1// SPDX-License-Identifier: GPL-2.0-or-later
2/*	Copyright (C) 2009 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
3 *	Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
4 *	Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
5 *	Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
6 *	Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
7 *	Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
8 *	Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
9 *	Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
10 *	<http://rt2x00.serialmonkey.com>
11 */
12
13/*	Module: rt2800mmio
14 *	Abstract: rt2800 MMIO device routines.
15 */
16
17#include <linux/kernel.h>
18#include <linux/module.h>
19#include <linux/export.h>
20
21#include "rt2x00.h"
22#include "rt2x00mmio.h"
23#include "rt2800.h"
24#include "rt2800lib.h"
25#include "rt2800mmio.h"
26
27unsigned int rt2800mmio_get_dma_done(struct data_queue *queue)
28{
29	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
30	struct queue_entry *entry;
31	int idx, qid;
32
33	switch (queue->qid) {
34	case QID_AC_VO:
35	case QID_AC_VI:
36	case QID_AC_BE:
37	case QID_AC_BK:
38		qid = queue->qid;
39		idx = rt2x00mmio_register_read(rt2x00dev, TX_DTX_IDX(qid));
40		break;
41	case QID_MGMT:
42		idx = rt2x00mmio_register_read(rt2x00dev, TX_DTX_IDX(5));
43		break;
44	case QID_RX:
45		entry = rt2x00queue_get_entry(queue, Q_INDEX_DMA_DONE);
46		idx = entry->entry_idx;
47		break;
48	default:
49		WARN_ON_ONCE(1);
50		idx = 0;
51		break;
52	}
53
54	return idx;
55}
56EXPORT_SYMBOL_GPL(rt2800mmio_get_dma_done);
57
58/*
59 * TX descriptor initialization
60 */
61__le32 *rt2800mmio_get_txwi(struct queue_entry *entry)
62{
63	return (__le32 *) entry->skb->data;
64}
65EXPORT_SYMBOL_GPL(rt2800mmio_get_txwi);
66
67void rt2800mmio_write_tx_desc(struct queue_entry *entry,
68			      struct txentry_desc *txdesc)
69{
70	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
71	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
72	__le32 *txd = entry_priv->desc;
73	u32 word;
74	const unsigned int txwi_size = entry->queue->winfo_size;
75
76	/*
77	 * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
78	 * must contains a TXWI structure + 802.11 header + padding + 802.11
79	 * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
80	 * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
81	 * data. It means that LAST_SEC0 is always 0.
82	 */
83
84	/*
85	 * Initialize TX descriptor
86	 */
87	word = 0;
88	rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma);
89	rt2x00_desc_write(txd, 0, word);
90
91	word = 0;
92	rt2x00_set_field32(&word, TXD_W1_SD_LEN1, entry->skb->len);
93	rt2x00_set_field32(&word, TXD_W1_LAST_SEC1,
94			   !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
95	rt2x00_set_field32(&word, TXD_W1_BURST,
96			   test_bit(ENTRY_TXD_BURST, &txdesc->flags));
97	rt2x00_set_field32(&word, TXD_W1_SD_LEN0, txwi_size);
98	rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0);
99	rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0);
100	rt2x00_desc_write(txd, 1, word);
101
102	word = 0;
103	rt2x00_set_field32(&word, TXD_W2_SD_PTR1,
104			   skbdesc->skb_dma + txwi_size);
105	rt2x00_desc_write(txd, 2, word);
106
107	word = 0;
108	rt2x00_set_field32(&word, TXD_W3_WIV,
109			   !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
110	rt2x00_set_field32(&word, TXD_W3_QSEL, 2);
111	rt2x00_desc_write(txd, 3, word);
112
113	/*
114	 * Register descriptor details in skb frame descriptor.
115	 */
116	skbdesc->desc = txd;
117	skbdesc->desc_len = TXD_DESC_SIZE;
118}
119EXPORT_SYMBOL_GPL(rt2800mmio_write_tx_desc);
120
121/*
122 * RX control handlers
123 */
124void rt2800mmio_fill_rxdone(struct queue_entry *entry,
125			    struct rxdone_entry_desc *rxdesc)
126{
127	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
128	__le32 *rxd = entry_priv->desc;
129	u32 word;
130
131	word = rt2x00_desc_read(rxd, 3);
132
133	if (rt2x00_get_field32(word, RXD_W3_CRC_ERROR))
134		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
135
136	/*
137	 * Unfortunately we don't know the cipher type used during
138	 * decryption. This prevents us from correct providing
139	 * correct statistics through debugfs.
140	 */
141	rxdesc->cipher_status = rt2x00_get_field32(word, RXD_W3_CIPHER_ERROR);
142
143	if (rt2x00_get_field32(word, RXD_W3_DECRYPTED)) {
144		/*
145		 * Hardware has stripped IV/EIV data from 802.11 frame during
146		 * decryption. Unfortunately the descriptor doesn't contain
147		 * any fields with the EIV/IV data either, so they can't
148		 * be restored by rt2x00lib.
149		 */
150		rxdesc->flags |= RX_FLAG_IV_STRIPPED;
151
152		/*
153		 * The hardware has already checked the Michael Mic and has
154		 * stripped it from the frame. Signal this to mac80211.
155		 */
156		rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
157
158		if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS) {
159			rxdesc->flags |= RX_FLAG_DECRYPTED;
160		} else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC) {
161			/*
162			 * In order to check the Michael Mic, the packet must have
163			 * been decrypted.  Mac80211 doesnt check the MMIC failure
164			 * flag to initiate MMIC countermeasures if the decoded flag
165			 * has not been set.
166			 */
167			rxdesc->flags |= RX_FLAG_DECRYPTED;
168
169			rxdesc->flags |= RX_FLAG_MMIC_ERROR;
170		}
171	}
172
173	if (rt2x00_get_field32(word, RXD_W3_MY_BSS))
174		rxdesc->dev_flags |= RXDONE_MY_BSS;
175
176	if (rt2x00_get_field32(word, RXD_W3_L2PAD))
177		rxdesc->dev_flags |= RXDONE_L2PAD;
178
179	/*
180	 * Process the RXWI structure that is at the start of the buffer.
181	 */
182	rt2800_process_rxwi(entry, rxdesc);
183}
184EXPORT_SYMBOL_GPL(rt2800mmio_fill_rxdone);
185
186/*
187 * Interrupt functions.
188 */
189static void rt2800mmio_wakeup(struct rt2x00_dev *rt2x00dev)
190{
191	struct ieee80211_conf conf = { .flags = 0 };
192	struct rt2x00lib_conf libconf = { .conf = &conf };
193
194	rt2800_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
195}
196
197static inline void rt2800mmio_enable_interrupt(struct rt2x00_dev *rt2x00dev,
198					       struct rt2x00_field32 irq_field)
199{
200	u32 reg;
201
202	/*
203	 * Enable a single interrupt. The interrupt mask register
204	 * access needs locking.
205	 */
206	spin_lock_irq(&rt2x00dev->irqmask_lock);
207	reg = rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR);
208	rt2x00_set_field32(&reg, irq_field, 1);
209	rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
210	spin_unlock_irq(&rt2x00dev->irqmask_lock);
211}
212
213void rt2800mmio_pretbtt_tasklet(struct tasklet_struct *t)
214{
215	struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t,
216						    pretbtt_tasklet);
217	rt2x00lib_pretbtt(rt2x00dev);
218	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
219		rt2800mmio_enable_interrupt(rt2x00dev, INT_MASK_CSR_PRE_TBTT);
220}
221EXPORT_SYMBOL_GPL(rt2800mmio_pretbtt_tasklet);
222
223void rt2800mmio_tbtt_tasklet(struct tasklet_struct *t)
224{
225	struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t, tbtt_tasklet);
226	struct rt2800_drv_data *drv_data = rt2x00dev->drv_data;
227	u32 reg;
228
229	rt2x00lib_beacondone(rt2x00dev);
230
231	if (rt2x00dev->intf_ap_count) {
232		/*
233		 * The rt2800pci hardware tbtt timer is off by 1us per tbtt
234		 * causing beacon skew and as a result causing problems with
235		 * some powersaving clients over time. Shorten the beacon
236		 * interval every 64 beacons by 64us to mitigate this effect.
237		 */
238		if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 2)) {
239			reg = rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG);
240			rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL,
241					   (rt2x00dev->beacon_int * 16) - 1);
242			rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
243		} else if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 1)) {
244			reg = rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG);
245			rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL,
246					   (rt2x00dev->beacon_int * 16));
247			rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
248		}
249		drv_data->tbtt_tick++;
250		drv_data->tbtt_tick %= BCN_TBTT_OFFSET;
251	}
252
253	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
254		rt2800mmio_enable_interrupt(rt2x00dev, INT_MASK_CSR_TBTT);
255}
256EXPORT_SYMBOL_GPL(rt2800mmio_tbtt_tasklet);
257
258void rt2800mmio_rxdone_tasklet(struct tasklet_struct *t)
259{
260	struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t,
261						    rxdone_tasklet);
262	if (rt2x00mmio_rxdone(rt2x00dev))
263		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
264	else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
265		rt2800mmio_enable_interrupt(rt2x00dev, INT_MASK_CSR_RX_DONE);
266}
267EXPORT_SYMBOL_GPL(rt2800mmio_rxdone_tasklet);
268
269void rt2800mmio_autowake_tasklet(struct tasklet_struct *t)
270{
271	struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t,
272						    autowake_tasklet);
273	rt2800mmio_wakeup(rt2x00dev);
274	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
275		rt2800mmio_enable_interrupt(rt2x00dev,
276					    INT_MASK_CSR_AUTO_WAKEUP);
277}
278EXPORT_SYMBOL_GPL(rt2800mmio_autowake_tasklet);
279
280static void rt2800mmio_fetch_txstatus(struct rt2x00_dev *rt2x00dev)
281{
282	u32 status;
283	unsigned long flags;
284
285	/*
286	 * The TX_FIFO_STATUS interrupt needs special care. We should
287	 * read TX_STA_FIFO but we should do it immediately as otherwise
288	 * the register can overflow and we would lose status reports.
289	 *
290	 * Hence, read the TX_STA_FIFO register and copy all tx status
291	 * reports into a kernel FIFO which is handled in the txstatus
292	 * tasklet. We use a tasklet to process the tx status reports
293	 * because we can schedule the tasklet multiple times (when the
294	 * interrupt fires again during tx status processing).
295	 *
296	 * We also read statuses from tx status timeout timer, use
297	 * lock to prevent concurent writes to fifo.
298	 */
299
300	spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
301
302	while (!kfifo_is_full(&rt2x00dev->txstatus_fifo)) {
303		status = rt2x00mmio_register_read(rt2x00dev, TX_STA_FIFO);
304		if (!rt2x00_get_field32(status, TX_STA_FIFO_VALID))
305			break;
306
307		kfifo_put(&rt2x00dev->txstatus_fifo, status);
308	}
309
310	spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
311}
312
313void rt2800mmio_txstatus_tasklet(struct tasklet_struct *t)
314{
315	struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t,
316						    txstatus_tasklet);
317
318	rt2800_txdone(rt2x00dev, 16);
319
320	if (!kfifo_is_empty(&rt2x00dev->txstatus_fifo))
321		tasklet_schedule(&rt2x00dev->txstatus_tasklet);
322
323}
324EXPORT_SYMBOL_GPL(rt2800mmio_txstatus_tasklet);
325
326irqreturn_t rt2800mmio_interrupt(int irq, void *dev_instance)
327{
328	struct rt2x00_dev *rt2x00dev = dev_instance;
329	u32 reg, mask;
330
331	/* Read status and ACK all interrupts */
332	reg = rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR);
333	rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
334
335	if (!reg)
336		return IRQ_NONE;
337
338	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
339		return IRQ_HANDLED;
340
341	/*
342	 * Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits
343	 * for interrupts and interrupt masks we can just use the value of
344	 * INT_SOURCE_CSR to create the interrupt mask.
345	 */
346	mask = ~reg;
347
348	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS)) {
349		rt2x00_set_field32(&mask, INT_MASK_CSR_TX_FIFO_STATUS, 1);
350		rt2800mmio_fetch_txstatus(rt2x00dev);
351		if (!kfifo_is_empty(&rt2x00dev->txstatus_fifo))
352			tasklet_schedule(&rt2x00dev->txstatus_tasklet);
353	}
354
355	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_PRE_TBTT))
356		tasklet_hi_schedule(&rt2x00dev->pretbtt_tasklet);
357
358	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TBTT))
359		tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
360
361	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE))
362		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
363
364	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP))
365		tasklet_schedule(&rt2x00dev->autowake_tasklet);
366
367	/*
368	 * Disable all interrupts for which a tasklet was scheduled right now,
369	 * the tasklet will reenable the appropriate interrupts.
370	 */
371	spin_lock(&rt2x00dev->irqmask_lock);
372	reg = rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR);
373	reg &= mask;
374	rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
375	spin_unlock(&rt2x00dev->irqmask_lock);
376
377	return IRQ_HANDLED;
378}
379EXPORT_SYMBOL_GPL(rt2800mmio_interrupt);
380
381void rt2800mmio_toggle_irq(struct rt2x00_dev *rt2x00dev,
382			   enum dev_state state)
383{
384	u32 reg;
385	unsigned long flags;
386
387	/*
388	 * When interrupts are being enabled, the interrupt registers
389	 * should clear the register to assure a clean state.
390	 */
391	if (state == STATE_RADIO_IRQ_ON) {
392		reg = rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR);
393		rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
394	}
395
396	spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
397	reg = 0;
398	if (state == STATE_RADIO_IRQ_ON) {
399		rt2x00_set_field32(&reg, INT_MASK_CSR_RX_DONE, 1);
400		rt2x00_set_field32(&reg, INT_MASK_CSR_TBTT, 1);
401		rt2x00_set_field32(&reg, INT_MASK_CSR_PRE_TBTT, 1);
402		rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, 1);
403		rt2x00_set_field32(&reg, INT_MASK_CSR_AUTO_WAKEUP, 1);
404	}
405	rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
406	spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
407
408	if (state == STATE_RADIO_IRQ_OFF) {
409		/*
410		 * Wait for possibly running tasklets to finish.
411		 */
412		tasklet_kill(&rt2x00dev->txstatus_tasklet);
413		tasklet_kill(&rt2x00dev->rxdone_tasklet);
414		tasklet_kill(&rt2x00dev->autowake_tasklet);
415		tasklet_kill(&rt2x00dev->tbtt_tasklet);
416		tasklet_kill(&rt2x00dev->pretbtt_tasklet);
417	}
418}
419EXPORT_SYMBOL_GPL(rt2800mmio_toggle_irq);
420
421/*
422 * Queue handlers.
423 */
424void rt2800mmio_start_queue(struct data_queue *queue)
425{
426	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
427	u32 reg;
428
429	switch (queue->qid) {
430	case QID_RX:
431		reg = rt2x00mmio_register_read(rt2x00dev, MAC_SYS_CTRL);
432		rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 1);
433		rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
434		break;
435	case QID_BEACON:
436		reg = rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG);
437		rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 1);
438		rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 1);
439		rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 1);
440		rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
441
442		reg = rt2x00mmio_register_read(rt2x00dev, INT_TIMER_EN);
443		rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 1);
444		rt2x00mmio_register_write(rt2x00dev, INT_TIMER_EN, reg);
445		break;
446	default:
447		break;
448	}
449}
450EXPORT_SYMBOL_GPL(rt2800mmio_start_queue);
451
452/* 200 ms */
453#define TXSTATUS_TIMEOUT 200000000
454
455void rt2800mmio_kick_queue(struct data_queue *queue)
456{
457	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
458	struct queue_entry *entry;
459
460	switch (queue->qid) {
461	case QID_AC_VO:
462	case QID_AC_VI:
463	case QID_AC_BE:
464	case QID_AC_BK:
465		WARN_ON_ONCE(rt2x00queue_empty(queue));
466		entry = rt2x00queue_get_entry(queue, Q_INDEX);
467		rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX(queue->qid),
468					  entry->entry_idx);
469		hrtimer_start(&rt2x00dev->txstatus_timer,
470			      TXSTATUS_TIMEOUT, HRTIMER_MODE_REL);
471		break;
472	case QID_MGMT:
473		entry = rt2x00queue_get_entry(queue, Q_INDEX);
474		rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX(5),
475					  entry->entry_idx);
476		break;
477	default:
478		break;
479	}
480}
481EXPORT_SYMBOL_GPL(rt2800mmio_kick_queue);
482
483void rt2800mmio_flush_queue(struct data_queue *queue, bool drop)
484{
485	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
486	bool tx_queue = false;
487	unsigned int i;
488
489	switch (queue->qid) {
490	case QID_AC_VO:
491	case QID_AC_VI:
492	case QID_AC_BE:
493	case QID_AC_BK:
494		tx_queue = true;
495		break;
496	case QID_RX:
497		break;
498	default:
499		return;
500	}
501
502	for (i = 0; i < 5; i++) {
503		/*
504		 * Check if the driver is already done, otherwise we
505		 * have to sleep a little while to give the driver/hw
506		 * the oppurtunity to complete interrupt process itself.
507		 */
508		if (rt2x00queue_empty(queue))
509			break;
510
511		/*
512		 * For TX queues schedule completion tasklet to catch
513		 * tx status timeouts, othewise just wait.
514		 */
515		if (tx_queue)
516			queue_work(rt2x00dev->workqueue, &rt2x00dev->txdone_work);
517
518		/*
519		 * Wait for a little while to give the driver
520		 * the oppurtunity to recover itself.
521		 */
522		msleep(50);
523	}
524}
525EXPORT_SYMBOL_GPL(rt2800mmio_flush_queue);
526
527void rt2800mmio_stop_queue(struct data_queue *queue)
528{
529	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
530	u32 reg;
531
532	switch (queue->qid) {
533	case QID_RX:
534		reg = rt2x00mmio_register_read(rt2x00dev, MAC_SYS_CTRL);
535		rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 0);
536		rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
537		break;
538	case QID_BEACON:
539		reg = rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG);
540		rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 0);
541		rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 0);
542		rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
543		rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
544
545		reg = rt2x00mmio_register_read(rt2x00dev, INT_TIMER_EN);
546		rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 0);
547		rt2x00mmio_register_write(rt2x00dev, INT_TIMER_EN, reg);
548
549		/*
550		 * Wait for current invocation to finish. The tasklet
551		 * won't be scheduled anymore afterwards since we disabled
552		 * the TBTT and PRE TBTT timer.
553		 */
554		tasklet_kill(&rt2x00dev->tbtt_tasklet);
555		tasklet_kill(&rt2x00dev->pretbtt_tasklet);
556
557		break;
558	default:
559		break;
560	}
561}
562EXPORT_SYMBOL_GPL(rt2800mmio_stop_queue);
563
564void rt2800mmio_queue_init(struct data_queue *queue)
565{
566	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
567	unsigned short txwi_size, rxwi_size;
568
569	rt2800_get_txwi_rxwi_size(rt2x00dev, &txwi_size, &rxwi_size);
570
571	switch (queue->qid) {
572	case QID_RX:
573		queue->limit = 128;
574		queue->data_size = AGGREGATION_SIZE;
575		queue->desc_size = RXD_DESC_SIZE;
576		queue->winfo_size = rxwi_size;
577		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
578		break;
579
580	case QID_AC_VO:
581	case QID_AC_VI:
582	case QID_AC_BE:
583	case QID_AC_BK:
584		queue->limit = 64;
585		queue->data_size = AGGREGATION_SIZE;
586		queue->desc_size = TXD_DESC_SIZE;
587		queue->winfo_size = txwi_size;
588		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
589		break;
590
591	case QID_BEACON:
592		queue->limit = 8;
593		queue->data_size = 0; /* No DMA required for beacons */
594		queue->desc_size = TXD_DESC_SIZE;
595		queue->winfo_size = txwi_size;
596		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
597		break;
598
599	case QID_ATIM:
600	default:
601		BUG();
602		break;
603	}
604}
605EXPORT_SYMBOL_GPL(rt2800mmio_queue_init);
606
607/*
608 * Initialization functions.
609 */
610bool rt2800mmio_get_entry_state(struct queue_entry *entry)
611{
612	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
613	u32 word;
614
615	if (entry->queue->qid == QID_RX) {
616		word = rt2x00_desc_read(entry_priv->desc, 1);
617
618		return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE));
619	} else {
620		word = rt2x00_desc_read(entry_priv->desc, 1);
621
622		return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE));
623	}
624}
625EXPORT_SYMBOL_GPL(rt2800mmio_get_entry_state);
626
627void rt2800mmio_clear_entry(struct queue_entry *entry)
628{
629	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
630	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
631	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
632	u32 word;
633
634	if (entry->queue->qid == QID_RX) {
635		word = rt2x00_desc_read(entry_priv->desc, 0);
636		rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma);
637		rt2x00_desc_write(entry_priv->desc, 0, word);
638
639		word = rt2x00_desc_read(entry_priv->desc, 1);
640		rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0);
641		rt2x00_desc_write(entry_priv->desc, 1, word);
642
643		/*
644		 * Set RX IDX in register to inform hardware that we have
645		 * handled this entry and it is available for reuse again.
646		 */
647		rt2x00mmio_register_write(rt2x00dev, RX_CRX_IDX,
648					  entry->entry_idx);
649	} else {
650		word = rt2x00_desc_read(entry_priv->desc, 1);
651		rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1);
652		rt2x00_desc_write(entry_priv->desc, 1, word);
653
654		/* If last entry stop txstatus timer */
655		if (entry->queue->length == 1)
656			hrtimer_cancel(&rt2x00dev->txstatus_timer);
657	}
658}
659EXPORT_SYMBOL_GPL(rt2800mmio_clear_entry);
660
661int rt2800mmio_init_queues(struct rt2x00_dev *rt2x00dev)
662{
663	struct queue_entry_priv_mmio *entry_priv;
664
665	/*
666	 * Initialize registers.
667	 */
668	entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
669	rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR0,
670				  entry_priv->desc_dma);
671	rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT0,
672				  rt2x00dev->tx[0].limit);
673	rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX0, 0);
674	rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX0, 0);
675
676	entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
677	rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR1,
678				  entry_priv->desc_dma);
679	rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT1,
680				  rt2x00dev->tx[1].limit);
681	rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX1, 0);
682	rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX1, 0);
683
684	entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
685	rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR2,
686				  entry_priv->desc_dma);
687	rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT2,
688				  rt2x00dev->tx[2].limit);
689	rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX2, 0);
690	rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX2, 0);
691
692	entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
693	rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR3,
694				  entry_priv->desc_dma);
695	rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT3,
696				  rt2x00dev->tx[3].limit);
697	rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX3, 0);
698	rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX3, 0);
699
700	rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR4, 0);
701	rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT4, 0);
702	rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX4, 0);
703	rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX4, 0);
704
705	rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR5, 0);
706	rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT5, 0);
707	rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX5, 0);
708	rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX5, 0);
709
710	entry_priv = rt2x00dev->rx->entries[0].priv_data;
711	rt2x00mmio_register_write(rt2x00dev, RX_BASE_PTR,
712				  entry_priv->desc_dma);
713	rt2x00mmio_register_write(rt2x00dev, RX_MAX_CNT,
714				  rt2x00dev->rx[0].limit);
715	rt2x00mmio_register_write(rt2x00dev, RX_CRX_IDX,
716				  rt2x00dev->rx[0].limit - 1);
717	rt2x00mmio_register_write(rt2x00dev, RX_DRX_IDX, 0);
718
719	rt2800_disable_wpdma(rt2x00dev);
720
721	rt2x00mmio_register_write(rt2x00dev, DELAY_INT_CFG, 0);
722
723	return 0;
724}
725EXPORT_SYMBOL_GPL(rt2800mmio_init_queues);
726
727int rt2800mmio_init_registers(struct rt2x00_dev *rt2x00dev)
728{
729	u32 reg;
730
731	/*
732	 * Reset DMA indexes
733	 */
734	reg = rt2x00mmio_register_read(rt2x00dev, WPDMA_RST_IDX);
735	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
736	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
737	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
738	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
739	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
740	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
741	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
742	rt2x00mmio_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
743
744	rt2x00mmio_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
745	rt2x00mmio_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
746
747	if (rt2x00_is_pcie(rt2x00dev) &&
748	    (rt2x00_rt(rt2x00dev, RT3090) ||
749	     rt2x00_rt(rt2x00dev, RT3390) ||
750	     rt2x00_rt(rt2x00dev, RT3572) ||
751	     rt2x00_rt(rt2x00dev, RT3593) ||
752	     rt2x00_rt(rt2x00dev, RT5390) ||
753	     rt2x00_rt(rt2x00dev, RT5392) ||
754	     rt2x00_rt(rt2x00dev, RT5592))) {
755		reg = rt2x00mmio_register_read(rt2x00dev, AUX_CTRL);
756		rt2x00_set_field32(&reg, AUX_CTRL_FORCE_PCIE_CLK, 1);
757		rt2x00_set_field32(&reg, AUX_CTRL_WAKE_PCIE_EN, 1);
758		rt2x00mmio_register_write(rt2x00dev, AUX_CTRL, reg);
759	}
760
761	rt2x00mmio_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);
762
763	reg = 0;
764	rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_CSR, 1);
765	rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_BBP, 1);
766	rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
767
768	rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);
769
770	return 0;
771}
772EXPORT_SYMBOL_GPL(rt2800mmio_init_registers);
773
774/*
775 * Device state switch handlers.
776 */
777int rt2800mmio_enable_radio(struct rt2x00_dev *rt2x00dev)
778{
779	/* Wait for DMA, ignore error until we initialize queues. */
780	rt2800_wait_wpdma_ready(rt2x00dev);
781
782	if (unlikely(rt2800mmio_init_queues(rt2x00dev)))
783		return -EIO;
784
785	return rt2800_enable_radio(rt2x00dev);
786}
787EXPORT_SYMBOL_GPL(rt2800mmio_enable_radio);
788
789static void rt2800mmio_work_txdone(struct work_struct *work)
790{
791	struct rt2x00_dev *rt2x00dev =
792	    container_of(work, struct rt2x00_dev, txdone_work);
793
794	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
795		return;
796
797	while (!kfifo_is_empty(&rt2x00dev->txstatus_fifo) ||
798	       rt2800_txstatus_timeout(rt2x00dev)) {
799
800		tasklet_disable(&rt2x00dev->txstatus_tasklet);
801		rt2800_txdone(rt2x00dev, UINT_MAX);
802		rt2800_txdone_nostatus(rt2x00dev);
803		tasklet_enable(&rt2x00dev->txstatus_tasklet);
804	}
805
806	if (rt2800_txstatus_pending(rt2x00dev))
807		hrtimer_start(&rt2x00dev->txstatus_timer,
808			      TXSTATUS_TIMEOUT, HRTIMER_MODE_REL);
809}
810
811static enum hrtimer_restart rt2800mmio_tx_sta_fifo_timeout(struct hrtimer *timer)
812{
813	struct rt2x00_dev *rt2x00dev =
814	    container_of(timer, struct rt2x00_dev, txstatus_timer);
815
816	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
817		goto out;
818
819	if (!rt2800_txstatus_pending(rt2x00dev))
820		goto out;
821
822	rt2800mmio_fetch_txstatus(rt2x00dev);
823	if (!kfifo_is_empty(&rt2x00dev->txstatus_fifo))
824		tasklet_schedule(&rt2x00dev->txstatus_tasklet);
825	else
826		queue_work(rt2x00dev->workqueue, &rt2x00dev->txdone_work);
827out:
828	return HRTIMER_NORESTART;
829}
830
831int rt2800mmio_probe_hw(struct rt2x00_dev *rt2x00dev)
832{
833	int retval;
834
835	retval = rt2800_probe_hw(rt2x00dev);
836	if (retval)
837		return retval;
838
839	/*
840	 * Set txstatus timer function.
841	 */
842	rt2x00dev->txstatus_timer.function = rt2800mmio_tx_sta_fifo_timeout;
843
844	/*
845	 * Overwrite TX done handler
846	 */
847	INIT_WORK(&rt2x00dev->txdone_work, rt2800mmio_work_txdone);
848
849	return 0;
850}
851EXPORT_SYMBOL_GPL(rt2800mmio_probe_hw);
852
853MODULE_AUTHOR(DRV_PROJECT);
854MODULE_VERSION(DRV_VERSION);
855MODULE_DESCRIPTION("rt2800 MMIO library");
856MODULE_LICENSE("GPL");
857