1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3	Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
4	Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
5	<http://rt2x00.serialmonkey.com>
6
7 */
8
9/*
10	Module: rt2x00lib
11	Abstract: rt2x00 generic device routines.
12 */
13
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/slab.h>
17#include <linux/log2.h>
18#include <linux/of.h>
19#include <linux/of_net.h>
20
21#include "rt2x00.h"
22#include "rt2x00lib.h"
23
24/*
25 * Utility functions.
26 */
27u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev,
28			 struct ieee80211_vif *vif)
29{
30	/*
31	 * When in STA mode, bssidx is always 0 otherwise local_address[5]
32	 * contains the bss number, see BSS_ID_MASK comments for details.
33	 */
34	if (rt2x00dev->intf_sta_count)
35		return 0;
36	return vif->addr[5] & (rt2x00dev->ops->max_ap_intf - 1);
37}
38EXPORT_SYMBOL_GPL(rt2x00lib_get_bssidx);
39
40/*
41 * Radio control handlers.
42 */
43int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
44{
45	int status;
46
47	/*
48	 * Don't enable the radio twice.
49	 * And check if the hardware button has been disabled.
50	 */
51	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
52		return 0;
53
54	/*
55	 * Initialize all data queues.
56	 */
57	rt2x00queue_init_queues(rt2x00dev);
58
59	/*
60	 * Enable radio.
61	 */
62	status =
63	    rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
64	if (status)
65		return status;
66
67	rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
68
69	rt2x00leds_led_radio(rt2x00dev, true);
70	rt2x00led_led_activity(rt2x00dev, true);
71
72	set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
73
74	/*
75	 * Enable queues.
76	 */
77	rt2x00queue_start_queues(rt2x00dev);
78	rt2x00link_start_tuner(rt2x00dev);
79
80	/*
81	 * Start watchdog monitoring.
82	 */
83	rt2x00link_start_watchdog(rt2x00dev);
84
85	return 0;
86}
87
88void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
89{
90	if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
91		return;
92
93	/*
94	 * Stop watchdog monitoring.
95	 */
96	rt2x00link_stop_watchdog(rt2x00dev);
97
98	/*
99	 * Stop all queues
100	 */
101	rt2x00link_stop_tuner(rt2x00dev);
102	rt2x00queue_stop_queues(rt2x00dev);
103	rt2x00queue_flush_queues(rt2x00dev, true);
104	rt2x00queue_stop_queue(rt2x00dev->bcn);
105
106	/*
107	 * Disable radio.
108	 */
109	rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
110	rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
111	rt2x00led_led_activity(rt2x00dev, false);
112	rt2x00leds_led_radio(rt2x00dev, false);
113}
114
115static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
116					  struct ieee80211_vif *vif)
117{
118	struct rt2x00_dev *rt2x00dev = data;
119	struct rt2x00_intf *intf = vif_to_intf(vif);
120
121	/*
122	 * It is possible the radio was disabled while the work had been
123	 * scheduled. If that happens we should return here immediately,
124	 * note that in the spinlock protected area above the delayed_flags
125	 * have been cleared correctly.
126	 */
127	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
128		return;
129
130	if (test_and_clear_bit(DELAYED_UPDATE_BEACON, &intf->delayed_flags)) {
131		mutex_lock(&intf->beacon_skb_mutex);
132		rt2x00queue_update_beacon(rt2x00dev, vif);
133		mutex_unlock(&intf->beacon_skb_mutex);
134	}
135}
136
137static void rt2x00lib_intf_scheduled(struct work_struct *work)
138{
139	struct rt2x00_dev *rt2x00dev =
140	    container_of(work, struct rt2x00_dev, intf_work);
141
142	/*
143	 * Iterate over each interface and perform the
144	 * requested configurations.
145	 */
146	ieee80211_iterate_active_interfaces(rt2x00dev->hw,
147					    IEEE80211_IFACE_ITER_RESUME_ALL,
148					    rt2x00lib_intf_scheduled_iter,
149					    rt2x00dev);
150}
151
152static void rt2x00lib_autowakeup(struct work_struct *work)
153{
154	struct rt2x00_dev *rt2x00dev =
155	    container_of(work, struct rt2x00_dev, autowakeup_work.work);
156
157	if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
158		return;
159
160	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
161		rt2x00_err(rt2x00dev, "Device failed to wakeup\n");
162	clear_bit(CONFIG_POWERSAVING, &rt2x00dev->flags);
163}
164
165/*
166 * Interrupt context handlers.
167 */
168static void rt2x00lib_bc_buffer_iter(void *data, u8 *mac,
169				     struct ieee80211_vif *vif)
170{
171	struct ieee80211_tx_control control = {};
172	struct rt2x00_dev *rt2x00dev = data;
173	struct sk_buff *skb;
174
175	/*
176	 * Only AP mode interfaces do broad- and multicast buffering
177	 */
178	if (vif->type != NL80211_IFTYPE_AP)
179		return;
180
181	/*
182	 * Send out buffered broad- and multicast frames
183	 */
184	skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
185	while (skb) {
186		rt2x00mac_tx(rt2x00dev->hw, &control, skb);
187		skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
188	}
189}
190
191static void rt2x00lib_beaconupdate_iter(void *data, u8 *mac,
192					struct ieee80211_vif *vif)
193{
194	struct rt2x00_dev *rt2x00dev = data;
195
196	if (vif->type != NL80211_IFTYPE_AP &&
197	    vif->type != NL80211_IFTYPE_ADHOC &&
198	    vif->type != NL80211_IFTYPE_MESH_POINT)
199		return;
200
201	/*
202	 * Update the beacon without locking. This is safe on PCI devices
203	 * as they only update the beacon periodically here. This should
204	 * never be called for USB devices.
205	 */
206	WARN_ON(rt2x00_is_usb(rt2x00dev));
207	rt2x00queue_update_beacon(rt2x00dev, vif);
208}
209
210void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
211{
212	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
213		return;
214
215	/* send buffered bc/mc frames out for every bssid */
216	ieee80211_iterate_active_interfaces_atomic(
217		rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
218		rt2x00lib_bc_buffer_iter, rt2x00dev);
219	/*
220	 * Devices with pre tbtt interrupt don't need to update the beacon
221	 * here as they will fetch the next beacon directly prior to
222	 * transmission.
223	 */
224	if (rt2x00_has_cap_pre_tbtt_interrupt(rt2x00dev))
225		return;
226
227	/* fetch next beacon */
228	ieee80211_iterate_active_interfaces_atomic(
229		rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
230		rt2x00lib_beaconupdate_iter, rt2x00dev);
231}
232EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
233
234void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev)
235{
236	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
237		return;
238
239	/* fetch next beacon */
240	ieee80211_iterate_active_interfaces_atomic(
241		rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
242		rt2x00lib_beaconupdate_iter, rt2x00dev);
243}
244EXPORT_SYMBOL_GPL(rt2x00lib_pretbtt);
245
246void rt2x00lib_dmastart(struct queue_entry *entry)
247{
248	set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
249	rt2x00queue_index_inc(entry, Q_INDEX);
250}
251EXPORT_SYMBOL_GPL(rt2x00lib_dmastart);
252
253void rt2x00lib_dmadone(struct queue_entry *entry)
254{
255	set_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags);
256	clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
257	rt2x00queue_index_inc(entry, Q_INDEX_DMA_DONE);
258}
259EXPORT_SYMBOL_GPL(rt2x00lib_dmadone);
260
261static inline int rt2x00lib_txdone_bar_status(struct queue_entry *entry)
262{
263	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
264	struct ieee80211_bar *bar = (void *) entry->skb->data;
265	struct rt2x00_bar_list_entry *bar_entry;
266	int ret;
267
268	if (likely(!ieee80211_is_back_req(bar->frame_control)))
269		return 0;
270
271	/*
272	 * Unlike all other frames, the status report for BARs does
273	 * not directly come from the hardware as it is incapable of
274	 * matching a BA to a previously send BAR. The hardware will
275	 * report all BARs as if they weren't acked at all.
276	 *
277	 * Instead the RX-path will scan for incoming BAs and set the
278	 * block_acked flag if it sees one that was likely caused by
279	 * a BAR from us.
280	 *
281	 * Remove remaining BARs here and return their status for
282	 * TX done processing.
283	 */
284	ret = 0;
285	rcu_read_lock();
286	list_for_each_entry_rcu(bar_entry, &rt2x00dev->bar_list, list) {
287		if (bar_entry->entry != entry)
288			continue;
289
290		spin_lock_bh(&rt2x00dev->bar_list_lock);
291		/* Return whether this BAR was blockacked or not */
292		ret = bar_entry->block_acked;
293		/* Remove the BAR from our checklist */
294		list_del_rcu(&bar_entry->list);
295		spin_unlock_bh(&rt2x00dev->bar_list_lock);
296		kfree_rcu(bar_entry, head);
297
298		break;
299	}
300	rcu_read_unlock();
301
302	return ret;
303}
304
305static void rt2x00lib_fill_tx_status(struct rt2x00_dev *rt2x00dev,
306				     struct ieee80211_tx_info *tx_info,
307				     struct skb_frame_desc *skbdesc,
308				     struct txdone_entry_desc *txdesc,
309				     bool success)
310{
311	u8 rate_idx, rate_flags, retry_rates;
312	int i;
313
314	rate_idx = skbdesc->tx_rate_idx;
315	rate_flags = skbdesc->tx_rate_flags;
316	retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ?
317	    (txdesc->retry + 1) : 1;
318
319	/*
320	 * Initialize TX status
321	 */
322	memset(&tx_info->status, 0, sizeof(tx_info->status));
323	tx_info->status.ack_signal = 0;
324
325	/*
326	 * Frame was send with retries, hardware tried
327	 * different rates to send out the frame, at each
328	 * retry it lowered the rate 1 step except when the
329	 * lowest rate was used.
330	 */
331	for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) {
332		tx_info->status.rates[i].idx = rate_idx - i;
333		tx_info->status.rates[i].flags = rate_flags;
334
335		if (rate_idx - i == 0) {
336			/*
337			 * The lowest rate (index 0) was used until the
338			 * number of max retries was reached.
339			 */
340			tx_info->status.rates[i].count = retry_rates - i;
341			i++;
342			break;
343		}
344		tx_info->status.rates[i].count = 1;
345	}
346	if (i < (IEEE80211_TX_MAX_RATES - 1))
347		tx_info->status.rates[i].idx = -1; /* terminate */
348
349	if (test_bit(TXDONE_NO_ACK_REQ, &txdesc->flags))
350		tx_info->flags |= IEEE80211_TX_CTL_NO_ACK;
351
352	if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
353		if (success)
354			tx_info->flags |= IEEE80211_TX_STAT_ACK;
355		else
356			rt2x00dev->low_level_stats.dot11ACKFailureCount++;
357	}
358
359	/*
360	 * Every single frame has it's own tx status, hence report
361	 * every frame as ampdu of size 1.
362	 *
363	 * TODO: if we can find out how many frames were aggregated
364	 * by the hw we could provide the real ampdu_len to mac80211
365	 * which would allow the rc algorithm to better decide on
366	 * which rates are suitable.
367	 */
368	if (test_bit(TXDONE_AMPDU, &txdesc->flags) ||
369	    tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
370		tx_info->flags |= IEEE80211_TX_STAT_AMPDU |
371				  IEEE80211_TX_CTL_AMPDU;
372		tx_info->status.ampdu_len = 1;
373		tx_info->status.ampdu_ack_len = success ? 1 : 0;
374	}
375
376	if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
377		if (success)
378			rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
379		else
380			rt2x00dev->low_level_stats.dot11RTSFailureCount++;
381	}
382}
383
384static void rt2x00lib_clear_entry(struct rt2x00_dev *rt2x00dev,
385				  struct queue_entry *entry)
386{
387	/*
388	 * Make this entry available for reuse.
389	 */
390	entry->skb = NULL;
391	entry->flags = 0;
392
393	rt2x00dev->ops->lib->clear_entry(entry);
394
395	rt2x00queue_index_inc(entry, Q_INDEX_DONE);
396
397	/*
398	 * If the data queue was below the threshold before the txdone
399	 * handler we must make sure the packet queue in the mac80211 stack
400	 * is reenabled when the txdone handler has finished. This has to be
401	 * serialized with rt2x00mac_tx(), otherwise we can wake up queue
402	 * before it was stopped.
403	 */
404	spin_lock_bh(&entry->queue->tx_lock);
405	if (!rt2x00queue_threshold(entry->queue))
406		rt2x00queue_unpause_queue(entry->queue);
407	spin_unlock_bh(&entry->queue->tx_lock);
408}
409
410void rt2x00lib_txdone_nomatch(struct queue_entry *entry,
411			      struct txdone_entry_desc *txdesc)
412{
413	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
414	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
415	struct ieee80211_tx_info txinfo = {};
416	bool success;
417
418	/*
419	 * Unmap the skb.
420	 */
421	rt2x00queue_unmap_skb(entry);
422
423	/*
424	 * Signal that the TX descriptor is no longer in the skb.
425	 */
426	skbdesc->flags &= ~SKBDESC_DESC_IN_SKB;
427
428	/*
429	 * Send frame to debugfs immediately, after this call is completed
430	 * we are going to overwrite the skb->cb array.
431	 */
432	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry);
433
434	/*
435	 * Determine if the frame has been successfully transmitted and
436	 * remove BARs from our check list while checking for their
437	 * TX status.
438	 */
439	success =
440	    rt2x00lib_txdone_bar_status(entry) ||
441	    test_bit(TXDONE_SUCCESS, &txdesc->flags);
442
443	if (!test_bit(TXDONE_UNKNOWN, &txdesc->flags)) {
444		/*
445		 * Update TX statistics.
446		 */
447		rt2x00dev->link.qual.tx_success += success;
448		rt2x00dev->link.qual.tx_failed += !success;
449
450		rt2x00lib_fill_tx_status(rt2x00dev, &txinfo, skbdesc, txdesc,
451					 success);
452		ieee80211_tx_status_noskb(rt2x00dev->hw, skbdesc->sta, &txinfo);
453	}
454
455	dev_kfree_skb_any(entry->skb);
456	rt2x00lib_clear_entry(rt2x00dev, entry);
457}
458EXPORT_SYMBOL_GPL(rt2x00lib_txdone_nomatch);
459
460void rt2x00lib_txdone(struct queue_entry *entry,
461		      struct txdone_entry_desc *txdesc)
462{
463	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
464	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
465	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
466	u8 skbdesc_flags = skbdesc->flags;
467	unsigned int header_length;
468	bool success;
469
470	/*
471	 * Unmap the skb.
472	 */
473	rt2x00queue_unmap_skb(entry);
474
475	/*
476	 * Remove the extra tx headroom from the skb.
477	 */
478	skb_pull(entry->skb, rt2x00dev->extra_tx_headroom);
479
480	/*
481	 * Signal that the TX descriptor is no longer in the skb.
482	 */
483	skbdesc->flags &= ~SKBDESC_DESC_IN_SKB;
484
485	/*
486	 * Determine the length of 802.11 header.
487	 */
488	header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
489
490	/*
491	 * Remove L2 padding which was added during
492	 */
493	if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_L2PAD))
494		rt2x00queue_remove_l2pad(entry->skb, header_length);
495
496	/*
497	 * If the IV/EIV data was stripped from the frame before it was
498	 * passed to the hardware, we should now reinsert it again because
499	 * mac80211 will expect the same data to be present it the
500	 * frame as it was passed to us.
501	 */
502	if (rt2x00_has_cap_hw_crypto(rt2x00dev))
503		rt2x00crypto_tx_insert_iv(entry->skb, header_length);
504
505	/*
506	 * Send frame to debugfs immediately, after this call is completed
507	 * we are going to overwrite the skb->cb array.
508	 */
509	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry);
510
511	/*
512	 * Determine if the frame has been successfully transmitted and
513	 * remove BARs from our check list while checking for their
514	 * TX status.
515	 */
516	success =
517	    rt2x00lib_txdone_bar_status(entry) ||
518	    test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
519	    test_bit(TXDONE_UNKNOWN, &txdesc->flags);
520
521	/*
522	 * Update TX statistics.
523	 */
524	rt2x00dev->link.qual.tx_success += success;
525	rt2x00dev->link.qual.tx_failed += !success;
526
527	rt2x00lib_fill_tx_status(rt2x00dev, tx_info, skbdesc, txdesc, success);
528
529	/*
530	 * Only send the status report to mac80211 when it's a frame
531	 * that originated in mac80211. If this was a extra frame coming
532	 * through a mac80211 library call (RTS/CTS) then we should not
533	 * send the status report back.
534	 */
535	if (!(skbdesc_flags & SKBDESC_NOT_MAC80211)) {
536		if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_TASKLET_CONTEXT))
537			ieee80211_tx_status(rt2x00dev->hw, entry->skb);
538		else
539			ieee80211_tx_status_ni(rt2x00dev->hw, entry->skb);
540	} else {
541		dev_kfree_skb_any(entry->skb);
542	}
543
544	rt2x00lib_clear_entry(rt2x00dev, entry);
545}
546EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
547
548void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status)
549{
550	struct txdone_entry_desc txdesc;
551
552	txdesc.flags = 0;
553	__set_bit(status, &txdesc.flags);
554	txdesc.retry = 0;
555
556	rt2x00lib_txdone(entry, &txdesc);
557}
558EXPORT_SYMBOL_GPL(rt2x00lib_txdone_noinfo);
559
560static u8 *rt2x00lib_find_ie(u8 *data, unsigned int len, u8 ie)
561{
562	struct ieee80211_mgmt *mgmt = (void *)data;
563	u8 *pos, *end;
564
565	pos = (u8 *)mgmt->u.beacon.variable;
566	end = data + len;
567	while (pos < end) {
568		if (pos + 2 + pos[1] > end)
569			return NULL;
570
571		if (pos[0] == ie)
572			return pos;
573
574		pos += 2 + pos[1];
575	}
576
577	return NULL;
578}
579
580static void rt2x00lib_sleep(struct work_struct *work)
581{
582	struct rt2x00_dev *rt2x00dev =
583	    container_of(work, struct rt2x00_dev, sleep_work);
584
585	if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
586		return;
587
588	/*
589	 * Check again is powersaving is enabled, to prevent races from delayed
590	 * work execution.
591	 */
592	if (!test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
593		rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf,
594				 IEEE80211_CONF_CHANGE_PS);
595}
596
597static void rt2x00lib_rxdone_check_ba(struct rt2x00_dev *rt2x00dev,
598				      struct sk_buff *skb,
599				      struct rxdone_entry_desc *rxdesc)
600{
601	struct rt2x00_bar_list_entry *entry;
602	struct ieee80211_bar *ba = (void *)skb->data;
603
604	if (likely(!ieee80211_is_back(ba->frame_control)))
605		return;
606
607	if (rxdesc->size < sizeof(*ba) + FCS_LEN)
608		return;
609
610	rcu_read_lock();
611	list_for_each_entry_rcu(entry, &rt2x00dev->bar_list, list) {
612
613		if (ba->start_seq_num != entry->start_seq_num)
614			continue;
615
616#define TID_CHECK(a, b) (						\
617	((a) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK)) ==	\
618	((b) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK)))		\
619
620		if (!TID_CHECK(ba->control, entry->control))
621			continue;
622
623#undef TID_CHECK
624
625		if (!ether_addr_equal_64bits(ba->ra, entry->ta))
626			continue;
627
628		if (!ether_addr_equal_64bits(ba->ta, entry->ra))
629			continue;
630
631		/* Mark BAR since we received the according BA */
632		spin_lock_bh(&rt2x00dev->bar_list_lock);
633		entry->block_acked = 1;
634		spin_unlock_bh(&rt2x00dev->bar_list_lock);
635		break;
636	}
637	rcu_read_unlock();
638
639}
640
641static void rt2x00lib_rxdone_check_ps(struct rt2x00_dev *rt2x00dev,
642				      struct sk_buff *skb,
643				      struct rxdone_entry_desc *rxdesc)
644{
645	struct ieee80211_hdr *hdr = (void *) skb->data;
646	struct ieee80211_tim_ie *tim_ie;
647	u8 *tim;
648	u8 tim_len;
649	bool cam;
650
651	/* If this is not a beacon, or if mac80211 has no powersaving
652	 * configured, or if the device is already in powersaving mode
653	 * we can exit now. */
654	if (likely(!ieee80211_is_beacon(hdr->frame_control) ||
655		   !(rt2x00dev->hw->conf.flags & IEEE80211_CONF_PS)))
656		return;
657
658	/* min. beacon length + FCS_LEN */
659	if (skb->len <= 40 + FCS_LEN)
660		return;
661
662	/* and only beacons from the associated BSSID, please */
663	if (!(rxdesc->dev_flags & RXDONE_MY_BSS) ||
664	    !rt2x00dev->aid)
665		return;
666
667	rt2x00dev->last_beacon = jiffies;
668
669	tim = rt2x00lib_find_ie(skb->data, skb->len - FCS_LEN, WLAN_EID_TIM);
670	if (!tim)
671		return;
672
673	if (tim[1] < sizeof(*tim_ie))
674		return;
675
676	tim_len = tim[1];
677	tim_ie = (struct ieee80211_tim_ie *) &tim[2];
678
679	/* Check whenever the PHY can be turned off again. */
680
681	/* 1. What about buffered unicast traffic for our AID? */
682	cam = ieee80211_check_tim(tim_ie, tim_len, rt2x00dev->aid);
683
684	/* 2. Maybe the AP wants to send multicast/broadcast data? */
685	cam |= (tim_ie->bitmap_ctrl & 0x01);
686
687	if (!cam && !test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
688		queue_work(rt2x00dev->workqueue, &rt2x00dev->sleep_work);
689}
690
691static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev,
692					struct rxdone_entry_desc *rxdesc)
693{
694	struct ieee80211_supported_band *sband;
695	const struct rt2x00_rate *rate;
696	unsigned int i;
697	int signal = rxdesc->signal;
698	int type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK);
699
700	switch (rxdesc->rate_mode) {
701	case RATE_MODE_CCK:
702	case RATE_MODE_OFDM:
703		/*
704		 * For non-HT rates the MCS value needs to contain the
705		 * actually used rate modulation (CCK or OFDM).
706		 */
707		if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS)
708			signal = RATE_MCS(rxdesc->rate_mode, signal);
709
710		sband = &rt2x00dev->bands[rt2x00dev->curr_band];
711		for (i = 0; i < sband->n_bitrates; i++) {
712			rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
713			if (((type == RXDONE_SIGNAL_PLCP) &&
714			     (rate->plcp == signal)) ||
715			    ((type == RXDONE_SIGNAL_BITRATE) &&
716			      (rate->bitrate == signal)) ||
717			    ((type == RXDONE_SIGNAL_MCS) &&
718			      (rate->mcs == signal))) {
719				return i;
720			}
721		}
722		break;
723	case RATE_MODE_HT_MIX:
724	case RATE_MODE_HT_GREENFIELD:
725		if (signal >= 0 && signal <= 76)
726			return signal;
727		break;
728	default:
729		break;
730	}
731
732	rt2x00_warn(rt2x00dev, "Frame received with unrecognized signal, mode=0x%.4x, signal=0x%.4x, type=%d\n",
733		    rxdesc->rate_mode, signal, type);
734	return 0;
735}
736
737void rt2x00lib_rxdone(struct queue_entry *entry, gfp_t gfp)
738{
739	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
740	struct rxdone_entry_desc rxdesc;
741	struct sk_buff *skb;
742	struct ieee80211_rx_status *rx_status;
743	unsigned int header_length;
744	int rate_idx;
745
746	if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) ||
747	    !test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
748		goto submit_entry;
749
750	if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags))
751		goto submit_entry;
752
753	/*
754	 * Allocate a new sk_buffer. If no new buffer available, drop the
755	 * received frame and reuse the existing buffer.
756	 */
757	skb = rt2x00queue_alloc_rxskb(entry, gfp);
758	if (!skb)
759		goto submit_entry;
760
761	/*
762	 * Unmap the skb.
763	 */
764	rt2x00queue_unmap_skb(entry);
765
766	/*
767	 * Extract the RXD details.
768	 */
769	memset(&rxdesc, 0, sizeof(rxdesc));
770	rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
771
772	/*
773	 * Check for valid size in case we get corrupted descriptor from
774	 * hardware.
775	 */
776	if (unlikely(rxdesc.size == 0 ||
777		     rxdesc.size > entry->queue->data_size)) {
778		rt2x00_err(rt2x00dev, "Wrong frame size %d max %d\n",
779			   rxdesc.size, entry->queue->data_size);
780		dev_kfree_skb(entry->skb);
781		goto renew_skb;
782	}
783
784	/*
785	 * The data behind the ieee80211 header must be
786	 * aligned on a 4 byte boundary.
787	 */
788	header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
789
790	/*
791	 * Hardware might have stripped the IV/EIV/ICV data,
792	 * in that case it is possible that the data was
793	 * provided separately (through hardware descriptor)
794	 * in which case we should reinsert the data into the frame.
795	 */
796	if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) &&
797	    (rxdesc.flags & RX_FLAG_IV_STRIPPED))
798		rt2x00crypto_rx_insert_iv(entry->skb, header_length,
799					  &rxdesc);
800	else if (header_length &&
801		 (rxdesc.size > header_length) &&
802		 (rxdesc.dev_flags & RXDONE_L2PAD))
803		rt2x00queue_remove_l2pad(entry->skb, header_length);
804
805	/* Trim buffer to correct size */
806	skb_trim(entry->skb, rxdesc.size);
807
808	/*
809	 * Translate the signal to the correct bitrate index.
810	 */
811	rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc);
812	if (rxdesc.rate_mode == RATE_MODE_HT_MIX ||
813	    rxdesc.rate_mode == RATE_MODE_HT_GREENFIELD)
814		rxdesc.encoding = RX_ENC_HT;
815
816	/*
817	 * Check if this is a beacon, and more frames have been
818	 * buffered while we were in powersaving mode.
819	 */
820	rt2x00lib_rxdone_check_ps(rt2x00dev, entry->skb, &rxdesc);
821
822	/*
823	 * Check for incoming BlockAcks to match to the BlockAckReqs
824	 * we've send out.
825	 */
826	rt2x00lib_rxdone_check_ba(rt2x00dev, entry->skb, &rxdesc);
827
828	/*
829	 * Update extra components
830	 */
831	rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc);
832	rt2x00debug_update_crypto(rt2x00dev, &rxdesc);
833	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry);
834
835	/*
836	 * Initialize RX status information, and send frame
837	 * to mac80211.
838	 */
839	rx_status = IEEE80211_SKB_RXCB(entry->skb);
840
841	/* Ensure that all fields of rx_status are initialized
842	 * properly. The skb->cb array was used for driver
843	 * specific informations, so rx_status might contain
844	 * garbage.
845	 */
846	memset(rx_status, 0, sizeof(*rx_status));
847
848	rx_status->mactime = rxdesc.timestamp;
849	rx_status->band = rt2x00dev->curr_band;
850	rx_status->freq = rt2x00dev->curr_freq;
851	rx_status->rate_idx = rate_idx;
852	rx_status->signal = rxdesc.rssi;
853	rx_status->flag = rxdesc.flags;
854	rx_status->enc_flags = rxdesc.enc_flags;
855	rx_status->encoding = rxdesc.encoding;
856	rx_status->bw = rxdesc.bw;
857	rx_status->antenna = rt2x00dev->link.ant.active.rx;
858
859	ieee80211_rx_ni(rt2x00dev->hw, entry->skb);
860
861renew_skb:
862	/*
863	 * Replace the skb with the freshly allocated one.
864	 */
865	entry->skb = skb;
866
867submit_entry:
868	entry->flags = 0;
869	rt2x00queue_index_inc(entry, Q_INDEX_DONE);
870	if (test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) &&
871	    test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
872		rt2x00dev->ops->lib->clear_entry(entry);
873}
874EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
875
876/*
877 * Driver initialization handlers.
878 */
879const struct rt2x00_rate rt2x00_supported_rates[12] = {
880	{
881		.flags = DEV_RATE_CCK,
882		.bitrate = 10,
883		.ratemask = BIT(0),
884		.plcp = 0x00,
885		.mcs = RATE_MCS(RATE_MODE_CCK, 0),
886	},
887	{
888		.flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
889		.bitrate = 20,
890		.ratemask = BIT(1),
891		.plcp = 0x01,
892		.mcs = RATE_MCS(RATE_MODE_CCK, 1),
893	},
894	{
895		.flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
896		.bitrate = 55,
897		.ratemask = BIT(2),
898		.plcp = 0x02,
899		.mcs = RATE_MCS(RATE_MODE_CCK, 2),
900	},
901	{
902		.flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
903		.bitrate = 110,
904		.ratemask = BIT(3),
905		.plcp = 0x03,
906		.mcs = RATE_MCS(RATE_MODE_CCK, 3),
907	},
908	{
909		.flags = DEV_RATE_OFDM,
910		.bitrate = 60,
911		.ratemask = BIT(4),
912		.plcp = 0x0b,
913		.mcs = RATE_MCS(RATE_MODE_OFDM, 0),
914	},
915	{
916		.flags = DEV_RATE_OFDM,
917		.bitrate = 90,
918		.ratemask = BIT(5),
919		.plcp = 0x0f,
920		.mcs = RATE_MCS(RATE_MODE_OFDM, 1),
921	},
922	{
923		.flags = DEV_RATE_OFDM,
924		.bitrate = 120,
925		.ratemask = BIT(6),
926		.plcp = 0x0a,
927		.mcs = RATE_MCS(RATE_MODE_OFDM, 2),
928	},
929	{
930		.flags = DEV_RATE_OFDM,
931		.bitrate = 180,
932		.ratemask = BIT(7),
933		.plcp = 0x0e,
934		.mcs = RATE_MCS(RATE_MODE_OFDM, 3),
935	},
936	{
937		.flags = DEV_RATE_OFDM,
938		.bitrate = 240,
939		.ratemask = BIT(8),
940		.plcp = 0x09,
941		.mcs = RATE_MCS(RATE_MODE_OFDM, 4),
942	},
943	{
944		.flags = DEV_RATE_OFDM,
945		.bitrate = 360,
946		.ratemask = BIT(9),
947		.plcp = 0x0d,
948		.mcs = RATE_MCS(RATE_MODE_OFDM, 5),
949	},
950	{
951		.flags = DEV_RATE_OFDM,
952		.bitrate = 480,
953		.ratemask = BIT(10),
954		.plcp = 0x08,
955		.mcs = RATE_MCS(RATE_MODE_OFDM, 6),
956	},
957	{
958		.flags = DEV_RATE_OFDM,
959		.bitrate = 540,
960		.ratemask = BIT(11),
961		.plcp = 0x0c,
962		.mcs = RATE_MCS(RATE_MODE_OFDM, 7),
963	},
964};
965
966static void rt2x00lib_channel(struct ieee80211_channel *entry,
967			      const int channel, const int tx_power,
968			      const int value)
969{
970	/* XXX: this assumption about the band is wrong for 802.11j */
971	entry->band = channel <= 14 ? NL80211_BAND_2GHZ : NL80211_BAND_5GHZ;
972	entry->center_freq = ieee80211_channel_to_frequency(channel,
973							    entry->band);
974	entry->hw_value = value;
975	entry->max_power = tx_power;
976	entry->max_antenna_gain = 0xff;
977}
978
979static void rt2x00lib_rate(struct ieee80211_rate *entry,
980			   const u16 index, const struct rt2x00_rate *rate)
981{
982	entry->flags = 0;
983	entry->bitrate = rate->bitrate;
984	entry->hw_value = index;
985	entry->hw_value_short = index;
986
987	if (rate->flags & DEV_RATE_SHORT_PREAMBLE)
988		entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
989}
990
991void rt2x00lib_set_mac_address(struct rt2x00_dev *rt2x00dev, u8 *eeprom_mac_addr)
992{
993	of_get_mac_address(rt2x00dev->dev->of_node, eeprom_mac_addr);
994
995	if (!is_valid_ether_addr(eeprom_mac_addr)) {
996		eth_random_addr(eeprom_mac_addr);
997		rt2x00_eeprom_dbg(rt2x00dev, "MAC: %pM\n", eeprom_mac_addr);
998	}
999}
1000EXPORT_SYMBOL_GPL(rt2x00lib_set_mac_address);
1001
1002static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
1003				    struct hw_mode_spec *spec)
1004{
1005	struct ieee80211_hw *hw = rt2x00dev->hw;
1006	struct ieee80211_channel *channels;
1007	struct ieee80211_rate *rates;
1008	unsigned int num_rates;
1009	unsigned int i;
1010
1011	num_rates = 0;
1012	if (spec->supported_rates & SUPPORT_RATE_CCK)
1013		num_rates += 4;
1014	if (spec->supported_rates & SUPPORT_RATE_OFDM)
1015		num_rates += 8;
1016
1017	channels = kcalloc(spec->num_channels, sizeof(*channels), GFP_KERNEL);
1018	if (!channels)
1019		return -ENOMEM;
1020
1021	rates = kcalloc(num_rates, sizeof(*rates), GFP_KERNEL);
1022	if (!rates)
1023		goto exit_free_channels;
1024
1025	/*
1026	 * Initialize Rate list.
1027	 */
1028	for (i = 0; i < num_rates; i++)
1029		rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
1030
1031	/*
1032	 * Initialize Channel list.
1033	 */
1034	for (i = 0; i < spec->num_channels; i++) {
1035		rt2x00lib_channel(&channels[i],
1036				  spec->channels[i].channel,
1037				  spec->channels_info[i].max_power, i);
1038	}
1039
1040	/*
1041	 * Intitialize 802.11b, 802.11g
1042	 * Rates: CCK, OFDM.
1043	 * Channels: 2.4 GHz
1044	 */
1045	if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
1046		rt2x00dev->bands[NL80211_BAND_2GHZ].n_channels = 14;
1047		rt2x00dev->bands[NL80211_BAND_2GHZ].n_bitrates = num_rates;
1048		rt2x00dev->bands[NL80211_BAND_2GHZ].channels = channels;
1049		rt2x00dev->bands[NL80211_BAND_2GHZ].bitrates = rates;
1050		hw->wiphy->bands[NL80211_BAND_2GHZ] =
1051		    &rt2x00dev->bands[NL80211_BAND_2GHZ];
1052		memcpy(&rt2x00dev->bands[NL80211_BAND_2GHZ].ht_cap,
1053		       &spec->ht, sizeof(spec->ht));
1054	}
1055
1056	/*
1057	 * Intitialize 802.11a
1058	 * Rates: OFDM.
1059	 * Channels: OFDM, UNII, HiperLAN2.
1060	 */
1061	if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
1062		rt2x00dev->bands[NL80211_BAND_5GHZ].n_channels =
1063		    spec->num_channels - 14;
1064		rt2x00dev->bands[NL80211_BAND_5GHZ].n_bitrates =
1065		    num_rates - 4;
1066		rt2x00dev->bands[NL80211_BAND_5GHZ].channels = &channels[14];
1067		rt2x00dev->bands[NL80211_BAND_5GHZ].bitrates = &rates[4];
1068		hw->wiphy->bands[NL80211_BAND_5GHZ] =
1069		    &rt2x00dev->bands[NL80211_BAND_5GHZ];
1070		memcpy(&rt2x00dev->bands[NL80211_BAND_5GHZ].ht_cap,
1071		       &spec->ht, sizeof(spec->ht));
1072	}
1073
1074	return 0;
1075
1076 exit_free_channels:
1077	kfree(channels);
1078	rt2x00_err(rt2x00dev, "Allocation ieee80211 modes failed\n");
1079	return -ENOMEM;
1080}
1081
1082static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
1083{
1084	if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
1085		ieee80211_unregister_hw(rt2x00dev->hw);
1086
1087	if (likely(rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ])) {
1088		kfree(rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ]->channels);
1089		kfree(rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ]->bitrates);
1090		rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ] = NULL;
1091		rt2x00dev->hw->wiphy->bands[NL80211_BAND_5GHZ] = NULL;
1092	}
1093
1094	kfree(rt2x00dev->spec.channels_info);
1095	kfree(rt2x00dev->chan_survey);
1096}
1097
1098static const struct ieee80211_tpt_blink rt2x00_tpt_blink[] = {
1099	{ .throughput = 0 * 1024, .blink_time = 334 },
1100	{ .throughput = 1 * 1024, .blink_time = 260 },
1101	{ .throughput = 2 * 1024, .blink_time = 220 },
1102	{ .throughput = 5 * 1024, .blink_time = 190 },
1103	{ .throughput = 10 * 1024, .blink_time = 170 },
1104	{ .throughput = 25 * 1024, .blink_time = 150 },
1105	{ .throughput = 54 * 1024, .blink_time = 130 },
1106	{ .throughput = 120 * 1024, .blink_time = 110 },
1107	{ .throughput = 265 * 1024, .blink_time = 80 },
1108	{ .throughput = 586 * 1024, .blink_time = 50 },
1109};
1110
1111static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
1112{
1113	struct hw_mode_spec *spec = &rt2x00dev->spec;
1114	int status;
1115
1116	if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
1117		return 0;
1118
1119	/*
1120	 * Initialize HW modes.
1121	 */
1122	status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
1123	if (status)
1124		return status;
1125
1126	/*
1127	 * Initialize HW fields.
1128	 */
1129	rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
1130
1131	/*
1132	 * Initialize extra TX headroom required.
1133	 */
1134	rt2x00dev->hw->extra_tx_headroom =
1135		max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM,
1136		      rt2x00dev->extra_tx_headroom);
1137
1138	/*
1139	 * Take TX headroom required for alignment into account.
1140	 */
1141	if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_L2PAD))
1142		rt2x00dev->hw->extra_tx_headroom += RT2X00_L2PAD_SIZE;
1143	else if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DMA))
1144		rt2x00dev->hw->extra_tx_headroom += RT2X00_ALIGN_SIZE;
1145
1146	/*
1147	 * Tell mac80211 about the size of our private STA structure.
1148	 */
1149	rt2x00dev->hw->sta_data_size = sizeof(struct rt2x00_sta);
1150
1151	/*
1152	 * Allocate tx status FIFO for driver use.
1153	 */
1154	if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_TXSTATUS_FIFO)) {
1155		/*
1156		 * Allocate the txstatus fifo. In the worst case the tx
1157		 * status fifo has to hold the tx status of all entries
1158		 * in all tx queues. Hence, calculate the kfifo size as
1159		 * tx_queues * entry_num and round up to the nearest
1160		 * power of 2.
1161		 */
1162		int kfifo_size =
1163			roundup_pow_of_two(rt2x00dev->ops->tx_queues *
1164					   rt2x00dev->tx->limit *
1165					   sizeof(u32));
1166
1167		status = kfifo_alloc(&rt2x00dev->txstatus_fifo, kfifo_size,
1168				     GFP_KERNEL);
1169		if (status)
1170			return status;
1171	}
1172
1173	/*
1174	 * Initialize tasklets if used by the driver. Tasklets are
1175	 * disabled until the interrupts are turned on. The driver
1176	 * has to handle that.
1177	 */
1178#define RT2X00_TASKLET_INIT(taskletname) \
1179	if (rt2x00dev->ops->lib->taskletname) { \
1180		tasklet_setup(&rt2x00dev->taskletname, \
1181			     rt2x00dev->ops->lib->taskletname); \
1182	}
1183
1184	RT2X00_TASKLET_INIT(txstatus_tasklet);
1185	RT2X00_TASKLET_INIT(pretbtt_tasklet);
1186	RT2X00_TASKLET_INIT(tbtt_tasklet);
1187	RT2X00_TASKLET_INIT(rxdone_tasklet);
1188	RT2X00_TASKLET_INIT(autowake_tasklet);
1189
1190#undef RT2X00_TASKLET_INIT
1191
1192	ieee80211_create_tpt_led_trigger(rt2x00dev->hw,
1193					 IEEE80211_TPT_LEDTRIG_FL_RADIO,
1194					 rt2x00_tpt_blink,
1195					 ARRAY_SIZE(rt2x00_tpt_blink));
1196
1197	/*
1198	 * Register HW.
1199	 */
1200	status = ieee80211_register_hw(rt2x00dev->hw);
1201	if (status)
1202		return status;
1203
1204	set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
1205
1206	return 0;
1207}
1208
1209/*
1210 * Initialization/uninitialization handlers.
1211 */
1212static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
1213{
1214	if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
1215		return;
1216
1217	/*
1218	 * Stop rfkill polling.
1219	 */
1220	if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
1221		rt2x00rfkill_unregister(rt2x00dev);
1222
1223	/*
1224	 * Allow the HW to uninitialize.
1225	 */
1226	rt2x00dev->ops->lib->uninitialize(rt2x00dev);
1227
1228	/*
1229	 * Free allocated queue entries.
1230	 */
1231	rt2x00queue_uninitialize(rt2x00dev);
1232}
1233
1234static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
1235{
1236	int status;
1237
1238	if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
1239		return 0;
1240
1241	/*
1242	 * Allocate all queue entries.
1243	 */
1244	status = rt2x00queue_initialize(rt2x00dev);
1245	if (status)
1246		return status;
1247
1248	/*
1249	 * Initialize the device.
1250	 */
1251	status = rt2x00dev->ops->lib->initialize(rt2x00dev);
1252	if (status) {
1253		rt2x00queue_uninitialize(rt2x00dev);
1254		return status;
1255	}
1256
1257	set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
1258
1259	/*
1260	 * Start rfkill polling.
1261	 */
1262	if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
1263		rt2x00rfkill_register(rt2x00dev);
1264
1265	return 0;
1266}
1267
1268int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
1269{
1270	int retval = 0;
1271
1272	/*
1273	 * If this is the first interface which is added,
1274	 * we should load the firmware now.
1275	 */
1276	retval = rt2x00lib_load_firmware(rt2x00dev);
1277	if (retval)
1278		goto out;
1279
1280	/*
1281	 * Initialize the device.
1282	 */
1283	retval = rt2x00lib_initialize(rt2x00dev);
1284	if (retval)
1285		goto out;
1286
1287	rt2x00dev->intf_ap_count = 0;
1288	rt2x00dev->intf_sta_count = 0;
1289	rt2x00dev->intf_associated = 0;
1290	rt2x00dev->intf_beaconing = 0;
1291
1292	/* Enable the radio */
1293	retval = rt2x00lib_enable_radio(rt2x00dev);
1294	if (retval)
1295		goto out;
1296
1297	set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
1298
1299out:
1300	return retval;
1301}
1302
1303void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
1304{
1305	if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1306		return;
1307
1308	/*
1309	 * Perhaps we can add something smarter here,
1310	 * but for now just disabling the radio should do.
1311	 */
1312	rt2x00lib_disable_radio(rt2x00dev);
1313
1314	rt2x00dev->intf_ap_count = 0;
1315	rt2x00dev->intf_sta_count = 0;
1316	rt2x00dev->intf_associated = 0;
1317	rt2x00dev->intf_beaconing = 0;
1318}
1319
1320static inline void rt2x00lib_set_if_combinations(struct rt2x00_dev *rt2x00dev)
1321{
1322	struct ieee80211_iface_limit *if_limit;
1323	struct ieee80211_iface_combination *if_combination;
1324
1325	if (rt2x00dev->ops->max_ap_intf < 2)
1326		return;
1327
1328	/*
1329	 * Build up AP interface limits structure.
1330	 */
1331	if_limit = &rt2x00dev->if_limits_ap;
1332	if_limit->max = rt2x00dev->ops->max_ap_intf;
1333	if_limit->types = BIT(NL80211_IFTYPE_AP);
1334#ifdef CONFIG_MAC80211_MESH
1335	if_limit->types |= BIT(NL80211_IFTYPE_MESH_POINT);
1336#endif
1337
1338	/*
1339	 * Build up AP interface combinations structure.
1340	 */
1341	if_combination = &rt2x00dev->if_combinations[IF_COMB_AP];
1342	if_combination->limits = if_limit;
1343	if_combination->n_limits = 1;
1344	if_combination->max_interfaces = if_limit->max;
1345	if_combination->num_different_channels = 1;
1346
1347	/*
1348	 * Finally, specify the possible combinations to mac80211.
1349	 */
1350	rt2x00dev->hw->wiphy->iface_combinations = rt2x00dev->if_combinations;
1351	rt2x00dev->hw->wiphy->n_iface_combinations = 1;
1352}
1353
1354static unsigned int rt2x00dev_extra_tx_headroom(struct rt2x00_dev *rt2x00dev)
1355{
1356	if (WARN_ON(!rt2x00dev->tx))
1357		return 0;
1358
1359	if (rt2x00_is_usb(rt2x00dev))
1360		return rt2x00dev->tx[0].winfo_size + rt2x00dev->tx[0].desc_size;
1361
1362	return rt2x00dev->tx[0].winfo_size;
1363}
1364
1365/*
1366 * driver allocation handlers.
1367 */
1368int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
1369{
1370	int retval = -ENOMEM;
1371
1372	/*
1373	 * Set possible interface combinations.
1374	 */
1375	rt2x00lib_set_if_combinations(rt2x00dev);
1376
1377	/*
1378	 * Allocate the driver data memory, if necessary.
1379	 */
1380	if (rt2x00dev->ops->drv_data_size > 0) {
1381		rt2x00dev->drv_data = kzalloc(rt2x00dev->ops->drv_data_size,
1382			                      GFP_KERNEL);
1383		if (!rt2x00dev->drv_data) {
1384			retval = -ENOMEM;
1385			goto exit;
1386		}
1387	}
1388
1389	spin_lock_init(&rt2x00dev->irqmask_lock);
1390	mutex_init(&rt2x00dev->csr_mutex);
1391	mutex_init(&rt2x00dev->conf_mutex);
1392	INIT_LIST_HEAD(&rt2x00dev->bar_list);
1393	spin_lock_init(&rt2x00dev->bar_list_lock);
1394	hrtimer_init(&rt2x00dev->txstatus_timer, CLOCK_MONOTONIC,
1395		     HRTIMER_MODE_REL);
1396
1397	set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1398
1399	/*
1400	 * Make room for rt2x00_intf inside the per-interface
1401	 * structure ieee80211_vif.
1402	 */
1403	rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
1404
1405	/*
1406	 * rt2x00 devices can only use the last n bits of the MAC address
1407	 * for virtual interfaces.
1408	 */
1409	rt2x00dev->hw->wiphy->addr_mask[ETH_ALEN - 1] =
1410		(rt2x00dev->ops->max_ap_intf - 1);
1411
1412	/*
1413	 * Initialize work.
1414	 */
1415	rt2x00dev->workqueue =
1416	    alloc_ordered_workqueue("%s", 0, wiphy_name(rt2x00dev->hw->wiphy));
1417	if (!rt2x00dev->workqueue) {
1418		retval = -ENOMEM;
1419		goto exit;
1420	}
1421
1422	INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
1423	INIT_DELAYED_WORK(&rt2x00dev->autowakeup_work, rt2x00lib_autowakeup);
1424	INIT_WORK(&rt2x00dev->sleep_work, rt2x00lib_sleep);
1425
1426	/*
1427	 * Let the driver probe the device to detect the capabilities.
1428	 */
1429	retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1430	if (retval) {
1431		rt2x00_err(rt2x00dev, "Failed to allocate device\n");
1432		goto exit;
1433	}
1434
1435	/*
1436	 * Allocate queue array.
1437	 */
1438	retval = rt2x00queue_allocate(rt2x00dev);
1439	if (retval)
1440		goto exit;
1441
1442	/* Cache TX headroom value */
1443	rt2x00dev->extra_tx_headroom = rt2x00dev_extra_tx_headroom(rt2x00dev);
1444
1445	/*
1446	 * Determine which operating modes are supported, all modes
1447	 * which require beaconing, depend on the availability of
1448	 * beacon entries.
1449	 */
1450	rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
1451	if (rt2x00dev->bcn->limit > 0)
1452		rt2x00dev->hw->wiphy->interface_modes |=
1453		    BIT(NL80211_IFTYPE_ADHOC) |
1454#ifdef CONFIG_MAC80211_MESH
1455		    BIT(NL80211_IFTYPE_MESH_POINT) |
1456#endif
1457		    BIT(NL80211_IFTYPE_AP);
1458
1459	rt2x00dev->hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN;
1460
1461	wiphy_ext_feature_set(rt2x00dev->hw->wiphy,
1462			      NL80211_EXT_FEATURE_CQM_RSSI_LIST);
1463
1464	/*
1465	 * Initialize ieee80211 structure.
1466	 */
1467	retval = rt2x00lib_probe_hw(rt2x00dev);
1468	if (retval) {
1469		rt2x00_err(rt2x00dev, "Failed to initialize hw\n");
1470		goto exit;
1471	}
1472
1473	/*
1474	 * Register extra components.
1475	 */
1476	rt2x00link_register(rt2x00dev);
1477	rt2x00leds_register(rt2x00dev);
1478	rt2x00debug_register(rt2x00dev);
1479
1480	/*
1481	 * Start rfkill polling.
1482	 */
1483	if (!rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
1484		rt2x00rfkill_register(rt2x00dev);
1485
1486	return 0;
1487
1488exit:
1489	rt2x00lib_remove_dev(rt2x00dev);
1490
1491	return retval;
1492}
1493EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1494
1495void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1496{
1497	clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1498
1499	/*
1500	 * Stop rfkill polling.
1501	 */
1502	if (!rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
1503		rt2x00rfkill_unregister(rt2x00dev);
1504
1505	/*
1506	 * Disable radio.
1507	 */
1508	rt2x00lib_disable_radio(rt2x00dev);
1509
1510	/*
1511	 * Stop all work.
1512	 */
1513	cancel_work_sync(&rt2x00dev->intf_work);
1514	cancel_delayed_work_sync(&rt2x00dev->autowakeup_work);
1515	cancel_work_sync(&rt2x00dev->sleep_work);
1516
1517	hrtimer_cancel(&rt2x00dev->txstatus_timer);
1518
1519	/*
1520	 * Kill the tx status tasklet.
1521	 */
1522	tasklet_kill(&rt2x00dev->txstatus_tasklet);
1523	tasklet_kill(&rt2x00dev->pretbtt_tasklet);
1524	tasklet_kill(&rt2x00dev->tbtt_tasklet);
1525	tasklet_kill(&rt2x00dev->rxdone_tasklet);
1526	tasklet_kill(&rt2x00dev->autowake_tasklet);
1527
1528	/*
1529	 * Uninitialize device.
1530	 */
1531	rt2x00lib_uninitialize(rt2x00dev);
1532
1533	if (rt2x00dev->workqueue)
1534		destroy_workqueue(rt2x00dev->workqueue);
1535
1536	/*
1537	 * Free the tx status fifo.
1538	 */
1539	kfifo_free(&rt2x00dev->txstatus_fifo);
1540
1541	/*
1542	 * Free extra components
1543	 */
1544	rt2x00debug_deregister(rt2x00dev);
1545	rt2x00leds_unregister(rt2x00dev);
1546
1547	/*
1548	 * Free ieee80211_hw memory.
1549	 */
1550	rt2x00lib_remove_hw(rt2x00dev);
1551
1552	/*
1553	 * Free firmware image.
1554	 */
1555	rt2x00lib_free_firmware(rt2x00dev);
1556
1557	/*
1558	 * Free queue structures.
1559	 */
1560	rt2x00queue_free(rt2x00dev);
1561
1562	/*
1563	 * Free the driver data.
1564	 */
1565	kfree(rt2x00dev->drv_data);
1566}
1567EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1568
1569/*
1570 * Device state handlers
1571 */
1572int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev)
1573{
1574	rt2x00_dbg(rt2x00dev, "Going to sleep\n");
1575
1576	/*
1577	 * Prevent mac80211 from accessing driver while suspended.
1578	 */
1579	if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
1580		return 0;
1581
1582	/*
1583	 * Cleanup as much as possible.
1584	 */
1585	rt2x00lib_uninitialize(rt2x00dev);
1586
1587	/*
1588	 * Suspend/disable extra components.
1589	 */
1590	rt2x00leds_suspend(rt2x00dev);
1591	rt2x00debug_deregister(rt2x00dev);
1592
1593	/*
1594	 * Set device mode to sleep for power management,
1595	 * on some hardware this call seems to consistently fail.
1596	 * From the specifications it is hard to tell why it fails,
1597	 * and if this is a "bad thing".
1598	 * Overall it is safe to just ignore the failure and
1599	 * continue suspending. The only downside is that the
1600	 * device will not be in optimal power save mode, but with
1601	 * the radio and the other components already disabled the
1602	 * device is as good as disabled.
1603	 */
1604	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP))
1605		rt2x00_warn(rt2x00dev, "Device failed to enter sleep state, continue suspending\n");
1606
1607	return 0;
1608}
1609EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1610
1611int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1612{
1613	rt2x00_dbg(rt2x00dev, "Waking up\n");
1614
1615	/*
1616	 * Restore/enable extra components.
1617	 */
1618	rt2x00debug_register(rt2x00dev);
1619	rt2x00leds_resume(rt2x00dev);
1620
1621	/*
1622	 * We are ready again to receive requests from mac80211.
1623	 */
1624	set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1625
1626	return 0;
1627}
1628EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1629
1630/*
1631 * rt2x00lib module information.
1632 */
1633MODULE_AUTHOR(DRV_PROJECT);
1634MODULE_VERSION(DRV_VERSION);
1635MODULE_DESCRIPTION("rt2x00 library");
1636MODULE_LICENSE("GPL");
1637