1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 2009-2012  Realtek Corporation.*/
3
4#include "../wifi.h"
5#include "../efuse.h"
6#include "../base.h"
7#include "../regd.h"
8#include "../cam.h"
9#include "../ps.h"
10#include "../pci.h"
11#include "reg.h"
12#include "def.h"
13#include "phy.h"
14#include "dm.h"
15#include "fw.h"
16#include "led.h"
17#include "sw.h"
18#include "hw.h"
19
20u32 rtl92de_read_dword_dbi(struct ieee80211_hw *hw, u16 offset, u8 direct)
21{
22	struct rtl_priv *rtlpriv = rtl_priv(hw);
23	u32 value;
24
25	rtl_write_word(rtlpriv, REG_DBI_CTRL, (offset & 0xFFC));
26	rtl_write_byte(rtlpriv, REG_DBI_FLAG, BIT(1) | direct);
27	udelay(10);
28	value = rtl_read_dword(rtlpriv, REG_DBI_RDATA);
29	return value;
30}
31
32void rtl92de_write_dword_dbi(struct ieee80211_hw *hw,
33			     u16 offset, u32 value, u8 direct)
34{
35	struct rtl_priv *rtlpriv = rtl_priv(hw);
36
37	rtl_write_word(rtlpriv, REG_DBI_CTRL, ((offset & 0xFFC) | 0xF000));
38	rtl_write_dword(rtlpriv, REG_DBI_WDATA, value);
39	rtl_write_byte(rtlpriv, REG_DBI_FLAG, BIT(0) | direct);
40}
41
42static void _rtl92de_set_bcn_ctrl_reg(struct ieee80211_hw *hw,
43				      u8 set_bits, u8 clear_bits)
44{
45	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
46	struct rtl_priv *rtlpriv = rtl_priv(hw);
47
48	rtlpci->reg_bcn_ctrl_val |= set_bits;
49	rtlpci->reg_bcn_ctrl_val &= ~clear_bits;
50	rtl_write_byte(rtlpriv, REG_BCN_CTRL, (u8) rtlpci->reg_bcn_ctrl_val);
51}
52
53static void _rtl92de_stop_tx_beacon(struct ieee80211_hw *hw)
54{
55	struct rtl_priv *rtlpriv = rtl_priv(hw);
56	u8 tmp1byte;
57
58	tmp1byte = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2);
59	rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp1byte & (~BIT(6)));
60	rtl_write_byte(rtlpriv, REG_BCN_MAX_ERR, 0xff);
61	rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0x64);
62	tmp1byte = rtl_read_byte(rtlpriv, REG_TBTT_PROHIBIT + 2);
63	tmp1byte &= ~(BIT(0));
64	rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 2, tmp1byte);
65}
66
67static void _rtl92de_resume_tx_beacon(struct ieee80211_hw *hw)
68{
69	struct rtl_priv *rtlpriv = rtl_priv(hw);
70	u8 tmp1byte;
71
72	tmp1byte = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2);
73	rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp1byte | BIT(6));
74	rtl_write_byte(rtlpriv, REG_BCN_MAX_ERR, 0x0a);
75	rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0xff);
76	tmp1byte = rtl_read_byte(rtlpriv, REG_TBTT_PROHIBIT + 2);
77	tmp1byte |= BIT(0);
78	rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 2, tmp1byte);
79}
80
81static void _rtl92de_enable_bcn_sub_func(struct ieee80211_hw *hw)
82{
83	_rtl92de_set_bcn_ctrl_reg(hw, 0, BIT(1));
84}
85
86static void _rtl92de_disable_bcn_sub_func(struct ieee80211_hw *hw)
87{
88	_rtl92de_set_bcn_ctrl_reg(hw, BIT(1), 0);
89}
90
91void rtl92de_get_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
92{
93	struct rtl_priv *rtlpriv = rtl_priv(hw);
94	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
95	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
96
97	switch (variable) {
98	case HW_VAR_RCR:
99		*((u32 *) (val)) = rtlpci->receive_config;
100		break;
101	case HW_VAR_RF_STATE:
102		*((enum rf_pwrstate *)(val)) = ppsc->rfpwr_state;
103		break;
104	case HW_VAR_FWLPS_RF_ON:{
105		enum rf_pwrstate rfstate;
106		u32 val_rcr;
107
108		rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RF_STATE,
109					      (u8 *)(&rfstate));
110		if (rfstate == ERFOFF) {
111			*((bool *) (val)) = true;
112		} else {
113			val_rcr = rtl_read_dword(rtlpriv, REG_RCR);
114			val_rcr &= 0x00070000;
115			if (val_rcr)
116				*((bool *) (val)) = false;
117			else
118				*((bool *) (val)) = true;
119		}
120		break;
121	}
122	case HW_VAR_FW_PSMODE_STATUS:
123		*((bool *) (val)) = ppsc->fw_current_inpsmode;
124		break;
125	case HW_VAR_CORRECT_TSF:{
126		u64 tsf;
127		u32 *ptsf_low = (u32 *)&tsf;
128		u32 *ptsf_high = ((u32 *)&tsf) + 1;
129
130		*ptsf_high = rtl_read_dword(rtlpriv, (REG_TSFTR + 4));
131		*ptsf_low = rtl_read_dword(rtlpriv, REG_TSFTR);
132		*((u64 *) (val)) = tsf;
133		break;
134	}
135	case HW_VAR_INT_MIGRATION:
136		*((bool *)(val)) = rtlpriv->dm.interrupt_migration;
137		break;
138	case HW_VAR_INT_AC:
139		*((bool *)(val)) = rtlpriv->dm.disable_tx_int;
140		break;
141	case HAL_DEF_WOWLAN:
142		break;
143	default:
144		pr_err("switch case %#x not processed\n", variable);
145		break;
146	}
147}
148
149void rtl92de_set_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
150{
151	struct rtl_priv *rtlpriv = rtl_priv(hw);
152	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
153	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
154	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
155	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
156	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
157	u8 idx;
158
159	switch (variable) {
160	case HW_VAR_ETHER_ADDR:
161		for (idx = 0; idx < ETH_ALEN; idx++) {
162			rtl_write_byte(rtlpriv, (REG_MACID + idx),
163				       val[idx]);
164		}
165		break;
166	case HW_VAR_BASIC_RATE: {
167		u16 rate_cfg = ((u16 *) val)[0];
168		u8 rate_index = 0;
169
170		rate_cfg = rate_cfg & 0x15f;
171		if (mac->vendor == PEER_CISCO &&
172		    ((rate_cfg & 0x150) == 0))
173			rate_cfg |= 0x01;
174		rtl_write_byte(rtlpriv, REG_RRSR, rate_cfg & 0xff);
175		rtl_write_byte(rtlpriv, REG_RRSR + 1,
176			       (rate_cfg >> 8) & 0xff);
177		while (rate_cfg > 0x1) {
178			rate_cfg = (rate_cfg >> 1);
179			rate_index++;
180		}
181		if (rtlhal->fw_version > 0xe)
182			rtl_write_byte(rtlpriv, REG_INIRTS_RATE_SEL,
183				       rate_index);
184		break;
185	}
186	case HW_VAR_BSSID:
187		for (idx = 0; idx < ETH_ALEN; idx++) {
188			rtl_write_byte(rtlpriv, (REG_BSSID + idx),
189				       val[idx]);
190		}
191		break;
192	case HW_VAR_SIFS:
193		rtl_write_byte(rtlpriv, REG_SIFS_CTX + 1, val[0]);
194		rtl_write_byte(rtlpriv, REG_SIFS_TRX + 1, val[1]);
195		rtl_write_byte(rtlpriv, REG_SPEC_SIFS + 1, val[0]);
196		rtl_write_byte(rtlpriv, REG_MAC_SPEC_SIFS + 1, val[0]);
197		if (!mac->ht_enable)
198			rtl_write_word(rtlpriv, REG_RESP_SIFS_OFDM,
199				       0x0e0e);
200		else
201			rtl_write_word(rtlpriv, REG_RESP_SIFS_OFDM,
202				       *((u16 *) val));
203		break;
204	case HW_VAR_SLOT_TIME: {
205		u8 e_aci;
206
207		rtl_dbg(rtlpriv, COMP_MLME, DBG_LOUD,
208			"HW_VAR_SLOT_TIME %x\n", val[0]);
209		rtl_write_byte(rtlpriv, REG_SLOT, val[0]);
210		for (e_aci = 0; e_aci < AC_MAX; e_aci++)
211			rtlpriv->cfg->ops->set_hw_reg(hw,
212						      HW_VAR_AC_PARAM,
213						      (&e_aci));
214		break;
215	}
216	case HW_VAR_ACK_PREAMBLE: {
217		u8 reg_tmp;
218		u8 short_preamble = (bool) (*val);
219
220		reg_tmp = (mac->cur_40_prime_sc) << 5;
221		if (short_preamble)
222			reg_tmp |= 0x80;
223		rtl_write_byte(rtlpriv, REG_RRSR + 2, reg_tmp);
224		break;
225	}
226	case HW_VAR_AMPDU_MIN_SPACE: {
227		u8 min_spacing_to_set;
228		u8 sec_min_space;
229
230		min_spacing_to_set = *val;
231		if (min_spacing_to_set <= 7) {
232			sec_min_space = 0;
233			if (min_spacing_to_set < sec_min_space)
234				min_spacing_to_set = sec_min_space;
235			mac->min_space_cfg = ((mac->min_space_cfg & 0xf8) |
236					      min_spacing_to_set);
237			*val = min_spacing_to_set;
238			rtl_dbg(rtlpriv, COMP_MLME, DBG_LOUD,
239				"Set HW_VAR_AMPDU_MIN_SPACE: %#x\n",
240				mac->min_space_cfg);
241			rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE,
242				       mac->min_space_cfg);
243		}
244		break;
245	}
246	case HW_VAR_SHORTGI_DENSITY: {
247		u8 density_to_set;
248
249		density_to_set = *val;
250		mac->min_space_cfg = rtlpriv->rtlhal.minspace_cfg;
251		mac->min_space_cfg |= (density_to_set << 3);
252		rtl_dbg(rtlpriv, COMP_MLME, DBG_LOUD,
253			"Set HW_VAR_SHORTGI_DENSITY: %#x\n",
254			mac->min_space_cfg);
255		rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE,
256			       mac->min_space_cfg);
257		break;
258	}
259	case HW_VAR_AMPDU_FACTOR: {
260		u8 factor_toset;
261		u32 regtoset;
262		u8 *ptmp_byte = NULL;
263		u8 index;
264
265		if (rtlhal->macphymode == DUALMAC_DUALPHY)
266			regtoset = 0xb9726641;
267		else if (rtlhal->macphymode == DUALMAC_SINGLEPHY)
268			regtoset = 0x66626641;
269		else
270			regtoset = 0xb972a841;
271		factor_toset = *val;
272		if (factor_toset <= 3) {
273			factor_toset = (1 << (factor_toset + 2));
274			if (factor_toset > 0xf)
275				factor_toset = 0xf;
276			for (index = 0; index < 4; index++) {
277				ptmp_byte = (u8 *)(&regtoset) + index;
278				if ((*ptmp_byte & 0xf0) >
279				    (factor_toset << 4))
280					*ptmp_byte = (*ptmp_byte & 0x0f)
281						 | (factor_toset << 4);
282				if ((*ptmp_byte & 0x0f) > factor_toset)
283					*ptmp_byte = (*ptmp_byte & 0xf0)
284						     | (factor_toset);
285			}
286			rtl_write_dword(rtlpriv, REG_AGGLEN_LMT, regtoset);
287			rtl_dbg(rtlpriv, COMP_MLME, DBG_LOUD,
288				"Set HW_VAR_AMPDU_FACTOR: %#x\n",
289				factor_toset);
290		}
291		break;
292	}
293	case HW_VAR_AC_PARAM: {
294		u8 e_aci = *val;
295		rtl92d_dm_init_edca_turbo(hw);
296		if (rtlpci->acm_method != EACMWAY2_SW)
297			rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ACM_CTRL,
298						      &e_aci);
299		break;
300	}
301	case HW_VAR_ACM_CTRL: {
302		u8 e_aci = *val;
303		union aci_aifsn *p_aci_aifsn =
304		    (union aci_aifsn *)(&(mac->ac[0].aifs));
305		u8 acm = p_aci_aifsn->f.acm;
306		u8 acm_ctrl = rtl_read_byte(rtlpriv, REG_ACMHWCTRL);
307
308		acm_ctrl = acm_ctrl | ((rtlpci->acm_method == 2) ?  0x0 : 0x1);
309		if (acm) {
310			switch (e_aci) {
311			case AC0_BE:
312				acm_ctrl |= ACMHW_BEQEN;
313				break;
314			case AC2_VI:
315				acm_ctrl |= ACMHW_VIQEN;
316				break;
317			case AC3_VO:
318				acm_ctrl |= ACMHW_VOQEN;
319				break;
320			default:
321				rtl_dbg(rtlpriv, COMP_ERR, DBG_WARNING,
322					"HW_VAR_ACM_CTRL acm set failed: eACI is %d\n",
323					acm);
324				break;
325			}
326		} else {
327			switch (e_aci) {
328			case AC0_BE:
329				acm_ctrl &= (~ACMHW_BEQEN);
330				break;
331			case AC2_VI:
332				acm_ctrl &= (~ACMHW_VIQEN);
333				break;
334			case AC3_VO:
335				acm_ctrl &= (~ACMHW_VOQEN);
336				break;
337			default:
338				pr_err("switch case %#x not processed\n",
339				       e_aci);
340				break;
341			}
342		}
343		rtl_dbg(rtlpriv, COMP_QOS, DBG_TRACE,
344			"SetHwReg8190pci(): [HW_VAR_ACM_CTRL] Write 0x%X\n",
345			acm_ctrl);
346		rtl_write_byte(rtlpriv, REG_ACMHWCTRL, acm_ctrl);
347		break;
348	}
349	case HW_VAR_RCR:
350		rtl_write_dword(rtlpriv, REG_RCR, ((u32 *) (val))[0]);
351		rtlpci->receive_config = ((u32 *) (val))[0];
352		break;
353	case HW_VAR_RETRY_LIMIT: {
354		u8 retry_limit = val[0];
355
356		rtl_write_word(rtlpriv, REG_RL,
357			       retry_limit << RETRY_LIMIT_SHORT_SHIFT |
358			       retry_limit << RETRY_LIMIT_LONG_SHIFT);
359		break;
360	}
361	case HW_VAR_DUAL_TSF_RST:
362		rtl_write_byte(rtlpriv, REG_DUAL_TSF_RST, (BIT(0) | BIT(1)));
363		break;
364	case HW_VAR_EFUSE_BYTES:
365		rtlefuse->efuse_usedbytes = *((u16 *) val);
366		break;
367	case HW_VAR_EFUSE_USAGE:
368		rtlefuse->efuse_usedpercentage = *val;
369		break;
370	case HW_VAR_IO_CMD:
371		rtl92d_phy_set_io_cmd(hw, (*(enum io_type *)val));
372		break;
373	case HW_VAR_WPA_CONFIG:
374		rtl_write_byte(rtlpriv, REG_SECCFG, *val);
375		break;
376	case HW_VAR_SET_RPWM:
377		rtl92d_fill_h2c_cmd(hw, H2C_PWRM, 1, (val));
378		break;
379	case HW_VAR_H2C_FW_PWRMODE:
380		break;
381	case HW_VAR_FW_PSMODE_STATUS:
382		ppsc->fw_current_inpsmode = *((bool *) val);
383		break;
384	case HW_VAR_H2C_FW_JOINBSSRPT: {
385		u8 mstatus = (*val);
386		u8 tmp_regcr, tmp_reg422;
387		bool recover = false;
388
389		if (mstatus == RT_MEDIA_CONNECT) {
390			rtlpriv->cfg->ops->set_hw_reg(hw,
391						      HW_VAR_AID, NULL);
392			tmp_regcr = rtl_read_byte(rtlpriv, REG_CR + 1);
393			rtl_write_byte(rtlpriv, REG_CR + 1,
394				       (tmp_regcr | BIT(0)));
395			_rtl92de_set_bcn_ctrl_reg(hw, 0, BIT(3));
396			_rtl92de_set_bcn_ctrl_reg(hw, BIT(4), 0);
397			tmp_reg422 = rtl_read_byte(rtlpriv,
398						 REG_FWHW_TXQ_CTRL + 2);
399			if (tmp_reg422 & BIT(6))
400				recover = true;
401			rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2,
402				       tmp_reg422 & (~BIT(6)));
403			rtl92d_set_fw_rsvdpagepkt(hw, 0);
404			_rtl92de_set_bcn_ctrl_reg(hw, BIT(3), 0);
405			_rtl92de_set_bcn_ctrl_reg(hw, 0, BIT(4));
406			if (recover)
407				rtl_write_byte(rtlpriv,
408					       REG_FWHW_TXQ_CTRL + 2,
409					       tmp_reg422);
410			rtl_write_byte(rtlpriv, REG_CR + 1,
411				       (tmp_regcr & ~(BIT(0))));
412		}
413		rtl92d_set_fw_joinbss_report_cmd(hw, (*val));
414		break;
415	}
416	case HW_VAR_AID: {
417		u16 u2btmp;
418		u2btmp = rtl_read_word(rtlpriv, REG_BCN_PSR_RPT);
419		u2btmp &= 0xC000;
420		rtl_write_word(rtlpriv, REG_BCN_PSR_RPT, (u2btmp |
421			       mac->assoc_id));
422		break;
423	}
424	case HW_VAR_CORRECT_TSF: {
425		u8 btype_ibss = val[0];
426
427		if (btype_ibss)
428			_rtl92de_stop_tx_beacon(hw);
429		_rtl92de_set_bcn_ctrl_reg(hw, 0, BIT(3));
430		rtl_write_dword(rtlpriv, REG_TSFTR,
431				(u32) (mac->tsf & 0xffffffff));
432		rtl_write_dword(rtlpriv, REG_TSFTR + 4,
433				(u32) ((mac->tsf >> 32) & 0xffffffff));
434		_rtl92de_set_bcn_ctrl_reg(hw, BIT(3), 0);
435		if (btype_ibss)
436			_rtl92de_resume_tx_beacon(hw);
437
438		break;
439	}
440	case HW_VAR_INT_MIGRATION: {
441		bool int_migration = *(bool *) (val);
442
443		if (int_migration) {
444			/* Set interrupt migration timer and
445			 * corresponding Tx/Rx counter.
446			 * timer 25ns*0xfa0=100us for 0xf packets.
447			 * 0x306:Rx, 0x307:Tx */
448			rtl_write_dword(rtlpriv, REG_INT_MIG, 0xfe000fa0);
449			rtlpriv->dm.interrupt_migration = int_migration;
450		} else {
451			/* Reset all interrupt migration settings. */
452			rtl_write_dword(rtlpriv, REG_INT_MIG, 0);
453			rtlpriv->dm.interrupt_migration = int_migration;
454		}
455		break;
456	}
457	case HW_VAR_INT_AC: {
458		bool disable_ac_int = *((bool *) val);
459
460		/* Disable four ACs interrupts. */
461		if (disable_ac_int) {
462			/* Disable VO, VI, BE and BK four AC interrupts
463			 * to gain more efficient CPU utilization.
464			 * When extremely highly Rx OK occurs,
465			 * we will disable Tx interrupts.
466			 */
467			rtlpriv->cfg->ops->update_interrupt_mask(hw, 0,
468						 RT_AC_INT_MASKS);
469			rtlpriv->dm.disable_tx_int = disable_ac_int;
470		/* Enable four ACs interrupts. */
471		} else {
472			rtlpriv->cfg->ops->update_interrupt_mask(hw,
473						 RT_AC_INT_MASKS, 0);
474			rtlpriv->dm.disable_tx_int = disable_ac_int;
475		}
476		break;
477	}
478	default:
479		pr_err("switch case %#x not processed\n", variable);
480		break;
481	}
482}
483
484static bool _rtl92de_llt_write(struct ieee80211_hw *hw, u32 address, u32 data)
485{
486	struct rtl_priv *rtlpriv = rtl_priv(hw);
487	bool status = true;
488	long count = 0;
489	u32 value = _LLT_INIT_ADDR(address) |
490	    _LLT_INIT_DATA(data) | _LLT_OP(_LLT_WRITE_ACCESS);
491
492	rtl_write_dword(rtlpriv, REG_LLT_INIT, value);
493	do {
494		value = rtl_read_dword(rtlpriv, REG_LLT_INIT);
495		if (_LLT_NO_ACTIVE == _LLT_OP_VALUE(value))
496			break;
497		if (count > POLLING_LLT_THRESHOLD) {
498			pr_err("Failed to polling write LLT done at address %d!\n",
499			       address);
500			status = false;
501			break;
502		}
503	} while (++count);
504	return status;
505}
506
507static bool _rtl92de_llt_table_init(struct ieee80211_hw *hw)
508{
509	struct rtl_priv *rtlpriv = rtl_priv(hw);
510	unsigned short i;
511	u8 txpktbuf_bndy;
512	u8 maxpage;
513	bool status;
514	u32 value32; /* High+low page number */
515	u8 value8;	 /* normal page number */
516
517	if (rtlpriv->rtlhal.macphymode == SINGLEMAC_SINGLEPHY) {
518		maxpage = 255;
519		txpktbuf_bndy = 246;
520		value8 = 0;
521		value32 = 0x80bf0d29;
522	} else {
523		maxpage = 127;
524		txpktbuf_bndy = 123;
525		value8 = 0;
526		value32 = 0x80750005;
527	}
528
529	/* Set reserved page for each queue */
530	/* 11.  RQPN 0x200[31:0] = 0x80BD1C1C */
531	/* load RQPN */
532	rtl_write_byte(rtlpriv, REG_RQPN_NPQ, value8);
533	rtl_write_dword(rtlpriv, REG_RQPN, value32);
534
535	/* 12.  TXRKTBUG_PG_BNDY 0x114[31:0] = 0x27FF00F6 */
536	/* TXRKTBUG_PG_BNDY */
537	rtl_write_dword(rtlpriv, REG_TRXFF_BNDY,
538			(rtl_read_word(rtlpriv, REG_TRXFF_BNDY + 2) << 16 |
539			txpktbuf_bndy));
540
541	/* 13.  TDECTRL[15:8] 0x209[7:0] = 0xF6 */
542	/* Beacon Head for TXDMA */
543	rtl_write_byte(rtlpriv, REG_TDECTRL + 1, txpktbuf_bndy);
544
545	/* 14.  BCNQ_PGBNDY 0x424[7:0] =  0xF6 */
546	/* BCNQ_PGBNDY */
547	rtl_write_byte(rtlpriv, REG_TXPKTBUF_BCNQ_BDNY, txpktbuf_bndy);
548	rtl_write_byte(rtlpriv, REG_TXPKTBUF_MGQ_BDNY, txpktbuf_bndy);
549
550	/* 15.  WMAC_LBK_BF_HD 0x45D[7:0] =  0xF6 */
551	/* WMAC_LBK_BF_HD */
552	rtl_write_byte(rtlpriv, 0x45D, txpktbuf_bndy);
553
554	/* Set Tx/Rx page size (Tx must be 128 Bytes, */
555	/* Rx can be 64,128,256,512,1024 bytes) */
556	/* 16.  PBP [7:0] = 0x11 */
557	/* TRX page size */
558	rtl_write_byte(rtlpriv, REG_PBP, 0x11);
559
560	/* 17.  DRV_INFO_SZ = 0x04 */
561	rtl_write_byte(rtlpriv, REG_RX_DRVINFO_SZ, 0x4);
562
563	/* 18.  LLT_table_init(Adapter);  */
564	for (i = 0; i < (txpktbuf_bndy - 1); i++) {
565		status = _rtl92de_llt_write(hw, i, i + 1);
566		if (!status)
567			return status;
568	}
569
570	/* end of list */
571	status = _rtl92de_llt_write(hw, (txpktbuf_bndy - 1), 0xFF);
572	if (!status)
573		return status;
574
575	/* Make the other pages as ring buffer */
576	/* This ring buffer is used as beacon buffer if we */
577	/* config this MAC as two MAC transfer. */
578	/* Otherwise used as local loopback buffer.  */
579	for (i = txpktbuf_bndy; i < maxpage; i++) {
580		status = _rtl92de_llt_write(hw, i, (i + 1));
581		if (!status)
582			return status;
583	}
584
585	/* Let last entry point to the start entry of ring buffer */
586	status = _rtl92de_llt_write(hw, maxpage, txpktbuf_bndy);
587	if (!status)
588		return status;
589
590	return true;
591}
592
593static void _rtl92de_gen_refresh_led_state(struct ieee80211_hw *hw)
594{
595	struct rtl_priv *rtlpriv = rtl_priv(hw);
596	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
597	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
598	enum rtl_led_pin pin0 = rtlpriv->ledctl.sw_led0;
599
600	if (rtlpci->up_first_time)
601		return;
602	if (ppsc->rfoff_reason == RF_CHANGE_BY_IPS)
603		rtl92de_sw_led_on(hw, pin0);
604	else if (ppsc->rfoff_reason == RF_CHANGE_BY_INIT)
605		rtl92de_sw_led_on(hw, pin0);
606	else
607		rtl92de_sw_led_off(hw, pin0);
608}
609
610static bool _rtl92de_init_mac(struct ieee80211_hw *hw)
611{
612	struct rtl_priv *rtlpriv = rtl_priv(hw);
613	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
614	unsigned char bytetmp;
615	unsigned short wordtmp;
616	u16 retry;
617
618	rtl92d_phy_set_poweron(hw);
619	/* Add for resume sequence of power domain according
620	 * to power document V11. Chapter V.11....  */
621	/* 0.   RSV_CTRL 0x1C[7:0] = 0x00  */
622	/* unlock ISO/CLK/Power control register */
623	rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x00);
624	rtl_write_byte(rtlpriv, REG_LDOA15_CTRL, 0x05);
625
626	/* 1.   AFE_XTAL_CTRL [7:0] = 0x0F  enable XTAL */
627	/* 2.   SPS0_CTRL 0x11[7:0] = 0x2b  enable SPS into PWM mode  */
628	/* 3.   delay (1ms) this is not necessary when initially power on */
629
630	/* C.   Resume Sequence */
631	/* a.   SPS0_CTRL 0x11[7:0] = 0x2b */
632	rtl_write_byte(rtlpriv, REG_SPS0_CTRL, 0x2b);
633
634	/* b.   AFE_XTAL_CTRL [7:0] = 0x0F */
635	rtl_write_byte(rtlpriv, REG_AFE_XTAL_CTRL, 0x0F);
636
637	/* c.   DRV runs power on init flow */
638
639	/* auto enable WLAN */
640	/* 4.   APS_FSMCO 0x04[8] = 1; wait till 0x04[8] = 0   */
641	/* Power On Reset for MAC Block */
642	bytetmp = rtl_read_byte(rtlpriv, REG_APS_FSMCO + 1) | BIT(0);
643	udelay(2);
644	rtl_write_byte(rtlpriv, REG_APS_FSMCO + 1, bytetmp);
645	udelay(2);
646
647	/* 5.   Wait while 0x04[8] == 0 goto 2, otherwise goto 1 */
648	bytetmp = rtl_read_byte(rtlpriv, REG_APS_FSMCO + 1);
649	udelay(50);
650	retry = 0;
651	while ((bytetmp & BIT(0)) && retry < 1000) {
652		retry++;
653		bytetmp = rtl_read_byte(rtlpriv, REG_APS_FSMCO + 1);
654		udelay(50);
655	}
656
657	/* Enable Radio off, GPIO, and LED function */
658	/* 6.   APS_FSMCO 0x04[15:0] = 0x0012  when enable HWPDN */
659	rtl_write_word(rtlpriv, REG_APS_FSMCO, 0x1012);
660
661	/* release RF digital isolation  */
662	/* 7.  SYS_ISO_CTRL 0x01[1]    = 0x0;  */
663	/*Set REG_SYS_ISO_CTRL 0x1=0x82 to prevent wake# problem. */
664	rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL + 1, 0x82);
665	udelay(2);
666
667	/* make sure that BB reset OK. */
668	/* rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE3); */
669
670	/* Disable REG_CR before enable it to assure reset */
671	rtl_write_word(rtlpriv, REG_CR, 0x0);
672
673	/* Release MAC IO register reset */
674	rtl_write_word(rtlpriv, REG_CR, 0x2ff);
675
676	/* clear stopping tx/rx dma   */
677	rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 1, 0x0);
678
679	/* rtl_write_word(rtlpriv,REG_CR+2, 0x2); */
680
681	/* System init */
682	/* 18.  LLT_table_init(Adapter);  */
683	if (!_rtl92de_llt_table_init(hw))
684		return false;
685
686	/* Clear interrupt and enable interrupt */
687	/* 19.  HISR 0x124[31:0] = 0xffffffff;  */
688	/*      HISRE 0x12C[7:0] = 0xFF */
689	rtl_write_dword(rtlpriv, REG_HISR, 0xffffffff);
690	rtl_write_byte(rtlpriv, REG_HISRE, 0xff);
691
692	/* 20.  HIMR 0x120[31:0] |= [enable INT mask bit map];  */
693	/* 21.  HIMRE 0x128[7:0] = [enable INT mask bit map] */
694	/* The IMR should be enabled later after all init sequence
695	 * is finished. */
696
697	/* 22.  PCIE configuration space configuration */
698	/* 23.  Ensure PCIe Device 0x80[15:0] = 0x0143 (ASPM+CLKREQ),  */
699	/*      and PCIe gated clock function is enabled.    */
700	/* PCIE configuration space will be written after
701	 * all init sequence.(Or by BIOS) */
702
703	rtl92d_phy_config_maccoexist_rfpage(hw);
704
705	/* THe below section is not related to power document Vxx . */
706	/* This is only useful for driver and OS setting. */
707	/* -------------------Software Relative Setting---------------------- */
708	wordtmp = rtl_read_word(rtlpriv, REG_TRXDMA_CTRL);
709	wordtmp &= 0xf;
710	wordtmp |= 0xF771;
711	rtl_write_word(rtlpriv, REG_TRXDMA_CTRL, wordtmp);
712
713	/* Reported Tx status from HW for rate adaptive. */
714	/* This should be realtive to power on step 14. But in document V11  */
715	/* still not contain the description.!!! */
716	rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 1, 0x1F);
717
718	/* Set Tx/Rx page size (Tx must be 128 Bytes,
719	 * Rx can be 64,128,256,512,1024 bytes) */
720	/* rtl_write_byte(rtlpriv,REG_PBP, 0x11); */
721
722	/* Set RCR register */
723	rtl_write_dword(rtlpriv, REG_RCR, rtlpci->receive_config);
724	/* rtl_write_byte(rtlpriv,REG_RX_DRVINFO_SZ, 4); */
725
726	/*  Set TCR register */
727	rtl_write_dword(rtlpriv, REG_TCR, rtlpci->transmit_config);
728
729	/* disable earlymode */
730	rtl_write_byte(rtlpriv, 0x4d0, 0x0);
731
732	/* Set TX/RX descriptor physical address(from OS API). */
733	rtl_write_dword(rtlpriv, REG_BCNQ_DESA,
734			rtlpci->tx_ring[BEACON_QUEUE].dma);
735	rtl_write_dword(rtlpriv, REG_MGQ_DESA, rtlpci->tx_ring[MGNT_QUEUE].dma);
736	rtl_write_dword(rtlpriv, REG_VOQ_DESA, rtlpci->tx_ring[VO_QUEUE].dma);
737	rtl_write_dword(rtlpriv, REG_VIQ_DESA, rtlpci->tx_ring[VI_QUEUE].dma);
738	rtl_write_dword(rtlpriv, REG_BEQ_DESA, rtlpci->tx_ring[BE_QUEUE].dma);
739	rtl_write_dword(rtlpriv, REG_BKQ_DESA, rtlpci->tx_ring[BK_QUEUE].dma);
740	rtl_write_dword(rtlpriv, REG_HQ_DESA, rtlpci->tx_ring[HIGH_QUEUE].dma);
741	/* Set RX Desc Address */
742	rtl_write_dword(rtlpriv, REG_RX_DESA,
743			rtlpci->rx_ring[RX_MPDU_QUEUE].dma);
744
745	/* if we want to support 64 bit DMA, we should set it here,
746	 * but now we do not support 64 bit DMA*/
747
748	rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 3, 0x33);
749
750	/* Reset interrupt migration setting when initialization */
751	rtl_write_dword(rtlpriv, REG_INT_MIG, 0);
752
753	/* Reconsider when to do this operation after asking HWSD. */
754	bytetmp = rtl_read_byte(rtlpriv, REG_APSD_CTRL);
755	rtl_write_byte(rtlpriv, REG_APSD_CTRL, bytetmp & ~BIT(6));
756	do {
757		retry++;
758		bytetmp = rtl_read_byte(rtlpriv, REG_APSD_CTRL);
759	} while ((retry < 200) && !(bytetmp & BIT(7)));
760
761	/* After MACIO reset,we must refresh LED state. */
762	_rtl92de_gen_refresh_led_state(hw);
763
764	/* Reset H2C protection register */
765	rtl_write_dword(rtlpriv, REG_MCUTST_1, 0x0);
766
767	return true;
768}
769
770static void _rtl92de_hw_configure(struct ieee80211_hw *hw)
771{
772	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
773	struct rtl_priv *rtlpriv = rtl_priv(hw);
774	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
775	u8 reg_bw_opmode = BW_OPMODE_20MHZ;
776	u32 reg_rrsr;
777
778	reg_rrsr = RATE_ALL_CCK | RATE_ALL_OFDM_AG;
779	rtl_write_byte(rtlpriv, REG_INIRTS_RATE_SEL, 0x8);
780	rtl_write_byte(rtlpriv, REG_BWOPMODE, reg_bw_opmode);
781	rtl_write_dword(rtlpriv, REG_RRSR, reg_rrsr);
782	rtl_write_byte(rtlpriv, REG_SLOT, 0x09);
783	rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE, 0x0);
784	rtl_write_word(rtlpriv, REG_FWHW_TXQ_CTRL, 0x1F80);
785	rtl_write_word(rtlpriv, REG_RL, 0x0707);
786	rtl_write_dword(rtlpriv, REG_BAR_MODE_CTRL, 0x02012802);
787	rtl_write_byte(rtlpriv, REG_HWSEQ_CTRL, 0xFF);
788	rtl_write_dword(rtlpriv, REG_DARFRC, 0x01000000);
789	rtl_write_dword(rtlpriv, REG_DARFRC + 4, 0x07060504);
790	rtl_write_dword(rtlpriv, REG_RARFRC, 0x01000000);
791	rtl_write_dword(rtlpriv, REG_RARFRC + 4, 0x07060504);
792	/* Aggregation threshold */
793	if (rtlhal->macphymode == DUALMAC_DUALPHY)
794		rtl_write_dword(rtlpriv, REG_AGGLEN_LMT, 0xb9726641);
795	else if (rtlhal->macphymode == DUALMAC_SINGLEPHY)
796		rtl_write_dword(rtlpriv, REG_AGGLEN_LMT, 0x66626641);
797	else
798		rtl_write_dword(rtlpriv, REG_AGGLEN_LMT, 0xb972a841);
799	rtl_write_byte(rtlpriv, REG_ATIMWND, 0x2);
800	rtl_write_byte(rtlpriv, REG_BCN_MAX_ERR, 0x0a);
801	rtlpci->reg_bcn_ctrl_val = 0x1f;
802	rtl_write_byte(rtlpriv, REG_BCN_CTRL, rtlpci->reg_bcn_ctrl_val);
803	rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0xff);
804	rtl_write_byte(rtlpriv, REG_PIFS, 0x1C);
805	rtl_write_byte(rtlpriv, REG_AGGR_BREAK_TIME, 0x16);
806	rtl_write_word(rtlpriv, REG_NAV_PROT_LEN, 0x0020);
807	/* For throughput */
808	rtl_write_word(rtlpriv, REG_FAST_EDCA_CTRL, 0x6666);
809	/* ACKTO for IOT issue. */
810	rtl_write_byte(rtlpriv, REG_ACKTO, 0x40);
811	/* Set Spec SIFS (used in NAV) */
812	rtl_write_word(rtlpriv, REG_SPEC_SIFS, 0x1010);
813	rtl_write_word(rtlpriv, REG_MAC_SPEC_SIFS, 0x1010);
814	/* Set SIFS for CCK */
815	rtl_write_word(rtlpriv, REG_SIFS_CTX, 0x1010);
816	/* Set SIFS for OFDM */
817	rtl_write_word(rtlpriv, REG_SIFS_TRX, 0x1010);
818	/* Set Multicast Address. */
819	rtl_write_dword(rtlpriv, REG_MAR, 0xffffffff);
820	rtl_write_dword(rtlpriv, REG_MAR + 4, 0xffffffff);
821	switch (rtlpriv->phy.rf_type) {
822	case RF_1T2R:
823	case RF_1T1R:
824		rtlhal->minspace_cfg = (MAX_MSS_DENSITY_1T << 3);
825		break;
826	case RF_2T2R:
827	case RF_2T2R_GREEN:
828		rtlhal->minspace_cfg = (MAX_MSS_DENSITY_2T << 3);
829		break;
830	}
831}
832
833static void _rtl92de_enable_aspm_back_door(struct ieee80211_hw *hw)
834{
835	struct rtl_priv *rtlpriv = rtl_priv(hw);
836	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
837
838	rtl_write_byte(rtlpriv, 0x34b, 0x93);
839	rtl_write_word(rtlpriv, 0x350, 0x870c);
840	rtl_write_byte(rtlpriv, 0x352, 0x1);
841	if (ppsc->support_backdoor)
842		rtl_write_byte(rtlpriv, 0x349, 0x1b);
843	else
844		rtl_write_byte(rtlpriv, 0x349, 0x03);
845	rtl_write_word(rtlpriv, 0x350, 0x2718);
846	rtl_write_byte(rtlpriv, 0x352, 0x1);
847}
848
849void rtl92de_enable_hw_security_config(struct ieee80211_hw *hw)
850{
851	struct rtl_priv *rtlpriv = rtl_priv(hw);
852	u8 sec_reg_value;
853
854	rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
855		"PairwiseEncAlgorithm = %d GroupEncAlgorithm = %d\n",
856		rtlpriv->sec.pairwise_enc_algorithm,
857		rtlpriv->sec.group_enc_algorithm);
858	if (rtlpriv->cfg->mod_params->sw_crypto || rtlpriv->sec.use_sw_sec) {
859		rtl_dbg(rtlpriv, COMP_SEC, DBG_DMESG,
860			"not open hw encryption\n");
861		return;
862	}
863	sec_reg_value = SCR_TXENCENABLE | SCR_RXENCENABLE;
864	if (rtlpriv->sec.use_defaultkey) {
865		sec_reg_value |= SCR_TXUSEDK;
866		sec_reg_value |= SCR_RXUSEDK;
867	}
868	sec_reg_value |= (SCR_RXBCUSEDK | SCR_TXBCUSEDK);
869	rtl_write_byte(rtlpriv, REG_CR + 1, 0x02);
870	rtl_dbg(rtlpriv, COMP_SEC, DBG_LOUD,
871		"The SECR-value %x\n", sec_reg_value);
872	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_WPA_CONFIG, &sec_reg_value);
873}
874
875int rtl92de_hw_init(struct ieee80211_hw *hw)
876{
877	struct rtl_priv *rtlpriv = rtl_priv(hw);
878	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
879	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
880	struct rtl_phy *rtlphy = &(rtlpriv->phy);
881	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
882	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
883	bool rtstatus = true;
884	u8 tmp_u1b;
885	int i;
886	int err;
887	unsigned long flags;
888
889	rtlpci->being_init_adapter = true;
890	rtlpci->init_ready = false;
891	spin_lock_irqsave(&globalmutex_for_power_and_efuse, flags);
892	/* we should do iqk after disable/enable */
893	rtl92d_phy_reset_iqk_result(hw);
894	/* rtlpriv->intf_ops->disable_aspm(hw); */
895	rtstatus = _rtl92de_init_mac(hw);
896	if (!rtstatus) {
897		pr_err("Init MAC failed\n");
898		err = 1;
899		spin_unlock_irqrestore(&globalmutex_for_power_and_efuse, flags);
900		return err;
901	}
902	err = rtl92d_download_fw(hw);
903	spin_unlock_irqrestore(&globalmutex_for_power_and_efuse, flags);
904	if (err) {
905		rtl_dbg(rtlpriv, COMP_ERR, DBG_WARNING,
906			"Failed to download FW. Init HW without FW..\n");
907		return 1;
908	}
909	rtlhal->last_hmeboxnum = 0;
910	rtlpriv->psc.fw_current_inpsmode = false;
911
912	tmp_u1b = rtl_read_byte(rtlpriv, 0x605);
913	tmp_u1b = tmp_u1b | 0x30;
914	rtl_write_byte(rtlpriv, 0x605, tmp_u1b);
915
916	if (rtlhal->earlymode_enable) {
917		rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
918			"EarlyMode Enabled!!!\n");
919
920		tmp_u1b = rtl_read_byte(rtlpriv, 0x4d0);
921		tmp_u1b = tmp_u1b | 0x1f;
922		rtl_write_byte(rtlpriv, 0x4d0, tmp_u1b);
923
924		rtl_write_byte(rtlpriv, 0x4d3, 0x80);
925
926		tmp_u1b = rtl_read_byte(rtlpriv, 0x605);
927		tmp_u1b = tmp_u1b | 0x40;
928		rtl_write_byte(rtlpriv, 0x605, tmp_u1b);
929	}
930
931	if (mac->rdg_en) {
932		rtl_write_byte(rtlpriv, REG_RD_CTRL, 0xff);
933		rtl_write_word(rtlpriv, REG_RD_NAV_NXT, 0x200);
934		rtl_write_byte(rtlpriv, REG_RD_RESP_PKT_TH, 0x05);
935	}
936
937	rtl92d_phy_mac_config(hw);
938	/* because last function modify RCR, so we update
939	 * rcr var here, or TP will unstable for receive_config
940	 * is wrong, RX RCR_ACRC32 will cause TP unstabel & Rx
941	 * RCR_APP_ICV will cause mac80211 unassoc for cisco 1252*/
942	rtlpci->receive_config = rtl_read_dword(rtlpriv, REG_RCR);
943	rtlpci->receive_config &= ~(RCR_ACRC32 | RCR_AICV);
944
945	rtl92d_phy_bb_config(hw);
946
947	rtlphy->rf_mode = RF_OP_BY_SW_3WIRE;
948	/* set before initialize RF */
949	rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0x00f00000, 0xf);
950
951	/* config RF */
952	rtl92d_phy_rf_config(hw);
953
954	/* After read predefined TXT, we must set BB/MAC/RF
955	 * register as our requirement */
956	/* After load BB,RF params,we need do more for 92D. */
957	rtl92d_update_bbrf_configuration(hw);
958	/* set default value after initialize RF,  */
959	rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0x00f00000, 0);
960	rtlphy->rfreg_chnlval[0] = rtl_get_rfreg(hw, (enum radio_path)0,
961			RF_CHNLBW, RFREG_OFFSET_MASK);
962	rtlphy->rfreg_chnlval[1] = rtl_get_rfreg(hw, (enum radio_path)1,
963			RF_CHNLBW, RFREG_OFFSET_MASK);
964
965	/*---- Set CCK and OFDM Block "ON"----*/
966	if (rtlhal->current_bandtype == BAND_ON_2_4G)
967		rtl_set_bbreg(hw, RFPGA0_RFMOD, BCCKEN, 0x1);
968	rtl_set_bbreg(hw, RFPGA0_RFMOD, BOFDMEN, 0x1);
969	if (rtlhal->interfaceindex == 0) {
970		/* RFPGA0_ANALOGPARAMETER2: cck clock select,
971		 *  set to 20MHz by default */
972		rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER2, BIT(10) |
973			      BIT(11), 3);
974	} else {
975		/* Mac1 */
976		rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER2, BIT(11) |
977			      BIT(10), 3);
978	}
979
980	_rtl92de_hw_configure(hw);
981
982	/* reset hw sec */
983	rtl_cam_reset_all_entry(hw);
984	rtl92de_enable_hw_security_config(hw);
985
986	/* Read EEPROM TX power index and PHY_REG_PG.txt to capture correct */
987	/* TX power index for different rate set. */
988	rtl92d_phy_get_hw_reg_originalvalue(hw);
989	rtl92d_phy_set_txpower_level(hw, rtlphy->current_channel);
990
991	ppsc->rfpwr_state = ERFON;
992
993	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ETHER_ADDR, mac->mac_addr);
994
995	_rtl92de_enable_aspm_back_door(hw);
996	/* rtlpriv->intf_ops->enable_aspm(hw); */
997
998	rtl92d_dm_init(hw);
999	rtlpci->being_init_adapter = false;
1000
1001	if (ppsc->rfpwr_state == ERFON) {
1002		rtl92d_phy_lc_calibrate(hw);
1003		/* 5G and 2.4G must wait sometime to let RF LO ready */
1004		if (rtlhal->macphymode == DUALMAC_DUALPHY) {
1005			u32 tmp_rega;
1006			for (i = 0; i < 10000; i++) {
1007				udelay(MAX_STALL_TIME);
1008
1009				tmp_rega = rtl_get_rfreg(hw,
1010						  (enum radio_path)RF90_PATH_A,
1011						  0x2a, MASKDWORD);
1012
1013				if (((tmp_rega & BIT(11)) == BIT(11)))
1014					break;
1015			}
1016			/* check that loop was successful. If not, exit now */
1017			if (i == 10000) {
1018				rtlpci->init_ready = false;
1019				return 1;
1020			}
1021		}
1022	}
1023	rtlpci->init_ready = true;
1024	return err;
1025}
1026
1027static enum version_8192d _rtl92de_read_chip_version(struct ieee80211_hw *hw)
1028{
1029	struct rtl_priv *rtlpriv = rtl_priv(hw);
1030	enum version_8192d version = VERSION_NORMAL_CHIP_92D_SINGLEPHY;
1031	u32 value32;
1032
1033	value32 = rtl_read_dword(rtlpriv, REG_SYS_CFG);
1034	if (!(value32 & 0x000f0000)) {
1035		version = VERSION_TEST_CHIP_92D_SINGLEPHY;
1036		rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "TEST CHIP!!!\n");
1037	} else {
1038		version = VERSION_NORMAL_CHIP_92D_SINGLEPHY;
1039		rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "Normal CHIP!!!\n");
1040	}
1041	return version;
1042}
1043
1044static int _rtl92de_set_media_status(struct ieee80211_hw *hw,
1045				     enum nl80211_iftype type)
1046{
1047	struct rtl_priv *rtlpriv = rtl_priv(hw);
1048	u8 bt_msr = rtl_read_byte(rtlpriv, MSR);
1049	enum led_ctl_mode ledaction = LED_CTL_NO_LINK;
1050
1051	bt_msr &= 0xfc;
1052
1053	if (type == NL80211_IFTYPE_UNSPECIFIED ||
1054	    type == NL80211_IFTYPE_STATION) {
1055		_rtl92de_stop_tx_beacon(hw);
1056		_rtl92de_enable_bcn_sub_func(hw);
1057	} else if (type == NL80211_IFTYPE_ADHOC ||
1058		type == NL80211_IFTYPE_AP) {
1059		_rtl92de_resume_tx_beacon(hw);
1060		_rtl92de_disable_bcn_sub_func(hw);
1061	} else {
1062		rtl_dbg(rtlpriv, COMP_ERR, DBG_WARNING,
1063			"Set HW_VAR_MEDIA_STATUS: No such media status(%x)\n",
1064			type);
1065	}
1066	switch (type) {
1067	case NL80211_IFTYPE_UNSPECIFIED:
1068		bt_msr |= MSR_NOLINK;
1069		ledaction = LED_CTL_LINK;
1070		rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
1071			"Set Network type to NO LINK!\n");
1072		break;
1073	case NL80211_IFTYPE_ADHOC:
1074		bt_msr |= MSR_ADHOC;
1075		rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
1076			"Set Network type to Ad Hoc!\n");
1077		break;
1078	case NL80211_IFTYPE_STATION:
1079		bt_msr |= MSR_INFRA;
1080		ledaction = LED_CTL_LINK;
1081		rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
1082			"Set Network type to STA!\n");
1083		break;
1084	case NL80211_IFTYPE_AP:
1085		bt_msr |= MSR_AP;
1086		rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
1087			"Set Network type to AP!\n");
1088		break;
1089	default:
1090		pr_err("Network type %d not supported!\n", type);
1091		return 1;
1092	}
1093	rtl_write_byte(rtlpriv, MSR, bt_msr);
1094	rtlpriv->cfg->ops->led_control(hw, ledaction);
1095	if ((bt_msr & MSR_MASK) == MSR_AP)
1096		rtl_write_byte(rtlpriv, REG_BCNTCFG + 1, 0x00);
1097	else
1098		rtl_write_byte(rtlpriv, REG_BCNTCFG + 1, 0x66);
1099	return 0;
1100}
1101
1102void rtl92de_set_check_bssid(struct ieee80211_hw *hw, bool check_bssid)
1103{
1104	struct rtl_priv *rtlpriv = rtl_priv(hw);
1105	u32 reg_rcr;
1106
1107	if (rtlpriv->psc.rfpwr_state != ERFON)
1108		return;
1109
1110	rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RCR, (u8 *)(&reg_rcr));
1111
1112	if (check_bssid) {
1113		reg_rcr |= (RCR_CBSSID_DATA | RCR_CBSSID_BCN);
1114		rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, (u8 *)(&reg_rcr));
1115		_rtl92de_set_bcn_ctrl_reg(hw, 0, BIT(4));
1116	} else if (!check_bssid) {
1117		reg_rcr &= (~(RCR_CBSSID_DATA | RCR_CBSSID_BCN));
1118		_rtl92de_set_bcn_ctrl_reg(hw, BIT(4), 0);
1119		rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, (u8 *)(&reg_rcr));
1120	}
1121}
1122
1123int rtl92de_set_network_type(struct ieee80211_hw *hw, enum nl80211_iftype type)
1124{
1125	struct rtl_priv *rtlpriv = rtl_priv(hw);
1126
1127	if (_rtl92de_set_media_status(hw, type))
1128		return -EOPNOTSUPP;
1129
1130	/* check bssid */
1131	if (rtlpriv->mac80211.link_state == MAC80211_LINKED) {
1132		if (type != NL80211_IFTYPE_AP)
1133			rtl92de_set_check_bssid(hw, true);
1134	} else {
1135		rtl92de_set_check_bssid(hw, false);
1136	}
1137	return 0;
1138}
1139
1140/* do iqk or reload iqk */
1141/* windows just rtl92d_phy_reload_iqk_setting in set channel,
1142 * but it's very strict for time sequence so we add
1143 * rtl92d_phy_reload_iqk_setting here */
1144void rtl92d_linked_set_reg(struct ieee80211_hw *hw)
1145{
1146	struct rtl_priv *rtlpriv = rtl_priv(hw);
1147	struct rtl_phy *rtlphy = &(rtlpriv->phy);
1148	u8 indexforchannel;
1149	u8 channel = rtlphy->current_channel;
1150
1151	indexforchannel = rtl92d_get_rightchnlplace_for_iqk(channel);
1152	if (!rtlphy->iqk_matrix[indexforchannel].iqk_done) {
1153		rtl_dbg(rtlpriv, COMP_SCAN | COMP_INIT, DBG_DMESG,
1154			"Do IQK for channel:%d\n", channel);
1155		rtl92d_phy_iq_calibrate(hw);
1156	}
1157}
1158
1159/* don't set REG_EDCA_BE_PARAM here because
1160 * mac80211 will send pkt when scan */
1161void rtl92de_set_qos(struct ieee80211_hw *hw, int aci)
1162{
1163	rtl92d_dm_init_edca_turbo(hw);
1164}
1165
1166void rtl92de_enable_interrupt(struct ieee80211_hw *hw)
1167{
1168	struct rtl_priv *rtlpriv = rtl_priv(hw);
1169	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1170
1171	rtl_write_dword(rtlpriv, REG_HIMR, rtlpci->irq_mask[0] & 0xFFFFFFFF);
1172	rtl_write_dword(rtlpriv, REG_HIMRE, rtlpci->irq_mask[1] & 0xFFFFFFFF);
1173	rtlpci->irq_enabled = true;
1174}
1175
1176void rtl92de_disable_interrupt(struct ieee80211_hw *hw)
1177{
1178	struct rtl_priv *rtlpriv = rtl_priv(hw);
1179	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1180
1181	rtl_write_dword(rtlpriv, REG_HIMR, IMR8190_DISABLED);
1182	rtl_write_dword(rtlpriv, REG_HIMRE, IMR8190_DISABLED);
1183	rtlpci->irq_enabled = false;
1184}
1185
1186static void _rtl92de_poweroff_adapter(struct ieee80211_hw *hw)
1187{
1188	struct rtl_priv *rtlpriv = rtl_priv(hw);
1189	u8 u1b_tmp;
1190	unsigned long flags;
1191
1192	rtlpriv->intf_ops->enable_aspm(hw);
1193	rtl_write_byte(rtlpriv, REG_RF_CTRL, 0x00);
1194	rtl_set_bbreg(hw, RFPGA0_XCD_RFPARAMETER, BIT(3), 0);
1195	rtl_set_bbreg(hw, RFPGA0_XCD_RFPARAMETER, BIT(15), 0);
1196
1197	/* 0x20:value 05-->04 */
1198	rtl_write_byte(rtlpriv, REG_LDOA15_CTRL, 0x04);
1199
1200	/*  ==== Reset digital sequence   ====== */
1201	rtl92d_firmware_selfreset(hw);
1202
1203	/* f.   SYS_FUNC_EN 0x03[7:0]=0x51 reset MCU, MAC register, DCORE */
1204	rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, 0x51);
1205
1206	/* g.   MCUFWDL 0x80[1:0]=0 reset MCU ready status */
1207	rtl_write_byte(rtlpriv, REG_MCUFWDL, 0x00);
1208
1209	/*  ==== Pull GPIO PIN to balance level and LED control ====== */
1210
1211	/* h.     GPIO_PIN_CTRL 0x44[31:0]=0x000  */
1212	rtl_write_dword(rtlpriv, REG_GPIO_PIN_CTRL, 0x00000000);
1213
1214	/* i.    Value = GPIO_PIN_CTRL[7:0] */
1215	u1b_tmp = rtl_read_byte(rtlpriv, REG_GPIO_PIN_CTRL);
1216
1217	/* j.    GPIO_PIN_CTRL 0x44[31:0] = 0x00FF0000 | (value <<8); */
1218	/* write external PIN level  */
1219	rtl_write_dword(rtlpriv, REG_GPIO_PIN_CTRL,
1220			0x00FF0000 | (u1b_tmp << 8));
1221
1222	/* k.   GPIO_MUXCFG 0x42 [15:0] = 0x0780 */
1223	rtl_write_word(rtlpriv, REG_GPIO_IO_SEL, 0x0790);
1224
1225	/* l.   LEDCFG 0x4C[15:0] = 0x8080 */
1226	rtl_write_word(rtlpriv, REG_LEDCFG0, 0x8080);
1227
1228	/*  ==== Disable analog sequence === */
1229
1230	/* m.   AFE_PLL_CTRL[7:0] = 0x80  disable PLL */
1231	rtl_write_byte(rtlpriv, REG_AFE_PLL_CTRL, 0x80);
1232
1233	/* n.   SPS0_CTRL 0x11[7:0] = 0x22  enter PFM mode */
1234	rtl_write_byte(rtlpriv, REG_SPS0_CTRL, 0x23);
1235
1236	/* o.   AFE_XTAL_CTRL 0x24[7:0] = 0x0E  disable XTAL, if No BT COEX */
1237	rtl_write_byte(rtlpriv, REG_AFE_XTAL_CTRL, 0x0e);
1238
1239	/* p.   RSV_CTRL 0x1C[7:0] = 0x0E lock ISO/CLK/Power control register */
1240	rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x0e);
1241
1242	/*  ==== interface into suspend === */
1243
1244	/* q.   APS_FSMCO[15:8] = 0x58 PCIe suspend mode */
1245	/* According to power document V11, we need to set this */
1246	/* value as 0x18. Otherwise, we may not L0s sometimes. */
1247	/* This indluences power consumption. Bases on SD1's test, */
1248	/* set as 0x00 do not affect power current. And if it */
1249	/* is set as 0x18, they had ever met auto load fail problem. */
1250	rtl_write_byte(rtlpriv, REG_APS_FSMCO + 1, 0x10);
1251
1252	rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
1253		"In PowerOff,reg0x%x=%X\n",
1254		REG_SPS0_CTRL, rtl_read_byte(rtlpriv, REG_SPS0_CTRL));
1255	/* r.   Note: for PCIe interface, PON will not turn */
1256	/* off m-bias and BandGap in PCIe suspend mode.  */
1257
1258	/* 0x17[7] 1b': power off in process  0b' : power off over */
1259	if (rtlpriv->rtlhal.macphymode != SINGLEMAC_SINGLEPHY) {
1260		spin_lock_irqsave(&globalmutex_power, flags);
1261		u1b_tmp = rtl_read_byte(rtlpriv, REG_POWER_OFF_IN_PROCESS);
1262		u1b_tmp &= (~BIT(7));
1263		rtl_write_byte(rtlpriv, REG_POWER_OFF_IN_PROCESS, u1b_tmp);
1264		spin_unlock_irqrestore(&globalmutex_power, flags);
1265	}
1266
1267	rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "<=======\n");
1268}
1269
1270void rtl92de_card_disable(struct ieee80211_hw *hw)
1271{
1272	struct rtl_priv *rtlpriv = rtl_priv(hw);
1273	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
1274	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1275	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1276	enum nl80211_iftype opmode;
1277
1278	mac->link_state = MAC80211_NOLINK;
1279	opmode = NL80211_IFTYPE_UNSPECIFIED;
1280	_rtl92de_set_media_status(hw, opmode);
1281
1282	if (rtlpci->driver_is_goingto_unload ||
1283	    ppsc->rfoff_reason > RF_CHANGE_BY_PS)
1284		rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_OFF);
1285	RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
1286	/* Power sequence for each MAC. */
1287	/* a. stop tx DMA  */
1288	/* b. close RF */
1289	/* c. clear rx buf */
1290	/* d. stop rx DMA */
1291	/* e.  reset MAC */
1292
1293	/* a. stop tx DMA */
1294	rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 1, 0xFE);
1295	udelay(50);
1296
1297	/* b. TXPAUSE 0x522[7:0] = 0xFF Pause MAC TX queue */
1298
1299	/* c. ========RF OFF sequence==========  */
1300	/* 0x88c[23:20] = 0xf. */
1301	rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0x00f00000, 0xf);
1302	rtl_set_rfreg(hw, RF90_PATH_A, 0x00, RFREG_OFFSET_MASK, 0x00);
1303
1304	/* APSD_CTRL 0x600[7:0] = 0x40 */
1305	rtl_write_byte(rtlpriv, REG_APSD_CTRL, 0x40);
1306
1307	/* Close antenna 0,0xc04,0xd04 */
1308	rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE, MASKBYTE0, 0);
1309	rtl_set_bbreg(hw, ROFDM1_TRXPATHENABLE, BDWORD, 0);
1310
1311	/*  SYS_FUNC_EN 0x02[7:0] = 0xE2   reset BB state machine */
1312	rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE2);
1313
1314	/* Mac0 can not do Global reset. Mac1 can do. */
1315	/* SYS_FUNC_EN 0x02[7:0] = 0xE0  reset BB state machine  */
1316	if (rtlpriv->rtlhal.interfaceindex == 1)
1317		rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE0);
1318	udelay(50);
1319
1320	/* d.  stop tx/rx dma before disable REG_CR (0x100) to fix */
1321	/* dma hang issue when disable/enable device.  */
1322	rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 1, 0xff);
1323	udelay(50);
1324	rtl_write_byte(rtlpriv, REG_CR, 0x0);
1325	rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "==> Do power off.......\n");
1326	if (rtl92d_phy_check_poweroff(hw))
1327		_rtl92de_poweroff_adapter(hw);
1328	return;
1329}
1330
1331void rtl92de_interrupt_recognized(struct ieee80211_hw *hw,
1332				  struct rtl_int *intvec)
1333{
1334	struct rtl_priv *rtlpriv = rtl_priv(hw);
1335	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1336
1337	intvec->inta = rtl_read_dword(rtlpriv, ISR) & rtlpci->irq_mask[0];
1338	rtl_write_dword(rtlpriv, ISR, intvec->inta);
1339}
1340
1341void rtl92de_set_beacon_related_registers(struct ieee80211_hw *hw)
1342{
1343	struct rtl_priv *rtlpriv = rtl_priv(hw);
1344	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1345	u16 bcn_interval, atim_window;
1346
1347	bcn_interval = mac->beacon_interval;
1348	atim_window = 2;
1349	rtl92de_disable_interrupt(hw);
1350	rtl_write_word(rtlpriv, REG_ATIMWND, atim_window);
1351	rtl_write_word(rtlpriv, REG_BCN_INTERVAL, bcn_interval);
1352	rtl_write_word(rtlpriv, REG_BCNTCFG, 0x660f);
1353	rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_CCK, 0x20);
1354	if (rtlpriv->rtlhal.current_bandtype == BAND_ON_5G)
1355		rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_OFDM, 0x30);
1356	else
1357		rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_OFDM, 0x20);
1358	rtl_write_byte(rtlpriv, 0x606, 0x30);
1359}
1360
1361void rtl92de_set_beacon_interval(struct ieee80211_hw *hw)
1362{
1363	struct rtl_priv *rtlpriv = rtl_priv(hw);
1364	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1365	u16 bcn_interval = mac->beacon_interval;
1366
1367	rtl_dbg(rtlpriv, COMP_BEACON, DBG_DMESG,
1368		"beacon_interval:%d\n", bcn_interval);
1369	rtl92de_disable_interrupt(hw);
1370	rtl_write_word(rtlpriv, REG_BCN_INTERVAL, bcn_interval);
1371	rtl92de_enable_interrupt(hw);
1372}
1373
1374void rtl92de_update_interrupt_mask(struct ieee80211_hw *hw,
1375				   u32 add_msr, u32 rm_msr)
1376{
1377	struct rtl_priv *rtlpriv = rtl_priv(hw);
1378	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1379
1380	rtl_dbg(rtlpriv, COMP_INTR, DBG_LOUD, "add_msr:%x, rm_msr:%x\n",
1381		add_msr, rm_msr);
1382	if (add_msr)
1383		rtlpci->irq_mask[0] |= add_msr;
1384	if (rm_msr)
1385		rtlpci->irq_mask[0] &= (~rm_msr);
1386	rtl92de_disable_interrupt(hw);
1387	rtl92de_enable_interrupt(hw);
1388}
1389
1390static void _rtl92de_readpowervalue_fromprom(struct txpower_info *pwrinfo,
1391				 u8 *rom_content, bool autoloadfail)
1392{
1393	u32 rfpath, eeaddr, group, offset1, offset2;
1394	u8 i;
1395
1396	memset(pwrinfo, 0, sizeof(struct txpower_info));
1397	if (autoloadfail) {
1398		for (group = 0; group < CHANNEL_GROUP_MAX; group++) {
1399			for (rfpath = 0; rfpath < RF6052_MAX_PATH; rfpath++) {
1400				if (group < CHANNEL_GROUP_MAX_2G) {
1401					pwrinfo->cck_index[rfpath][group] =
1402					    EEPROM_DEFAULT_TXPOWERLEVEL_2G;
1403					pwrinfo->ht40_1sindex[rfpath][group] =
1404					    EEPROM_DEFAULT_TXPOWERLEVEL_2G;
1405				} else {
1406					pwrinfo->ht40_1sindex[rfpath][group] =
1407					    EEPROM_DEFAULT_TXPOWERLEVEL_5G;
1408				}
1409				pwrinfo->ht40_2sindexdiff[rfpath][group] =
1410				    EEPROM_DEFAULT_HT40_2SDIFF;
1411				pwrinfo->ht20indexdiff[rfpath][group] =
1412				    EEPROM_DEFAULT_HT20_DIFF;
1413				pwrinfo->ofdmindexdiff[rfpath][group] =
1414				    EEPROM_DEFAULT_LEGACYHTTXPOWERDIFF;
1415				pwrinfo->ht40maxoffset[rfpath][group] =
1416				    EEPROM_DEFAULT_HT40_PWRMAXOFFSET;
1417				pwrinfo->ht20maxoffset[rfpath][group] =
1418				    EEPROM_DEFAULT_HT20_PWRMAXOFFSET;
1419			}
1420		}
1421		for (i = 0; i < 3; i++) {
1422			pwrinfo->tssi_a[i] = EEPROM_DEFAULT_TSSI;
1423			pwrinfo->tssi_b[i] = EEPROM_DEFAULT_TSSI;
1424		}
1425		return;
1426	}
1427
1428	/* Maybe autoload OK,buf the tx power index value is not filled.
1429	 * If we find it, we set it to default value. */
1430	for (rfpath = 0; rfpath < RF6052_MAX_PATH; rfpath++) {
1431		for (group = 0; group < CHANNEL_GROUP_MAX_2G; group++) {
1432			eeaddr = EEPROM_CCK_TX_PWR_INX_2G + (rfpath * 3)
1433				 + group;
1434			pwrinfo->cck_index[rfpath][group] =
1435					(rom_content[eeaddr] == 0xFF) ?
1436					     (eeaddr > 0x7B ?
1437					     EEPROM_DEFAULT_TXPOWERLEVEL_5G :
1438					     EEPROM_DEFAULT_TXPOWERLEVEL_2G) :
1439					     rom_content[eeaddr];
1440		}
1441	}
1442	for (rfpath = 0; rfpath < RF6052_MAX_PATH; rfpath++) {
1443		for (group = 0; group < CHANNEL_GROUP_MAX; group++) {
1444			offset1 = group / 3;
1445			offset2 = group % 3;
1446			eeaddr = EEPROM_HT40_1S_TX_PWR_INX_2G + (rfpath * 3) +
1447			    offset2 + offset1 * 21;
1448			pwrinfo->ht40_1sindex[rfpath][group] =
1449			    (rom_content[eeaddr] == 0xFF) ? (eeaddr > 0x7B ?
1450					     EEPROM_DEFAULT_TXPOWERLEVEL_5G :
1451					     EEPROM_DEFAULT_TXPOWERLEVEL_2G) :
1452						 rom_content[eeaddr];
1453		}
1454	}
1455	/* These just for 92D efuse offset. */
1456	for (group = 0; group < CHANNEL_GROUP_MAX; group++) {
1457		for (rfpath = 0; rfpath < RF6052_MAX_PATH; rfpath++) {
1458			int base1 = EEPROM_HT40_2S_TX_PWR_INX_DIFF_2G;
1459
1460			offset1 = group / 3;
1461			offset2 = group % 3;
1462
1463			if (rom_content[base1 + offset2 + offset1 * 21] != 0xFF)
1464				pwrinfo->ht40_2sindexdiff[rfpath][group] =
1465				    (rom_content[base1 +
1466				     offset2 + offset1 * 21] >> (rfpath * 4))
1467				     & 0xF;
1468			else
1469				pwrinfo->ht40_2sindexdiff[rfpath][group] =
1470				    EEPROM_DEFAULT_HT40_2SDIFF;
1471			if (rom_content[EEPROM_HT20_TX_PWR_INX_DIFF_2G + offset2
1472			    + offset1 * 21] != 0xFF)
1473				pwrinfo->ht20indexdiff[rfpath][group] =
1474				    (rom_content[EEPROM_HT20_TX_PWR_INX_DIFF_2G
1475				    + offset2 + offset1 * 21] >> (rfpath * 4))
1476				    & 0xF;
1477			else
1478				pwrinfo->ht20indexdiff[rfpath][group] =
1479				    EEPROM_DEFAULT_HT20_DIFF;
1480			if (rom_content[EEPROM_OFDM_TX_PWR_INX_DIFF_2G + offset2
1481			    + offset1 * 21] != 0xFF)
1482				pwrinfo->ofdmindexdiff[rfpath][group] =
1483				    (rom_content[EEPROM_OFDM_TX_PWR_INX_DIFF_2G
1484				     + offset2 + offset1 * 21] >> (rfpath * 4))
1485				     & 0xF;
1486			else
1487				pwrinfo->ofdmindexdiff[rfpath][group] =
1488				    EEPROM_DEFAULT_LEGACYHTTXPOWERDIFF;
1489			if (rom_content[EEPROM_HT40_MAX_PWR_OFFSET_2G + offset2
1490			    + offset1 * 21] != 0xFF)
1491				pwrinfo->ht40maxoffset[rfpath][group] =
1492				    (rom_content[EEPROM_HT40_MAX_PWR_OFFSET_2G
1493				    + offset2 + offset1 * 21] >> (rfpath * 4))
1494				    & 0xF;
1495			else
1496				pwrinfo->ht40maxoffset[rfpath][group] =
1497				    EEPROM_DEFAULT_HT40_PWRMAXOFFSET;
1498			if (rom_content[EEPROM_HT20_MAX_PWR_OFFSET_2G + offset2
1499			    + offset1 * 21] != 0xFF)
1500				pwrinfo->ht20maxoffset[rfpath][group] =
1501				    (rom_content[EEPROM_HT20_MAX_PWR_OFFSET_2G +
1502				     offset2 + offset1 * 21] >> (rfpath * 4)) &
1503				     0xF;
1504			else
1505				pwrinfo->ht20maxoffset[rfpath][group] =
1506				    EEPROM_DEFAULT_HT20_PWRMAXOFFSET;
1507		}
1508	}
1509	if (rom_content[EEPROM_TSSI_A_5G] != 0xFF) {
1510		/* 5GL */
1511		pwrinfo->tssi_a[0] = rom_content[EEPROM_TSSI_A_5G] & 0x3F;
1512		pwrinfo->tssi_b[0] = rom_content[EEPROM_TSSI_B_5G] & 0x3F;
1513		/* 5GM */
1514		pwrinfo->tssi_a[1] = rom_content[EEPROM_TSSI_AB_5G] & 0x3F;
1515		pwrinfo->tssi_b[1] =
1516		    (rom_content[EEPROM_TSSI_AB_5G] & 0xC0) >> 6 |
1517		    (rom_content[EEPROM_TSSI_AB_5G + 1] & 0x0F) << 2;
1518		/* 5GH */
1519		pwrinfo->tssi_a[2] = (rom_content[EEPROM_TSSI_AB_5G + 1] &
1520				      0xF0) >> 4 |
1521		    (rom_content[EEPROM_TSSI_AB_5G + 2] & 0x03) << 4;
1522		pwrinfo->tssi_b[2] = (rom_content[EEPROM_TSSI_AB_5G + 2] &
1523				      0xFC) >> 2;
1524	} else {
1525		for (i = 0; i < 3; i++) {
1526			pwrinfo->tssi_a[i] = EEPROM_DEFAULT_TSSI;
1527			pwrinfo->tssi_b[i] = EEPROM_DEFAULT_TSSI;
1528		}
1529	}
1530}
1531
1532static void _rtl92de_read_txpower_info(struct ieee80211_hw *hw,
1533				       bool autoload_fail, u8 *hwinfo)
1534{
1535	struct rtl_priv *rtlpriv = rtl_priv(hw);
1536	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
1537	struct txpower_info pwrinfo;
1538	u8 tempval[2], i, pwr, diff;
1539	u32 ch, rfpath, group;
1540
1541	_rtl92de_readpowervalue_fromprom(&pwrinfo, hwinfo, autoload_fail);
1542	if (!autoload_fail) {
1543		/* bit0~2 */
1544		rtlefuse->eeprom_regulatory = (hwinfo[EEPROM_RF_OPT1] & 0x7);
1545		rtlefuse->eeprom_thermalmeter =
1546			 hwinfo[EEPROM_THERMAL_METER] & 0x1f;
1547		rtlefuse->crystalcap = hwinfo[EEPROM_XTAL_K];
1548		tempval[0] = hwinfo[EEPROM_IQK_DELTA] & 0x03;
1549		tempval[1] = (hwinfo[EEPROM_LCK_DELTA] & 0x0C) >> 2;
1550		rtlefuse->txpwr_fromeprom = true;
1551		if (IS_92D_D_CUT(rtlpriv->rtlhal.version) ||
1552		    IS_92D_E_CUT(rtlpriv->rtlhal.version)) {
1553			rtlefuse->internal_pa_5g[0] =
1554				!((hwinfo[EEPROM_TSSI_A_5G] & BIT(6)) >> 6);
1555			rtlefuse->internal_pa_5g[1] =
1556				!((hwinfo[EEPROM_TSSI_B_5G] & BIT(6)) >> 6);
1557			rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG,
1558				"Is D cut,Internal PA0 %d Internal PA1 %d\n",
1559				rtlefuse->internal_pa_5g[0],
1560				rtlefuse->internal_pa_5g[1]);
1561		}
1562		rtlefuse->eeprom_c9 = hwinfo[EEPROM_RF_OPT6];
1563		rtlefuse->eeprom_cc = hwinfo[EEPROM_RF_OPT7];
1564	} else {
1565		rtlefuse->eeprom_regulatory = 0;
1566		rtlefuse->eeprom_thermalmeter = EEPROM_DEFAULT_THERMALMETER;
1567		rtlefuse->crystalcap = EEPROM_DEFAULT_CRYSTALCAP;
1568		tempval[0] = tempval[1] = 3;
1569	}
1570
1571	/* Use default value to fill parameters if
1572	 * efuse is not filled on some place. */
1573
1574	/* ThermalMeter from EEPROM */
1575	if (rtlefuse->eeprom_thermalmeter < 0x06 ||
1576	    rtlefuse->eeprom_thermalmeter > 0x1c)
1577		rtlefuse->eeprom_thermalmeter = 0x12;
1578	rtlefuse->thermalmeter[0] = rtlefuse->eeprom_thermalmeter;
1579
1580	/* check XTAL_K */
1581	if (rtlefuse->crystalcap == 0xFF)
1582		rtlefuse->crystalcap = 0;
1583	if (rtlefuse->eeprom_regulatory > 3)
1584		rtlefuse->eeprom_regulatory = 0;
1585
1586	for (i = 0; i < 2; i++) {
1587		switch (tempval[i]) {
1588		case 0:
1589			tempval[i] = 5;
1590			break;
1591		case 1:
1592			tempval[i] = 4;
1593			break;
1594		case 2:
1595			tempval[i] = 3;
1596			break;
1597		case 3:
1598		default:
1599			tempval[i] = 0;
1600			break;
1601		}
1602	}
1603
1604	rtlefuse->delta_iqk = tempval[0];
1605	if (tempval[1] > 0)
1606		rtlefuse->delta_lck = tempval[1] - 1;
1607	if (rtlefuse->eeprom_c9 == 0xFF)
1608		rtlefuse->eeprom_c9 = 0x00;
1609	rtl_dbg(rtlpriv, COMP_INTR, DBG_LOUD,
1610		"EEPROMRegulatory = 0x%x\n", rtlefuse->eeprom_regulatory);
1611	rtl_dbg(rtlpriv, COMP_INTR, DBG_LOUD,
1612		"ThermalMeter = 0x%x\n", rtlefuse->eeprom_thermalmeter);
1613	rtl_dbg(rtlpriv, COMP_INTR, DBG_LOUD,
1614		"CrystalCap = 0x%x\n", rtlefuse->crystalcap);
1615	rtl_dbg(rtlpriv, COMP_INTR, DBG_LOUD,
1616		"Delta_IQK = 0x%x Delta_LCK = 0x%x\n",
1617		rtlefuse->delta_iqk, rtlefuse->delta_lck);
1618
1619	for (rfpath = 0; rfpath < RF6052_MAX_PATH; rfpath++) {
1620		for (ch = 0; ch < CHANNEL_MAX_NUMBER; ch++) {
1621			group = rtl92d_get_chnlgroup_fromarray((u8) ch);
1622			if (ch < CHANNEL_MAX_NUMBER_2G)
1623				rtlefuse->txpwrlevel_cck[rfpath][ch] =
1624				    pwrinfo.cck_index[rfpath][group];
1625			rtlefuse->txpwrlevel_ht40_1s[rfpath][ch] =
1626				    pwrinfo.ht40_1sindex[rfpath][group];
1627			rtlefuse->txpwr_ht20diff[rfpath][ch] =
1628				    pwrinfo.ht20indexdiff[rfpath][group];
1629			rtlefuse->txpwr_legacyhtdiff[rfpath][ch] =
1630				    pwrinfo.ofdmindexdiff[rfpath][group];
1631			rtlefuse->pwrgroup_ht20[rfpath][ch] =
1632				    pwrinfo.ht20maxoffset[rfpath][group];
1633			rtlefuse->pwrgroup_ht40[rfpath][ch] =
1634				    pwrinfo.ht40maxoffset[rfpath][group];
1635			pwr = pwrinfo.ht40_1sindex[rfpath][group];
1636			diff = pwrinfo.ht40_2sindexdiff[rfpath][group];
1637			rtlefuse->txpwrlevel_ht40_2s[rfpath][ch] =
1638				    (pwr > diff) ? (pwr - diff) : 0;
1639		}
1640	}
1641}
1642
1643static void _rtl92de_read_macphymode_from_prom(struct ieee80211_hw *hw,
1644					       u8 *content)
1645{
1646	struct rtl_priv *rtlpriv = rtl_priv(hw);
1647	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1648	u8 macphy_crvalue = content[EEPROM_MAC_FUNCTION];
1649
1650	if (macphy_crvalue & BIT(3)) {
1651		rtlhal->macphymode = SINGLEMAC_SINGLEPHY;
1652		rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
1653			"MacPhyMode SINGLEMAC_SINGLEPHY\n");
1654	} else {
1655		rtlhal->macphymode = DUALMAC_DUALPHY;
1656		rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
1657			"MacPhyMode DUALMAC_DUALPHY\n");
1658	}
1659}
1660
1661static void _rtl92de_read_macphymode_and_bandtype(struct ieee80211_hw *hw,
1662						  u8 *content)
1663{
1664	_rtl92de_read_macphymode_from_prom(hw, content);
1665	rtl92d_phy_config_macphymode(hw);
1666	rtl92d_phy_config_macphymode_info(hw);
1667}
1668
1669static void _rtl92de_efuse_update_chip_version(struct ieee80211_hw *hw)
1670{
1671	struct rtl_priv *rtlpriv = rtl_priv(hw);
1672	enum version_8192d chipver = rtlpriv->rtlhal.version;
1673	u8 cutvalue[2];
1674	u16 chipvalue;
1675
1676	rtlpriv->intf_ops->read_efuse_byte(hw, EEPROME_CHIP_VERSION_H,
1677					   &cutvalue[1]);
1678	rtlpriv->intf_ops->read_efuse_byte(hw, EEPROME_CHIP_VERSION_L,
1679					   &cutvalue[0]);
1680	chipvalue = (cutvalue[1] << 8) | cutvalue[0];
1681	switch (chipvalue) {
1682	case 0xAA55:
1683		chipver |= CHIP_92D_C_CUT;
1684		rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "C-CUT!!!\n");
1685		break;
1686	case 0x9966:
1687		chipver |= CHIP_92D_D_CUT;
1688		rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "D-CUT!!!\n");
1689		break;
1690	case 0xCC33:
1691		chipver |= CHIP_92D_E_CUT;
1692		rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "E-CUT!!!\n");
1693		break;
1694	default:
1695		chipver |= CHIP_92D_D_CUT;
1696		pr_err("Unknown CUT!\n");
1697		break;
1698	}
1699	rtlpriv->rtlhal.version = chipver;
1700}
1701
1702static void _rtl92de_read_adapter_info(struct ieee80211_hw *hw)
1703{
1704	struct rtl_priv *rtlpriv = rtl_priv(hw);
1705	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
1706	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1707	int params[] = {RTL8190_EEPROM_ID, EEPROM_VID, EEPROM_DID,
1708			EEPROM_SVID, EEPROM_SMID, EEPROM_MAC_ADDR_MAC0_92D,
1709			EEPROM_CHANNEL_PLAN, EEPROM_VERSION, EEPROM_CUSTOMER_ID,
1710			COUNTRY_CODE_WORLD_WIDE_13};
1711	int i;
1712	u16 usvalue;
1713	u8 *hwinfo;
1714
1715	hwinfo = kzalloc(HWSET_MAX_SIZE, GFP_KERNEL);
1716	if (!hwinfo)
1717		return;
1718
1719	if (rtl_get_hwinfo(hw, rtlpriv, HWSET_MAX_SIZE, hwinfo, params))
1720		goto exit;
1721
1722	_rtl92de_efuse_update_chip_version(hw);
1723	_rtl92de_read_macphymode_and_bandtype(hw, hwinfo);
1724
1725	/* Read Permanent MAC address for 2nd interface */
1726	if (rtlhal->interfaceindex != 0) {
1727		for (i = 0; i < 6; i += 2) {
1728			usvalue = *(u16 *)&hwinfo[EEPROM_MAC_ADDR_MAC1_92D + i];
1729			*((u16 *) (&rtlefuse->dev_addr[i])) = usvalue;
1730		}
1731	}
1732	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ETHER_ADDR,
1733				      rtlefuse->dev_addr);
1734	rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG, "%pM\n", rtlefuse->dev_addr);
1735	_rtl92de_read_txpower_info(hw, rtlefuse->autoload_failflag, hwinfo);
1736
1737	/* Read Channel Plan */
1738	switch (rtlhal->bandset) {
1739	case BAND_ON_2_4G:
1740		rtlefuse->channel_plan = COUNTRY_CODE_TELEC;
1741		break;
1742	case BAND_ON_5G:
1743		rtlefuse->channel_plan = COUNTRY_CODE_FCC;
1744		break;
1745	case BAND_ON_BOTH:
1746		rtlefuse->channel_plan = COUNTRY_CODE_FCC;
1747		break;
1748	default:
1749		rtlefuse->channel_plan = COUNTRY_CODE_FCC;
1750		break;
1751	}
1752	rtlefuse->txpwr_fromeprom = true;
1753exit:
1754	kfree(hwinfo);
1755}
1756
1757void rtl92de_read_eeprom_info(struct ieee80211_hw *hw)
1758{
1759	struct rtl_priv *rtlpriv = rtl_priv(hw);
1760	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
1761	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1762	u8 tmp_u1b;
1763
1764	rtlhal->version = _rtl92de_read_chip_version(hw);
1765	tmp_u1b = rtl_read_byte(rtlpriv, REG_9346CR);
1766	rtlefuse->autoload_status = tmp_u1b;
1767	if (tmp_u1b & BIT(4)) {
1768		rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EEPROM\n");
1769		rtlefuse->epromtype = EEPROM_93C46;
1770	} else {
1771		rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EFUSE\n");
1772		rtlefuse->epromtype = EEPROM_BOOT_EFUSE;
1773	}
1774	if (tmp_u1b & BIT(5)) {
1775		rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
1776
1777		rtlefuse->autoload_failflag = false;
1778		_rtl92de_read_adapter_info(hw);
1779	} else {
1780		pr_err("Autoload ERR!!\n");
1781	}
1782	return;
1783}
1784
1785static void rtl92de_update_hal_rate_table(struct ieee80211_hw *hw,
1786					  struct ieee80211_sta *sta)
1787{
1788	struct rtl_priv *rtlpriv = rtl_priv(hw);
1789	struct rtl_phy *rtlphy = &(rtlpriv->phy);
1790	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1791	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1792	u32 ratr_value;
1793	u8 ratr_index = 0;
1794	u8 nmode = mac->ht_enable;
1795	u8 mimo_ps = IEEE80211_SMPS_OFF;
1796	u16 shortgi_rate;
1797	u32 tmp_ratr_value;
1798	u8 curtxbw_40mhz = mac->bw_40;
1799	u8 curshortgi_40mhz = (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
1800							1 : 0;
1801	u8 curshortgi_20mhz = (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
1802							1 : 0;
1803	enum wireless_mode wirelessmode = mac->mode;
1804
1805	if (rtlhal->current_bandtype == BAND_ON_5G)
1806		ratr_value = sta->deflink.supp_rates[1] << 4;
1807	else
1808		ratr_value = sta->deflink.supp_rates[0];
1809	ratr_value |= (sta->deflink.ht_cap.mcs.rx_mask[1] << 20 |
1810		       sta->deflink.ht_cap.mcs.rx_mask[0] << 12);
1811	switch (wirelessmode) {
1812	case WIRELESS_MODE_A:
1813		ratr_value &= 0x00000FF0;
1814		break;
1815	case WIRELESS_MODE_B:
1816		if (ratr_value & 0x0000000c)
1817			ratr_value &= 0x0000000d;
1818		else
1819			ratr_value &= 0x0000000f;
1820		break;
1821	case WIRELESS_MODE_G:
1822		ratr_value &= 0x00000FF5;
1823		break;
1824	case WIRELESS_MODE_N_24G:
1825	case WIRELESS_MODE_N_5G:
1826		nmode = 1;
1827		if (mimo_ps == IEEE80211_SMPS_STATIC) {
1828			ratr_value &= 0x0007F005;
1829		} else {
1830			u32 ratr_mask;
1831
1832			if (get_rf_type(rtlphy) == RF_1T2R ||
1833			    get_rf_type(rtlphy) == RF_1T1R) {
1834				ratr_mask = 0x000ff005;
1835			} else {
1836				ratr_mask = 0x0f0ff005;
1837			}
1838
1839			ratr_value &= ratr_mask;
1840		}
1841		break;
1842	default:
1843		if (rtlphy->rf_type == RF_1T2R)
1844			ratr_value &= 0x000ff0ff;
1845		else
1846			ratr_value &= 0x0f0ff0ff;
1847
1848		break;
1849	}
1850	ratr_value &= 0x0FFFFFFF;
1851	if (nmode && ((curtxbw_40mhz && curshortgi_40mhz) ||
1852	    (!curtxbw_40mhz && curshortgi_20mhz))) {
1853		ratr_value |= 0x10000000;
1854		tmp_ratr_value = (ratr_value >> 12);
1855		for (shortgi_rate = 15; shortgi_rate > 0; shortgi_rate--) {
1856			if ((1 << shortgi_rate) & tmp_ratr_value)
1857				break;
1858		}
1859		shortgi_rate = (shortgi_rate << 12) | (shortgi_rate << 8) |
1860		    (shortgi_rate << 4) | (shortgi_rate);
1861	}
1862	rtl_write_dword(rtlpriv, REG_ARFR0 + ratr_index * 4, ratr_value);
1863	rtl_dbg(rtlpriv, COMP_RATR, DBG_DMESG, "%x\n",
1864		rtl_read_dword(rtlpriv, REG_ARFR0));
1865}
1866
1867static void rtl92de_update_hal_rate_mask(struct ieee80211_hw *hw,
1868		struct ieee80211_sta *sta, u8 rssi_level, bool update_bw)
1869{
1870	struct rtl_priv *rtlpriv = rtl_priv(hw);
1871	struct rtl_phy *rtlphy = &(rtlpriv->phy);
1872	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1873	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1874	struct rtl_sta_info *sta_entry = NULL;
1875	u32 ratr_bitmap;
1876	u8 ratr_index;
1877	u8 curtxbw_40mhz = (sta->deflink.bandwidth >= IEEE80211_STA_RX_BW_40) ? 1 : 0;
1878	u8 curshortgi_40mhz = (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
1879							1 : 0;
1880	u8 curshortgi_20mhz = (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
1881							1 : 0;
1882	enum wireless_mode wirelessmode = 0;
1883	bool shortgi = false;
1884	u32 value[2];
1885	u8 macid = 0;
1886	u8 mimo_ps = IEEE80211_SMPS_OFF;
1887
1888	sta_entry = (struct rtl_sta_info *) sta->drv_priv;
1889	mimo_ps = sta_entry->mimo_ps;
1890	wirelessmode = sta_entry->wireless_mode;
1891	if (mac->opmode == NL80211_IFTYPE_STATION)
1892		curtxbw_40mhz = mac->bw_40;
1893	else if (mac->opmode == NL80211_IFTYPE_AP ||
1894		mac->opmode == NL80211_IFTYPE_ADHOC)
1895		macid = sta->aid + 1;
1896
1897	if (rtlhal->current_bandtype == BAND_ON_5G)
1898		ratr_bitmap = sta->deflink.supp_rates[1] << 4;
1899	else
1900		ratr_bitmap = sta->deflink.supp_rates[0];
1901	ratr_bitmap |= (sta->deflink.ht_cap.mcs.rx_mask[1] << 20 |
1902			sta->deflink.ht_cap.mcs.rx_mask[0] << 12);
1903	switch (wirelessmode) {
1904	case WIRELESS_MODE_B:
1905		ratr_index = RATR_INX_WIRELESS_B;
1906		if (ratr_bitmap & 0x0000000c)
1907			ratr_bitmap &= 0x0000000d;
1908		else
1909			ratr_bitmap &= 0x0000000f;
1910		break;
1911	case WIRELESS_MODE_G:
1912		ratr_index = RATR_INX_WIRELESS_GB;
1913
1914		if (rssi_level == 1)
1915			ratr_bitmap &= 0x00000f00;
1916		else if (rssi_level == 2)
1917			ratr_bitmap &= 0x00000ff0;
1918		else
1919			ratr_bitmap &= 0x00000ff5;
1920		break;
1921	case WIRELESS_MODE_A:
1922		ratr_index = RATR_INX_WIRELESS_G;
1923		ratr_bitmap &= 0x00000ff0;
1924		break;
1925	case WIRELESS_MODE_N_24G:
1926	case WIRELESS_MODE_N_5G:
1927		if (wirelessmode == WIRELESS_MODE_N_24G)
1928			ratr_index = RATR_INX_WIRELESS_NGB;
1929		else
1930			ratr_index = RATR_INX_WIRELESS_NG;
1931		if (mimo_ps == IEEE80211_SMPS_STATIC) {
1932			if (rssi_level == 1)
1933				ratr_bitmap &= 0x00070000;
1934			else if (rssi_level == 2)
1935				ratr_bitmap &= 0x0007f000;
1936			else
1937				ratr_bitmap &= 0x0007f005;
1938		} else {
1939			if (rtlphy->rf_type == RF_1T2R ||
1940			    rtlphy->rf_type == RF_1T1R) {
1941				if (curtxbw_40mhz) {
1942					if (rssi_level == 1)
1943						ratr_bitmap &= 0x000f0000;
1944					else if (rssi_level == 2)
1945						ratr_bitmap &= 0x000ff000;
1946					else
1947						ratr_bitmap &= 0x000ff015;
1948				} else {
1949					if (rssi_level == 1)
1950						ratr_bitmap &= 0x000f0000;
1951					else if (rssi_level == 2)
1952						ratr_bitmap &= 0x000ff000;
1953					else
1954						ratr_bitmap &= 0x000ff005;
1955				}
1956			} else {
1957				if (curtxbw_40mhz) {
1958					if (rssi_level == 1)
1959						ratr_bitmap &= 0x0f0f0000;
1960					else if (rssi_level == 2)
1961						ratr_bitmap &= 0x0f0ff000;
1962					else
1963						ratr_bitmap &= 0x0f0ff015;
1964				} else {
1965					if (rssi_level == 1)
1966						ratr_bitmap &= 0x0f0f0000;
1967					else if (rssi_level == 2)
1968						ratr_bitmap &= 0x0f0ff000;
1969					else
1970						ratr_bitmap &= 0x0f0ff005;
1971				}
1972			}
1973		}
1974		if ((curtxbw_40mhz && curshortgi_40mhz) ||
1975		    (!curtxbw_40mhz && curshortgi_20mhz)) {
1976
1977			if (macid == 0)
1978				shortgi = true;
1979			else if (macid == 1)
1980				shortgi = false;
1981		}
1982		break;
1983	default:
1984		ratr_index = RATR_INX_WIRELESS_NGB;
1985
1986		if (rtlphy->rf_type == RF_1T2R)
1987			ratr_bitmap &= 0x000ff0ff;
1988		else
1989			ratr_bitmap &= 0x0f0ff0ff;
1990		break;
1991	}
1992
1993	value[0] = (ratr_bitmap & 0x0fffffff) | (ratr_index << 28);
1994	value[1] = macid | (shortgi ? 0x20 : 0x00) | 0x80;
1995	rtl_dbg(rtlpriv, COMP_RATR, DBG_DMESG,
1996		"ratr_bitmap :%x value0:%x value1:%x\n",
1997		ratr_bitmap, value[0], value[1]);
1998	rtl92d_fill_h2c_cmd(hw, H2C_RA_MASK, 5, (u8 *) value);
1999	if (macid != 0)
2000		sta_entry->ratr_index = ratr_index;
2001}
2002
2003void rtl92de_update_hal_rate_tbl(struct ieee80211_hw *hw,
2004		struct ieee80211_sta *sta, u8 rssi_level, bool update_bw)
2005{
2006	struct rtl_priv *rtlpriv = rtl_priv(hw);
2007
2008	if (rtlpriv->dm.useramask)
2009		rtl92de_update_hal_rate_mask(hw, sta, rssi_level, update_bw);
2010	else
2011		rtl92de_update_hal_rate_table(hw, sta);
2012}
2013
2014void rtl92de_update_channel_access_setting(struct ieee80211_hw *hw)
2015{
2016	struct rtl_priv *rtlpriv = rtl_priv(hw);
2017	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
2018	u16 sifs_timer;
2019
2020	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SLOT_TIME,
2021				      &mac->slot_time);
2022	if (!mac->ht_enable)
2023		sifs_timer = 0x0a0a;
2024	else
2025		sifs_timer = 0x1010;
2026	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SIFS, (u8 *)&sifs_timer);
2027}
2028
2029bool rtl92de_gpio_radio_on_off_checking(struct ieee80211_hw *hw, u8 *valid)
2030{
2031	struct rtl_priv *rtlpriv = rtl_priv(hw);
2032	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
2033	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
2034	enum rf_pwrstate e_rfpowerstate_toset;
2035	u8 u1tmp;
2036	bool actuallyset = false;
2037	unsigned long flag;
2038
2039	if (rtlpci->being_init_adapter)
2040		return false;
2041	if (ppsc->swrf_processing)
2042		return false;
2043	spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
2044	if (ppsc->rfchange_inprogress) {
2045		spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2046		return false;
2047	} else {
2048		ppsc->rfchange_inprogress = true;
2049		spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2050	}
2051	rtl_write_byte(rtlpriv, REG_MAC_PINMUX_CFG, rtl_read_byte(rtlpriv,
2052			  REG_MAC_PINMUX_CFG) & ~(BIT(3)));
2053	u1tmp = rtl_read_byte(rtlpriv, REG_GPIO_IO_SEL);
2054	e_rfpowerstate_toset = (u1tmp & BIT(3)) ? ERFON : ERFOFF;
2055	if (ppsc->hwradiooff && (e_rfpowerstate_toset == ERFON)) {
2056		rtl_dbg(rtlpriv, COMP_RF, DBG_DMESG,
2057			"GPIOChangeRF  - HW Radio ON, RF ON\n");
2058		e_rfpowerstate_toset = ERFON;
2059		ppsc->hwradiooff = false;
2060		actuallyset = true;
2061	} else if (!ppsc->hwradiooff && (e_rfpowerstate_toset == ERFOFF)) {
2062		rtl_dbg(rtlpriv, COMP_RF, DBG_DMESG,
2063			"GPIOChangeRF  - HW Radio OFF, RF OFF\n");
2064		e_rfpowerstate_toset = ERFOFF;
2065		ppsc->hwradiooff = true;
2066		actuallyset = true;
2067	}
2068	if (actuallyset) {
2069		spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
2070		ppsc->rfchange_inprogress = false;
2071		spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2072	} else {
2073		if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_HALT_NIC)
2074			RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
2075		spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
2076		ppsc->rfchange_inprogress = false;
2077		spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2078	}
2079	*valid = 1;
2080	return !ppsc->hwradiooff;
2081}
2082
2083void rtl92de_set_key(struct ieee80211_hw *hw, u32 key_index,
2084		     u8 *p_macaddr, bool is_group, u8 enc_algo,
2085		     bool is_wepkey, bool clear_all)
2086{
2087	struct rtl_priv *rtlpriv = rtl_priv(hw);
2088	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
2089	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
2090	u8 *macaddr = p_macaddr;
2091	u32 entry_id;
2092	bool is_pairwise = false;
2093	static u8 cam_const_addr[4][6] = {
2094		{0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
2095		{0x00, 0x00, 0x00, 0x00, 0x00, 0x01},
2096		{0x00, 0x00, 0x00, 0x00, 0x00, 0x02},
2097		{0x00, 0x00, 0x00, 0x00, 0x00, 0x03}
2098	};
2099	static u8 cam_const_broad[] = {
2100		0xff, 0xff, 0xff, 0xff, 0xff, 0xff
2101	};
2102
2103	if (clear_all) {
2104		u8 idx;
2105		u8 cam_offset = 0;
2106		u8 clear_number = 5;
2107		rtl_dbg(rtlpriv, COMP_SEC, DBG_DMESG, "clear_all\n");
2108		for (idx = 0; idx < clear_number; idx++) {
2109			rtl_cam_mark_invalid(hw, cam_offset + idx);
2110			rtl_cam_empty_entry(hw, cam_offset + idx);
2111
2112			if (idx < 5) {
2113				memset(rtlpriv->sec.key_buf[idx], 0,
2114				       MAX_KEY_LEN);
2115				rtlpriv->sec.key_len[idx] = 0;
2116			}
2117		}
2118	} else {
2119		switch (enc_algo) {
2120		case WEP40_ENCRYPTION:
2121			enc_algo = CAM_WEP40;
2122			break;
2123		case WEP104_ENCRYPTION:
2124			enc_algo = CAM_WEP104;
2125			break;
2126		case TKIP_ENCRYPTION:
2127			enc_algo = CAM_TKIP;
2128			break;
2129		case AESCCMP_ENCRYPTION:
2130			enc_algo = CAM_AES;
2131			break;
2132		default:
2133			pr_err("switch case %#x not processed\n",
2134			       enc_algo);
2135			enc_algo = CAM_TKIP;
2136			break;
2137		}
2138		if (is_wepkey || rtlpriv->sec.use_defaultkey) {
2139			macaddr = cam_const_addr[key_index];
2140			entry_id = key_index;
2141		} else {
2142			if (is_group) {
2143				macaddr = cam_const_broad;
2144				entry_id = key_index;
2145			} else {
2146				if (mac->opmode == NL80211_IFTYPE_AP) {
2147					entry_id = rtl_cam_get_free_entry(hw,
2148								 p_macaddr);
2149					if (entry_id >=  TOTAL_CAM_ENTRY) {
2150						pr_err("Can not find free hw security cam entry\n");
2151						return;
2152					}
2153				} else {
2154					entry_id = CAM_PAIRWISE_KEY_POSITION;
2155				}
2156				key_index = PAIRWISE_KEYIDX;
2157				is_pairwise = true;
2158			}
2159		}
2160		if (rtlpriv->sec.key_len[key_index] == 0) {
2161			rtl_dbg(rtlpriv, COMP_SEC, DBG_DMESG,
2162				"delete one entry, entry_id is %d\n",
2163				entry_id);
2164			if (mac->opmode == NL80211_IFTYPE_AP)
2165				rtl_cam_del_entry(hw, p_macaddr);
2166			rtl_cam_delete_one_entry(hw, p_macaddr, entry_id);
2167		} else {
2168			rtl_dbg(rtlpriv, COMP_SEC, DBG_LOUD,
2169				"The insert KEY length is %d\n",
2170				rtlpriv->sec.key_len[PAIRWISE_KEYIDX]);
2171			rtl_dbg(rtlpriv, COMP_SEC, DBG_LOUD,
2172				"The insert KEY is %x %x\n",
2173				rtlpriv->sec.key_buf[0][0],
2174				rtlpriv->sec.key_buf[0][1]);
2175			rtl_dbg(rtlpriv, COMP_SEC, DBG_DMESG,
2176				"add one entry\n");
2177			if (is_pairwise) {
2178				RT_PRINT_DATA(rtlpriv, COMP_SEC, DBG_LOUD,
2179					      "Pairwise Key content",
2180					      rtlpriv->sec.pairwise_key,
2181					      rtlpriv->
2182					      sec.key_len[PAIRWISE_KEYIDX]);
2183				rtl_dbg(rtlpriv, COMP_SEC, DBG_DMESG,
2184					"set Pairwise key\n");
2185				rtl_cam_add_one_entry(hw, macaddr, key_index,
2186						      entry_id, enc_algo,
2187						      CAM_CONFIG_NO_USEDK,
2188						      rtlpriv->
2189						      sec.key_buf[key_index]);
2190			} else {
2191				rtl_dbg(rtlpriv, COMP_SEC, DBG_DMESG,
2192					"set group key\n");
2193				if (mac->opmode == NL80211_IFTYPE_ADHOC) {
2194					rtl_cam_add_one_entry(hw,
2195						rtlefuse->dev_addr,
2196						PAIRWISE_KEYIDX,
2197						CAM_PAIRWISE_KEY_POSITION,
2198						enc_algo, CAM_CONFIG_NO_USEDK,
2199						rtlpriv->sec.key_buf[entry_id]);
2200				}
2201				rtl_cam_add_one_entry(hw, macaddr, key_index,
2202						entry_id, enc_algo,
2203						CAM_CONFIG_NO_USEDK,
2204						rtlpriv->sec.key_buf
2205						[entry_id]);
2206			}
2207		}
2208	}
2209}
2210
2211void rtl92de_suspend(struct ieee80211_hw *hw)
2212{
2213	struct rtl_priv *rtlpriv = rtl_priv(hw);
2214
2215	rtlpriv->rtlhal.macphyctl_reg = rtl_read_byte(rtlpriv,
2216		REG_MAC_PHY_CTRL_NORMAL);
2217}
2218
2219void rtl92de_resume(struct ieee80211_hw *hw)
2220{
2221	struct rtl_priv *rtlpriv = rtl_priv(hw);
2222
2223	rtl_write_byte(rtlpriv, REG_MAC_PHY_CTRL_NORMAL,
2224		       rtlpriv->rtlhal.macphyctl_reg);
2225}
2226