3167
3168	if (ndev->last_ps == U32_MAX ||
3169	    nvme_set_power_state(ctrl, ndev->last_ps) != 0)
3170		goto reset;
3171	if (ctrl->hmpre && nvme_setup_host_mem(ndev))
3172		goto reset;
3173
3174	return 0;
3175reset:
3176	return nvme_try_sched_reset(ctrl);
3177}
3178
3179static int nvme_suspend(struct device *dev)
3180{
3181	struct pci_dev *pdev = to_pci_dev(dev);
3182	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3183	struct nvme_ctrl *ctrl = &ndev->ctrl;
3184	int ret = -EBUSY;
3185
3186	ndev->last_ps = U32_MAX;
3187
3188	/*
3189	 * The platform does not remove power for a kernel managed suspend so
3190	 * use host managed nvme power settings for lowest idle power if
3191	 * possible. This should have quicker resume latency than a full device
3192	 * shutdown.  But if the firmware is involved after the suspend or the
3193	 * device does not support any non-default power states, shut down the
3194	 * device fully.
3195	 *
3196	 * If ASPM is not enabled for the device, shut down the device and allow
3197	 * the PCI bus layer to put it into D3 in order to take the PCIe link
3198	 * down, so as to allow the platform to achieve its minimum low-power
3199	 * state (which may not be possible if the link is up).
3200	 */
3201	if (pm_suspend_via_firmware() || !ctrl->npss ||
3202	    !pcie_aspm_enabled(pdev) ||
3203	    (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
3204		return nvme_disable_prepare_reset(ndev, true);
3205
3206	nvme_start_freeze(ctrl);
3207	nvme_wait_freeze(ctrl);
3208	nvme_sync_queues(ctrl);
3209
3210	if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE)
3211		goto unfreeze;
3212
3213	/*
3214	 * Host memory access may not be successful in a system suspend state,
3215	 * but the specification allows the controller to access memory in a
3216	 * non-operational power state.
3217	 */
3218	if (ndev->hmb) {
3219		ret = nvme_set_host_mem(ndev, 0);
3220		if (ret < 0)
3221			goto unfreeze;
3222	}
3223
3224	ret = nvme_get_power_state(ctrl, &ndev->last_ps);
3225	if (ret < 0)
3226		goto unfreeze;
3227
3228	/*
3229	 * A saved state prevents pci pm from generically controlling the
3230	 * device's power. If we're using protocol specific settings, we don't
3231	 * want pci interfering.
3232	 */
3233	pci_save_state(pdev);
3234
3235	ret = nvme_set_power_state(ctrl, ctrl->npss);
3236	if (ret < 0)
3237		goto unfreeze;
3238
3239	if (ret) {
3240		/* discard the saved state */
3241		pci_load_saved_state(pdev, NULL);
3242
3243		/*
3244		 * Clearing npss forces a controller reset on resume. The
3245		 * correct value will be rediscovered then.
3246		 */
3247		ret = nvme_disable_prepare_reset(ndev, true);
3248		ctrl->npss = 0;
3249	}
3250unfreeze:
3251	nvme_unfreeze(ctrl);
3252	return ret;
3253}
3254
3255static int nvme_simple_suspend(struct device *dev)
3256{
3257	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3258
3259	return nvme_disable_prepare_reset(ndev, true);
3260}
3261
3262static int nvme_simple_resume(struct device *dev)
3263{
3264	struct pci_dev *pdev = to_pci_dev(dev);
3265	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3266
3267	return nvme_try_sched_reset(&ndev->ctrl);
3268}
3269
3270static const struct dev_pm_ops nvme_dev_pm_ops = {
3271	.suspend	= nvme_suspend,
3272	.resume		= nvme_resume,
3273	.freeze		= nvme_simple_suspend,
3274	.thaw		= nvme_simple_resume,
3275	.poweroff	= nvme_simple_suspend,
3276	.restore	= nvme_simple_resume,
3277};
3278#endif /* CONFIG_PM_SLEEP */
3279
3280static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3281						pci_channel_state_t state)
3282{
3283	struct nvme_dev *dev = pci_get_drvdata(pdev);
3284
3285	/*
3286	 * A frozen channel requires a reset. When detected, this method will
3287	 * shutdown the controller to quiesce. The controller will be restarted
3288	 * after the slot reset through driver's slot_reset callback.
3289	 */
3290	switch (state) {
3291	case pci_channel_io_normal:
3292		return PCI_ERS_RESULT_CAN_RECOVER;
3293	case pci_channel_io_frozen:
3294		dev_warn(dev->ctrl.device,
3295			"frozen state error detected, reset controller\n");
3296		if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) {
3297			nvme_dev_disable(dev, true);
3298			return PCI_ERS_RESULT_DISCONNECT;
3299		}
3300		nvme_dev_disable(dev, false);
3301		return PCI_ERS_RESULT_NEED_RESET;
3302	case pci_channel_io_perm_failure:
3303		dev_warn(dev->ctrl.device,
3304			"failure state error detected, request disconnect\n");
3305		return PCI_ERS_RESULT_DISCONNECT;
3306	}
3307	return PCI_ERS_RESULT_NEED_RESET;
3308}
3309
3310static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3311{
3312	struct nvme_dev *dev = pci_get_drvdata(pdev);
3313
3314	dev_info(dev->ctrl.device, "restart after slot reset\n");
3315	pci_restore_state(pdev);
3316	if (!nvme_try_sched_reset(&dev->ctrl))
3317		nvme_unquiesce_io_queues(&dev->ctrl);
3318	return PCI_ERS_RESULT_RECOVERED;
3319}
3320
3321static void nvme_error_resume(struct pci_dev *pdev)
3322{
3323	struct nvme_dev *dev = pci_get_drvdata(pdev);
3324
3325	flush_work(&dev->ctrl.reset_work);
3326}
3327
3328static const struct pci_error_handlers nvme_err_handler = {
3329	.error_detected	= nvme_error_detected,
3330	.slot_reset	= nvme_slot_reset,
3331	.resume		= nvme_error_resume,
3332	.reset_prepare	= nvme_reset_prepare,
3333	.reset_done	= nvme_reset_done,
3334};
3335
3336static const struct pci_device_id nvme_id_table[] = {
3337	{ PCI_VDEVICE(INTEL, 0x0953),	/* Intel 750/P3500/P3600/P3700 */
3338		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3339				NVME_QUIRK_DEALLOCATE_ZEROES, },
3340	{ PCI_VDEVICE(INTEL, 0x0a53),	/* Intel P3520 */
3341		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3342				NVME_QUIRK_DEALLOCATE_ZEROES, },
3343	{ PCI_VDEVICE(INTEL, 0x0a54),	/* Intel P4500/P4600 */
3344		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3345				NVME_QUIRK_DEALLOCATE_ZEROES |
3346				NVME_QUIRK_IGNORE_DEV_SUBNQN |
3347				NVME_QUIRK_BOGUS_NID, },
3348	{ PCI_VDEVICE(INTEL, 0x0a55),	/* Dell Express Flash P4600 */
3349		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3350				NVME_QUIRK_DEALLOCATE_ZEROES, },
3351	{ PCI_VDEVICE(INTEL, 0xf1a5),	/* Intel 600P/P3100 */
3352		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3353				NVME_QUIRK_MEDIUM_PRIO_SQ |
3354				NVME_QUIRK_NO_TEMP_THRESH_CHANGE |
3355				NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3356	{ PCI_VDEVICE(INTEL, 0xf1a6),	/* Intel 760p/Pro 7600p */
3357		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3358	{ PCI_VDEVICE(INTEL, 0x5845),	/* Qemu emulated controller */
3359		.driver_data = NVME_QUIRK_IDENTIFY_CNS |
3360				NVME_QUIRK_DISABLE_WRITE_ZEROES |
3361				NVME_QUIRK_BOGUS_NID, },
3362	{ PCI_VDEVICE(REDHAT, 0x0010),	/* Qemu emulated controller */
3363		.driver_data = NVME_QUIRK_BOGUS_NID, },
3364	{ PCI_DEVICE(0x126f, 0x2263),	/* Silicon Motion unidentified */
3365		.driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3366				NVME_QUIRK_BOGUS_NID, },
3367	{ PCI_DEVICE(0x1bb1, 0x0100),   /* Seagate Nytro Flash Storage */
3368		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3369				NVME_QUIRK_NO_NS_DESC_LIST, },
3370	{ PCI_DEVICE(0x1c58, 0x0003),	/* HGST adapter */
3371		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3372	{ PCI_DEVICE(0x1c58, 0x0023),	/* WDC SN200 adapter */
3373		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3374	{ PCI_DEVICE(0x1c5f, 0x0540),	/* Memblaze Pblaze4 adapter */
3375		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3376	{ PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
3377		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3378	{ PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
3379		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3380				NVME_QUIRK_DISABLE_WRITE_ZEROES|
3381				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3382	{ PCI_DEVICE(0x1987, 0x5012),	/* Phison E12 */
3383		.driver_data = NVME_QUIRK_BOGUS_NID, },
3384	{ PCI_DEVICE(0x1987, 0x5016),	/* Phison E16 */
3385		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3386				NVME_QUIRK_BOGUS_NID, },
3387	{ PCI_DEVICE(0x1987, 0x5019),  /* phison E19 */
3388		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3389	{ PCI_DEVICE(0x1987, 0x5021),   /* Phison E21 */
3390		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3391	{ PCI_DEVICE(0x1b4b, 0x1092),	/* Lexar 256 GB SSD */
3392		.driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3393				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3394	{ PCI_DEVICE(0x1cc1, 0x33f8),   /* ADATA IM2P33F8ABR1 1 TB */
3395		.driver_data = NVME_QUIRK_BOGUS_NID, },
3396	{ PCI_DEVICE(0x10ec, 0x5762),   /* ADATA SX6000LNP */
3397		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3398				NVME_QUIRK_BOGUS_NID, },
3399	{ PCI_DEVICE(0x10ec, 0x5763),  /* ADATA SX6000PNP */
3400		.driver_data = NVME_QUIRK_BOGUS_NID, },
3401	{ PCI_DEVICE(0x1cc1, 0x8201),   /* ADATA SX8200PNP 512GB */
3402		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3403				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3404	 { PCI_DEVICE(0x1344, 0x5407), /* Micron Technology Inc NVMe SSD */
3405		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN },
3406	 { PCI_DEVICE(0x1344, 0x6001),   /* Micron Nitro NVMe */
3407		 .driver_data = NVME_QUIRK_BOGUS_NID, },
3408	{ PCI_DEVICE(0x1c5c, 0x1504),   /* SK Hynix PC400 */
3409		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3410	{ PCI_DEVICE(0x1c5c, 0x174a),   /* SK Hynix P31 SSD */
3411		.driver_data = NVME_QUIRK_BOGUS_NID, },
3412	{ PCI_DEVICE(0x15b7, 0x2001),   /*  Sandisk Skyhawk */
3413		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3414	{ PCI_DEVICE(0x1d97, 0x2263),   /* SPCC */
3415		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3416	{ PCI_DEVICE(0x144d, 0xa80b),   /* Samsung PM9B1 256G and 512G */
3417		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES |
3418				NVME_QUIRK_BOGUS_NID, },
3419	{ PCI_DEVICE(0x144d, 0xa809),   /* Samsung MZALQ256HBJD 256G */
3420		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3421	{ PCI_DEVICE(0x144d, 0xa802),   /* Samsung SM953 */
3422		.driver_data = NVME_QUIRK_BOGUS_NID, },
3423	{ PCI_DEVICE(0x1cc4, 0x6303),   /* UMIS RPJTJ512MGE1QDY 512G */
3424		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3425	{ PCI_DEVICE(0x1cc4, 0x6302),   /* UMIS RPJTJ256MGE1QDY 256G */
3426		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3427	{ PCI_DEVICE(0x2646, 0x2262),   /* KINGSTON SKC2000 NVMe SSD */
3428		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3429	{ PCI_DEVICE(0x2646, 0x2263),   /* KINGSTON A2000 NVMe SSD  */
3430		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3431	{ PCI_DEVICE(0x2646, 0x5013),   /* Kingston KC3000, Kingston FURY Renegade */
3432		.driver_data = NVME_QUIRK_NO_SECONDARY_TEMP_THRESH, },
3433	{ PCI_DEVICE(0x2646, 0x5018),   /* KINGSTON OM8SFP4xxxxP OS21012 NVMe SSD */
3434		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3435	{ PCI_DEVICE(0x2646, 0x5016),   /* KINGSTON OM3PGP4xxxxP OS21011 NVMe SSD */
3436		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3437	{ PCI_DEVICE(0x2646, 0x501A),   /* KINGSTON OM8PGP4xxxxP OS21005 NVMe SSD */
3438		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3439	{ PCI_DEVICE(0x2646, 0x501B),   /* KINGSTON OM8PGP4xxxxQ OS21005 NVMe SSD */
3440		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3441	{ PCI_DEVICE(0x2646, 0x501E),   /* KINGSTON OM3PGP4xxxxQ OS21011 NVMe SSD */
3442		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3443	{ PCI_DEVICE(0x1f40, 0x1202),   /* Netac Technologies Co. NV3000 NVMe SSD */
3444		.driver_data = NVME_QUIRK_BOGUS_NID, },
3445	{ PCI_DEVICE(0x1f40, 0x5236),   /* Netac Technologies Co. NV7000 NVMe SSD */
3446		.driver_data = NVME_QUIRK_BOGUS_NID, },
3447	{ PCI_DEVICE(0x1e4B, 0x1001),   /* MAXIO MAP1001 */
3448		.driver_data = NVME_QUIRK_BOGUS_NID, },
3449	{ PCI_DEVICE(0x1e4B, 0x1002),   /* MAXIO MAP1002 */
3450		.driver_data = NVME_QUIRK_BOGUS_NID, },
3451	{ PCI_DEVICE(0x1e4B, 0x1202),   /* MAXIO MAP1202 */
3452		.driver_data = NVME_QUIRK_BOGUS_NID, },
3453	{ PCI_DEVICE(0x1e4B, 0x1602),   /* MAXIO MAP1602 */
3454		.driver_data = NVME_QUIRK_BOGUS_NID, },
3455	{ PCI_DEVICE(0x1cc1, 0x5350),   /* ADATA XPG GAMMIX S50 */
3456		.driver_data = NVME_QUIRK_BOGUS_NID, },
3457	{ PCI_DEVICE(0x1dbe, 0x5236),   /* ADATA XPG GAMMIX S70 */
3458		.driver_data = NVME_QUIRK_BOGUS_NID, },
3459	{ PCI_DEVICE(0x1e49, 0x0021),   /* ZHITAI TiPro5000 NVMe SSD */
3460		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3461	{ PCI_DEVICE(0x1e49, 0x0041),   /* ZHITAI TiPro7000 NVMe SSD */
3462		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3463	{ PCI_DEVICE(0xc0a9, 0x540a),   /* Crucial P2 */
3464		.driver_data = NVME_QUIRK_BOGUS_NID, },
3465	{ PCI_DEVICE(0x1d97, 0x2263), /* Lexar NM610 */
3466		.driver_data = NVME_QUIRK_BOGUS_NID, },
3467	{ PCI_DEVICE(0x1d97, 0x1d97), /* Lexar NM620 */
3468		.driver_data = NVME_QUIRK_BOGUS_NID, },
3469	{ PCI_DEVICE(0x1d97, 0x2269), /* Lexar NM760 */
3470		.driver_data = NVME_QUIRK_BOGUS_NID |
3471				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3472	{ PCI_DEVICE(0x10ec, 0x5763), /* TEAMGROUP T-FORCE CARDEA ZERO Z330 SSD */
3473		.driver_data = NVME_QUIRK_BOGUS_NID, },
3474	{ PCI_DEVICE(0x1e4b, 0x1602), /* HS-SSD-FUTURE 2048G  */
3475		.driver_data = NVME_QUIRK_BOGUS_NID, },
3476	{ PCI_DEVICE(0x10ec, 0x5765), /* TEAMGROUP MP33 2TB SSD */
3477		.driver_data = NVME_QUIRK_BOGUS_NID, },
3478	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061),
3479		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3480	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065),
3481		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3482	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061),
3483		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3484	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00),
3485		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3486	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01),
3487		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3488	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02),
3489		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3490	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
3491		.driver_data = NVME_QUIRK_SINGLE_VECTOR },
3492	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3493	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3494		.driver_data = NVME_QUIRK_SINGLE_VECTOR |
3495				NVME_QUIRK_128_BYTES_SQES |
3496				NVME_QUIRK_SHARED_TAGS |
3497				NVME_QUIRK_SKIP_CID_GEN |
3498				NVME_QUIRK_IDENTIFY_CNS },
3499	{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3500	{ 0, }
3501};
3502MODULE_DEVICE_TABLE(pci, nvme_id_table);
3503
3504static struct pci_driver nvme_driver = {
3505	.name		= "nvme",
3506	.id_table	= nvme_id_table,
3507	.probe		= nvme_probe,
3508	.remove		= nvme_remove,
3509	.shutdown	= nvme_shutdown,
3510	.driver		= {
3511		.probe_type	= PROBE_PREFER_ASYNCHRONOUS,
3512#ifdef CONFIG_PM_SLEEP
3513		.pm		= &nvme_dev_pm_ops,
3514#endif
3515	},
3516	.sriov_configure = pci_sriov_configure_simple,
3517	.err_handler	= &nvme_err_handler,
3518};
3519
3520static int __init nvme_init(void)
3521{
3522	BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3523	BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3524	BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3525	BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3526	BUILD_BUG_ON(NVME_MAX_SEGS > SGES_PER_PAGE);
3527	BUILD_BUG_ON(sizeof(struct scatterlist) * NVME_MAX_SEGS > PAGE_SIZE);
3528	BUILD_BUG_ON(nvme_pci_npages_prp() > NVME_MAX_NR_ALLOCATIONS);
3529
3530	return pci_register_driver(&nvme_driver);
3531}
3532
3533static void __exit nvme_exit(void)
3534{
3535	pci_unregister_driver(&nvme_driver);
3536	flush_workqueue(nvme_wq);
3537}
3538
3539MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3540MODULE_LICENSE("GPL");
3541MODULE_VERSION("1.0");
3542module_init(nvme_init);
3543module_exit(nvme_exit);
3544