1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2017-2018 Christoph Hellwig.
4 */
5
6#include <linux/backing-dev.h>
7#include <linux/moduleparam.h>
8#include <linux/vmalloc.h>
9#include <trace/events/block.h>
10#include "nvme.h"
11
12bool multipath = true;
13module_param(multipath, bool, 0444);
14MODULE_PARM_DESC(multipath,
15	"turn on native support for multiple controllers per subsystem");
16
17static const char *nvme_iopolicy_names[] = {
18	[NVME_IOPOLICY_NUMA]	= "numa",
19	[NVME_IOPOLICY_RR]	= "round-robin",
20};
21
22static int iopolicy = NVME_IOPOLICY_NUMA;
23
24static int nvme_set_iopolicy(const char *val, const struct kernel_param *kp)
25{
26	if (!val)
27		return -EINVAL;
28	if (!strncmp(val, "numa", 4))
29		iopolicy = NVME_IOPOLICY_NUMA;
30	else if (!strncmp(val, "round-robin", 11))
31		iopolicy = NVME_IOPOLICY_RR;
32	else
33		return -EINVAL;
34
35	return 0;
36}
37
38static int nvme_get_iopolicy(char *buf, const struct kernel_param *kp)
39{
40	return sprintf(buf, "%s\n", nvme_iopolicy_names[iopolicy]);
41}
42
43module_param_call(iopolicy, nvme_set_iopolicy, nvme_get_iopolicy,
44	&iopolicy, 0644);
45MODULE_PARM_DESC(iopolicy,
46	"Default multipath I/O policy; 'numa' (default) or 'round-robin'");
47
48void nvme_mpath_default_iopolicy(struct nvme_subsystem *subsys)
49{
50	subsys->iopolicy = iopolicy;
51}
52
53void nvme_mpath_unfreeze(struct nvme_subsystem *subsys)
54{
55	struct nvme_ns_head *h;
56
57	lockdep_assert_held(&subsys->lock);
58	list_for_each_entry(h, &subsys->nsheads, entry)
59		if (h->disk)
60			blk_mq_unfreeze_queue(h->disk->queue);
61}
62
63void nvme_mpath_wait_freeze(struct nvme_subsystem *subsys)
64{
65	struct nvme_ns_head *h;
66
67	lockdep_assert_held(&subsys->lock);
68	list_for_each_entry(h, &subsys->nsheads, entry)
69		if (h->disk)
70			blk_mq_freeze_queue_wait(h->disk->queue);
71}
72
73void nvme_mpath_start_freeze(struct nvme_subsystem *subsys)
74{
75	struct nvme_ns_head *h;
76
77	lockdep_assert_held(&subsys->lock);
78	list_for_each_entry(h, &subsys->nsheads, entry)
79		if (h->disk)
80			blk_freeze_queue_start(h->disk->queue);
81}
82
83void nvme_failover_req(struct request *req)
84{
85	struct nvme_ns *ns = req->q->queuedata;
86	u16 status = nvme_req(req)->status & 0x7ff;
87	unsigned long flags;
88	struct bio *bio;
89
90	nvme_mpath_clear_current_path(ns);
91
92	/*
93	 * If we got back an ANA error, we know the controller is alive but not
94	 * ready to serve this namespace.  Kick of a re-read of the ANA
95	 * information page, and just try any other available path for now.
96	 */
97	if (nvme_is_ana_error(status) && ns->ctrl->ana_log_buf) {
98		set_bit(NVME_NS_ANA_PENDING, &ns->flags);
99		queue_work(nvme_wq, &ns->ctrl->ana_work);
100	}
101
102	spin_lock_irqsave(&ns->head->requeue_lock, flags);
103	for (bio = req->bio; bio; bio = bio->bi_next) {
104		bio_set_dev(bio, ns->head->disk->part0);
105		if (bio->bi_opf & REQ_POLLED) {
106			bio->bi_opf &= ~REQ_POLLED;
107			bio->bi_cookie = BLK_QC_T_NONE;
108		}
109		/*
110		 * The alternate request queue that we may end up submitting
111		 * the bio to may be frozen temporarily, in this case REQ_NOWAIT
112		 * will fail the I/O immediately with EAGAIN to the issuer.
113		 * We are not in the issuer context which cannot block. Clear
114		 * the flag to avoid spurious EAGAIN I/O failures.
115		 */
116		bio->bi_opf &= ~REQ_NOWAIT;
117	}
118	blk_steal_bios(&ns->head->requeue_list, req);
119	spin_unlock_irqrestore(&ns->head->requeue_lock, flags);
120
121	blk_mq_end_request(req, 0);
122	kblockd_schedule_work(&ns->head->requeue_work);
123}
124
125void nvme_mpath_start_request(struct request *rq)
126{
127	struct nvme_ns *ns = rq->q->queuedata;
128	struct gendisk *disk = ns->head->disk;
129
130	if (!blk_queue_io_stat(disk->queue) || blk_rq_is_passthrough(rq))
131		return;
132
133	nvme_req(rq)->flags |= NVME_MPATH_IO_STATS;
134	nvme_req(rq)->start_time = bdev_start_io_acct(disk->part0, req_op(rq),
135						      jiffies);
136}
137EXPORT_SYMBOL_GPL(nvme_mpath_start_request);
138
139void nvme_mpath_end_request(struct request *rq)
140{
141	struct nvme_ns *ns = rq->q->queuedata;
142
143	if (!(nvme_req(rq)->flags & NVME_MPATH_IO_STATS))
144		return;
145	bdev_end_io_acct(ns->head->disk->part0, req_op(rq),
146			 blk_rq_bytes(rq) >> SECTOR_SHIFT,
147			 nvme_req(rq)->start_time);
148}
149
150void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl)
151{
152	struct nvme_ns *ns;
153
154	down_read(&ctrl->namespaces_rwsem);
155	list_for_each_entry(ns, &ctrl->namespaces, list) {
156		if (!ns->head->disk)
157			continue;
158		kblockd_schedule_work(&ns->head->requeue_work);
159		if (ctrl->state == NVME_CTRL_LIVE)
160			disk_uevent(ns->head->disk, KOBJ_CHANGE);
161	}
162	up_read(&ctrl->namespaces_rwsem);
163}
164
165static const char *nvme_ana_state_names[] = {
166	[0]				= "invalid state",
167	[NVME_ANA_OPTIMIZED]		= "optimized",
168	[NVME_ANA_NONOPTIMIZED]		= "non-optimized",
169	[NVME_ANA_INACCESSIBLE]		= "inaccessible",
170	[NVME_ANA_PERSISTENT_LOSS]	= "persistent-loss",
171	[NVME_ANA_CHANGE]		= "change",
172};
173
174bool nvme_mpath_clear_current_path(struct nvme_ns *ns)
175{
176	struct nvme_ns_head *head = ns->head;
177	bool changed = false;
178	int node;
179
180	if (!head)
181		goto out;
182
183	for_each_node(node) {
184		if (ns == rcu_access_pointer(head->current_path[node])) {
185			rcu_assign_pointer(head->current_path[node], NULL);
186			changed = true;
187		}
188	}
189out:
190	return changed;
191}
192
193void nvme_mpath_clear_ctrl_paths(struct nvme_ctrl *ctrl)
194{
195	struct nvme_ns *ns;
196
197	down_read(&ctrl->namespaces_rwsem);
198	list_for_each_entry(ns, &ctrl->namespaces, list) {
199		nvme_mpath_clear_current_path(ns);
200		kblockd_schedule_work(&ns->head->requeue_work);
201	}
202	up_read(&ctrl->namespaces_rwsem);
203}
204
205void nvme_mpath_revalidate_paths(struct nvme_ns *ns)
206{
207	struct nvme_ns_head *head = ns->head;
208	sector_t capacity = get_capacity(head->disk);
209	int node;
210	int srcu_idx;
211
212	srcu_idx = srcu_read_lock(&head->srcu);
213	list_for_each_entry_rcu(ns, &head->list, siblings) {
214		if (capacity != get_capacity(ns->disk))
215			clear_bit(NVME_NS_READY, &ns->flags);
216	}
217	srcu_read_unlock(&head->srcu, srcu_idx);
218
219	for_each_node(node)
220		rcu_assign_pointer(head->current_path[node], NULL);
221	kblockd_schedule_work(&head->requeue_work);
222}
223
224static bool nvme_path_is_disabled(struct nvme_ns *ns)
225{
226	/*
227	 * We don't treat NVME_CTRL_DELETING as a disabled path as I/O should
228	 * still be able to complete assuming that the controller is connected.
229	 * Otherwise it will fail immediately and return to the requeue list.
230	 */
231	if (ns->ctrl->state != NVME_CTRL_LIVE &&
232	    ns->ctrl->state != NVME_CTRL_DELETING)
233		return true;
234	if (test_bit(NVME_NS_ANA_PENDING, &ns->flags) ||
235	    !test_bit(NVME_NS_READY, &ns->flags))
236		return true;
237	return false;
238}
239
240static struct nvme_ns *__nvme_find_path(struct nvme_ns_head *head, int node)
241{
242	int found_distance = INT_MAX, fallback_distance = INT_MAX, distance;
243	struct nvme_ns *found = NULL, *fallback = NULL, *ns;
244
245	list_for_each_entry_rcu(ns, &head->list, siblings) {
246		if (nvme_path_is_disabled(ns))
247			continue;
248
249		if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_NUMA)
250			distance = node_distance(node, ns->ctrl->numa_node);
251		else
252			distance = LOCAL_DISTANCE;
253
254		switch (ns->ana_state) {
255		case NVME_ANA_OPTIMIZED:
256			if (distance < found_distance) {
257				found_distance = distance;
258				found = ns;
259			}
260			break;
261		case NVME_ANA_NONOPTIMIZED:
262			if (distance < fallback_distance) {
263				fallback_distance = distance;
264				fallback = ns;
265			}
266			break;
267		default:
268			break;
269		}
270	}
271
272	if (!found)
273		found = fallback;
274	if (found)
275		rcu_assign_pointer(head->current_path[node], found);
276	return found;
277}
278
279static struct nvme_ns *nvme_next_ns(struct nvme_ns_head *head,
280		struct nvme_ns *ns)
281{
282	ns = list_next_or_null_rcu(&head->list, &ns->siblings, struct nvme_ns,
283			siblings);
284	if (ns)
285		return ns;
286	return list_first_or_null_rcu(&head->list, struct nvme_ns, siblings);
287}
288
289static struct nvme_ns *nvme_round_robin_path(struct nvme_ns_head *head,
290		int node, struct nvme_ns *old)
291{
292	struct nvme_ns *ns, *found = NULL;
293
294	if (list_is_singular(&head->list)) {
295		if (nvme_path_is_disabled(old))
296			return NULL;
297		return old;
298	}
299
300	for (ns = nvme_next_ns(head, old);
301	     ns && ns != old;
302	     ns = nvme_next_ns(head, ns)) {
303		if (nvme_path_is_disabled(ns))
304			continue;
305
306		if (ns->ana_state == NVME_ANA_OPTIMIZED) {
307			found = ns;
308			goto out;
309		}
310		if (ns->ana_state == NVME_ANA_NONOPTIMIZED)
311			found = ns;
312	}
313
314	/*
315	 * The loop above skips the current path for round-robin semantics.
316	 * Fall back to the current path if either:
317	 *  - no other optimized path found and current is optimized,
318	 *  - no other usable path found and current is usable.
319	 */
320	if (!nvme_path_is_disabled(old) &&
321	    (old->ana_state == NVME_ANA_OPTIMIZED ||
322	     (!found && old->ana_state == NVME_ANA_NONOPTIMIZED)))
323		return old;
324
325	if (!found)
326		return NULL;
327out:
328	rcu_assign_pointer(head->current_path[node], found);
329	return found;
330}
331
332static inline bool nvme_path_is_optimized(struct nvme_ns *ns)
333{
334	return ns->ctrl->state == NVME_CTRL_LIVE &&
335		ns->ana_state == NVME_ANA_OPTIMIZED;
336}
337
338inline struct nvme_ns *nvme_find_path(struct nvme_ns_head *head)
339{
340	int node = numa_node_id();
341	struct nvme_ns *ns;
342
343	ns = srcu_dereference(head->current_path[node], &head->srcu);
344	if (unlikely(!ns))
345		return __nvme_find_path(head, node);
346
347	if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_RR)
348		return nvme_round_robin_path(head, node, ns);
349	if (unlikely(!nvme_path_is_optimized(ns)))
350		return __nvme_find_path(head, node);
351	return ns;
352}
353
354static bool nvme_available_path(struct nvme_ns_head *head)
355{
356	struct nvme_ns *ns;
357
358	list_for_each_entry_rcu(ns, &head->list, siblings) {
359		if (test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ns->ctrl->flags))
360			continue;
361		switch (ns->ctrl->state) {
362		case NVME_CTRL_LIVE:
363		case NVME_CTRL_RESETTING:
364		case NVME_CTRL_CONNECTING:
365			/* fallthru */
366			return true;
367		default:
368			break;
369		}
370	}
371	return false;
372}
373
374static void nvme_ns_head_submit_bio(struct bio *bio)
375{
376	struct nvme_ns_head *head = bio->bi_bdev->bd_disk->private_data;
377	struct device *dev = disk_to_dev(head->disk);
378	struct nvme_ns *ns;
379	int srcu_idx;
380
381	/*
382	 * The namespace might be going away and the bio might be moved to a
383	 * different queue via blk_steal_bios(), so we need to use the bio_split
384	 * pool from the original queue to allocate the bvecs from.
385	 */
386	bio = bio_split_to_limits(bio);
387	if (!bio)
388		return;
389
390	srcu_idx = srcu_read_lock(&head->srcu);
391	ns = nvme_find_path(head);
392	if (likely(ns)) {
393		bio_set_dev(bio, ns->disk->part0);
394		bio->bi_opf |= REQ_NVME_MPATH;
395		trace_block_bio_remap(bio, disk_devt(ns->head->disk),
396				      bio->bi_iter.bi_sector);
397		submit_bio_noacct(bio);
398	} else if (nvme_available_path(head)) {
399		dev_warn_ratelimited(dev, "no usable path - requeuing I/O\n");
400
401		spin_lock_irq(&head->requeue_lock);
402		bio_list_add(&head->requeue_list, bio);
403		spin_unlock_irq(&head->requeue_lock);
404	} else {
405		dev_warn_ratelimited(dev, "no available path - failing I/O\n");
406
407		bio_io_error(bio);
408	}
409
410	srcu_read_unlock(&head->srcu, srcu_idx);
411}
412
413static int nvme_ns_head_open(struct gendisk *disk, blk_mode_t mode)
414{
415	if (!nvme_tryget_ns_head(disk->private_data))
416		return -ENXIO;
417	return 0;
418}
419
420static void nvme_ns_head_release(struct gendisk *disk)
421{
422	nvme_put_ns_head(disk->private_data);
423}
424
425#ifdef CONFIG_BLK_DEV_ZONED
426static int nvme_ns_head_report_zones(struct gendisk *disk, sector_t sector,
427		unsigned int nr_zones, report_zones_cb cb, void *data)
428{
429	struct nvme_ns_head *head = disk->private_data;
430	struct nvme_ns *ns;
431	int srcu_idx, ret = -EWOULDBLOCK;
432
433	srcu_idx = srcu_read_lock(&head->srcu);
434	ns = nvme_find_path(head);
435	if (ns)
436		ret = nvme_ns_report_zones(ns, sector, nr_zones, cb, data);
437	srcu_read_unlock(&head->srcu, srcu_idx);
438	return ret;
439}
440#else
441#define nvme_ns_head_report_zones	NULL
442#endif /* CONFIG_BLK_DEV_ZONED */
443
444const struct block_device_operations nvme_ns_head_ops = {
445	.owner		= THIS_MODULE,
446	.submit_bio	= nvme_ns_head_submit_bio,
447	.open		= nvme_ns_head_open,
448	.release	= nvme_ns_head_release,
449	.ioctl		= nvme_ns_head_ioctl,
450	.compat_ioctl	= blkdev_compat_ptr_ioctl,
451	.getgeo		= nvme_getgeo,
452	.report_zones	= nvme_ns_head_report_zones,
453	.pr_ops		= &nvme_pr_ops,
454};
455
456static inline struct nvme_ns_head *cdev_to_ns_head(struct cdev *cdev)
457{
458	return container_of(cdev, struct nvme_ns_head, cdev);
459}
460
461static int nvme_ns_head_chr_open(struct inode *inode, struct file *file)
462{
463	if (!nvme_tryget_ns_head(cdev_to_ns_head(inode->i_cdev)))
464		return -ENXIO;
465	return 0;
466}
467
468static int nvme_ns_head_chr_release(struct inode *inode, struct file *file)
469{
470	nvme_put_ns_head(cdev_to_ns_head(inode->i_cdev));
471	return 0;
472}
473
474static const struct file_operations nvme_ns_head_chr_fops = {
475	.owner		= THIS_MODULE,
476	.open		= nvme_ns_head_chr_open,
477	.release	= nvme_ns_head_chr_release,
478	.unlocked_ioctl	= nvme_ns_head_chr_ioctl,
479	.compat_ioctl	= compat_ptr_ioctl,
480	.uring_cmd	= nvme_ns_head_chr_uring_cmd,
481	.uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll,
482};
483
484static int nvme_add_ns_head_cdev(struct nvme_ns_head *head)
485{
486	int ret;
487
488	head->cdev_device.parent = &head->subsys->dev;
489	ret = dev_set_name(&head->cdev_device, "ng%dn%d",
490			   head->subsys->instance, head->instance);
491	if (ret)
492		return ret;
493	ret = nvme_cdev_add(&head->cdev, &head->cdev_device,
494			    &nvme_ns_head_chr_fops, THIS_MODULE);
495	return ret;
496}
497
498static void nvme_requeue_work(struct work_struct *work)
499{
500	struct nvme_ns_head *head =
501		container_of(work, struct nvme_ns_head, requeue_work);
502	struct bio *bio, *next;
503
504	spin_lock_irq(&head->requeue_lock);
505	next = bio_list_get(&head->requeue_list);
506	spin_unlock_irq(&head->requeue_lock);
507
508	while ((bio = next) != NULL) {
509		next = bio->bi_next;
510		bio->bi_next = NULL;
511
512		submit_bio_noacct(bio);
513	}
514}
515
516int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl, struct nvme_ns_head *head)
517{
518	bool vwc = false;
519
520	mutex_init(&head->lock);
521	bio_list_init(&head->requeue_list);
522	spin_lock_init(&head->requeue_lock);
523	INIT_WORK(&head->requeue_work, nvme_requeue_work);
524
525	/*
526	 * Add a multipath node if the subsystems supports multiple controllers.
527	 * We also do this for private namespaces as the namespace sharing flag
528	 * could change after a rescan.
529	 */
530	if (!(ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
531	    !nvme_is_unique_nsid(ctrl, head) || !multipath)
532		return 0;
533
534	head->disk = blk_alloc_disk(ctrl->numa_node);
535	if (!head->disk)
536		return -ENOMEM;
537	head->disk->fops = &nvme_ns_head_ops;
538	head->disk->private_data = head;
539	sprintf(head->disk->disk_name, "nvme%dn%d",
540			ctrl->subsys->instance, head->instance);
541
542	blk_queue_flag_set(QUEUE_FLAG_NONROT, head->disk->queue);
543	blk_queue_flag_set(QUEUE_FLAG_NOWAIT, head->disk->queue);
544	blk_queue_flag_set(QUEUE_FLAG_IO_STAT, head->disk->queue);
545	/*
546	 * This assumes all controllers that refer to a namespace either
547	 * support poll queues or not.  That is not a strict guarantee,
548	 * but if the assumption is wrong the effect is only suboptimal
549	 * performance but not correctness problem.
550	 */
551	if (ctrl->tagset->nr_maps > HCTX_TYPE_POLL &&
552	    ctrl->tagset->map[HCTX_TYPE_POLL].nr_queues)
553		blk_queue_flag_set(QUEUE_FLAG_POLL, head->disk->queue);
554
555	/* set to a default value of 512 until the disk is validated */
556	blk_queue_logical_block_size(head->disk->queue, 512);
557	blk_set_stacking_limits(&head->disk->queue->limits);
558	blk_queue_dma_alignment(head->disk->queue, 3);
559
560	/* we need to propagate up the VMC settings */
561	if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
562		vwc = true;
563	blk_queue_write_cache(head->disk->queue, vwc, vwc);
564	return 0;
565}
566
567static void nvme_mpath_set_live(struct nvme_ns *ns)
568{
569	struct nvme_ns_head *head = ns->head;
570	int rc;
571
572	if (!head->disk)
573		return;
574
575	/*
576	 * test_and_set_bit() is used because it is protecting against two nvme
577	 * paths simultaneously calling device_add_disk() on the same namespace
578	 * head.
579	 */
580	if (!test_and_set_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) {
581		rc = device_add_disk(&head->subsys->dev, head->disk,
582				     nvme_ns_id_attr_groups);
583		if (rc) {
584			clear_bit(NVME_NSHEAD_DISK_LIVE, &ns->flags);
585			return;
586		}
587		nvme_add_ns_head_cdev(head);
588	}
589
590	mutex_lock(&head->lock);
591	if (nvme_path_is_optimized(ns)) {
592		int node, srcu_idx;
593
594		srcu_idx = srcu_read_lock(&head->srcu);
595		for_each_node(node)
596			__nvme_find_path(head, node);
597		srcu_read_unlock(&head->srcu, srcu_idx);
598	}
599	mutex_unlock(&head->lock);
600
601	synchronize_srcu(&head->srcu);
602	kblockd_schedule_work(&head->requeue_work);
603}
604
605static int nvme_parse_ana_log(struct nvme_ctrl *ctrl, void *data,
606		int (*cb)(struct nvme_ctrl *ctrl, struct nvme_ana_group_desc *,
607			void *))
608{
609	void *base = ctrl->ana_log_buf;
610	size_t offset = sizeof(struct nvme_ana_rsp_hdr);
611	int error, i;
612
613	lockdep_assert_held(&ctrl->ana_lock);
614
615	for (i = 0; i < le16_to_cpu(ctrl->ana_log_buf->ngrps); i++) {
616		struct nvme_ana_group_desc *desc = base + offset;
617		u32 nr_nsids;
618		size_t nsid_buf_size;
619
620		if (WARN_ON_ONCE(offset > ctrl->ana_log_size - sizeof(*desc)))
621			return -EINVAL;
622
623		nr_nsids = le32_to_cpu(desc->nnsids);
624		nsid_buf_size = flex_array_size(desc, nsids, nr_nsids);
625
626		if (WARN_ON_ONCE(desc->grpid == 0))
627			return -EINVAL;
628		if (WARN_ON_ONCE(le32_to_cpu(desc->grpid) > ctrl->anagrpmax))
629			return -EINVAL;
630		if (WARN_ON_ONCE(desc->state == 0))
631			return -EINVAL;
632		if (WARN_ON_ONCE(desc->state > NVME_ANA_CHANGE))
633			return -EINVAL;
634
635		offset += sizeof(*desc);
636		if (WARN_ON_ONCE(offset > ctrl->ana_log_size - nsid_buf_size))
637			return -EINVAL;
638
639		error = cb(ctrl, desc, data);
640		if (error)
641			return error;
642
643		offset += nsid_buf_size;
644	}
645
646	return 0;
647}
648
649static inline bool nvme_state_is_live(enum nvme_ana_state state)
650{
651	return state == NVME_ANA_OPTIMIZED || state == NVME_ANA_NONOPTIMIZED;
652}
653
654static void nvme_update_ns_ana_state(struct nvme_ana_group_desc *desc,
655		struct nvme_ns *ns)
656{
657	ns->ana_grpid = le32_to_cpu(desc->grpid);
658	ns->ana_state = desc->state;
659	clear_bit(NVME_NS_ANA_PENDING, &ns->flags);
660	/*
661	 * nvme_mpath_set_live() will trigger I/O to the multipath path device
662	 * and in turn to this path device.  However we cannot accept this I/O
663	 * if the controller is not live.  This may deadlock if called from
664	 * nvme_mpath_init_identify() and the ctrl will never complete
665	 * initialization, preventing I/O from completing.  For this case we
666	 * will reprocess the ANA log page in nvme_mpath_update() once the
667	 * controller is ready.
668	 */
669	if (nvme_state_is_live(ns->ana_state) &&
670	    ns->ctrl->state == NVME_CTRL_LIVE)
671		nvme_mpath_set_live(ns);
672}
673
674static int nvme_update_ana_state(struct nvme_ctrl *ctrl,
675		struct nvme_ana_group_desc *desc, void *data)
676{
677	u32 nr_nsids = le32_to_cpu(desc->nnsids), n = 0;
678	unsigned *nr_change_groups = data;
679	struct nvme_ns *ns;
680
681	dev_dbg(ctrl->device, "ANA group %d: %s.\n",
682			le32_to_cpu(desc->grpid),
683			nvme_ana_state_names[desc->state]);
684
685	if (desc->state == NVME_ANA_CHANGE)
686		(*nr_change_groups)++;
687
688	if (!nr_nsids)
689		return 0;
690
691	down_read(&ctrl->namespaces_rwsem);
692	list_for_each_entry(ns, &ctrl->namespaces, list) {
693		unsigned nsid;
694again:
695		nsid = le32_to_cpu(desc->nsids[n]);
696		if (ns->head->ns_id < nsid)
697			continue;
698		if (ns->head->ns_id == nsid)
699			nvme_update_ns_ana_state(desc, ns);
700		if (++n == nr_nsids)
701			break;
702		if (ns->head->ns_id > nsid)
703			goto again;
704	}
705	up_read(&ctrl->namespaces_rwsem);
706	return 0;
707}
708
709static int nvme_read_ana_log(struct nvme_ctrl *ctrl)
710{
711	u32 nr_change_groups = 0;
712	int error;
713
714	mutex_lock(&ctrl->ana_lock);
715	error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_ANA, 0, NVME_CSI_NVM,
716			ctrl->ana_log_buf, ctrl->ana_log_size, 0);
717	if (error) {
718		dev_warn(ctrl->device, "Failed to get ANA log: %d\n", error);
719		goto out_unlock;
720	}
721
722	error = nvme_parse_ana_log(ctrl, &nr_change_groups,
723			nvme_update_ana_state);
724	if (error)
725		goto out_unlock;
726
727	/*
728	 * In theory we should have an ANATT timer per group as they might enter
729	 * the change state at different times.  But that is a lot of overhead
730	 * just to protect against a target that keeps entering new changes
731	 * states while never finishing previous ones.  But we'll still
732	 * eventually time out once all groups are in change state, so this
733	 * isn't a big deal.
734	 *
735	 * We also double the ANATT value to provide some slack for transports
736	 * or AEN processing overhead.
737	 */
738	if (nr_change_groups)
739		mod_timer(&ctrl->anatt_timer, ctrl->anatt * HZ * 2 + jiffies);
740	else
741		del_timer_sync(&ctrl->anatt_timer);
742out_unlock:
743	mutex_unlock(&ctrl->ana_lock);
744	return error;
745}
746
747static void nvme_ana_work(struct work_struct *work)
748{
749	struct nvme_ctrl *ctrl = container_of(work, struct nvme_ctrl, ana_work);
750
751	if (ctrl->state != NVME_CTRL_LIVE)
752		return;
753
754	nvme_read_ana_log(ctrl);
755}
756
757void nvme_mpath_update(struct nvme_ctrl *ctrl)
758{
759	u32 nr_change_groups = 0;
760
761	if (!ctrl->ana_log_buf)
762		return;
763
764	mutex_lock(&ctrl->ana_lock);
765	nvme_parse_ana_log(ctrl, &nr_change_groups, nvme_update_ana_state);
766	mutex_unlock(&ctrl->ana_lock);
767}
768
769static void nvme_anatt_timeout(struct timer_list *t)
770{
771	struct nvme_ctrl *ctrl = from_timer(ctrl, t, anatt_timer);
772
773	dev_info(ctrl->device, "ANATT timeout, resetting controller.\n");
774	nvme_reset_ctrl(ctrl);
775}
776
777void nvme_mpath_stop(struct nvme_ctrl *ctrl)
778{
779	if (!nvme_ctrl_use_ana(ctrl))
780		return;
781	del_timer_sync(&ctrl->anatt_timer);
782	cancel_work_sync(&ctrl->ana_work);
783}
784
785#define SUBSYS_ATTR_RW(_name, _mode, _show, _store)  \
786	struct device_attribute subsys_attr_##_name =	\
787		__ATTR(_name, _mode, _show, _store)
788
789static ssize_t nvme_subsys_iopolicy_show(struct device *dev,
790		struct device_attribute *attr, char *buf)
791{
792	struct nvme_subsystem *subsys =
793		container_of(dev, struct nvme_subsystem, dev);
794
795	return sysfs_emit(buf, "%s\n",
796			  nvme_iopolicy_names[READ_ONCE(subsys->iopolicy)]);
797}
798
799static ssize_t nvme_subsys_iopolicy_store(struct device *dev,
800		struct device_attribute *attr, const char *buf, size_t count)
801{
802	struct nvme_subsystem *subsys =
803		container_of(dev, struct nvme_subsystem, dev);
804	int i;
805
806	for (i = 0; i < ARRAY_SIZE(nvme_iopolicy_names); i++) {
807		if (sysfs_streq(buf, nvme_iopolicy_names[i])) {
808			WRITE_ONCE(subsys->iopolicy, i);
809			return count;
810		}
811	}
812
813	return -EINVAL;
814}
815SUBSYS_ATTR_RW(iopolicy, S_IRUGO | S_IWUSR,
816		      nvme_subsys_iopolicy_show, nvme_subsys_iopolicy_store);
817
818static ssize_t ana_grpid_show(struct device *dev, struct device_attribute *attr,
819		char *buf)
820{
821	return sysfs_emit(buf, "%d\n", nvme_get_ns_from_dev(dev)->ana_grpid);
822}
823DEVICE_ATTR_RO(ana_grpid);
824
825static ssize_t ana_state_show(struct device *dev, struct device_attribute *attr,
826		char *buf)
827{
828	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
829
830	return sysfs_emit(buf, "%s\n", nvme_ana_state_names[ns->ana_state]);
831}
832DEVICE_ATTR_RO(ana_state);
833
834static int nvme_lookup_ana_group_desc(struct nvme_ctrl *ctrl,
835		struct nvme_ana_group_desc *desc, void *data)
836{
837	struct nvme_ana_group_desc *dst = data;
838
839	if (desc->grpid != dst->grpid)
840		return 0;
841
842	*dst = *desc;
843	return -ENXIO; /* just break out of the loop */
844}
845
846void nvme_mpath_add_disk(struct nvme_ns *ns, __le32 anagrpid)
847{
848	if (nvme_ctrl_use_ana(ns->ctrl)) {
849		struct nvme_ana_group_desc desc = {
850			.grpid = anagrpid,
851			.state = 0,
852		};
853
854		mutex_lock(&ns->ctrl->ana_lock);
855		ns->ana_grpid = le32_to_cpu(anagrpid);
856		nvme_parse_ana_log(ns->ctrl, &desc, nvme_lookup_ana_group_desc);
857		mutex_unlock(&ns->ctrl->ana_lock);
858		if (desc.state) {
859			/* found the group desc: update */
860			nvme_update_ns_ana_state(&desc, ns);
861		} else {
862			/* group desc not found: trigger a re-read */
863			set_bit(NVME_NS_ANA_PENDING, &ns->flags);
864			queue_work(nvme_wq, &ns->ctrl->ana_work);
865		}
866	} else {
867		ns->ana_state = NVME_ANA_OPTIMIZED;
868		nvme_mpath_set_live(ns);
869	}
870
871	if (blk_queue_stable_writes(ns->queue) && ns->head->disk)
872		blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES,
873				   ns->head->disk->queue);
874#ifdef CONFIG_BLK_DEV_ZONED
875	if (blk_queue_is_zoned(ns->queue) && ns->head->disk)
876		ns->head->disk->nr_zones = ns->disk->nr_zones;
877#endif
878}
879
880void nvme_mpath_shutdown_disk(struct nvme_ns_head *head)
881{
882	if (!head->disk)
883		return;
884	kblockd_schedule_work(&head->requeue_work);
885	if (test_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) {
886		nvme_cdev_del(&head->cdev, &head->cdev_device);
887		del_gendisk(head->disk);
888	}
889}
890
891void nvme_mpath_remove_disk(struct nvme_ns_head *head)
892{
893	if (!head->disk)
894		return;
895	/* make sure all pending bios are cleaned up */
896	kblockd_schedule_work(&head->requeue_work);
897	flush_work(&head->requeue_work);
898	put_disk(head->disk);
899}
900
901void nvme_mpath_init_ctrl(struct nvme_ctrl *ctrl)
902{
903	mutex_init(&ctrl->ana_lock);
904	timer_setup(&ctrl->anatt_timer, nvme_anatt_timeout, 0);
905	INIT_WORK(&ctrl->ana_work, nvme_ana_work);
906}
907
908int nvme_mpath_init_identify(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
909{
910	size_t max_transfer_size = ctrl->max_hw_sectors << SECTOR_SHIFT;
911	size_t ana_log_size;
912	int error = 0;
913
914	/* check if multipath is enabled and we have the capability */
915	if (!multipath || !ctrl->subsys ||
916	    !(ctrl->subsys->cmic & NVME_CTRL_CMIC_ANA))
917		return 0;
918
919	if (!ctrl->max_namespaces ||
920	    ctrl->max_namespaces > le32_to_cpu(id->nn)) {
921		dev_err(ctrl->device,
922			"Invalid MNAN value %u\n", ctrl->max_namespaces);
923		return -EINVAL;
924	}
925
926	ctrl->anacap = id->anacap;
927	ctrl->anatt = id->anatt;
928	ctrl->nanagrpid = le32_to_cpu(id->nanagrpid);
929	ctrl->anagrpmax = le32_to_cpu(id->anagrpmax);
930
931	ana_log_size = sizeof(struct nvme_ana_rsp_hdr) +
932		ctrl->nanagrpid * sizeof(struct nvme_ana_group_desc) +
933		ctrl->max_namespaces * sizeof(__le32);
934	if (ana_log_size > max_transfer_size) {
935		dev_err(ctrl->device,
936			"ANA log page size (%zd) larger than MDTS (%zd).\n",
937			ana_log_size, max_transfer_size);
938		dev_err(ctrl->device, "disabling ANA support.\n");
939		goto out_uninit;
940	}
941	if (ana_log_size > ctrl->ana_log_size) {
942		nvme_mpath_stop(ctrl);
943		nvme_mpath_uninit(ctrl);
944		ctrl->ana_log_buf = kvmalloc(ana_log_size, GFP_KERNEL);
945		if (!ctrl->ana_log_buf)
946			return -ENOMEM;
947	}
948	ctrl->ana_log_size = ana_log_size;
949	error = nvme_read_ana_log(ctrl);
950	if (error)
951		goto out_uninit;
952	return 0;
953
954out_uninit:
955	nvme_mpath_uninit(ctrl);
956	return error;
957}
958
959void nvme_mpath_uninit(struct nvme_ctrl *ctrl)
960{
961	kvfree(ctrl->ana_log_buf);
962	ctrl->ana_log_buf = NULL;
963	ctrl->ana_log_size = 0;
964}
965