1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
4 */
5#include <linux/scatterlist.h>
6#include <linux/memregion.h>
7#include <linux/highmem.h>
8#include <linux/kstrtox.h>
9#include <linux/sched.h>
10#include <linux/slab.h>
11#include <linux/hash.h>
12#include <linux/sort.h>
13#include <linux/io.h>
14#include <linux/nd.h>
15#include "nd-core.h"
16#include "nd.h"
17
18/*
19 * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is
20 * irrelevant.
21 */
22#include <linux/io-64-nonatomic-hi-lo.h>
23
24static DEFINE_PER_CPU(int, flush_idx);
25
26static int nvdimm_map_flush(struct device *dev, struct nvdimm *nvdimm, int dimm,
27		struct nd_region_data *ndrd)
28{
29	int i, j;
30
31	dev_dbg(dev, "%s: map %d flush address%s\n", nvdimm_name(nvdimm),
32			nvdimm->num_flush, nvdimm->num_flush == 1 ? "" : "es");
33	for (i = 0; i < (1 << ndrd->hints_shift); i++) {
34		struct resource *res = &nvdimm->flush_wpq[i];
35		unsigned long pfn = PHYS_PFN(res->start);
36		void __iomem *flush_page;
37
38		/* check if flush hints share a page */
39		for (j = 0; j < i; j++) {
40			struct resource *res_j = &nvdimm->flush_wpq[j];
41			unsigned long pfn_j = PHYS_PFN(res_j->start);
42
43			if (pfn == pfn_j)
44				break;
45		}
46
47		if (j < i)
48			flush_page = (void __iomem *) ((unsigned long)
49					ndrd_get_flush_wpq(ndrd, dimm, j)
50					& PAGE_MASK);
51		else
52			flush_page = devm_nvdimm_ioremap(dev,
53					PFN_PHYS(pfn), PAGE_SIZE);
54		if (!flush_page)
55			return -ENXIO;
56		ndrd_set_flush_wpq(ndrd, dimm, i, flush_page
57				+ (res->start & ~PAGE_MASK));
58	}
59
60	return 0;
61}
62
63static int nd_region_invalidate_memregion(struct nd_region *nd_region)
64{
65	int i, incoherent = 0;
66
67	for (i = 0; i < nd_region->ndr_mappings; i++) {
68		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
69		struct nvdimm *nvdimm = nd_mapping->nvdimm;
70
71		if (test_bit(NDD_INCOHERENT, &nvdimm->flags)) {
72			incoherent++;
73			break;
74		}
75	}
76
77	if (!incoherent)
78		return 0;
79
80	if (!cpu_cache_has_invalidate_memregion()) {
81		if (IS_ENABLED(CONFIG_NVDIMM_SECURITY_TEST)) {
82			dev_warn(
83				&nd_region->dev,
84				"Bypassing cpu_cache_invalidate_memergion() for testing!\n");
85			goto out;
86		} else {
87			dev_err(&nd_region->dev,
88				"Failed to synchronize CPU cache state\n");
89			return -ENXIO;
90		}
91	}
92
93	cpu_cache_invalidate_memregion(IORES_DESC_PERSISTENT_MEMORY);
94out:
95	for (i = 0; i < nd_region->ndr_mappings; i++) {
96		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
97		struct nvdimm *nvdimm = nd_mapping->nvdimm;
98
99		clear_bit(NDD_INCOHERENT, &nvdimm->flags);
100	}
101
102	return 0;
103}
104
105int nd_region_activate(struct nd_region *nd_region)
106{
107	int i, j, rc, num_flush = 0;
108	struct nd_region_data *ndrd;
109	struct device *dev = &nd_region->dev;
110	size_t flush_data_size = sizeof(void *);
111
112	nvdimm_bus_lock(&nd_region->dev);
113	for (i = 0; i < nd_region->ndr_mappings; i++) {
114		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
115		struct nvdimm *nvdimm = nd_mapping->nvdimm;
116
117		if (test_bit(NDD_SECURITY_OVERWRITE, &nvdimm->flags)) {
118			nvdimm_bus_unlock(&nd_region->dev);
119			return -EBUSY;
120		}
121
122		/* at least one null hint slot per-dimm for the "no-hint" case */
123		flush_data_size += sizeof(void *);
124		num_flush = min_not_zero(num_flush, nvdimm->num_flush);
125		if (!nvdimm->num_flush)
126			continue;
127		flush_data_size += nvdimm->num_flush * sizeof(void *);
128	}
129	nvdimm_bus_unlock(&nd_region->dev);
130
131	rc = nd_region_invalidate_memregion(nd_region);
132	if (rc)
133		return rc;
134
135	ndrd = devm_kzalloc(dev, sizeof(*ndrd) + flush_data_size, GFP_KERNEL);
136	if (!ndrd)
137		return -ENOMEM;
138	dev_set_drvdata(dev, ndrd);
139
140	if (!num_flush)
141		return 0;
142
143	ndrd->hints_shift = ilog2(num_flush);
144	for (i = 0; i < nd_region->ndr_mappings; i++) {
145		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
146		struct nvdimm *nvdimm = nd_mapping->nvdimm;
147		int rc = nvdimm_map_flush(&nd_region->dev, nvdimm, i, ndrd);
148
149		if (rc)
150			return rc;
151	}
152
153	/*
154	 * Clear out entries that are duplicates. This should prevent the
155	 * extra flushings.
156	 */
157	for (i = 0; i < nd_region->ndr_mappings - 1; i++) {
158		/* ignore if NULL already */
159		if (!ndrd_get_flush_wpq(ndrd, i, 0))
160			continue;
161
162		for (j = i + 1; j < nd_region->ndr_mappings; j++)
163			if (ndrd_get_flush_wpq(ndrd, i, 0) ==
164			    ndrd_get_flush_wpq(ndrd, j, 0))
165				ndrd_set_flush_wpq(ndrd, j, 0, NULL);
166	}
167
168	return 0;
169}
170
171static void nd_region_release(struct device *dev)
172{
173	struct nd_region *nd_region = to_nd_region(dev);
174	u16 i;
175
176	for (i = 0; i < nd_region->ndr_mappings; i++) {
177		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
178		struct nvdimm *nvdimm = nd_mapping->nvdimm;
179
180		put_device(&nvdimm->dev);
181	}
182	free_percpu(nd_region->lane);
183	if (!test_bit(ND_REGION_CXL, &nd_region->flags))
184		memregion_free(nd_region->id);
185	kfree(nd_region);
186}
187
188struct nd_region *to_nd_region(struct device *dev)
189{
190	struct nd_region *nd_region = container_of(dev, struct nd_region, dev);
191
192	WARN_ON(dev->type->release != nd_region_release);
193	return nd_region;
194}
195EXPORT_SYMBOL_GPL(to_nd_region);
196
197struct device *nd_region_dev(struct nd_region *nd_region)
198{
199	if (!nd_region)
200		return NULL;
201	return &nd_region->dev;
202}
203EXPORT_SYMBOL_GPL(nd_region_dev);
204
205void *nd_region_provider_data(struct nd_region *nd_region)
206{
207	return nd_region->provider_data;
208}
209EXPORT_SYMBOL_GPL(nd_region_provider_data);
210
211/**
212 * nd_region_to_nstype() - region to an integer namespace type
213 * @nd_region: region-device to interrogate
214 *
215 * This is the 'nstype' attribute of a region as well, an input to the
216 * MODALIAS for namespace devices, and bit number for a nvdimm_bus to match
217 * namespace devices with namespace drivers.
218 */
219int nd_region_to_nstype(struct nd_region *nd_region)
220{
221	if (is_memory(&nd_region->dev)) {
222		u16 i, label;
223
224		for (i = 0, label = 0; i < nd_region->ndr_mappings; i++) {
225			struct nd_mapping *nd_mapping = &nd_region->mapping[i];
226			struct nvdimm *nvdimm = nd_mapping->nvdimm;
227
228			if (test_bit(NDD_LABELING, &nvdimm->flags))
229				label++;
230		}
231		if (label)
232			return ND_DEVICE_NAMESPACE_PMEM;
233		else
234			return ND_DEVICE_NAMESPACE_IO;
235	}
236
237	return 0;
238}
239EXPORT_SYMBOL(nd_region_to_nstype);
240
241static unsigned long long region_size(struct nd_region *nd_region)
242{
243	if (is_memory(&nd_region->dev)) {
244		return nd_region->ndr_size;
245	} else if (nd_region->ndr_mappings == 1) {
246		struct nd_mapping *nd_mapping = &nd_region->mapping[0];
247
248		return nd_mapping->size;
249	}
250
251	return 0;
252}
253
254static ssize_t size_show(struct device *dev,
255		struct device_attribute *attr, char *buf)
256{
257	struct nd_region *nd_region = to_nd_region(dev);
258
259	return sprintf(buf, "%llu\n", region_size(nd_region));
260}
261static DEVICE_ATTR_RO(size);
262
263static ssize_t deep_flush_show(struct device *dev,
264		struct device_attribute *attr, char *buf)
265{
266	struct nd_region *nd_region = to_nd_region(dev);
267
268	/*
269	 * NOTE: in the nvdimm_has_flush() error case this attribute is
270	 * not visible.
271	 */
272	return sprintf(buf, "%d\n", nvdimm_has_flush(nd_region));
273}
274
275static ssize_t deep_flush_store(struct device *dev, struct device_attribute *attr,
276		const char *buf, size_t len)
277{
278	bool flush;
279	int rc = kstrtobool(buf, &flush);
280	struct nd_region *nd_region = to_nd_region(dev);
281
282	if (rc)
283		return rc;
284	if (!flush)
285		return -EINVAL;
286	rc = nvdimm_flush(nd_region, NULL);
287	if (rc)
288		return rc;
289
290	return len;
291}
292static DEVICE_ATTR_RW(deep_flush);
293
294static ssize_t mappings_show(struct device *dev,
295		struct device_attribute *attr, char *buf)
296{
297	struct nd_region *nd_region = to_nd_region(dev);
298
299	return sprintf(buf, "%d\n", nd_region->ndr_mappings);
300}
301static DEVICE_ATTR_RO(mappings);
302
303static ssize_t nstype_show(struct device *dev,
304		struct device_attribute *attr, char *buf)
305{
306	struct nd_region *nd_region = to_nd_region(dev);
307
308	return sprintf(buf, "%d\n", nd_region_to_nstype(nd_region));
309}
310static DEVICE_ATTR_RO(nstype);
311
312static ssize_t set_cookie_show(struct device *dev,
313		struct device_attribute *attr, char *buf)
314{
315	struct nd_region *nd_region = to_nd_region(dev);
316	struct nd_interleave_set *nd_set = nd_region->nd_set;
317	ssize_t rc = 0;
318
319	if (is_memory(dev) && nd_set)
320		/* pass, should be precluded by region_visible */;
321	else
322		return -ENXIO;
323
324	/*
325	 * The cookie to show depends on which specification of the
326	 * labels we are using. If there are not labels then default to
327	 * the v1.1 namespace label cookie definition. To read all this
328	 * data we need to wait for probing to settle.
329	 */
330	device_lock(dev);
331	nvdimm_bus_lock(dev);
332	wait_nvdimm_bus_probe_idle(dev);
333	if (nd_region->ndr_mappings) {
334		struct nd_mapping *nd_mapping = &nd_region->mapping[0];
335		struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
336
337		if (ndd) {
338			struct nd_namespace_index *nsindex;
339
340			nsindex = to_namespace_index(ndd, ndd->ns_current);
341			rc = sprintf(buf, "%#llx\n",
342					nd_region_interleave_set_cookie(nd_region,
343						nsindex));
344		}
345	}
346	nvdimm_bus_unlock(dev);
347	device_unlock(dev);
348
349	if (rc)
350		return rc;
351	return sprintf(buf, "%#llx\n", nd_set->cookie1);
352}
353static DEVICE_ATTR_RO(set_cookie);
354
355resource_size_t nd_region_available_dpa(struct nd_region *nd_region)
356{
357	resource_size_t available;
358	int i;
359
360	WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));
361
362	available = 0;
363	for (i = 0; i < nd_region->ndr_mappings; i++) {
364		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
365		struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
366
367		/* if a dimm is disabled the available capacity is zero */
368		if (!ndd)
369			return 0;
370
371		available += nd_pmem_available_dpa(nd_region, nd_mapping);
372	}
373
374	return available;
375}
376
377resource_size_t nd_region_allocatable_dpa(struct nd_region *nd_region)
378{
379	resource_size_t avail = 0;
380	int i;
381
382	WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));
383	for (i = 0; i < nd_region->ndr_mappings; i++) {
384		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
385
386		avail = min_not_zero(avail, nd_pmem_max_contiguous_dpa(
387						    nd_region, nd_mapping));
388	}
389	return avail * nd_region->ndr_mappings;
390}
391
392static ssize_t available_size_show(struct device *dev,
393		struct device_attribute *attr, char *buf)
394{
395	struct nd_region *nd_region = to_nd_region(dev);
396	unsigned long long available = 0;
397
398	/*
399	 * Flush in-flight updates and grab a snapshot of the available
400	 * size.  Of course, this value is potentially invalidated the
401	 * memory nvdimm_bus_lock() is dropped, but that's userspace's
402	 * problem to not race itself.
403	 */
404	device_lock(dev);
405	nvdimm_bus_lock(dev);
406	wait_nvdimm_bus_probe_idle(dev);
407	available = nd_region_available_dpa(nd_region);
408	nvdimm_bus_unlock(dev);
409	device_unlock(dev);
410
411	return sprintf(buf, "%llu\n", available);
412}
413static DEVICE_ATTR_RO(available_size);
414
415static ssize_t max_available_extent_show(struct device *dev,
416		struct device_attribute *attr, char *buf)
417{
418	struct nd_region *nd_region = to_nd_region(dev);
419	unsigned long long available = 0;
420
421	device_lock(dev);
422	nvdimm_bus_lock(dev);
423	wait_nvdimm_bus_probe_idle(dev);
424	available = nd_region_allocatable_dpa(nd_region);
425	nvdimm_bus_unlock(dev);
426	device_unlock(dev);
427
428	return sprintf(buf, "%llu\n", available);
429}
430static DEVICE_ATTR_RO(max_available_extent);
431
432static ssize_t init_namespaces_show(struct device *dev,
433		struct device_attribute *attr, char *buf)
434{
435	struct nd_region_data *ndrd = dev_get_drvdata(dev);
436	ssize_t rc;
437
438	nvdimm_bus_lock(dev);
439	if (ndrd)
440		rc = sprintf(buf, "%d/%d\n", ndrd->ns_active, ndrd->ns_count);
441	else
442		rc = -ENXIO;
443	nvdimm_bus_unlock(dev);
444
445	return rc;
446}
447static DEVICE_ATTR_RO(init_namespaces);
448
449static ssize_t namespace_seed_show(struct device *dev,
450		struct device_attribute *attr, char *buf)
451{
452	struct nd_region *nd_region = to_nd_region(dev);
453	ssize_t rc;
454
455	nvdimm_bus_lock(dev);
456	if (nd_region->ns_seed)
457		rc = sprintf(buf, "%s\n", dev_name(nd_region->ns_seed));
458	else
459		rc = sprintf(buf, "\n");
460	nvdimm_bus_unlock(dev);
461	return rc;
462}
463static DEVICE_ATTR_RO(namespace_seed);
464
465static ssize_t btt_seed_show(struct device *dev,
466		struct device_attribute *attr, char *buf)
467{
468	struct nd_region *nd_region = to_nd_region(dev);
469	ssize_t rc;
470
471	nvdimm_bus_lock(dev);
472	if (nd_region->btt_seed)
473		rc = sprintf(buf, "%s\n", dev_name(nd_region->btt_seed));
474	else
475		rc = sprintf(buf, "\n");
476	nvdimm_bus_unlock(dev);
477
478	return rc;
479}
480static DEVICE_ATTR_RO(btt_seed);
481
482static ssize_t pfn_seed_show(struct device *dev,
483		struct device_attribute *attr, char *buf)
484{
485	struct nd_region *nd_region = to_nd_region(dev);
486	ssize_t rc;
487
488	nvdimm_bus_lock(dev);
489	if (nd_region->pfn_seed)
490		rc = sprintf(buf, "%s\n", dev_name(nd_region->pfn_seed));
491	else
492		rc = sprintf(buf, "\n");
493	nvdimm_bus_unlock(dev);
494
495	return rc;
496}
497static DEVICE_ATTR_RO(pfn_seed);
498
499static ssize_t dax_seed_show(struct device *dev,
500		struct device_attribute *attr, char *buf)
501{
502	struct nd_region *nd_region = to_nd_region(dev);
503	ssize_t rc;
504
505	nvdimm_bus_lock(dev);
506	if (nd_region->dax_seed)
507		rc = sprintf(buf, "%s\n", dev_name(nd_region->dax_seed));
508	else
509		rc = sprintf(buf, "\n");
510	nvdimm_bus_unlock(dev);
511
512	return rc;
513}
514static DEVICE_ATTR_RO(dax_seed);
515
516static ssize_t read_only_show(struct device *dev,
517		struct device_attribute *attr, char *buf)
518{
519	struct nd_region *nd_region = to_nd_region(dev);
520
521	return sprintf(buf, "%d\n", nd_region->ro);
522}
523
524static int revalidate_read_only(struct device *dev, void *data)
525{
526	nd_device_notify(dev, NVDIMM_REVALIDATE_REGION);
527	return 0;
528}
529
530static ssize_t read_only_store(struct device *dev,
531		struct device_attribute *attr, const char *buf, size_t len)
532{
533	bool ro;
534	int rc = kstrtobool(buf, &ro);
535	struct nd_region *nd_region = to_nd_region(dev);
536
537	if (rc)
538		return rc;
539
540	nd_region->ro = ro;
541	device_for_each_child(dev, NULL, revalidate_read_only);
542	return len;
543}
544static DEVICE_ATTR_RW(read_only);
545
546static ssize_t align_show(struct device *dev,
547		struct device_attribute *attr, char *buf)
548{
549	struct nd_region *nd_region = to_nd_region(dev);
550
551	return sprintf(buf, "%#lx\n", nd_region->align);
552}
553
554static ssize_t align_store(struct device *dev,
555		struct device_attribute *attr, const char *buf, size_t len)
556{
557	struct nd_region *nd_region = to_nd_region(dev);
558	unsigned long val, dpa;
559	u32 mappings, remainder;
560	int rc;
561
562	rc = kstrtoul(buf, 0, &val);
563	if (rc)
564		return rc;
565
566	/*
567	 * Ensure space-align is evenly divisible by the region
568	 * interleave-width because the kernel typically has no facility
569	 * to determine which DIMM(s), dimm-physical-addresses, would
570	 * contribute to the tail capacity in system-physical-address
571	 * space for the namespace.
572	 */
573	mappings = max_t(u32, 1, nd_region->ndr_mappings);
574	dpa = div_u64_rem(val, mappings, &remainder);
575	if (!is_power_of_2(dpa) || dpa < PAGE_SIZE
576			|| val > region_size(nd_region) || remainder)
577		return -EINVAL;
578
579	/*
580	 * Given that space allocation consults this value multiple
581	 * times ensure it does not change for the duration of the
582	 * allocation.
583	 */
584	nvdimm_bus_lock(dev);
585	nd_region->align = val;
586	nvdimm_bus_unlock(dev);
587
588	return len;
589}
590static DEVICE_ATTR_RW(align);
591
592static ssize_t region_badblocks_show(struct device *dev,
593		struct device_attribute *attr, char *buf)
594{
595	struct nd_region *nd_region = to_nd_region(dev);
596	ssize_t rc;
597
598	device_lock(dev);
599	if (dev->driver)
600		rc = badblocks_show(&nd_region->bb, buf, 0);
601	else
602		rc = -ENXIO;
603	device_unlock(dev);
604
605	return rc;
606}
607static DEVICE_ATTR(badblocks, 0444, region_badblocks_show, NULL);
608
609static ssize_t resource_show(struct device *dev,
610		struct device_attribute *attr, char *buf)
611{
612	struct nd_region *nd_region = to_nd_region(dev);
613
614	return sprintf(buf, "%#llx\n", nd_region->ndr_start);
615}
616static DEVICE_ATTR_ADMIN_RO(resource);
617
618static ssize_t persistence_domain_show(struct device *dev,
619		struct device_attribute *attr, char *buf)
620{
621	struct nd_region *nd_region = to_nd_region(dev);
622
623	if (test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags))
624		return sprintf(buf, "cpu_cache\n");
625	else if (test_bit(ND_REGION_PERSIST_MEMCTRL, &nd_region->flags))
626		return sprintf(buf, "memory_controller\n");
627	else
628		return sprintf(buf, "\n");
629}
630static DEVICE_ATTR_RO(persistence_domain);
631
632static struct attribute *nd_region_attributes[] = {
633	&dev_attr_size.attr,
634	&dev_attr_align.attr,
635	&dev_attr_nstype.attr,
636	&dev_attr_mappings.attr,
637	&dev_attr_btt_seed.attr,
638	&dev_attr_pfn_seed.attr,
639	&dev_attr_dax_seed.attr,
640	&dev_attr_deep_flush.attr,
641	&dev_attr_read_only.attr,
642	&dev_attr_set_cookie.attr,
643	&dev_attr_available_size.attr,
644	&dev_attr_max_available_extent.attr,
645	&dev_attr_namespace_seed.attr,
646	&dev_attr_init_namespaces.attr,
647	&dev_attr_badblocks.attr,
648	&dev_attr_resource.attr,
649	&dev_attr_persistence_domain.attr,
650	NULL,
651};
652
653static umode_t region_visible(struct kobject *kobj, struct attribute *a, int n)
654{
655	struct device *dev = container_of(kobj, typeof(*dev), kobj);
656	struct nd_region *nd_region = to_nd_region(dev);
657	struct nd_interleave_set *nd_set = nd_region->nd_set;
658	int type = nd_region_to_nstype(nd_region);
659
660	if (!is_memory(dev) && a == &dev_attr_pfn_seed.attr)
661		return 0;
662
663	if (!is_memory(dev) && a == &dev_attr_dax_seed.attr)
664		return 0;
665
666	if (!is_memory(dev) && a == &dev_attr_badblocks.attr)
667		return 0;
668
669	if (a == &dev_attr_resource.attr && !is_memory(dev))
670		return 0;
671
672	if (a == &dev_attr_deep_flush.attr) {
673		int has_flush = nvdimm_has_flush(nd_region);
674
675		if (has_flush == 1)
676			return a->mode;
677		else if (has_flush == 0)
678			return 0444;
679		else
680			return 0;
681	}
682
683	if (a == &dev_attr_persistence_domain.attr) {
684		if ((nd_region->flags & (BIT(ND_REGION_PERSIST_CACHE)
685					| BIT(ND_REGION_PERSIST_MEMCTRL))) == 0)
686			return 0;
687		return a->mode;
688	}
689
690	if (a == &dev_attr_align.attr)
691		return a->mode;
692
693	if (a != &dev_attr_set_cookie.attr
694			&& a != &dev_attr_available_size.attr)
695		return a->mode;
696
697	if (type == ND_DEVICE_NAMESPACE_PMEM &&
698	    a == &dev_attr_available_size.attr)
699		return a->mode;
700	else if (is_memory(dev) && nd_set)
701		return a->mode;
702
703	return 0;
704}
705
706static ssize_t mappingN(struct device *dev, char *buf, int n)
707{
708	struct nd_region *nd_region = to_nd_region(dev);
709	struct nd_mapping *nd_mapping;
710	struct nvdimm *nvdimm;
711
712	if (n >= nd_region->ndr_mappings)
713		return -ENXIO;
714	nd_mapping = &nd_region->mapping[n];
715	nvdimm = nd_mapping->nvdimm;
716
717	return sprintf(buf, "%s,%llu,%llu,%d\n", dev_name(&nvdimm->dev),
718			nd_mapping->start, nd_mapping->size,
719			nd_mapping->position);
720}
721
722#define REGION_MAPPING(idx) \
723static ssize_t mapping##idx##_show(struct device *dev,		\
724		struct device_attribute *attr, char *buf)	\
725{								\
726	return mappingN(dev, buf, idx);				\
727}								\
728static DEVICE_ATTR_RO(mapping##idx)
729
730/*
731 * 32 should be enough for a while, even in the presence of socket
732 * interleave a 32-way interleave set is a degenerate case.
733 */
734REGION_MAPPING(0);
735REGION_MAPPING(1);
736REGION_MAPPING(2);
737REGION_MAPPING(3);
738REGION_MAPPING(4);
739REGION_MAPPING(5);
740REGION_MAPPING(6);
741REGION_MAPPING(7);
742REGION_MAPPING(8);
743REGION_MAPPING(9);
744REGION_MAPPING(10);
745REGION_MAPPING(11);
746REGION_MAPPING(12);
747REGION_MAPPING(13);
748REGION_MAPPING(14);
749REGION_MAPPING(15);
750REGION_MAPPING(16);
751REGION_MAPPING(17);
752REGION_MAPPING(18);
753REGION_MAPPING(19);
754REGION_MAPPING(20);
755REGION_MAPPING(21);
756REGION_MAPPING(22);
757REGION_MAPPING(23);
758REGION_MAPPING(24);
759REGION_MAPPING(25);
760REGION_MAPPING(26);
761REGION_MAPPING(27);
762REGION_MAPPING(28);
763REGION_MAPPING(29);
764REGION_MAPPING(30);
765REGION_MAPPING(31);
766
767static umode_t mapping_visible(struct kobject *kobj, struct attribute *a, int n)
768{
769	struct device *dev = container_of(kobj, struct device, kobj);
770	struct nd_region *nd_region = to_nd_region(dev);
771
772	if (n < nd_region->ndr_mappings)
773		return a->mode;
774	return 0;
775}
776
777static struct attribute *mapping_attributes[] = {
778	&dev_attr_mapping0.attr,
779	&dev_attr_mapping1.attr,
780	&dev_attr_mapping2.attr,
781	&dev_attr_mapping3.attr,
782	&dev_attr_mapping4.attr,
783	&dev_attr_mapping5.attr,
784	&dev_attr_mapping6.attr,
785	&dev_attr_mapping7.attr,
786	&dev_attr_mapping8.attr,
787	&dev_attr_mapping9.attr,
788	&dev_attr_mapping10.attr,
789	&dev_attr_mapping11.attr,
790	&dev_attr_mapping12.attr,
791	&dev_attr_mapping13.attr,
792	&dev_attr_mapping14.attr,
793	&dev_attr_mapping15.attr,
794	&dev_attr_mapping16.attr,
795	&dev_attr_mapping17.attr,
796	&dev_attr_mapping18.attr,
797	&dev_attr_mapping19.attr,
798	&dev_attr_mapping20.attr,
799	&dev_attr_mapping21.attr,
800	&dev_attr_mapping22.attr,
801	&dev_attr_mapping23.attr,
802	&dev_attr_mapping24.attr,
803	&dev_attr_mapping25.attr,
804	&dev_attr_mapping26.attr,
805	&dev_attr_mapping27.attr,
806	&dev_attr_mapping28.attr,
807	&dev_attr_mapping29.attr,
808	&dev_attr_mapping30.attr,
809	&dev_attr_mapping31.attr,
810	NULL,
811};
812
813static const struct attribute_group nd_mapping_attribute_group = {
814	.is_visible = mapping_visible,
815	.attrs = mapping_attributes,
816};
817
818static const struct attribute_group nd_region_attribute_group = {
819	.attrs = nd_region_attributes,
820	.is_visible = region_visible,
821};
822
823static const struct attribute_group *nd_region_attribute_groups[] = {
824	&nd_device_attribute_group,
825	&nd_region_attribute_group,
826	&nd_numa_attribute_group,
827	&nd_mapping_attribute_group,
828	NULL,
829};
830
831static const struct device_type nd_pmem_device_type = {
832	.name = "nd_pmem",
833	.release = nd_region_release,
834	.groups = nd_region_attribute_groups,
835};
836
837static const struct device_type nd_volatile_device_type = {
838	.name = "nd_volatile",
839	.release = nd_region_release,
840	.groups = nd_region_attribute_groups,
841};
842
843bool is_nd_pmem(const struct device *dev)
844{
845	return dev ? dev->type == &nd_pmem_device_type : false;
846}
847
848bool is_nd_volatile(const struct device *dev)
849{
850	return dev ? dev->type == &nd_volatile_device_type : false;
851}
852
853u64 nd_region_interleave_set_cookie(struct nd_region *nd_region,
854		struct nd_namespace_index *nsindex)
855{
856	struct nd_interleave_set *nd_set = nd_region->nd_set;
857
858	if (!nd_set)
859		return 0;
860
861	if (nsindex && __le16_to_cpu(nsindex->major) == 1
862			&& __le16_to_cpu(nsindex->minor) == 1)
863		return nd_set->cookie1;
864	return nd_set->cookie2;
865}
866
867u64 nd_region_interleave_set_altcookie(struct nd_region *nd_region)
868{
869	struct nd_interleave_set *nd_set = nd_region->nd_set;
870
871	if (nd_set)
872		return nd_set->altcookie;
873	return 0;
874}
875
876void nd_mapping_free_labels(struct nd_mapping *nd_mapping)
877{
878	struct nd_label_ent *label_ent, *e;
879
880	lockdep_assert_held(&nd_mapping->lock);
881	list_for_each_entry_safe(label_ent, e, &nd_mapping->labels, list) {
882		list_del(&label_ent->list);
883		kfree(label_ent);
884	}
885}
886
887/*
888 * When a namespace is activated create new seeds for the next
889 * namespace, or namespace-personality to be configured.
890 */
891void nd_region_advance_seeds(struct nd_region *nd_region, struct device *dev)
892{
893	nvdimm_bus_lock(dev);
894	if (nd_region->ns_seed == dev) {
895		nd_region_create_ns_seed(nd_region);
896	} else if (is_nd_btt(dev)) {
897		struct nd_btt *nd_btt = to_nd_btt(dev);
898
899		if (nd_region->btt_seed == dev)
900			nd_region_create_btt_seed(nd_region);
901		if (nd_region->ns_seed == &nd_btt->ndns->dev)
902			nd_region_create_ns_seed(nd_region);
903	} else if (is_nd_pfn(dev)) {
904		struct nd_pfn *nd_pfn = to_nd_pfn(dev);
905
906		if (nd_region->pfn_seed == dev)
907			nd_region_create_pfn_seed(nd_region);
908		if (nd_region->ns_seed == &nd_pfn->ndns->dev)
909			nd_region_create_ns_seed(nd_region);
910	} else if (is_nd_dax(dev)) {
911		struct nd_dax *nd_dax = to_nd_dax(dev);
912
913		if (nd_region->dax_seed == dev)
914			nd_region_create_dax_seed(nd_region);
915		if (nd_region->ns_seed == &nd_dax->nd_pfn.ndns->dev)
916			nd_region_create_ns_seed(nd_region);
917	}
918	nvdimm_bus_unlock(dev);
919}
920
921/**
922 * nd_region_acquire_lane - allocate and lock a lane
923 * @nd_region: region id and number of lanes possible
924 *
925 * A lane correlates to a BLK-data-window and/or a log slot in the BTT.
926 * We optimize for the common case where there are 256 lanes, one
927 * per-cpu.  For larger systems we need to lock to share lanes.  For now
928 * this implementation assumes the cost of maintaining an allocator for
929 * free lanes is on the order of the lock hold time, so it implements a
930 * static lane = cpu % num_lanes mapping.
931 *
932 * In the case of a BTT instance on top of a BLK namespace a lane may be
933 * acquired recursively.  We lock on the first instance.
934 *
935 * In the case of a BTT instance on top of PMEM, we only acquire a lane
936 * for the BTT metadata updates.
937 */
938unsigned int nd_region_acquire_lane(struct nd_region *nd_region)
939{
940	unsigned int cpu, lane;
941
942	migrate_disable();
943	cpu = smp_processor_id();
944	if (nd_region->num_lanes < nr_cpu_ids) {
945		struct nd_percpu_lane *ndl_lock, *ndl_count;
946
947		lane = cpu % nd_region->num_lanes;
948		ndl_count = per_cpu_ptr(nd_region->lane, cpu);
949		ndl_lock = per_cpu_ptr(nd_region->lane, lane);
950		if (ndl_count->count++ == 0)
951			spin_lock(&ndl_lock->lock);
952	} else
953		lane = cpu;
954
955	return lane;
956}
957EXPORT_SYMBOL(nd_region_acquire_lane);
958
959void nd_region_release_lane(struct nd_region *nd_region, unsigned int lane)
960{
961	if (nd_region->num_lanes < nr_cpu_ids) {
962		unsigned int cpu = smp_processor_id();
963		struct nd_percpu_lane *ndl_lock, *ndl_count;
964
965		ndl_count = per_cpu_ptr(nd_region->lane, cpu);
966		ndl_lock = per_cpu_ptr(nd_region->lane, lane);
967		if (--ndl_count->count == 0)
968			spin_unlock(&ndl_lock->lock);
969	}
970	migrate_enable();
971}
972EXPORT_SYMBOL(nd_region_release_lane);
973
974/*
975 * PowerPC requires this alignment for memremap_pages(). All other archs
976 * should be ok with SUBSECTION_SIZE (see memremap_compat_align()).
977 */
978#define MEMREMAP_COMPAT_ALIGN_MAX SZ_16M
979
980static unsigned long default_align(struct nd_region *nd_region)
981{
982	unsigned long align;
983	u32 remainder;
984	int mappings;
985
986	align = MEMREMAP_COMPAT_ALIGN_MAX;
987	if (nd_region->ndr_size < MEMREMAP_COMPAT_ALIGN_MAX)
988		align = PAGE_SIZE;
989
990	mappings = max_t(u16, 1, nd_region->ndr_mappings);
991	div_u64_rem(align, mappings, &remainder);
992	if (remainder)
993		align *= mappings;
994
995	return align;
996}
997
998static struct lock_class_key nvdimm_region_key;
999
1000static struct nd_region *nd_region_create(struct nvdimm_bus *nvdimm_bus,
1001		struct nd_region_desc *ndr_desc,
1002		const struct device_type *dev_type, const char *caller)
1003{
1004	struct nd_region *nd_region;
1005	struct device *dev;
1006	unsigned int i;
1007	int ro = 0;
1008
1009	for (i = 0; i < ndr_desc->num_mappings; i++) {
1010		struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
1011		struct nvdimm *nvdimm = mapping->nvdimm;
1012
1013		if ((mapping->start | mapping->size) % PAGE_SIZE) {
1014			dev_err(&nvdimm_bus->dev,
1015				"%s: %s mapping%d is not %ld aligned\n",
1016				caller, dev_name(&nvdimm->dev), i, PAGE_SIZE);
1017			return NULL;
1018		}
1019
1020		if (test_bit(NDD_UNARMED, &nvdimm->flags))
1021			ro = 1;
1022
1023	}
1024
1025	nd_region =
1026		kzalloc(struct_size(nd_region, mapping, ndr_desc->num_mappings),
1027			GFP_KERNEL);
1028
1029	if (!nd_region)
1030		return NULL;
1031	/* CXL pre-assigns memregion ids before creating nvdimm regions */
1032	if (test_bit(ND_REGION_CXL, &ndr_desc->flags)) {
1033		nd_region->id = ndr_desc->memregion;
1034	} else {
1035		nd_region->id = memregion_alloc(GFP_KERNEL);
1036		if (nd_region->id < 0)
1037			goto err_id;
1038	}
1039
1040	nd_region->lane = alloc_percpu(struct nd_percpu_lane);
1041	if (!nd_region->lane)
1042		goto err_percpu;
1043
1044        for (i = 0; i < nr_cpu_ids; i++) {
1045		struct nd_percpu_lane *ndl;
1046
1047		ndl = per_cpu_ptr(nd_region->lane, i);
1048		spin_lock_init(&ndl->lock);
1049		ndl->count = 0;
1050	}
1051
1052	for (i = 0; i < ndr_desc->num_mappings; i++) {
1053		struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
1054		struct nvdimm *nvdimm = mapping->nvdimm;
1055
1056		nd_region->mapping[i].nvdimm = nvdimm;
1057		nd_region->mapping[i].start = mapping->start;
1058		nd_region->mapping[i].size = mapping->size;
1059		nd_region->mapping[i].position = mapping->position;
1060		INIT_LIST_HEAD(&nd_region->mapping[i].labels);
1061		mutex_init(&nd_region->mapping[i].lock);
1062
1063		get_device(&nvdimm->dev);
1064	}
1065	nd_region->ndr_mappings = ndr_desc->num_mappings;
1066	nd_region->provider_data = ndr_desc->provider_data;
1067	nd_region->nd_set = ndr_desc->nd_set;
1068	nd_region->num_lanes = ndr_desc->num_lanes;
1069	nd_region->flags = ndr_desc->flags;
1070	nd_region->ro = ro;
1071	nd_region->numa_node = ndr_desc->numa_node;
1072	nd_region->target_node = ndr_desc->target_node;
1073	ida_init(&nd_region->ns_ida);
1074	ida_init(&nd_region->btt_ida);
1075	ida_init(&nd_region->pfn_ida);
1076	ida_init(&nd_region->dax_ida);
1077	dev = &nd_region->dev;
1078	dev_set_name(dev, "region%d", nd_region->id);
1079	dev->parent = &nvdimm_bus->dev;
1080	dev->type = dev_type;
1081	dev->groups = ndr_desc->attr_groups;
1082	dev->of_node = ndr_desc->of_node;
1083	nd_region->ndr_size = resource_size(ndr_desc->res);
1084	nd_region->ndr_start = ndr_desc->res->start;
1085	nd_region->align = default_align(nd_region);
1086	if (ndr_desc->flush)
1087		nd_region->flush = ndr_desc->flush;
1088	else
1089		nd_region->flush = NULL;
1090
1091	device_initialize(dev);
1092	lockdep_set_class(&dev->mutex, &nvdimm_region_key);
1093	nd_device_register(dev);
1094
1095	return nd_region;
1096
1097err_percpu:
1098	if (!test_bit(ND_REGION_CXL, &ndr_desc->flags))
1099		memregion_free(nd_region->id);
1100err_id:
1101	kfree(nd_region);
1102	return NULL;
1103}
1104
1105struct nd_region *nvdimm_pmem_region_create(struct nvdimm_bus *nvdimm_bus,
1106		struct nd_region_desc *ndr_desc)
1107{
1108	ndr_desc->num_lanes = ND_MAX_LANES;
1109	return nd_region_create(nvdimm_bus, ndr_desc, &nd_pmem_device_type,
1110			__func__);
1111}
1112EXPORT_SYMBOL_GPL(nvdimm_pmem_region_create);
1113
1114struct nd_region *nvdimm_volatile_region_create(struct nvdimm_bus *nvdimm_bus,
1115		struct nd_region_desc *ndr_desc)
1116{
1117	ndr_desc->num_lanes = ND_MAX_LANES;
1118	return nd_region_create(nvdimm_bus, ndr_desc, &nd_volatile_device_type,
1119			__func__);
1120}
1121EXPORT_SYMBOL_GPL(nvdimm_volatile_region_create);
1122
1123void nvdimm_region_delete(struct nd_region *nd_region)
1124{
1125	if (nd_region)
1126		nd_device_unregister(&nd_region->dev, ND_SYNC);
1127}
1128EXPORT_SYMBOL_GPL(nvdimm_region_delete);
1129
1130int nvdimm_flush(struct nd_region *nd_region, struct bio *bio)
1131{
1132	int rc = 0;
1133
1134	if (!nd_region->flush)
1135		rc = generic_nvdimm_flush(nd_region);
1136	else {
1137		if (nd_region->flush(nd_region, bio))
1138			rc = -EIO;
1139	}
1140
1141	return rc;
1142}
1143/**
1144 * generic_nvdimm_flush() - flush any posted write queues between the cpu and pmem media
1145 * @nd_region: interleaved pmem region
1146 */
1147int generic_nvdimm_flush(struct nd_region *nd_region)
1148{
1149	struct nd_region_data *ndrd = dev_get_drvdata(&nd_region->dev);
1150	int i, idx;
1151
1152	/*
1153	 * Try to encourage some diversity in flush hint addresses
1154	 * across cpus assuming a limited number of flush hints.
1155	 */
1156	idx = this_cpu_read(flush_idx);
1157	idx = this_cpu_add_return(flush_idx, hash_32(current->pid + idx, 8));
1158
1159	/*
1160	 * The pmem_wmb() is needed to 'sfence' all
1161	 * previous writes such that they are architecturally visible for
1162	 * the platform buffer flush. Note that we've already arranged for pmem
1163	 * writes to avoid the cache via memcpy_flushcache().  The final
1164	 * wmb() ensures ordering for the NVDIMM flush write.
1165	 */
1166	pmem_wmb();
1167	for (i = 0; i < nd_region->ndr_mappings; i++)
1168		if (ndrd_get_flush_wpq(ndrd, i, 0))
1169			writeq(1, ndrd_get_flush_wpq(ndrd, i, idx));
1170	wmb();
1171
1172	return 0;
1173}
1174EXPORT_SYMBOL_GPL(nvdimm_flush);
1175
1176/**
1177 * nvdimm_has_flush - determine write flushing requirements
1178 * @nd_region: interleaved pmem region
1179 *
1180 * Returns 1 if writes require flushing
1181 * Returns 0 if writes do not require flushing
1182 * Returns -ENXIO if flushing capability can not be determined
1183 */
1184int nvdimm_has_flush(struct nd_region *nd_region)
1185{
1186	int i;
1187
1188	/* no nvdimm or pmem api == flushing capability unknown */
1189	if (nd_region->ndr_mappings == 0
1190			|| !IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API))
1191		return -ENXIO;
1192
1193	/* Test if an explicit flush function is defined */
1194	if (test_bit(ND_REGION_ASYNC, &nd_region->flags) && nd_region->flush)
1195		return 1;
1196
1197	/* Test if any flush hints for the region are available */
1198	for (i = 0; i < nd_region->ndr_mappings; i++) {
1199		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
1200		struct nvdimm *nvdimm = nd_mapping->nvdimm;
1201
1202		/* flush hints present / available */
1203		if (nvdimm->num_flush)
1204			return 1;
1205	}
1206
1207	/*
1208	 * The platform defines dimm devices without hints nor explicit flush,
1209	 * assume platform persistence mechanism like ADR
1210	 */
1211	return 0;
1212}
1213EXPORT_SYMBOL_GPL(nvdimm_has_flush);
1214
1215int nvdimm_has_cache(struct nd_region *nd_region)
1216{
1217	return is_nd_pmem(&nd_region->dev) &&
1218		!test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags);
1219}
1220EXPORT_SYMBOL_GPL(nvdimm_has_cache);
1221
1222bool is_nvdimm_sync(struct nd_region *nd_region)
1223{
1224	if (is_nd_volatile(&nd_region->dev))
1225		return true;
1226
1227	return is_nd_pmem(&nd_region->dev) &&
1228		!test_bit(ND_REGION_ASYNC, &nd_region->flags);
1229}
1230EXPORT_SYMBOL_GPL(is_nvdimm_sync);
1231
1232struct conflict_context {
1233	struct nd_region *nd_region;
1234	resource_size_t start, size;
1235};
1236
1237static int region_conflict(struct device *dev, void *data)
1238{
1239	struct nd_region *nd_region;
1240	struct conflict_context *ctx = data;
1241	resource_size_t res_end, region_end, region_start;
1242
1243	if (!is_memory(dev))
1244		return 0;
1245
1246	nd_region = to_nd_region(dev);
1247	if (nd_region == ctx->nd_region)
1248		return 0;
1249
1250	res_end = ctx->start + ctx->size;
1251	region_start = nd_region->ndr_start;
1252	region_end = region_start + nd_region->ndr_size;
1253	if (ctx->start >= region_start && ctx->start < region_end)
1254		return -EBUSY;
1255	if (res_end > region_start && res_end <= region_end)
1256		return -EBUSY;
1257	return 0;
1258}
1259
1260int nd_region_conflict(struct nd_region *nd_region, resource_size_t start,
1261		resource_size_t size)
1262{
1263	struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(&nd_region->dev);
1264	struct conflict_context ctx = {
1265		.nd_region = nd_region,
1266		.start = start,
1267		.size = size,
1268	};
1269
1270	return device_for_each_child(&nvdimm_bus->dev, &ctx, region_conflict);
1271}
1272
1273MODULE_IMPORT_NS(DEVMEM);
1274