1// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2/*
3 * Copyright (C) 2012-2014, 2018-2023 Intel Corporation
4 * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
5 * Copyright (C) 2015-2017 Intel Deutschland GmbH
6 */
7#include <linux/etherdevice.h>
8#include <linux/skbuff.h>
9#include "iwl-trans.h"
10#include "mvm.h"
11#include "fw-api.h"
12#include "time-sync.h"
13
14static inline int iwl_mvm_check_pn(struct iwl_mvm *mvm, struct sk_buff *skb,
15				   int queue, struct ieee80211_sta *sta)
16{
17	struct iwl_mvm_sta *mvmsta;
18	struct ieee80211_hdr *hdr = (void *)skb_mac_header(skb);
19	struct ieee80211_rx_status *stats = IEEE80211_SKB_RXCB(skb);
20	struct iwl_mvm_key_pn *ptk_pn;
21	int res;
22	u8 tid, keyidx;
23	u8 pn[IEEE80211_CCMP_PN_LEN];
24	u8 *extiv;
25
26	/* do PN checking */
27
28	/* multicast and non-data only arrives on default queue */
29	if (!ieee80211_is_data(hdr->frame_control) ||
30	    is_multicast_ether_addr(hdr->addr1))
31		return 0;
32
33	/* do not check PN for open AP */
34	if (!(stats->flag & RX_FLAG_DECRYPTED))
35		return 0;
36
37	/*
38	 * avoid checking for default queue - we don't want to replicate
39	 * all the logic that's necessary for checking the PN on fragmented
40	 * frames, leave that to mac80211
41	 */
42	if (queue == 0)
43		return 0;
44
45	/* if we are here - this for sure is either CCMP or GCMP */
46	if (IS_ERR_OR_NULL(sta)) {
47		IWL_DEBUG_DROP(mvm,
48			       "expected hw-decrypted unicast frame for station\n");
49		return -1;
50	}
51
52	mvmsta = iwl_mvm_sta_from_mac80211(sta);
53
54	extiv = (u8 *)hdr + ieee80211_hdrlen(hdr->frame_control);
55	keyidx = extiv[3] >> 6;
56
57	ptk_pn = rcu_dereference(mvmsta->ptk_pn[keyidx]);
58	if (!ptk_pn)
59		return -1;
60
61	if (ieee80211_is_data_qos(hdr->frame_control))
62		tid = ieee80211_get_tid(hdr);
63	else
64		tid = 0;
65
66	/* we don't use HCCA/802.11 QoS TSPECs, so drop such frames */
67	if (tid >= IWL_MAX_TID_COUNT)
68		return -1;
69
70	/* load pn */
71	pn[0] = extiv[7];
72	pn[1] = extiv[6];
73	pn[2] = extiv[5];
74	pn[3] = extiv[4];
75	pn[4] = extiv[1];
76	pn[5] = extiv[0];
77
78	res = memcmp(pn, ptk_pn->q[queue].pn[tid], IEEE80211_CCMP_PN_LEN);
79	if (res < 0)
80		return -1;
81	if (!res && !(stats->flag & RX_FLAG_ALLOW_SAME_PN))
82		return -1;
83
84	memcpy(ptk_pn->q[queue].pn[tid], pn, IEEE80211_CCMP_PN_LEN);
85	stats->flag |= RX_FLAG_PN_VALIDATED;
86
87	return 0;
88}
89
90/* iwl_mvm_create_skb Adds the rxb to a new skb */
91static int iwl_mvm_create_skb(struct iwl_mvm *mvm, struct sk_buff *skb,
92			      struct ieee80211_hdr *hdr, u16 len, u8 crypt_len,
93			      struct iwl_rx_cmd_buffer *rxb)
94{
95	struct iwl_rx_packet *pkt = rxb_addr(rxb);
96	struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
97	unsigned int headlen, fraglen, pad_len = 0;
98	unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control);
99	u8 mic_crc_len = u8_get_bits(desc->mac_flags1,
100				     IWL_RX_MPDU_MFLG1_MIC_CRC_LEN_MASK) << 1;
101
102	if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
103		len -= 2;
104		pad_len = 2;
105	}
106
107	/*
108	 * For non monitor interface strip the bytes the RADA might not have
109	 * removed (it might be disabled, e.g. for mgmt frames). As a monitor
110	 * interface cannot exist with other interfaces, this removal is safe
111	 * and sufficient, in monitor mode there's no decryption being done.
112	 */
113	if (len > mic_crc_len && !ieee80211_hw_check(mvm->hw, RX_INCLUDES_FCS))
114		len -= mic_crc_len;
115
116	/* If frame is small enough to fit in skb->head, pull it completely.
117	 * If not, only pull ieee80211_hdr (including crypto if present, and
118	 * an additional 8 bytes for SNAP/ethertype, see below) so that
119	 * splice() or TCP coalesce are more efficient.
120	 *
121	 * Since, in addition, ieee80211_data_to_8023() always pull in at
122	 * least 8 bytes (possibly more for mesh) we can do the same here
123	 * to save the cost of doing it later. That still doesn't pull in
124	 * the actual IP header since the typical case has a SNAP header.
125	 * If the latter changes (there are efforts in the standards group
126	 * to do so) we should revisit this and ieee80211_data_to_8023().
127	 */
128	headlen = (len <= skb_tailroom(skb)) ? len :
129					       hdrlen + crypt_len + 8;
130
131	/* The firmware may align the packet to DWORD.
132	 * The padding is inserted after the IV.
133	 * After copying the header + IV skip the padding if
134	 * present before copying packet data.
135	 */
136	hdrlen += crypt_len;
137
138	if (unlikely(headlen < hdrlen))
139		return -EINVAL;
140
141	/* Since data doesn't move data while putting data on skb and that is
142	 * the only way we use, data + len is the next place that hdr would be put
143	 */
144	skb_set_mac_header(skb, skb->len);
145	skb_put_data(skb, hdr, hdrlen);
146	skb_put_data(skb, (u8 *)hdr + hdrlen + pad_len, headlen - hdrlen);
147
148	/*
149	 * If we did CHECKSUM_COMPLETE, the hardware only does it right for
150	 * certain cases and starts the checksum after the SNAP. Check if
151	 * this is the case - it's easier to just bail out to CHECKSUM_NONE
152	 * in the cases the hardware didn't handle, since it's rare to see
153	 * such packets, even though the hardware did calculate the checksum
154	 * in this case, just starting after the MAC header instead.
155	 *
156	 * Starting from Bz hardware, it calculates starting directly after
157	 * the MAC header, so that matches mac80211's expectation.
158	 */
159	if (skb->ip_summed == CHECKSUM_COMPLETE) {
160		struct {
161			u8 hdr[6];
162			__be16 type;
163		} __packed *shdr = (void *)((u8 *)hdr + hdrlen + pad_len);
164
165		if (unlikely(headlen - hdrlen < sizeof(*shdr) ||
166			     !ether_addr_equal(shdr->hdr, rfc1042_header) ||
167			     (shdr->type != htons(ETH_P_IP) &&
168			      shdr->type != htons(ETH_P_ARP) &&
169			      shdr->type != htons(ETH_P_IPV6) &&
170			      shdr->type != htons(ETH_P_8021Q) &&
171			      shdr->type != htons(ETH_P_PAE) &&
172			      shdr->type != htons(ETH_P_TDLS))))
173			skb->ip_summed = CHECKSUM_NONE;
174		else if (mvm->trans->trans_cfg->device_family < IWL_DEVICE_FAMILY_BZ)
175			/* mac80211 assumes full CSUM including SNAP header */
176			skb_postpush_rcsum(skb, shdr, sizeof(*shdr));
177	}
178
179	fraglen = len - headlen;
180
181	if (fraglen) {
182		int offset = (u8 *)hdr + headlen + pad_len -
183			     (u8 *)rxb_addr(rxb) + rxb_offset(rxb);
184
185		skb_add_rx_frag(skb, 0, rxb_steal_page(rxb), offset,
186				fraglen, rxb->truesize);
187	}
188
189	return 0;
190}
191
192/* put a TLV on the skb and return data pointer
193 *
194 * Also pad to 4 the len and zero out all data part
195 */
196static void *
197iwl_mvm_radiotap_put_tlv(struct sk_buff *skb, u16 type, u16 len)
198{
199	struct ieee80211_radiotap_tlv *tlv;
200
201	tlv = skb_put(skb, sizeof(*tlv));
202	tlv->type = cpu_to_le16(type);
203	tlv->len = cpu_to_le16(len);
204	return skb_put_zero(skb, ALIGN(len, 4));
205}
206
207static void iwl_mvm_add_rtap_sniffer_config(struct iwl_mvm *mvm,
208					    struct sk_buff *skb)
209{
210	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
211	struct ieee80211_radiotap_vendor_content *radiotap;
212	const u16 vendor_data_len = sizeof(mvm->cur_aid);
213
214	if (!mvm->cur_aid)
215		return;
216
217	radiotap = iwl_mvm_radiotap_put_tlv(skb,
218					    IEEE80211_RADIOTAP_VENDOR_NAMESPACE,
219					    sizeof(*radiotap) + vendor_data_len);
220
221	/* Intel OUI */
222	radiotap->oui[0] = 0xf6;
223	radiotap->oui[1] = 0x54;
224	radiotap->oui[2] = 0x25;
225	/* radiotap sniffer config sub-namespace */
226	radiotap->oui_subtype = 1;
227	radiotap->vendor_type = 0;
228
229	/* fill the data now */
230	memcpy(radiotap->data, &mvm->cur_aid, sizeof(mvm->cur_aid));
231
232	rx_status->flag |= RX_FLAG_RADIOTAP_TLV_AT_END;
233}
234
235/* iwl_mvm_pass_packet_to_mac80211 - passes the packet for mac80211 */
236static void iwl_mvm_pass_packet_to_mac80211(struct iwl_mvm *mvm,
237					    struct napi_struct *napi,
238					    struct sk_buff *skb, int queue,
239					    struct ieee80211_sta *sta,
240					    struct ieee80211_link_sta *link_sta)
241{
242	if (unlikely(iwl_mvm_check_pn(mvm, skb, queue, sta))) {
243		kfree_skb(skb);
244		return;
245	}
246
247	if (sta && sta->valid_links && link_sta) {
248		struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
249
250		rx_status->link_valid = 1;
251		rx_status->link_id = link_sta->link_id;
252	}
253
254	ieee80211_rx_napi(mvm->hw, sta, skb, napi);
255}
256
257static void iwl_mvm_get_signal_strength(struct iwl_mvm *mvm,
258					struct ieee80211_rx_status *rx_status,
259					u32 rate_n_flags, int energy_a,
260					int energy_b)
261{
262	int max_energy;
263	u32 rate_flags = rate_n_flags;
264
265	energy_a = energy_a ? -energy_a : S8_MIN;
266	energy_b = energy_b ? -energy_b : S8_MIN;
267	max_energy = max(energy_a, energy_b);
268
269	IWL_DEBUG_STATS(mvm, "energy In A %d B %d, and max %d\n",
270			energy_a, energy_b, max_energy);
271
272	rx_status->signal = max_energy;
273	rx_status->chains =
274		(rate_flags & RATE_MCS_ANT_AB_MSK) >> RATE_MCS_ANT_POS;
275	rx_status->chain_signal[0] = energy_a;
276	rx_status->chain_signal[1] = energy_b;
277}
278
279static int iwl_mvm_rx_mgmt_prot(struct ieee80211_sta *sta,
280				struct ieee80211_hdr *hdr,
281				struct iwl_rx_mpdu_desc *desc,
282				u32 status,
283				struct ieee80211_rx_status *stats)
284{
285	struct wireless_dev *wdev;
286	struct iwl_mvm_sta *mvmsta;
287	struct iwl_mvm_vif *mvmvif;
288	u8 keyid;
289	struct ieee80211_key_conf *key;
290	u32 len = le16_to_cpu(desc->mpdu_len);
291	const u8 *frame = (void *)hdr;
292
293	if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) == IWL_RX_MPDU_STATUS_SEC_NONE)
294		return 0;
295
296	/*
297	 * For non-beacon, we don't really care. But beacons may
298	 * be filtered out, and we thus need the firmware's replay
299	 * detection, otherwise beacons the firmware previously
300	 * filtered could be replayed, or something like that, and
301	 * it can filter a lot - though usually only if nothing has
302	 * changed.
303	 */
304	if (!ieee80211_is_beacon(hdr->frame_control))
305		return 0;
306
307	if (!sta)
308		return -1;
309
310	mvmsta = iwl_mvm_sta_from_mac80211(sta);
311	mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif);
312
313	/* key mismatch - will also report !MIC_OK but we shouldn't count it */
314	if (!(status & IWL_RX_MPDU_STATUS_KEY_VALID))
315		goto report;
316
317	/* good cases */
318	if (likely(status & IWL_RX_MPDU_STATUS_MIC_OK &&
319		   !(status & IWL_RX_MPDU_STATUS_REPLAY_ERROR))) {
320		stats->flag |= RX_FLAG_DECRYPTED;
321		return 0;
322	}
323
324	/*
325	 * both keys will have the same cipher and MIC length, use
326	 * whichever one is available
327	 */
328	key = rcu_dereference(mvmvif->bcn_prot.keys[0]);
329	if (!key) {
330		key = rcu_dereference(mvmvif->bcn_prot.keys[1]);
331		if (!key)
332			goto report;
333	}
334
335	if (len < key->icv_len + IEEE80211_GMAC_PN_LEN + 2)
336		goto report;
337
338	/* get the real key ID */
339	keyid = frame[len - key->icv_len - IEEE80211_GMAC_PN_LEN - 2];
340	/* and if that's the other key, look it up */
341	if (keyid != key->keyidx) {
342		/*
343		 * shouldn't happen since firmware checked, but be safe
344		 * in case the MIC length is wrong too, for example
345		 */
346		if (keyid != 6 && keyid != 7)
347			return -1;
348		key = rcu_dereference(mvmvif->bcn_prot.keys[keyid - 6]);
349		if (!key)
350			goto report;
351	}
352
353	/* Report status to mac80211 */
354	if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
355		ieee80211_key_mic_failure(key);
356	else if (status & IWL_RX_MPDU_STATUS_REPLAY_ERROR)
357		ieee80211_key_replay(key);
358report:
359	wdev = ieee80211_vif_to_wdev(mvmsta->vif);
360	if (wdev->netdev)
361		cfg80211_rx_unprot_mlme_mgmt(wdev->netdev, (void *)hdr, len);
362
363	return -1;
364}
365
366static int iwl_mvm_rx_crypto(struct iwl_mvm *mvm, struct ieee80211_sta *sta,
367			     struct ieee80211_hdr *hdr,
368			     struct ieee80211_rx_status *stats, u16 phy_info,
369			     struct iwl_rx_mpdu_desc *desc,
370			     u32 pkt_flags, int queue, u8 *crypt_len)
371{
372	u32 status = le32_to_cpu(desc->status);
373
374	/*
375	 * Drop UNKNOWN frames in aggregation, unless in monitor mode
376	 * (where we don't have the keys).
377	 * We limit this to aggregation because in TKIP this is a valid
378	 * scenario, since we may not have the (correct) TTAK (phase 1
379	 * key) in the firmware.
380	 */
381	if (phy_info & IWL_RX_MPDU_PHY_AMPDU &&
382	    (status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
383	    IWL_RX_MPDU_STATUS_SEC_UNKNOWN && !mvm->monitor_on)
384		return -1;
385
386	if (unlikely(ieee80211_is_mgmt(hdr->frame_control) &&
387		     !ieee80211_has_protected(hdr->frame_control)))
388		return iwl_mvm_rx_mgmt_prot(sta, hdr, desc, status, stats);
389
390	if (!ieee80211_has_protected(hdr->frame_control) ||
391	    (status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
392	    IWL_RX_MPDU_STATUS_SEC_NONE)
393		return 0;
394
395	/* TODO: handle packets encrypted with unknown alg */
396
397	switch (status & IWL_RX_MPDU_STATUS_SEC_MASK) {
398	case IWL_RX_MPDU_STATUS_SEC_CCM:
399	case IWL_RX_MPDU_STATUS_SEC_GCM:
400		BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != IEEE80211_GCMP_PN_LEN);
401		/* alg is CCM: check MIC only */
402		if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
403			return -1;
404
405		stats->flag |= RX_FLAG_DECRYPTED | RX_FLAG_MIC_STRIPPED;
406		*crypt_len = IEEE80211_CCMP_HDR_LEN;
407		return 0;
408	case IWL_RX_MPDU_STATUS_SEC_TKIP:
409		/* Don't drop the frame and decrypt it in SW */
410		if (!fw_has_api(&mvm->fw->ucode_capa,
411				IWL_UCODE_TLV_API_DEPRECATE_TTAK) &&
412		    !(status & IWL_RX_MPDU_RES_STATUS_TTAK_OK))
413			return 0;
414
415		if (mvm->trans->trans_cfg->gen2 &&
416		    !(status & RX_MPDU_RES_STATUS_MIC_OK))
417			stats->flag |= RX_FLAG_MMIC_ERROR;
418
419		*crypt_len = IEEE80211_TKIP_IV_LEN;
420		fallthrough;
421	case IWL_RX_MPDU_STATUS_SEC_WEP:
422		if (!(status & IWL_RX_MPDU_STATUS_ICV_OK))
423			return -1;
424
425		stats->flag |= RX_FLAG_DECRYPTED;
426		if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
427				IWL_RX_MPDU_STATUS_SEC_WEP)
428			*crypt_len = IEEE80211_WEP_IV_LEN;
429
430		if (pkt_flags & FH_RSCSR_RADA_EN) {
431			stats->flag |= RX_FLAG_ICV_STRIPPED;
432			if (mvm->trans->trans_cfg->gen2)
433				stats->flag |= RX_FLAG_MMIC_STRIPPED;
434		}
435
436		return 0;
437	case IWL_RX_MPDU_STATUS_SEC_EXT_ENC:
438		if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
439			return -1;
440		stats->flag |= RX_FLAG_DECRYPTED;
441		return 0;
442	case RX_MPDU_RES_STATUS_SEC_CMAC_GMAC_ENC:
443		break;
444	default:
445		/*
446		 * Sometimes we can get frames that were not decrypted
447		 * because the firmware didn't have the keys yet. This can
448		 * happen after connection where we can get multicast frames
449		 * before the GTK is installed.
450		 * Silently drop those frames.
451		 * Also drop un-decrypted frames in monitor mode.
452		 */
453		if (!is_multicast_ether_addr(hdr->addr1) &&
454		    !mvm->monitor_on && net_ratelimit())
455			IWL_WARN(mvm, "Unhandled alg: 0x%x\n", status);
456	}
457
458	return 0;
459}
460
461static void iwl_mvm_rx_csum(struct iwl_mvm *mvm,
462			    struct ieee80211_sta *sta,
463			    struct sk_buff *skb,
464			    struct iwl_rx_packet *pkt)
465{
466	struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
467
468	if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
469		if (pkt->len_n_flags & cpu_to_le32(FH_RSCSR_RPA_EN)) {
470			u16 hwsum = be16_to_cpu(desc->v3.raw_xsum);
471
472			skb->ip_summed = CHECKSUM_COMPLETE;
473			skb->csum = csum_unfold(~(__force __sum16)hwsum);
474		}
475	} else {
476		struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
477		struct iwl_mvm_vif *mvmvif;
478		u16 flags = le16_to_cpu(desc->l3l4_flags);
479		u8 l3_prot = (u8)((flags & IWL_RX_L3L4_L3_PROTO_MASK) >>
480				  IWL_RX_L3_PROTO_POS);
481
482		mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif);
483
484		if (mvmvif->features & NETIF_F_RXCSUM &&
485		    flags & IWL_RX_L3L4_TCP_UDP_CSUM_OK &&
486		    (flags & IWL_RX_L3L4_IP_HDR_CSUM_OK ||
487		     l3_prot == IWL_RX_L3_TYPE_IPV6 ||
488		     l3_prot == IWL_RX_L3_TYPE_IPV6_FRAG))
489			skb->ip_summed = CHECKSUM_UNNECESSARY;
490	}
491}
492
493/*
494 * returns true if a packet is a duplicate or invalid tid and should be dropped.
495 * Updates AMSDU PN tracking info
496 */
497static bool iwl_mvm_is_dup(struct ieee80211_sta *sta, int queue,
498			   struct ieee80211_rx_status *rx_status,
499			   struct ieee80211_hdr *hdr,
500			   struct iwl_rx_mpdu_desc *desc)
501{
502	struct iwl_mvm_sta *mvm_sta;
503	struct iwl_mvm_rxq_dup_data *dup_data;
504	u8 tid, sub_frame_idx;
505
506	if (WARN_ON(IS_ERR_OR_NULL(sta)))
507		return false;
508
509	mvm_sta = iwl_mvm_sta_from_mac80211(sta);
510
511	if (WARN_ON_ONCE(!mvm_sta->dup_data))
512		return false;
513
514	dup_data = &mvm_sta->dup_data[queue];
515
516	/*
517	 * Drop duplicate 802.11 retransmissions
518	 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
519	 */
520	if (ieee80211_is_ctl(hdr->frame_control) ||
521	    ieee80211_is_qos_nullfunc(hdr->frame_control) ||
522	    is_multicast_ether_addr(hdr->addr1)) {
523		rx_status->flag |= RX_FLAG_DUP_VALIDATED;
524		return false;
525	}
526
527	if (ieee80211_is_data_qos(hdr->frame_control)) {
528		/* frame has qos control */
529		tid = ieee80211_get_tid(hdr);
530		if (tid >= IWL_MAX_TID_COUNT)
531			return true;
532	} else {
533		tid = IWL_MAX_TID_COUNT;
534	}
535
536	/* If this wasn't a part of an A-MSDU the sub-frame index will be 0 */
537	sub_frame_idx = desc->amsdu_info &
538		IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
539
540	if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
541		     dup_data->last_seq[tid] == hdr->seq_ctrl &&
542		     dup_data->last_sub_frame[tid] >= sub_frame_idx))
543		return true;
544
545	/* Allow same PN as the first subframe for following sub frames */
546	if (dup_data->last_seq[tid] == hdr->seq_ctrl &&
547	    sub_frame_idx > dup_data->last_sub_frame[tid] &&
548	    desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU)
549		rx_status->flag |= RX_FLAG_ALLOW_SAME_PN;
550
551	dup_data->last_seq[tid] = hdr->seq_ctrl;
552	dup_data->last_sub_frame[tid] = sub_frame_idx;
553
554	rx_status->flag |= RX_FLAG_DUP_VALIDATED;
555
556	return false;
557}
558
559/*
560 * Returns true if sn2 - buffer_size < sn1 < sn2.
561 * To be used only in order to compare reorder buffer head with NSSN.
562 * We fully trust NSSN unless it is behind us due to reorder timeout.
563 * Reorder timeout can only bring us up to buffer_size SNs ahead of NSSN.
564 */
565static bool iwl_mvm_is_sn_less(u16 sn1, u16 sn2, u16 buffer_size)
566{
567	return ieee80211_sn_less(sn1, sn2) &&
568	       !ieee80211_sn_less(sn1, sn2 - buffer_size);
569}
570
571static void iwl_mvm_sync_nssn(struct iwl_mvm *mvm, u8 baid, u16 nssn)
572{
573	if (IWL_MVM_USE_NSSN_SYNC) {
574		struct iwl_mvm_nssn_sync_data notif = {
575			.baid = baid,
576			.nssn = nssn,
577		};
578
579		iwl_mvm_sync_rx_queues_internal(mvm, IWL_MVM_RXQ_NSSN_SYNC, false,
580						&notif, sizeof(notif));
581	}
582}
583
584#define RX_REORDER_BUF_TIMEOUT_MQ (HZ / 10)
585
586enum iwl_mvm_release_flags {
587	IWL_MVM_RELEASE_SEND_RSS_SYNC = BIT(0),
588	IWL_MVM_RELEASE_FROM_RSS_SYNC = BIT(1),
589};
590
591static void iwl_mvm_release_frames(struct iwl_mvm *mvm,
592				   struct ieee80211_sta *sta,
593				   struct napi_struct *napi,
594				   struct iwl_mvm_baid_data *baid_data,
595				   struct iwl_mvm_reorder_buffer *reorder_buf,
596				   u16 nssn, u32 flags)
597{
598	struct iwl_mvm_reorder_buf_entry *entries =
599		&baid_data->entries[reorder_buf->queue *
600				    baid_data->entries_per_queue];
601	u16 ssn = reorder_buf->head_sn;
602
603	lockdep_assert_held(&reorder_buf->lock);
604
605	/*
606	 * We keep the NSSN not too far behind, if we are sync'ing it and it
607	 * is more than 2048 ahead of us, it must be behind us. Discard it.
608	 * This can happen if the queue that hit the 0 / 2048 seqno was lagging
609	 * behind and this queue already processed packets. The next if
610	 * would have caught cases where this queue would have processed less
611	 * than 64 packets, but it may have processed more than 64 packets.
612	 */
613	if ((flags & IWL_MVM_RELEASE_FROM_RSS_SYNC) &&
614	    ieee80211_sn_less(nssn, ssn))
615		goto set_timer;
616
617	/* ignore nssn smaller than head sn - this can happen due to timeout */
618	if (iwl_mvm_is_sn_less(nssn, ssn, reorder_buf->buf_size))
619		goto set_timer;
620
621	while (iwl_mvm_is_sn_less(ssn, nssn, reorder_buf->buf_size)) {
622		int index = ssn % reorder_buf->buf_size;
623		struct sk_buff_head *skb_list = &entries[index].e.frames;
624		struct sk_buff *skb;
625
626		ssn = ieee80211_sn_inc(ssn);
627		if ((flags & IWL_MVM_RELEASE_SEND_RSS_SYNC) &&
628		    (ssn == 2048 || ssn == 0))
629			iwl_mvm_sync_nssn(mvm, baid_data->baid, ssn);
630
631		/*
632		 * Empty the list. Will have more than one frame for A-MSDU.
633		 * Empty list is valid as well since nssn indicates frames were
634		 * received.
635		 */
636		while ((skb = __skb_dequeue(skb_list))) {
637			iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb,
638							reorder_buf->queue,
639							sta, NULL /* FIXME */);
640			reorder_buf->num_stored--;
641		}
642	}
643	reorder_buf->head_sn = nssn;
644
645set_timer:
646	if (reorder_buf->num_stored && !reorder_buf->removed) {
647		u16 index = reorder_buf->head_sn % reorder_buf->buf_size;
648
649		while (skb_queue_empty(&entries[index].e.frames))
650			index = (index + 1) % reorder_buf->buf_size;
651		/* modify timer to match next frame's expiration time */
652		mod_timer(&reorder_buf->reorder_timer,
653			  entries[index].e.reorder_time + 1 +
654			  RX_REORDER_BUF_TIMEOUT_MQ);
655	} else {
656		del_timer(&reorder_buf->reorder_timer);
657	}
658}
659
660void iwl_mvm_reorder_timer_expired(struct timer_list *t)
661{
662	struct iwl_mvm_reorder_buffer *buf = from_timer(buf, t, reorder_timer);
663	struct iwl_mvm_baid_data *baid_data =
664		iwl_mvm_baid_data_from_reorder_buf(buf);
665	struct iwl_mvm_reorder_buf_entry *entries =
666		&baid_data->entries[buf->queue * baid_data->entries_per_queue];
667	int i;
668	u16 sn = 0, index = 0;
669	bool expired = false;
670	bool cont = false;
671
672	spin_lock(&buf->lock);
673
674	if (!buf->num_stored || buf->removed) {
675		spin_unlock(&buf->lock);
676		return;
677	}
678
679	for (i = 0; i < buf->buf_size ; i++) {
680		index = (buf->head_sn + i) % buf->buf_size;
681
682		if (skb_queue_empty(&entries[index].e.frames)) {
683			/*
684			 * If there is a hole and the next frame didn't expire
685			 * we want to break and not advance SN
686			 */
687			cont = false;
688			continue;
689		}
690		if (!cont &&
691		    !time_after(jiffies, entries[index].e.reorder_time +
692					 RX_REORDER_BUF_TIMEOUT_MQ))
693			break;
694
695		expired = true;
696		/* continue until next hole after this expired frames */
697		cont = true;
698		sn = ieee80211_sn_add(buf->head_sn, i + 1);
699	}
700
701	if (expired) {
702		struct ieee80211_sta *sta;
703		struct iwl_mvm_sta *mvmsta;
704		u8 sta_id = ffs(baid_data->sta_mask) - 1;
705
706		rcu_read_lock();
707		sta = rcu_dereference(buf->mvm->fw_id_to_mac_id[sta_id]);
708		if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta))) {
709			rcu_read_unlock();
710			goto out;
711		}
712
713		mvmsta = iwl_mvm_sta_from_mac80211(sta);
714
715		/* SN is set to the last expired frame + 1 */
716		IWL_DEBUG_HT(buf->mvm,
717			     "Releasing expired frames for sta %u, sn %d\n",
718			     sta_id, sn);
719		iwl_mvm_event_frame_timeout_callback(buf->mvm, mvmsta->vif,
720						     sta, baid_data->tid);
721		iwl_mvm_release_frames(buf->mvm, sta, NULL, baid_data,
722				       buf, sn, IWL_MVM_RELEASE_SEND_RSS_SYNC);
723		rcu_read_unlock();
724	} else {
725		/*
726		 * If no frame expired and there are stored frames, index is now
727		 * pointing to the first unexpired frame - modify timer
728		 * accordingly to this frame.
729		 */
730		mod_timer(&buf->reorder_timer,
731			  entries[index].e.reorder_time +
732			  1 + RX_REORDER_BUF_TIMEOUT_MQ);
733	}
734
735out:
736	spin_unlock(&buf->lock);
737}
738
739static void iwl_mvm_del_ba(struct iwl_mvm *mvm, int queue,
740			   struct iwl_mvm_delba_data *data)
741{
742	struct iwl_mvm_baid_data *ba_data;
743	struct ieee80211_sta *sta;
744	struct iwl_mvm_reorder_buffer *reorder_buf;
745	u8 baid = data->baid;
746	u32 sta_id;
747
748	if (WARN_ONCE(baid >= IWL_MAX_BAID, "invalid BAID: %x\n", baid))
749		return;
750
751	rcu_read_lock();
752
753	ba_data = rcu_dereference(mvm->baid_map[baid]);
754	if (WARN_ON_ONCE(!ba_data))
755		goto out;
756
757	/* pick any STA ID to find the pointer */
758	sta_id = ffs(ba_data->sta_mask) - 1;
759	sta = rcu_dereference(mvm->fw_id_to_mac_id[sta_id]);
760	if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta)))
761		goto out;
762
763	reorder_buf = &ba_data->reorder_buf[queue];
764
765	/* release all frames that are in the reorder buffer to the stack */
766	spin_lock_bh(&reorder_buf->lock);
767	iwl_mvm_release_frames(mvm, sta, NULL, ba_data, reorder_buf,
768			       ieee80211_sn_add(reorder_buf->head_sn,
769						reorder_buf->buf_size),
770			       0);
771	spin_unlock_bh(&reorder_buf->lock);
772	del_timer_sync(&reorder_buf->reorder_timer);
773
774out:
775	rcu_read_unlock();
776}
777
778static void iwl_mvm_release_frames_from_notif(struct iwl_mvm *mvm,
779					      struct napi_struct *napi,
780					      u8 baid, u16 nssn, int queue,
781					      u32 flags)
782{
783	struct ieee80211_sta *sta;
784	struct iwl_mvm_reorder_buffer *reorder_buf;
785	struct iwl_mvm_baid_data *ba_data;
786	u32 sta_id;
787
788	IWL_DEBUG_HT(mvm, "Frame release notification for BAID %u, NSSN %d\n",
789		     baid, nssn);
790
791	if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID ||
792			 baid >= ARRAY_SIZE(mvm->baid_map)))
793		return;
794
795	rcu_read_lock();
796
797	ba_data = rcu_dereference(mvm->baid_map[baid]);
798	if (!ba_data) {
799		WARN(!(flags & IWL_MVM_RELEASE_FROM_RSS_SYNC),
800		     "BAID %d not found in map\n", baid);
801		goto out;
802	}
803
804	/* pick any STA ID to find the pointer */
805	sta_id = ffs(ba_data->sta_mask) - 1;
806	sta = rcu_dereference(mvm->fw_id_to_mac_id[sta_id]);
807	if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta)))
808		goto out;
809
810	reorder_buf = &ba_data->reorder_buf[queue];
811
812	spin_lock_bh(&reorder_buf->lock);
813	iwl_mvm_release_frames(mvm, sta, napi, ba_data,
814			       reorder_buf, nssn, flags);
815	spin_unlock_bh(&reorder_buf->lock);
816
817out:
818	rcu_read_unlock();
819}
820
821static void iwl_mvm_nssn_sync(struct iwl_mvm *mvm,
822			      struct napi_struct *napi, int queue,
823			      const struct iwl_mvm_nssn_sync_data *data)
824{
825	iwl_mvm_release_frames_from_notif(mvm, napi, data->baid,
826					  data->nssn, queue,
827					  IWL_MVM_RELEASE_FROM_RSS_SYNC);
828}
829
830void iwl_mvm_rx_queue_notif(struct iwl_mvm *mvm, struct napi_struct *napi,
831			    struct iwl_rx_cmd_buffer *rxb, int queue)
832{
833	struct iwl_rx_packet *pkt = rxb_addr(rxb);
834	struct iwl_rxq_sync_notification *notif;
835	struct iwl_mvm_internal_rxq_notif *internal_notif;
836	u32 len = iwl_rx_packet_payload_len(pkt);
837
838	notif = (void *)pkt->data;
839	internal_notif = (void *)notif->payload;
840
841	if (WARN_ONCE(len < sizeof(*notif) + sizeof(*internal_notif),
842		      "invalid notification size %d (%d)",
843		      len, (int)(sizeof(*notif) + sizeof(*internal_notif))))
844		return;
845	len -= sizeof(*notif) + sizeof(*internal_notif);
846
847	if (internal_notif->sync &&
848	    mvm->queue_sync_cookie != internal_notif->cookie) {
849		WARN_ONCE(1, "Received expired RX queue sync message\n");
850		return;
851	}
852
853	switch (internal_notif->type) {
854	case IWL_MVM_RXQ_EMPTY:
855		WARN_ONCE(len, "invalid empty notification size %d", len);
856		break;
857	case IWL_MVM_RXQ_NOTIF_DEL_BA:
858		if (WARN_ONCE(len != sizeof(struct iwl_mvm_delba_data),
859			      "invalid delba notification size %d (%d)",
860			      len, (int)sizeof(struct iwl_mvm_delba_data)))
861			break;
862		iwl_mvm_del_ba(mvm, queue, (void *)internal_notif->data);
863		break;
864	case IWL_MVM_RXQ_NSSN_SYNC:
865		if (WARN_ONCE(len != sizeof(struct iwl_mvm_nssn_sync_data),
866			      "invalid nssn sync notification size %d (%d)",
867			      len, (int)sizeof(struct iwl_mvm_nssn_sync_data)))
868			break;
869		iwl_mvm_nssn_sync(mvm, napi, queue,
870				  (void *)internal_notif->data);
871		break;
872	default:
873		WARN_ONCE(1, "Invalid identifier %d", internal_notif->type);
874	}
875
876	if (internal_notif->sync) {
877		WARN_ONCE(!test_and_clear_bit(queue, &mvm->queue_sync_state),
878			  "queue sync: queue %d responded a second time!\n",
879			  queue);
880		if (READ_ONCE(mvm->queue_sync_state) == 0)
881			wake_up(&mvm->rx_sync_waitq);
882	}
883}
884
885static void iwl_mvm_oldsn_workaround(struct iwl_mvm *mvm,
886				     struct ieee80211_sta *sta, int tid,
887				     struct iwl_mvm_reorder_buffer *buffer,
888				     u32 reorder, u32 gp2, int queue)
889{
890	struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
891
892	if (gp2 != buffer->consec_oldsn_ampdu_gp2) {
893		/* we have a new (A-)MPDU ... */
894
895		/*
896		 * reset counter to 0 if we didn't have any oldsn in
897		 * the last A-MPDU (as detected by GP2 being identical)
898		 */
899		if (!buffer->consec_oldsn_prev_drop)
900			buffer->consec_oldsn_drops = 0;
901
902		/* either way, update our tracking state */
903		buffer->consec_oldsn_ampdu_gp2 = gp2;
904	} else if (buffer->consec_oldsn_prev_drop) {
905		/*
906		 * tracking state didn't change, and we had an old SN
907		 * indication before - do nothing in this case, we
908		 * already noted this one down and are waiting for the
909		 * next A-MPDU (by GP2)
910		 */
911		return;
912	}
913
914	/* return unless this MPDU has old SN */
915	if (!(reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN))
916		return;
917
918	/* update state */
919	buffer->consec_oldsn_prev_drop = 1;
920	buffer->consec_oldsn_drops++;
921
922	/* if limit is reached, send del BA and reset state */
923	if (buffer->consec_oldsn_drops == IWL_MVM_AMPDU_CONSEC_DROPS_DELBA) {
924		IWL_WARN(mvm,
925			 "reached %d old SN frames from %pM on queue %d, stopping BA session on TID %d\n",
926			 IWL_MVM_AMPDU_CONSEC_DROPS_DELBA,
927			 sta->addr, queue, tid);
928		ieee80211_stop_rx_ba_session(mvmsta->vif, BIT(tid), sta->addr);
929		buffer->consec_oldsn_prev_drop = 0;
930		buffer->consec_oldsn_drops = 0;
931	}
932}
933
934/*
935 * Returns true if the MPDU was buffered\dropped, false if it should be passed
936 * to upper layer.
937 */
938static bool iwl_mvm_reorder(struct iwl_mvm *mvm,
939			    struct napi_struct *napi,
940			    int queue,
941			    struct ieee80211_sta *sta,
942			    struct sk_buff *skb,
943			    struct iwl_rx_mpdu_desc *desc)
944{
945	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
946	struct ieee80211_hdr *hdr = (void *)skb_mac_header(skb);
947	struct iwl_mvm_baid_data *baid_data;
948	struct iwl_mvm_reorder_buffer *buffer;
949	struct sk_buff *tail;
950	u32 reorder = le32_to_cpu(desc->reorder_data);
951	bool amsdu = desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU;
952	bool last_subframe =
953		desc->amsdu_info & IWL_RX_MPDU_AMSDU_LAST_SUBFRAME;
954	u8 tid = ieee80211_get_tid(hdr);
955	u8 sub_frame_idx = desc->amsdu_info &
956			   IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
957	struct iwl_mvm_reorder_buf_entry *entries;
958	u32 sta_mask;
959	int index;
960	u16 nssn, sn;
961	u8 baid;
962
963	baid = (reorder & IWL_RX_MPDU_REORDER_BAID_MASK) >>
964		IWL_RX_MPDU_REORDER_BAID_SHIFT;
965
966	/*
967	 * This also covers the case of receiving a Block Ack Request
968	 * outside a BA session; we'll pass it to mac80211 and that
969	 * then sends a delBA action frame.
970	 * This also covers pure monitor mode, in which case we won't
971	 * have any BA sessions.
972	 */
973	if (baid == IWL_RX_REORDER_DATA_INVALID_BAID)
974		return false;
975
976	/* no sta yet */
977	if (WARN_ONCE(IS_ERR_OR_NULL(sta),
978		      "Got valid BAID without a valid station assigned\n"))
979		return false;
980
981	/* not a data packet or a bar */
982	if (!ieee80211_is_back_req(hdr->frame_control) &&
983	    (!ieee80211_is_data_qos(hdr->frame_control) ||
984	     is_multicast_ether_addr(hdr->addr1)))
985		return false;
986
987	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
988		return false;
989
990	baid_data = rcu_dereference(mvm->baid_map[baid]);
991	if (!baid_data) {
992		IWL_DEBUG_RX(mvm,
993			     "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n",
994			      baid, reorder);
995		return false;
996	}
997
998	rcu_read_lock();
999	sta_mask = iwl_mvm_sta_fw_id_mask(mvm, sta, -1);
1000	rcu_read_unlock();
1001
1002	if (IWL_FW_CHECK(mvm,
1003			 tid != baid_data->tid ||
1004			 !(sta_mask & baid_data->sta_mask),
1005			 "baid 0x%x is mapped to sta_mask:0x%x tid:%d, but was received for sta_mask:0x%x tid:%d\n",
1006			 baid, baid_data->sta_mask, baid_data->tid,
1007			 sta_mask, tid))
1008		return false;
1009
1010	nssn = reorder & IWL_RX_MPDU_REORDER_NSSN_MASK;
1011	sn = (reorder & IWL_RX_MPDU_REORDER_SN_MASK) >>
1012		IWL_RX_MPDU_REORDER_SN_SHIFT;
1013
1014	buffer = &baid_data->reorder_buf[queue];
1015	entries = &baid_data->entries[queue * baid_data->entries_per_queue];
1016
1017	spin_lock_bh(&buffer->lock);
1018
1019	if (!buffer->valid) {
1020		if (reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN) {
1021			spin_unlock_bh(&buffer->lock);
1022			return false;
1023		}
1024		buffer->valid = true;
1025	}
1026
1027	if (ieee80211_is_back_req(hdr->frame_control)) {
1028		iwl_mvm_release_frames(mvm, sta, napi, baid_data,
1029				       buffer, nssn, 0);
1030		goto drop;
1031	}
1032
1033	/*
1034	 * If there was a significant jump in the nssn - adjust.
1035	 * If the SN is smaller than the NSSN it might need to first go into
1036	 * the reorder buffer, in which case we just release up to it and the
1037	 * rest of the function will take care of storing it and releasing up to
1038	 * the nssn.
1039	 * This should not happen. This queue has been lagging and it should
1040	 * have been updated by a IWL_MVM_RXQ_NSSN_SYNC notification. Be nice
1041	 * and update the other queues.
1042	 */
1043	if (!iwl_mvm_is_sn_less(nssn, buffer->head_sn + buffer->buf_size,
1044				buffer->buf_size) ||
1045	    !ieee80211_sn_less(sn, buffer->head_sn + buffer->buf_size)) {
1046		u16 min_sn = ieee80211_sn_less(sn, nssn) ? sn : nssn;
1047
1048		iwl_mvm_release_frames(mvm, sta, napi, baid_data, buffer,
1049				       min_sn, IWL_MVM_RELEASE_SEND_RSS_SYNC);
1050	}
1051
1052	iwl_mvm_oldsn_workaround(mvm, sta, tid, buffer, reorder,
1053				 rx_status->device_timestamp, queue);
1054
1055	/* drop any oudated packets */
1056	if (ieee80211_sn_less(sn, buffer->head_sn))
1057		goto drop;
1058
1059	/* release immediately if allowed by nssn and no stored frames */
1060	if (!buffer->num_stored && ieee80211_sn_less(sn, nssn)) {
1061		if (iwl_mvm_is_sn_less(buffer->head_sn, nssn,
1062				       buffer->buf_size) &&
1063		   (!amsdu || last_subframe)) {
1064			/*
1065			 * If we crossed the 2048 or 0 SN, notify all the
1066			 * queues. This is done in order to avoid having a
1067			 * head_sn that lags behind for too long. When that
1068			 * happens, we can get to a situation where the head_sn
1069			 * is within the interval [nssn - buf_size : nssn]
1070			 * which will make us think that the nssn is a packet
1071			 * that we already freed because of the reordering
1072			 * buffer and we will ignore it. So maintain the
1073			 * head_sn somewhat updated across all the queues:
1074			 * when it crosses 0 and 2048.
1075			 */
1076			if (sn == 2048 || sn == 0)
1077				iwl_mvm_sync_nssn(mvm, baid, sn);
1078			buffer->head_sn = nssn;
1079		}
1080		/* No need to update AMSDU last SN - we are moving the head */
1081		spin_unlock_bh(&buffer->lock);
1082		return false;
1083	}
1084
1085	/*
1086	 * release immediately if there are no stored frames, and the sn is
1087	 * equal to the head.
1088	 * This can happen due to reorder timer, where NSSN is behind head_sn.
1089	 * When we released everything, and we got the next frame in the
1090	 * sequence, according to the NSSN we can't release immediately,
1091	 * while technically there is no hole and we can move forward.
1092	 */
1093	if (!buffer->num_stored && sn == buffer->head_sn) {
1094		if (!amsdu || last_subframe) {
1095			if (sn == 2048 || sn == 0)
1096				iwl_mvm_sync_nssn(mvm, baid, sn);
1097			buffer->head_sn = ieee80211_sn_inc(buffer->head_sn);
1098		}
1099		/* No need to update AMSDU last SN - we are moving the head */
1100		spin_unlock_bh(&buffer->lock);
1101		return false;
1102	}
1103
1104	index = sn % buffer->buf_size;
1105
1106	/*
1107	 * Check if we already stored this frame
1108	 * As AMSDU is either received or not as whole, logic is simple:
1109	 * If we have frames in that position in the buffer and the last frame
1110	 * originated from AMSDU had a different SN then it is a retransmission.
1111	 * If it is the same SN then if the subframe index is incrementing it
1112	 * is the same AMSDU - otherwise it is a retransmission.
1113	 */
1114	tail = skb_peek_tail(&entries[index].e.frames);
1115	if (tail && !amsdu)
1116		goto drop;
1117	else if (tail && (sn != buffer->last_amsdu ||
1118			  buffer->last_sub_index >= sub_frame_idx))
1119		goto drop;
1120
1121	/* put in reorder buffer */
1122	__skb_queue_tail(&entries[index].e.frames, skb);
1123	buffer->num_stored++;
1124	entries[index].e.reorder_time = jiffies;
1125
1126	if (amsdu) {
1127		buffer->last_amsdu = sn;
1128		buffer->last_sub_index = sub_frame_idx;
1129	}
1130
1131	/*
1132	 * We cannot trust NSSN for AMSDU sub-frames that are not the last.
1133	 * The reason is that NSSN advances on the first sub-frame, and may
1134	 * cause the reorder buffer to advance before all the sub-frames arrive.
1135	 * Example: reorder buffer contains SN 0 & 2, and we receive AMSDU with
1136	 * SN 1. NSSN for first sub frame will be 3 with the result of driver
1137	 * releasing SN 0,1, 2. When sub-frame 1 arrives - reorder buffer is
1138	 * already ahead and it will be dropped.
1139	 * If the last sub-frame is not on this queue - we will get frame
1140	 * release notification with up to date NSSN.
1141	 */
1142	if (!amsdu || last_subframe)
1143		iwl_mvm_release_frames(mvm, sta, napi, baid_data,
1144				       buffer, nssn,
1145				       IWL_MVM_RELEASE_SEND_RSS_SYNC);
1146
1147	spin_unlock_bh(&buffer->lock);
1148	return true;
1149
1150drop:
1151	kfree_skb(skb);
1152	spin_unlock_bh(&buffer->lock);
1153	return true;
1154}
1155
1156static void iwl_mvm_agg_rx_received(struct iwl_mvm *mvm,
1157				    u32 reorder_data, u8 baid)
1158{
1159	unsigned long now = jiffies;
1160	unsigned long timeout;
1161	struct iwl_mvm_baid_data *data;
1162
1163	rcu_read_lock();
1164
1165	data = rcu_dereference(mvm->baid_map[baid]);
1166	if (!data) {
1167		IWL_DEBUG_RX(mvm,
1168			     "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n",
1169			      baid, reorder_data);
1170		goto out;
1171	}
1172
1173	if (!data->timeout)
1174		goto out;
1175
1176	timeout = data->timeout;
1177	/*
1178	 * Do not update last rx all the time to avoid cache bouncing
1179	 * between the rx queues.
1180	 * Update it every timeout. Worst case is the session will
1181	 * expire after ~ 2 * timeout, which doesn't matter that much.
1182	 */
1183	if (time_before(data->last_rx + TU_TO_JIFFIES(timeout), now))
1184		/* Update is atomic */
1185		data->last_rx = now;
1186
1187out:
1188	rcu_read_unlock();
1189}
1190
1191static void iwl_mvm_flip_address(u8 *addr)
1192{
1193	int i;
1194	u8 mac_addr[ETH_ALEN];
1195
1196	for (i = 0; i < ETH_ALEN; i++)
1197		mac_addr[i] = addr[ETH_ALEN - i - 1];
1198	ether_addr_copy(addr, mac_addr);
1199}
1200
1201struct iwl_mvm_rx_phy_data {
1202	enum iwl_rx_phy_info_type info_type;
1203	__le32 d0, d1, d2, d3, eht_d4, d5;
1204	__le16 d4;
1205	bool with_data;
1206	bool first_subframe;
1207	__le32 rx_vec[4];
1208
1209	u32 rate_n_flags;
1210	u32 gp2_on_air_rise;
1211	u16 phy_info;
1212	u8 energy_a, energy_b;
1213	u8 channel;
1214};
1215
1216static void iwl_mvm_decode_he_mu_ext(struct iwl_mvm *mvm,
1217				     struct iwl_mvm_rx_phy_data *phy_data,
1218				     struct ieee80211_radiotap_he_mu *he_mu)
1219{
1220	u32 phy_data2 = le32_to_cpu(phy_data->d2);
1221	u32 phy_data3 = le32_to_cpu(phy_data->d3);
1222	u16 phy_data4 = le16_to_cpu(phy_data->d4);
1223	u32 rate_n_flags = phy_data->rate_n_flags;
1224
1225	if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CRC_OK, phy_data4)) {
1226		he_mu->flags1 |=
1227			cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_RU_KNOWN |
1228				    IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU_KNOWN);
1229
1230		he_mu->flags1 |=
1231			le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CTR_RU,
1232						   phy_data4),
1233					 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU);
1234
1235		he_mu->ru_ch1[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU0,
1236					     phy_data2);
1237		he_mu->ru_ch1[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU1,
1238					     phy_data3);
1239		he_mu->ru_ch1[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU2,
1240					     phy_data2);
1241		he_mu->ru_ch1[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU3,
1242					     phy_data3);
1243	}
1244
1245	if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CRC_OK, phy_data4) &&
1246	    (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK_V1) != RATE_MCS_CHAN_WIDTH_20) {
1247		he_mu->flags1 |=
1248			cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_RU_KNOWN |
1249				    IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_CTR_26T_RU_KNOWN);
1250
1251		he_mu->flags2 |=
1252			le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CTR_RU,
1253						   phy_data4),
1254					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_CH2_CTR_26T_RU);
1255
1256		he_mu->ru_ch2[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU0,
1257					     phy_data2);
1258		he_mu->ru_ch2[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU1,
1259					     phy_data3);
1260		he_mu->ru_ch2[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU2,
1261					     phy_data2);
1262		he_mu->ru_ch2[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU3,
1263					     phy_data3);
1264	}
1265}
1266
1267static void
1268iwl_mvm_decode_he_phy_ru_alloc(struct iwl_mvm_rx_phy_data *phy_data,
1269			       struct ieee80211_radiotap_he *he,
1270			       struct ieee80211_radiotap_he_mu *he_mu,
1271			       struct ieee80211_rx_status *rx_status)
1272{
1273	/*
1274	 * Unfortunately, we have to leave the mac80211 data
1275	 * incorrect for the case that we receive an HE-MU
1276	 * transmission and *don't* have the HE phy data (due
1277	 * to the bits being used for TSF). This shouldn't
1278	 * happen though as management frames where we need
1279	 * the TSF/timers are not be transmitted in HE-MU.
1280	 */
1281	u8 ru = le32_get_bits(phy_data->d1, IWL_RX_PHY_DATA1_HE_RU_ALLOC_MASK);
1282	u32 rate_n_flags = phy_data->rate_n_flags;
1283	u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK_V1;
1284	u8 offs = 0;
1285
1286	rx_status->bw = RATE_INFO_BW_HE_RU;
1287
1288	he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
1289
1290	switch (ru) {
1291	case 0 ... 36:
1292		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_26;
1293		offs = ru;
1294		break;
1295	case 37 ... 52:
1296		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_52;
1297		offs = ru - 37;
1298		break;
1299	case 53 ... 60:
1300		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
1301		offs = ru - 53;
1302		break;
1303	case 61 ... 64:
1304		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_242;
1305		offs = ru - 61;
1306		break;
1307	case 65 ... 66:
1308		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_484;
1309		offs = ru - 65;
1310		break;
1311	case 67:
1312		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_996;
1313		break;
1314	case 68:
1315		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_2x996;
1316		break;
1317	}
1318	he->data2 |= le16_encode_bits(offs,
1319				      IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET);
1320	he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_KNOWN |
1321				 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET_KNOWN);
1322	if (phy_data->d1 & cpu_to_le32(IWL_RX_PHY_DATA1_HE_RU_ALLOC_SEC80))
1323		he->data2 |=
1324			cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_SEC);
1325
1326#define CHECK_BW(bw) \
1327	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_ ## bw ## MHZ != \
1328		     RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS); \
1329	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_ ## bw ## MHZ != \
1330		     RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS)
1331	CHECK_BW(20);
1332	CHECK_BW(40);
1333	CHECK_BW(80);
1334	CHECK_BW(160);
1335
1336	if (he_mu)
1337		he_mu->flags2 |=
1338			le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK_V1,
1339						   rate_n_flags),
1340					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW);
1341	else if (he_type == RATE_MCS_HE_TYPE_TRIG_V1)
1342		he->data6 |=
1343			cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_KNOWN) |
1344			le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK_V1,
1345						   rate_n_flags),
1346					 IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW);
1347}
1348
1349static void iwl_mvm_decode_he_phy_data(struct iwl_mvm *mvm,
1350				       struct iwl_mvm_rx_phy_data *phy_data,
1351				       struct ieee80211_radiotap_he *he,
1352				       struct ieee80211_radiotap_he_mu *he_mu,
1353				       struct ieee80211_rx_status *rx_status,
1354				       int queue)
1355{
1356	switch (phy_data->info_type) {
1357	case IWL_RX_PHY_INFO_TYPE_NONE:
1358	case IWL_RX_PHY_INFO_TYPE_CCK:
1359	case IWL_RX_PHY_INFO_TYPE_OFDM_LGCY:
1360	case IWL_RX_PHY_INFO_TYPE_HT:
1361	case IWL_RX_PHY_INFO_TYPE_VHT_SU:
1362	case IWL_RX_PHY_INFO_TYPE_VHT_MU:
1363	case IWL_RX_PHY_INFO_TYPE_EHT_MU:
1364	case IWL_RX_PHY_INFO_TYPE_EHT_TB:
1365	case IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT:
1366	case IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT:
1367		return;
1368	case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1369		he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN |
1370					 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE2_KNOWN |
1371					 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE3_KNOWN |
1372					 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE4_KNOWN);
1373		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1374							    IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE1),
1375					      IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE1);
1376		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1377							    IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE2),
1378					      IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE2);
1379		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1380							    IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE3),
1381					      IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE3);
1382		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1383							    IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE4),
1384					      IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE4);
1385		fallthrough;
1386	case IWL_RX_PHY_INFO_TYPE_HE_SU:
1387	case IWL_RX_PHY_INFO_TYPE_HE_MU:
1388	case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1389	case IWL_RX_PHY_INFO_TYPE_HE_TB:
1390		/* HE common */
1391		he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_LDPC_XSYMSEG_KNOWN |
1392					 IEEE80211_RADIOTAP_HE_DATA1_DOPPLER_KNOWN |
1393					 IEEE80211_RADIOTAP_HE_DATA1_BSS_COLOR_KNOWN);
1394		he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRE_FEC_PAD_KNOWN |
1395					 IEEE80211_RADIOTAP_HE_DATA2_PE_DISAMBIG_KNOWN |
1396					 IEEE80211_RADIOTAP_HE_DATA2_TXOP_KNOWN |
1397					 IEEE80211_RADIOTAP_HE_DATA2_NUM_LTF_SYMS_KNOWN);
1398		he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1399							    IWL_RX_PHY_DATA0_HE_BSS_COLOR_MASK),
1400					      IEEE80211_RADIOTAP_HE_DATA3_BSS_COLOR);
1401		if (phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB &&
1402		    phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB_EXT) {
1403			he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_UL_DL_KNOWN);
1404			he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1405							    IWL_RX_PHY_DATA0_HE_UPLINK),
1406						      IEEE80211_RADIOTAP_HE_DATA3_UL_DL);
1407		}
1408		he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1409							    IWL_RX_PHY_DATA0_HE_LDPC_EXT_SYM),
1410					      IEEE80211_RADIOTAP_HE_DATA3_LDPC_XSYMSEG);
1411		he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1412							    IWL_RX_PHY_DATA0_HE_PRE_FEC_PAD_MASK),
1413					      IEEE80211_RADIOTAP_HE_DATA5_PRE_FEC_PAD);
1414		he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1415							    IWL_RX_PHY_DATA0_HE_PE_DISAMBIG),
1416					      IEEE80211_RADIOTAP_HE_DATA5_PE_DISAMBIG);
1417		he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d1,
1418							    IWL_RX_PHY_DATA1_HE_LTF_NUM_MASK),
1419					      IEEE80211_RADIOTAP_HE_DATA5_NUM_LTF_SYMS);
1420		he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1421							    IWL_RX_PHY_DATA0_HE_TXOP_DUR_MASK),
1422					      IEEE80211_RADIOTAP_HE_DATA6_TXOP);
1423		he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1424							    IWL_RX_PHY_DATA0_HE_DOPPLER),
1425					      IEEE80211_RADIOTAP_HE_DATA6_DOPPLER);
1426		break;
1427	}
1428
1429	switch (phy_data->info_type) {
1430	case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1431	case IWL_RX_PHY_INFO_TYPE_HE_MU:
1432	case IWL_RX_PHY_INFO_TYPE_HE_SU:
1433		he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN);
1434		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1435							    IWL_RX_PHY_DATA0_HE_SPATIAL_REUSE_MASK),
1436					      IEEE80211_RADIOTAP_HE_DATA4_SU_MU_SPTL_REUSE);
1437		break;
1438	default:
1439		/* nothing here */
1440		break;
1441	}
1442
1443	switch (phy_data->info_type) {
1444	case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1445		he_mu->flags1 |=
1446			le16_encode_bits(le16_get_bits(phy_data->d4,
1447						       IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_DCM),
1448					 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM);
1449		he_mu->flags1 |=
1450			le16_encode_bits(le16_get_bits(phy_data->d4,
1451						       IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_MCS_MASK),
1452					 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS);
1453		he_mu->flags2 |=
1454			le16_encode_bits(le16_get_bits(phy_data->d4,
1455						       IWL_RX_PHY_DATA4_HE_MU_EXT_PREAMBLE_PUNC_TYPE_MASK),
1456					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW);
1457		iwl_mvm_decode_he_mu_ext(mvm, phy_data, he_mu);
1458		fallthrough;
1459	case IWL_RX_PHY_INFO_TYPE_HE_MU:
1460		he_mu->flags2 |=
1461			le16_encode_bits(le32_get_bits(phy_data->d1,
1462						       IWL_RX_PHY_DATA1_HE_MU_SIBG_SYM_OR_USER_NUM_MASK),
1463					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_SYMS_USERS);
1464		he_mu->flags2 |=
1465			le16_encode_bits(le32_get_bits(phy_data->d1,
1466						       IWL_RX_PHY_DATA1_HE_MU_SIGB_COMPRESSION),
1467					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_COMP);
1468		fallthrough;
1469	case IWL_RX_PHY_INFO_TYPE_HE_TB:
1470	case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1471		iwl_mvm_decode_he_phy_ru_alloc(phy_data, he, he_mu, rx_status);
1472		break;
1473	case IWL_RX_PHY_INFO_TYPE_HE_SU:
1474		he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BEAM_CHANGE_KNOWN);
1475		he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1476							    IWL_RX_PHY_DATA0_HE_BEAM_CHNG),
1477					      IEEE80211_RADIOTAP_HE_DATA3_BEAM_CHANGE);
1478		break;
1479	default:
1480		/* nothing */
1481		break;
1482	}
1483}
1484
1485#define LE32_DEC_ENC(value, dec_bits, enc_bits) \
1486	le32_encode_bits(le32_get_bits(value, dec_bits), enc_bits)
1487
1488#define IWL_MVM_ENC_USIG_VALUE_MASK(usig, in_value, dec_bits, enc_bits) do { \
1489	typeof(enc_bits) _enc_bits = enc_bits; \
1490	typeof(usig) _usig = usig; \
1491	(_usig)->mask |= cpu_to_le32(_enc_bits); \
1492	(_usig)->value |= LE32_DEC_ENC(in_value, dec_bits, _enc_bits); \
1493} while (0)
1494
1495#define __IWL_MVM_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru) \
1496	eht->data[(rt_data)] |= \
1497		(cpu_to_le32 \
1498		 (IEEE80211_RADIOTAP_EHT_DATA ## rt_data ## _RU_ALLOC_CC_ ## rt_ru ## _KNOWN) | \
1499		 LE32_DEC_ENC(data ## fw_data, \
1500			      IWL_RX_PHY_DATA ## fw_data ## _EHT_MU_EXT_RU_ALLOC_ ## fw_ru, \
1501			      IEEE80211_RADIOTAP_EHT_DATA ## rt_data ## _RU_ALLOC_CC_ ## rt_ru))
1502
1503#define _IWL_MVM_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru)	\
1504	__IWL_MVM_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru)
1505
1506#define IEEE80211_RADIOTAP_RU_DATA_1_1_1	1
1507#define IEEE80211_RADIOTAP_RU_DATA_2_1_1	2
1508#define IEEE80211_RADIOTAP_RU_DATA_1_1_2	2
1509#define IEEE80211_RADIOTAP_RU_DATA_2_1_2	2
1510#define IEEE80211_RADIOTAP_RU_DATA_1_2_1	3
1511#define IEEE80211_RADIOTAP_RU_DATA_2_2_1	3
1512#define IEEE80211_RADIOTAP_RU_DATA_1_2_2	3
1513#define IEEE80211_RADIOTAP_RU_DATA_2_2_2	4
1514
1515#define IWL_RX_RU_DATA_A1			2
1516#define IWL_RX_RU_DATA_A2			2
1517#define IWL_RX_RU_DATA_B1			2
1518#define IWL_RX_RU_DATA_B2			3
1519#define IWL_RX_RU_DATA_C1			3
1520#define IWL_RX_RU_DATA_C2			3
1521#define IWL_RX_RU_DATA_D1			4
1522#define IWL_RX_RU_DATA_D2			4
1523
1524#define IWL_MVM_ENC_EHT_RU(rt_ru, fw_ru)				\
1525	_IWL_MVM_ENC_EHT_RU(IEEE80211_RADIOTAP_RU_DATA_ ## rt_ru,	\
1526			    rt_ru,					\
1527			    IWL_RX_RU_DATA_ ## fw_ru,			\
1528			    fw_ru)
1529
1530static void iwl_mvm_decode_eht_ext_mu(struct iwl_mvm *mvm,
1531				      struct iwl_mvm_rx_phy_data *phy_data,
1532				      struct ieee80211_rx_status *rx_status,
1533				      struct ieee80211_radiotap_eht *eht,
1534				      struct ieee80211_radiotap_eht_usig *usig)
1535{
1536	if (phy_data->with_data) {
1537		__le32 data1 = phy_data->d1;
1538		__le32 data2 = phy_data->d2;
1539		__le32 data3 = phy_data->d3;
1540		__le32 data4 = phy_data->eht_d4;
1541		__le32 data5 = phy_data->d5;
1542		u32 phy_bw = phy_data->rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK;
1543
1544		IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5,
1545					    IWL_RX_PHY_DATA5_EHT_TYPE_AND_COMP,
1546					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B0_B1_PPDU_TYPE);
1547		IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5,
1548					    IWL_RX_PHY_DATA5_EHT_MU_PUNC_CH_CODE,
1549					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B3_B7_PUNCTURED_INFO);
1550		IWL_MVM_ENC_USIG_VALUE_MASK(usig, data4,
1551					    IWL_RX_PHY_DATA4_EHT_MU_EXT_SIGB_MCS,
1552					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B9_B10_SIG_MCS);
1553		IWL_MVM_ENC_USIG_VALUE_MASK
1554			(usig, data1, IWL_RX_PHY_DATA1_EHT_MU_NUM_SIG_SYM_USIGA2,
1555			 IEEE80211_RADIOTAP_EHT_USIG2_MU_B11_B15_EHT_SIG_SYMBOLS);
1556
1557		eht->user_info[0] |=
1558			cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_STA_ID_KNOWN) |
1559			LE32_DEC_ENC(data5, IWL_RX_PHY_DATA5_EHT_MU_STA_ID_USR,
1560				     IEEE80211_RADIOTAP_EHT_USER_INFO_STA_ID);
1561
1562		eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_NR_NON_OFDMA_USERS_M);
1563		eht->data[7] |= LE32_DEC_ENC
1564			(data5, IWL_RX_PHY_DATA5_EHT_MU_NUM_USR_NON_OFDMA,
1565			 IEEE80211_RADIOTAP_EHT_DATA7_NUM_OF_NON_OFDMA_USERS);
1566
1567		/*
1568		 * Hardware labels the content channels/RU allocation values
1569		 * as follows:
1570		 *           Content Channel 1		Content Channel 2
1571		 *   20 MHz: A1
1572		 *   40 MHz: A1				B1
1573		 *   80 MHz: A1 C1			B1 D1
1574		 *  160 MHz: A1 C1 A2 C2		B1 D1 B2 D2
1575		 *  320 MHz: A1 C1 A2 C2 A3 C3 A4 C4	B1 D1 B2 D2 B3 D3 B4 D4
1576		 *
1577		 * However firmware can only give us A1-D2, so the higher
1578		 * frequencies are missing.
1579		 */
1580
1581		switch (phy_bw) {
1582		case RATE_MCS_CHAN_WIDTH_320:
1583			/* additional values are missing in RX metadata */
1584		case RATE_MCS_CHAN_WIDTH_160:
1585			/* content channel 1 */
1586			IWL_MVM_ENC_EHT_RU(1_2_1, A2);
1587			IWL_MVM_ENC_EHT_RU(1_2_2, C2);
1588			/* content channel 2 */
1589			IWL_MVM_ENC_EHT_RU(2_2_1, B2);
1590			IWL_MVM_ENC_EHT_RU(2_2_2, D2);
1591			fallthrough;
1592		case RATE_MCS_CHAN_WIDTH_80:
1593			/* content channel 1 */
1594			IWL_MVM_ENC_EHT_RU(1_1_2, C1);
1595			/* content channel 2 */
1596			IWL_MVM_ENC_EHT_RU(2_1_2, D1);
1597			fallthrough;
1598		case RATE_MCS_CHAN_WIDTH_40:
1599			/* content channel 2 */
1600			IWL_MVM_ENC_EHT_RU(2_1_1, B1);
1601			fallthrough;
1602		case RATE_MCS_CHAN_WIDTH_20:
1603			IWL_MVM_ENC_EHT_RU(1_1_1, A1);
1604			break;
1605		}
1606	} else {
1607		__le32 usig_a1 = phy_data->rx_vec[0];
1608		__le32 usig_a2 = phy_data->rx_vec[1];
1609
1610		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a1,
1611					    IWL_RX_USIG_A1_DISREGARD,
1612					    IEEE80211_RADIOTAP_EHT_USIG1_MU_B20_B24_DISREGARD);
1613		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a1,
1614					    IWL_RX_USIG_A1_VALIDATE,
1615					    IEEE80211_RADIOTAP_EHT_USIG1_MU_B25_VALIDATE);
1616		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1617					    IWL_RX_USIG_A2_EHT_PPDU_TYPE,
1618					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B0_B1_PPDU_TYPE);
1619		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1620					    IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B2,
1621					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B2_VALIDATE);
1622		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1623					    IWL_RX_USIG_A2_EHT_PUNC_CHANNEL,
1624					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B3_B7_PUNCTURED_INFO);
1625		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1626					    IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B8,
1627					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B8_VALIDATE);
1628		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1629					    IWL_RX_USIG_A2_EHT_SIG_MCS,
1630					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B9_B10_SIG_MCS);
1631		IWL_MVM_ENC_USIG_VALUE_MASK
1632			(usig, usig_a2, IWL_RX_USIG_A2_EHT_SIG_SYM_NUM,
1633			 IEEE80211_RADIOTAP_EHT_USIG2_MU_B11_B15_EHT_SIG_SYMBOLS);
1634		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1635					    IWL_RX_USIG_A2_EHT_CRC_OK,
1636					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B16_B19_CRC);
1637	}
1638}
1639
1640static void iwl_mvm_decode_eht_ext_tb(struct iwl_mvm *mvm,
1641				      struct iwl_mvm_rx_phy_data *phy_data,
1642				      struct ieee80211_rx_status *rx_status,
1643				      struct ieee80211_radiotap_eht *eht,
1644				      struct ieee80211_radiotap_eht_usig *usig)
1645{
1646	if (phy_data->with_data) {
1647		__le32 data5 = phy_data->d5;
1648
1649		IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5,
1650					    IWL_RX_PHY_DATA5_EHT_TYPE_AND_COMP,
1651					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B0_B1_PPDU_TYPE);
1652		IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5,
1653					    IWL_RX_PHY_DATA5_EHT_TB_SPATIAL_REUSE1,
1654					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B3_B6_SPATIAL_REUSE_1);
1655
1656		IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5,
1657					    IWL_RX_PHY_DATA5_EHT_TB_SPATIAL_REUSE2,
1658					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B7_B10_SPATIAL_REUSE_2);
1659	} else {
1660		__le32 usig_a1 = phy_data->rx_vec[0];
1661		__le32 usig_a2 = phy_data->rx_vec[1];
1662
1663		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a1,
1664					    IWL_RX_USIG_A1_DISREGARD,
1665					    IEEE80211_RADIOTAP_EHT_USIG1_TB_B20_B25_DISREGARD);
1666		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1667					    IWL_RX_USIG_A2_EHT_PPDU_TYPE,
1668					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B0_B1_PPDU_TYPE);
1669		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1670					    IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B2,
1671					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B2_VALIDATE);
1672		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1673					    IWL_RX_USIG_A2_EHT_TRIG_SPATIAL_REUSE_1,
1674					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B3_B6_SPATIAL_REUSE_1);
1675		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1676					    IWL_RX_USIG_A2_EHT_TRIG_SPATIAL_REUSE_2,
1677					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B7_B10_SPATIAL_REUSE_2);
1678		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1679					    IWL_RX_USIG_A2_EHT_TRIG_USIG2_DISREGARD,
1680					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B11_B15_DISREGARD);
1681		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1682					    IWL_RX_USIG_A2_EHT_CRC_OK,
1683					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B16_B19_CRC);
1684	}
1685}
1686
1687static void iwl_mvm_decode_eht_ru(struct iwl_mvm *mvm,
1688				  struct ieee80211_rx_status *rx_status,
1689				  struct ieee80211_radiotap_eht *eht)
1690{
1691	u32 ru = le32_get_bits(eht->data[8],
1692			       IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B7_B1);
1693	enum nl80211_eht_ru_alloc nl_ru;
1694
1695	/* Using D1.5 Table 9-53a - Encoding of PS160 and RU Allocation subfields
1696	 * in an EHT variant User Info field
1697	 */
1698
1699	switch (ru) {
1700	case 0 ... 36:
1701		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_26;
1702		break;
1703	case 37 ... 52:
1704		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_52;
1705		break;
1706	case 53 ... 60:
1707		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_106;
1708		break;
1709	case 61 ... 64:
1710		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_242;
1711		break;
1712	case 65 ... 66:
1713		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_484;
1714		break;
1715	case 67:
1716		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996;
1717		break;
1718	case 68:
1719		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_2x996;
1720		break;
1721	case 69:
1722		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_4x996;
1723		break;
1724	case 70 ... 81:
1725		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_52P26;
1726		break;
1727	case 82 ... 89:
1728		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_106P26;
1729		break;
1730	case 90 ... 93:
1731		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_484P242;
1732		break;
1733	case 94 ... 95:
1734		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996P484;
1735		break;
1736	case 96 ... 99:
1737		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996P484P242;
1738		break;
1739	case 100 ... 103:
1740		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_2x996P484;
1741		break;
1742	case 104:
1743		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_3x996;
1744		break;
1745	case 105 ... 106:
1746		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_3x996P484;
1747		break;
1748	default:
1749		return;
1750	}
1751
1752	rx_status->bw = RATE_INFO_BW_EHT_RU;
1753	rx_status->eht.ru = nl_ru;
1754}
1755
1756static void iwl_mvm_decode_eht_phy_data(struct iwl_mvm *mvm,
1757					struct iwl_mvm_rx_phy_data *phy_data,
1758					struct ieee80211_rx_status *rx_status,
1759					struct ieee80211_radiotap_eht *eht,
1760					struct ieee80211_radiotap_eht_usig *usig)
1761
1762{
1763	__le32 data0 = phy_data->d0;
1764	__le32 data1 = phy_data->d1;
1765	__le32 usig_a1 = phy_data->rx_vec[0];
1766	u8 info_type = phy_data->info_type;
1767
1768	/* Not in EHT range */
1769	if (info_type < IWL_RX_PHY_INFO_TYPE_EHT_MU ||
1770	    info_type > IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT)
1771		return;
1772
1773	usig->common |= cpu_to_le32
1774		(IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL_KNOWN |
1775		 IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR_KNOWN);
1776	if (phy_data->with_data) {
1777		usig->common |= LE32_DEC_ENC(data0,
1778					     IWL_RX_PHY_DATA0_EHT_UPLINK,
1779					     IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL);
1780		usig->common |= LE32_DEC_ENC(data0,
1781					     IWL_RX_PHY_DATA0_EHT_BSS_COLOR_MASK,
1782					     IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR);
1783	} else {
1784		usig->common |= LE32_DEC_ENC(usig_a1,
1785					     IWL_RX_USIG_A1_UL_FLAG,
1786					     IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL);
1787		usig->common |= LE32_DEC_ENC(usig_a1,
1788					     IWL_RX_USIG_A1_BSS_COLOR,
1789					     IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR);
1790	}
1791
1792	if (fw_has_capa(&mvm->fw->ucode_capa,
1793			IWL_UCODE_TLV_CAPA_SNIFF_VALIDATE_SUPPORT)) {
1794		usig->common |=
1795			cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_VALIDATE_BITS_CHECKED);
1796		usig->common |=
1797			LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_VALIDATE,
1798				     IEEE80211_RADIOTAP_EHT_USIG_COMMON_VALIDATE_BITS_OK);
1799	}
1800
1801	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_SPATIAL_REUSE);
1802	eht->data[0] |= LE32_DEC_ENC(data0,
1803				     IWL_RX_PHY_DATA0_ETH_SPATIAL_REUSE_MASK,
1804				     IEEE80211_RADIOTAP_EHT_DATA0_SPATIAL_REUSE);
1805
1806	/* All RU allocating size/index is in TB format */
1807	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_RU_ALLOC_TB_FMT);
1808	eht->data[8] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PS160,
1809				     IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_PS_160);
1810	eht->data[8] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_RU_ALLOC_B0,
1811				     IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B0);
1812	eht->data[8] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_RU_ALLOC_B1_B7,
1813				     IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B7_B1);
1814
1815	iwl_mvm_decode_eht_ru(mvm, rx_status, eht);
1816
1817	/* We only get here in case of IWL_RX_MPDU_PHY_TSF_OVERLOAD is set
1818	 * which is on only in case of monitor mode so no need to check monitor
1819	 * mode
1820	 */
1821	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PRIMARY_80);
1822	eht->data[1] |=
1823		le32_encode_bits(mvm->monitor_p80,
1824				 IEEE80211_RADIOTAP_EHT_DATA1_PRIMARY_80);
1825
1826	usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP_KNOWN);
1827	if (phy_data->with_data)
1828		usig->common |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_TXOP_DUR_MASK,
1829					     IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP);
1830	else
1831		usig->common |= LE32_DEC_ENC(usig_a1, IWL_RX_USIG_A1_TXOP_DURATION,
1832					     IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP);
1833
1834	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_LDPC_EXTRA_SYM_OM);
1835	eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_LDPC_EXT_SYM,
1836				     IEEE80211_RADIOTAP_EHT_DATA0_LDPC_EXTRA_SYM_OM);
1837
1838	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PRE_PADD_FACOR_OM);
1839	eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PRE_FEC_PAD_MASK,
1840				    IEEE80211_RADIOTAP_EHT_DATA0_PRE_PADD_FACOR_OM);
1841
1842	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PE_DISAMBIGUITY_OM);
1843	eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PE_DISAMBIG,
1844				     IEEE80211_RADIOTAP_EHT_DATA0_PE_DISAMBIGUITY_OM);
1845
1846	/* TODO: what about IWL_RX_PHY_DATA0_EHT_BW320_SLOT */
1847
1848	if (!le32_get_bits(data0, IWL_RX_PHY_DATA0_EHT_SIGA_CRC_OK))
1849		usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BAD_USIG_CRC);
1850
1851	usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_PHY_VER_KNOWN);
1852	usig->common |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PHY_VER,
1853				     IEEE80211_RADIOTAP_EHT_USIG_COMMON_PHY_VER);
1854
1855	/*
1856	 * TODO: what about TB - IWL_RX_PHY_DATA1_EHT_TB_PILOT_TYPE,
1857	 *			 IWL_RX_PHY_DATA1_EHT_TB_LOW_SS
1858	 */
1859
1860	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_EHT_LTF);
1861	eht->data[0] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_SIG_LTF_NUM,
1862				     IEEE80211_RADIOTAP_EHT_DATA0_EHT_LTF);
1863
1864	if (info_type == IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT ||
1865	    info_type == IWL_RX_PHY_INFO_TYPE_EHT_TB)
1866		iwl_mvm_decode_eht_ext_tb(mvm, phy_data, rx_status, eht, usig);
1867
1868	if (info_type == IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT ||
1869	    info_type == IWL_RX_PHY_INFO_TYPE_EHT_MU)
1870		iwl_mvm_decode_eht_ext_mu(mvm, phy_data, rx_status, eht, usig);
1871}
1872
1873static void iwl_mvm_rx_eht(struct iwl_mvm *mvm, struct sk_buff *skb,
1874			   struct iwl_mvm_rx_phy_data *phy_data,
1875			   int queue)
1876{
1877	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1878
1879	struct ieee80211_radiotap_eht *eht;
1880	struct ieee80211_radiotap_eht_usig *usig;
1881	size_t eht_len = sizeof(*eht);
1882
1883	u32 rate_n_flags = phy_data->rate_n_flags;
1884	u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK;
1885	/* EHT and HE have the same valus for LTF */
1886	u8 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN;
1887	u16 phy_info = phy_data->phy_info;
1888	u32 bw;
1889
1890	/* u32 for 1 user_info */
1891	if (phy_data->with_data)
1892		eht_len += sizeof(u32);
1893
1894	eht = iwl_mvm_radiotap_put_tlv(skb, IEEE80211_RADIOTAP_EHT, eht_len);
1895
1896	usig = iwl_mvm_radiotap_put_tlv(skb, IEEE80211_RADIOTAP_EHT_USIG,
1897					sizeof(*usig));
1898	rx_status->flag |= RX_FLAG_RADIOTAP_TLV_AT_END;
1899	usig->common |=
1900		cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BW_KNOWN);
1901
1902	/* specific handling for 320MHz */
1903	bw = FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK, rate_n_flags);
1904	if (bw == RATE_MCS_CHAN_WIDTH_320_VAL)
1905		bw += FIELD_GET(IWL_RX_PHY_DATA0_EHT_BW320_SLOT,
1906				le32_to_cpu(phy_data->d0));
1907
1908	usig->common |= cpu_to_le32
1909		(FIELD_PREP(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BW, bw));
1910
1911	/* report the AMPDU-EOF bit on single frames */
1912	if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
1913		rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
1914		rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1915		if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF))
1916			rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1917	}
1918
1919	/* update aggregation data for monitor sake on default queue */
1920	if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) &&
1921	    (phy_info & IWL_RX_MPDU_PHY_AMPDU) && phy_data->first_subframe) {
1922		rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1923		if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF))
1924			rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1925	}
1926
1927	if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
1928		iwl_mvm_decode_eht_phy_data(mvm, phy_data, rx_status, eht, usig);
1929
1930#define CHECK_TYPE(F)							\
1931	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F !=	\
1932		     (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS))
1933
1934	CHECK_TYPE(SU);
1935	CHECK_TYPE(EXT_SU);
1936	CHECK_TYPE(MU);
1937	CHECK_TYPE(TRIG);
1938
1939	switch (FIELD_GET(RATE_MCS_HE_GI_LTF_MSK, rate_n_flags)) {
1940	case 0:
1941		if (he_type == RATE_MCS_HE_TYPE_TRIG) {
1942			rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_1_6;
1943			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X;
1944		} else {
1945			rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_0_8;
1946			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1947		}
1948		break;
1949	case 1:
1950		rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_1_6;
1951		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1952		break;
1953	case 2:
1954		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1955		if (he_type == RATE_MCS_HE_TYPE_TRIG)
1956			rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_3_2;
1957		else
1958			rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_0_8;
1959		break;
1960	case 3:
1961		if (he_type != RATE_MCS_HE_TYPE_TRIG) {
1962			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1963			rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_3_2;
1964		}
1965		break;
1966	default:
1967		/* nothing here */
1968		break;
1969	}
1970
1971	if (ltf != IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN) {
1972		eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_GI);
1973		eht->data[0] |= cpu_to_le32
1974			(FIELD_PREP(IEEE80211_RADIOTAP_EHT_DATA0_LTF,
1975				    ltf) |
1976			 FIELD_PREP(IEEE80211_RADIOTAP_EHT_DATA0_GI,
1977				    rx_status->eht.gi));
1978	}
1979
1980
1981	if (!phy_data->with_data) {
1982		eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_NSS_S |
1983					  IEEE80211_RADIOTAP_EHT_KNOWN_BEAMFORMED_S);
1984		eht->data[7] |=
1985			le32_encode_bits(le32_get_bits(phy_data->rx_vec[2],
1986						       RX_NO_DATA_RX_VEC2_EHT_NSTS_MSK),
1987					 IEEE80211_RADIOTAP_EHT_DATA7_NSS_S);
1988		if (rate_n_flags & RATE_MCS_BF_MSK)
1989			eht->data[7] |=
1990				cpu_to_le32(IEEE80211_RADIOTAP_EHT_DATA7_BEAMFORMED_S);
1991	} else {
1992		eht->user_info[0] |=
1993			cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_MCS_KNOWN |
1994				    IEEE80211_RADIOTAP_EHT_USER_INFO_CODING_KNOWN |
1995				    IEEE80211_RADIOTAP_EHT_USER_INFO_NSS_KNOWN_O |
1996				    IEEE80211_RADIOTAP_EHT_USER_INFO_BEAMFORMING_KNOWN_O |
1997				    IEEE80211_RADIOTAP_EHT_USER_INFO_DATA_FOR_USER);
1998
1999		if (rate_n_flags & RATE_MCS_BF_MSK)
2000			eht->user_info[0] |=
2001				cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_BEAMFORMING_O);
2002
2003		if (rate_n_flags & RATE_MCS_LDPC_MSK)
2004			eht->user_info[0] |=
2005				cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_CODING);
2006
2007		eht->user_info[0] |= cpu_to_le32
2008			(FIELD_PREP(IEEE80211_RADIOTAP_EHT_USER_INFO_MCS,
2009				    FIELD_GET(RATE_VHT_MCS_RATE_CODE_MSK,
2010					      rate_n_flags)) |
2011			 FIELD_PREP(IEEE80211_RADIOTAP_EHT_USER_INFO_NSS_O,
2012				    FIELD_GET(RATE_MCS_NSS_MSK, rate_n_flags)));
2013	}
2014}
2015
2016static void iwl_mvm_rx_he(struct iwl_mvm *mvm, struct sk_buff *skb,
2017			  struct iwl_mvm_rx_phy_data *phy_data,
2018			  int queue)
2019{
2020	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
2021	struct ieee80211_radiotap_he *he = NULL;
2022	struct ieee80211_radiotap_he_mu *he_mu = NULL;
2023	u32 rate_n_flags = phy_data->rate_n_flags;
2024	u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK;
2025	u8 ltf;
2026	static const struct ieee80211_radiotap_he known = {
2027		.data1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_DATA_MCS_KNOWN |
2028				     IEEE80211_RADIOTAP_HE_DATA1_DATA_DCM_KNOWN |
2029				     IEEE80211_RADIOTAP_HE_DATA1_STBC_KNOWN |
2030				     IEEE80211_RADIOTAP_HE_DATA1_CODING_KNOWN),
2031		.data2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_GI_KNOWN |
2032				     IEEE80211_RADIOTAP_HE_DATA2_TXBF_KNOWN),
2033	};
2034	static const struct ieee80211_radiotap_he_mu mu_known = {
2035		.flags1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS_KNOWN |
2036				      IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM_KNOWN |
2037				      IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_SYMS_USERS_KNOWN |
2038				      IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_COMP_KNOWN),
2039		.flags2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW_KNOWN |
2040				      IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_KNOWN),
2041	};
2042	u16 phy_info = phy_data->phy_info;
2043
2044	he = skb_put_data(skb, &known, sizeof(known));
2045	rx_status->flag |= RX_FLAG_RADIOTAP_HE;
2046
2047	if (phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU ||
2048	    phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU_EXT) {
2049		he_mu = skb_put_data(skb, &mu_known, sizeof(mu_known));
2050		rx_status->flag |= RX_FLAG_RADIOTAP_HE_MU;
2051	}
2052
2053	/* report the AMPDU-EOF bit on single frames */
2054	if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
2055		rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
2056		rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
2057		if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF))
2058			rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
2059	}
2060
2061	if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
2062		iwl_mvm_decode_he_phy_data(mvm, phy_data, he, he_mu, rx_status,
2063					   queue);
2064
2065	/* update aggregation data for monitor sake on default queue */
2066	if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) &&
2067	    (phy_info & IWL_RX_MPDU_PHY_AMPDU) && phy_data->first_subframe) {
2068		rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
2069		if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF))
2070			rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
2071	}
2072
2073	if (he_type == RATE_MCS_HE_TYPE_EXT_SU &&
2074	    rate_n_flags & RATE_MCS_HE_106T_MSK) {
2075		rx_status->bw = RATE_INFO_BW_HE_RU;
2076		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
2077	}
2078
2079	/* actually data is filled in mac80211 */
2080	if (he_type == RATE_MCS_HE_TYPE_SU ||
2081	    he_type == RATE_MCS_HE_TYPE_EXT_SU)
2082		he->data1 |=
2083			cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
2084
2085#define CHECK_TYPE(F)							\
2086	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F !=	\
2087		     (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS))
2088
2089	CHECK_TYPE(SU);
2090	CHECK_TYPE(EXT_SU);
2091	CHECK_TYPE(MU);
2092	CHECK_TYPE(TRIG);
2093
2094	he->data1 |= cpu_to_le16(he_type >> RATE_MCS_HE_TYPE_POS);
2095
2096	if (rate_n_flags & RATE_MCS_BF_MSK)
2097		he->data5 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA5_TXBF);
2098
2099	switch ((rate_n_flags & RATE_MCS_HE_GI_LTF_MSK) >>
2100		RATE_MCS_HE_GI_LTF_POS) {
2101	case 0:
2102		if (he_type == RATE_MCS_HE_TYPE_TRIG)
2103			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
2104		else
2105			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
2106		if (he_type == RATE_MCS_HE_TYPE_MU)
2107			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
2108		else
2109			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X;
2110		break;
2111	case 1:
2112		if (he_type == RATE_MCS_HE_TYPE_TRIG)
2113			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
2114		else
2115			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
2116		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
2117		break;
2118	case 2:
2119		if (he_type == RATE_MCS_HE_TYPE_TRIG) {
2120			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
2121			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
2122		} else {
2123			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
2124			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
2125		}
2126		break;
2127	case 3:
2128		rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
2129		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
2130		break;
2131	case 4:
2132		rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
2133		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
2134		break;
2135	default:
2136		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN;
2137	}
2138
2139	he->data5 |= le16_encode_bits(ltf,
2140				      IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE);
2141}
2142
2143static void iwl_mvm_decode_lsig(struct sk_buff *skb,
2144				struct iwl_mvm_rx_phy_data *phy_data)
2145{
2146	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
2147	struct ieee80211_radiotap_lsig *lsig;
2148
2149	switch (phy_data->info_type) {
2150	case IWL_RX_PHY_INFO_TYPE_HT:
2151	case IWL_RX_PHY_INFO_TYPE_VHT_SU:
2152	case IWL_RX_PHY_INFO_TYPE_VHT_MU:
2153	case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
2154	case IWL_RX_PHY_INFO_TYPE_HE_SU:
2155	case IWL_RX_PHY_INFO_TYPE_HE_MU:
2156	case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
2157	case IWL_RX_PHY_INFO_TYPE_HE_TB:
2158	case IWL_RX_PHY_INFO_TYPE_EHT_MU:
2159	case IWL_RX_PHY_INFO_TYPE_EHT_TB:
2160	case IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT:
2161	case IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT:
2162		lsig = skb_put(skb, sizeof(*lsig));
2163		lsig->data1 = cpu_to_le16(IEEE80211_RADIOTAP_LSIG_DATA1_LENGTH_KNOWN);
2164		lsig->data2 = le16_encode_bits(le32_get_bits(phy_data->d1,
2165							     IWL_RX_PHY_DATA1_LSIG_LEN_MASK),
2166					       IEEE80211_RADIOTAP_LSIG_DATA2_LENGTH);
2167		rx_status->flag |= RX_FLAG_RADIOTAP_LSIG;
2168		break;
2169	default:
2170		break;
2171	}
2172}
2173
2174static inline u8 iwl_mvm_nl80211_band_from_rx_msdu(u8 phy_band)
2175{
2176	switch (phy_band) {
2177	case PHY_BAND_24:
2178		return NL80211_BAND_2GHZ;
2179	case PHY_BAND_5:
2180		return NL80211_BAND_5GHZ;
2181	case PHY_BAND_6:
2182		return NL80211_BAND_6GHZ;
2183	default:
2184		WARN_ONCE(1, "Unsupported phy band (%u)\n", phy_band);
2185		return NL80211_BAND_5GHZ;
2186	}
2187}
2188
2189struct iwl_rx_sta_csa {
2190	bool all_sta_unblocked;
2191	struct ieee80211_vif *vif;
2192};
2193
2194static void iwl_mvm_rx_get_sta_block_tx(void *data, struct ieee80211_sta *sta)
2195{
2196	struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
2197	struct iwl_rx_sta_csa *rx_sta_csa = data;
2198
2199	if (mvmsta->vif != rx_sta_csa->vif)
2200		return;
2201
2202	if (mvmsta->disable_tx)
2203		rx_sta_csa->all_sta_unblocked = false;
2204}
2205
2206/*
2207 * Note: requires also rx_status->band to be prefilled, as well
2208 * as phy_data (apart from phy_data->info_type)
2209 */
2210static void iwl_mvm_rx_fill_status(struct iwl_mvm *mvm,
2211				   struct sk_buff *skb,
2212				   struct iwl_mvm_rx_phy_data *phy_data,
2213				   int queue)
2214{
2215	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
2216	u32 rate_n_flags = phy_data->rate_n_flags;
2217	u8 stbc = u32_get_bits(rate_n_flags, RATE_MCS_STBC_MSK);
2218	u32 format = rate_n_flags & RATE_MCS_MOD_TYPE_MSK;
2219	bool is_sgi;
2220
2221	phy_data->info_type = IWL_RX_PHY_INFO_TYPE_NONE;
2222
2223	if (phy_data->phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
2224		phy_data->info_type =
2225			le32_get_bits(phy_data->d1,
2226				      IWL_RX_PHY_DATA1_INFO_TYPE_MASK);
2227
2228	/* This may be overridden by iwl_mvm_rx_he() to HE_RU */
2229	switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) {
2230	case RATE_MCS_CHAN_WIDTH_20:
2231		break;
2232	case RATE_MCS_CHAN_WIDTH_40:
2233		rx_status->bw = RATE_INFO_BW_40;
2234		break;
2235	case RATE_MCS_CHAN_WIDTH_80:
2236		rx_status->bw = RATE_INFO_BW_80;
2237		break;
2238	case RATE_MCS_CHAN_WIDTH_160:
2239		rx_status->bw = RATE_INFO_BW_160;
2240		break;
2241	case RATE_MCS_CHAN_WIDTH_320:
2242		rx_status->bw = RATE_INFO_BW_320;
2243		break;
2244	}
2245
2246	/* must be before L-SIG data */
2247	if (format == RATE_MCS_HE_MSK)
2248		iwl_mvm_rx_he(mvm, skb, phy_data, queue);
2249
2250	iwl_mvm_decode_lsig(skb, phy_data);
2251
2252	rx_status->device_timestamp = phy_data->gp2_on_air_rise;
2253	rx_status->freq = ieee80211_channel_to_frequency(phy_data->channel,
2254							 rx_status->band);
2255	iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags,
2256				    phy_data->energy_a, phy_data->energy_b);
2257
2258	/* using TLV format and must be after all fixed len fields */
2259	if (format == RATE_MCS_EHT_MSK)
2260		iwl_mvm_rx_eht(mvm, skb, phy_data, queue);
2261
2262	if (unlikely(mvm->monitor_on))
2263		iwl_mvm_add_rtap_sniffer_config(mvm, skb);
2264
2265	is_sgi = format == RATE_MCS_HE_MSK ?
2266		iwl_he_is_sgi(rate_n_flags) :
2267		rate_n_flags & RATE_MCS_SGI_MSK;
2268
2269	if (!(format == RATE_MCS_CCK_MSK) && is_sgi)
2270		rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
2271
2272	if (rate_n_flags & RATE_MCS_LDPC_MSK)
2273		rx_status->enc_flags |= RX_ENC_FLAG_LDPC;
2274
2275	switch (format) {
2276	case RATE_MCS_VHT_MSK:
2277		rx_status->encoding = RX_ENC_VHT;
2278		break;
2279	case RATE_MCS_HE_MSK:
2280		rx_status->encoding = RX_ENC_HE;
2281		rx_status->he_dcm =
2282			!!(rate_n_flags & RATE_HE_DUAL_CARRIER_MODE_MSK);
2283		break;
2284	case RATE_MCS_EHT_MSK:
2285		rx_status->encoding = RX_ENC_EHT;
2286		break;
2287	}
2288
2289	switch (format) {
2290	case RATE_MCS_HT_MSK:
2291		rx_status->encoding = RX_ENC_HT;
2292		rx_status->rate_idx = RATE_HT_MCS_INDEX(rate_n_flags);
2293		rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
2294		break;
2295	case RATE_MCS_VHT_MSK:
2296	case RATE_MCS_HE_MSK:
2297	case RATE_MCS_EHT_MSK:
2298		rx_status->nss =
2299			u32_get_bits(rate_n_flags, RATE_MCS_NSS_MSK) + 1;
2300		rx_status->rate_idx = rate_n_flags & RATE_MCS_CODE_MSK;
2301		rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
2302		break;
2303	default: {
2304		int rate = iwl_mvm_legacy_hw_idx_to_mac80211_idx(rate_n_flags,
2305								 rx_status->band);
2306
2307		rx_status->rate_idx = rate;
2308
2309		if ((rate < 0 || rate > 0xFF)) {
2310			rx_status->rate_idx = 0;
2311			if (net_ratelimit())
2312				IWL_ERR(mvm, "Invalid rate flags 0x%x, band %d,\n",
2313					rate_n_flags, rx_status->band);
2314		}
2315
2316		break;
2317		}
2318	}
2319}
2320
2321void iwl_mvm_rx_mpdu_mq(struct iwl_mvm *mvm, struct napi_struct *napi,
2322			struct iwl_rx_cmd_buffer *rxb, int queue)
2323{
2324	struct ieee80211_rx_status *rx_status;
2325	struct iwl_rx_packet *pkt = rxb_addr(rxb);
2326	struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
2327	struct ieee80211_hdr *hdr;
2328	u32 len;
2329	u32 pkt_len = iwl_rx_packet_payload_len(pkt);
2330	struct ieee80211_sta *sta = NULL;
2331	struct ieee80211_link_sta *link_sta = NULL;
2332	struct sk_buff *skb;
2333	u8 crypt_len = 0;
2334	size_t desc_size;
2335	struct iwl_mvm_rx_phy_data phy_data = {};
2336	u32 format;
2337
2338	if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status)))
2339		return;
2340
2341	if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210)
2342		desc_size = sizeof(*desc);
2343	else
2344		desc_size = IWL_RX_DESC_SIZE_V1;
2345
2346	if (unlikely(pkt_len < desc_size)) {
2347		IWL_DEBUG_DROP(mvm, "Bad REPLY_RX_MPDU_CMD size\n");
2348		return;
2349	}
2350
2351	if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
2352		phy_data.rate_n_flags = le32_to_cpu(desc->v3.rate_n_flags);
2353		phy_data.channel = desc->v3.channel;
2354		phy_data.gp2_on_air_rise = le32_to_cpu(desc->v3.gp2_on_air_rise);
2355		phy_data.energy_a = desc->v3.energy_a;
2356		phy_data.energy_b = desc->v3.energy_b;
2357
2358		phy_data.d0 = desc->v3.phy_data0;
2359		phy_data.d1 = desc->v3.phy_data1;
2360		phy_data.d2 = desc->v3.phy_data2;
2361		phy_data.d3 = desc->v3.phy_data3;
2362		phy_data.eht_d4 = desc->phy_eht_data4;
2363		phy_data.d5 = desc->v3.phy_data5;
2364	} else {
2365		phy_data.rate_n_flags = le32_to_cpu(desc->v1.rate_n_flags);
2366		phy_data.channel = desc->v1.channel;
2367		phy_data.gp2_on_air_rise = le32_to_cpu(desc->v1.gp2_on_air_rise);
2368		phy_data.energy_a = desc->v1.energy_a;
2369		phy_data.energy_b = desc->v1.energy_b;
2370
2371		phy_data.d0 = desc->v1.phy_data0;
2372		phy_data.d1 = desc->v1.phy_data1;
2373		phy_data.d2 = desc->v1.phy_data2;
2374		phy_data.d3 = desc->v1.phy_data3;
2375	}
2376
2377	if (iwl_fw_lookup_notif_ver(mvm->fw, LEGACY_GROUP,
2378				    REPLY_RX_MPDU_CMD, 0) < 4) {
2379		phy_data.rate_n_flags = iwl_new_rate_from_v1(phy_data.rate_n_flags);
2380		IWL_DEBUG_DROP(mvm, "Got old format rate, converting. New rate: 0x%x\n",
2381			       phy_data.rate_n_flags);
2382	}
2383
2384	format = phy_data.rate_n_flags & RATE_MCS_MOD_TYPE_MSK;
2385
2386	len = le16_to_cpu(desc->mpdu_len);
2387
2388	if (unlikely(len + desc_size > pkt_len)) {
2389		IWL_DEBUG_DROP(mvm, "FW lied about packet len\n");
2390		return;
2391	}
2392
2393	phy_data.with_data = true;
2394	phy_data.phy_info = le16_to_cpu(desc->phy_info);
2395	phy_data.d4 = desc->phy_data4;
2396
2397	hdr = (void *)(pkt->data + desc_size);
2398	/* Dont use dev_alloc_skb(), we'll have enough headroom once
2399	 * ieee80211_hdr pulled.
2400	 */
2401	skb = alloc_skb(128, GFP_ATOMIC);
2402	if (!skb) {
2403		IWL_ERR(mvm, "alloc_skb failed\n");
2404		return;
2405	}
2406
2407	if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
2408		/*
2409		 * If the device inserted padding it means that (it thought)
2410		 * the 802.11 header wasn't a multiple of 4 bytes long. In
2411		 * this case, reserve two bytes at the start of the SKB to
2412		 * align the payload properly in case we end up copying it.
2413		 */
2414		skb_reserve(skb, 2);
2415	}
2416
2417	rx_status = IEEE80211_SKB_RXCB(skb);
2418
2419	/*
2420	 * Keep packets with CRC errors (and with overrun) for monitor mode
2421	 * (otherwise the firmware discards them) but mark them as bad.
2422	 */
2423	if (!(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_CRC_OK)) ||
2424	    !(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_OVERRUN_OK))) {
2425		IWL_DEBUG_RX(mvm, "Bad CRC or FIFO: 0x%08X.\n",
2426			     le32_to_cpu(desc->status));
2427		rx_status->flag |= RX_FLAG_FAILED_FCS_CRC;
2428	}
2429
2430	/* set the preamble flag if appropriate */
2431	if (format == RATE_MCS_CCK_MSK &&
2432	    phy_data.phy_info & IWL_RX_MPDU_PHY_SHORT_PREAMBLE)
2433		rx_status->enc_flags |= RX_ENC_FLAG_SHORTPRE;
2434
2435	if (likely(!(phy_data.phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD))) {
2436		u64 tsf_on_air_rise;
2437
2438		if (mvm->trans->trans_cfg->device_family >=
2439		    IWL_DEVICE_FAMILY_AX210)
2440			tsf_on_air_rise = le64_to_cpu(desc->v3.tsf_on_air_rise);
2441		else
2442			tsf_on_air_rise = le64_to_cpu(desc->v1.tsf_on_air_rise);
2443
2444		rx_status->mactime = tsf_on_air_rise;
2445		/* TSF as indicated by the firmware is at INA time */
2446		rx_status->flag |= RX_FLAG_MACTIME_PLCP_START;
2447	}
2448
2449	if (iwl_mvm_is_band_in_rx_supported(mvm)) {
2450		u8 band = BAND_IN_RX_STATUS(desc->mac_phy_idx);
2451
2452		rx_status->band = iwl_mvm_nl80211_band_from_rx_msdu(band);
2453	} else {
2454		rx_status->band = phy_data.channel > 14 ? NL80211_BAND_5GHZ :
2455			NL80211_BAND_2GHZ;
2456	}
2457
2458	/* update aggregation data for monitor sake on default queue */
2459	if (!queue && (phy_data.phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
2460		bool toggle_bit;
2461
2462		toggle_bit = phy_data.phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE;
2463		rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
2464		/*
2465		 * Toggle is switched whenever new aggregation starts. Make
2466		 * sure ampdu_reference is never 0 so we can later use it to
2467		 * see if the frame was really part of an A-MPDU or not.
2468		 */
2469		if (toggle_bit != mvm->ampdu_toggle) {
2470			mvm->ampdu_ref++;
2471			if (mvm->ampdu_ref == 0)
2472				mvm->ampdu_ref++;
2473			mvm->ampdu_toggle = toggle_bit;
2474			phy_data.first_subframe = true;
2475		}
2476		rx_status->ampdu_reference = mvm->ampdu_ref;
2477	}
2478
2479	rcu_read_lock();
2480
2481	if (desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_SRC_STA_FOUND)) {
2482		u8 id = le32_get_bits(desc->status, IWL_RX_MPDU_STATUS_STA_ID);
2483
2484		if (!WARN_ON_ONCE(id >= mvm->fw->ucode_capa.num_stations)) {
2485			sta = rcu_dereference(mvm->fw_id_to_mac_id[id]);
2486			if (IS_ERR(sta))
2487				sta = NULL;
2488			link_sta = rcu_dereference(mvm->fw_id_to_link_sta[id]);
2489		}
2490	} else if (!is_multicast_ether_addr(hdr->addr2)) {
2491		/*
2492		 * This is fine since we prevent two stations with the same
2493		 * address from being added.
2494		 */
2495		sta = ieee80211_find_sta_by_ifaddr(mvm->hw, hdr->addr2, NULL);
2496	}
2497
2498	if (iwl_mvm_rx_crypto(mvm, sta, hdr, rx_status, phy_data.phy_info, desc,
2499			      le32_to_cpu(pkt->len_n_flags), queue,
2500			      &crypt_len)) {
2501		kfree_skb(skb);
2502		goto out;
2503	}
2504
2505	iwl_mvm_rx_fill_status(mvm, skb, &phy_data, queue);
2506
2507	if (sta) {
2508		struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
2509		struct ieee80211_vif *tx_blocked_vif =
2510			rcu_dereference(mvm->csa_tx_blocked_vif);
2511		u8 baid = (u8)((le32_to_cpu(desc->reorder_data) &
2512			       IWL_RX_MPDU_REORDER_BAID_MASK) >>
2513			       IWL_RX_MPDU_REORDER_BAID_SHIFT);
2514		struct iwl_fw_dbg_trigger_tlv *trig;
2515		struct ieee80211_vif *vif = mvmsta->vif;
2516
2517		if (!mvm->tcm.paused && len >= sizeof(*hdr) &&
2518		    !is_multicast_ether_addr(hdr->addr1) &&
2519		    ieee80211_is_data(hdr->frame_control) &&
2520		    time_after(jiffies, mvm->tcm.ts + MVM_TCM_PERIOD))
2521			schedule_delayed_work(&mvm->tcm.work, 0);
2522
2523		/*
2524		 * We have tx blocked stations (with CS bit). If we heard
2525		 * frames from a blocked station on a new channel we can
2526		 * TX to it again.
2527		 */
2528		if (unlikely(tx_blocked_vif) && tx_blocked_vif == vif) {
2529			struct iwl_mvm_vif *mvmvif =
2530				iwl_mvm_vif_from_mac80211(tx_blocked_vif);
2531			struct iwl_rx_sta_csa rx_sta_csa = {
2532				.all_sta_unblocked = true,
2533				.vif = tx_blocked_vif,
2534			};
2535
2536			if (mvmvif->csa_target_freq == rx_status->freq)
2537				iwl_mvm_sta_modify_disable_tx_ap(mvm, sta,
2538								 false);
2539			ieee80211_iterate_stations_atomic(mvm->hw,
2540							  iwl_mvm_rx_get_sta_block_tx,
2541							  &rx_sta_csa);
2542
2543			if (rx_sta_csa.all_sta_unblocked) {
2544				RCU_INIT_POINTER(mvm->csa_tx_blocked_vif, NULL);
2545				/* Unblock BCAST / MCAST station */
2546				iwl_mvm_modify_all_sta_disable_tx(mvm, mvmvif, false);
2547				cancel_delayed_work(&mvm->cs_tx_unblock_dwork);
2548			}
2549		}
2550
2551		rs_update_last_rssi(mvm, mvmsta, rx_status);
2552
2553		trig = iwl_fw_dbg_trigger_on(&mvm->fwrt,
2554					     ieee80211_vif_to_wdev(vif),
2555					     FW_DBG_TRIGGER_RSSI);
2556
2557		if (trig && ieee80211_is_beacon(hdr->frame_control)) {
2558			struct iwl_fw_dbg_trigger_low_rssi *rssi_trig;
2559			s32 rssi;
2560
2561			rssi_trig = (void *)trig->data;
2562			rssi = le32_to_cpu(rssi_trig->rssi);
2563
2564			if (rx_status->signal < rssi)
2565				iwl_fw_dbg_collect_trig(&mvm->fwrt, trig,
2566							NULL);
2567		}
2568
2569		if (ieee80211_is_data(hdr->frame_control))
2570			iwl_mvm_rx_csum(mvm, sta, skb, pkt);
2571
2572		if (iwl_mvm_is_dup(sta, queue, rx_status, hdr, desc)) {
2573			kfree_skb(skb);
2574			goto out;
2575		}
2576
2577		/*
2578		 * Our hardware de-aggregates AMSDUs but copies the mac header
2579		 * as it to the de-aggregated MPDUs. We need to turn off the
2580		 * AMSDU bit in the QoS control ourselves.
2581		 * In addition, HW reverses addr3 and addr4 - reverse it back.
2582		 */
2583		if ((desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) &&
2584		    !WARN_ON(!ieee80211_is_data_qos(hdr->frame_control))) {
2585			u8 *qc = ieee80211_get_qos_ctl(hdr);
2586
2587			*qc &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT;
2588
2589			if (mvm->trans->trans_cfg->device_family ==
2590			    IWL_DEVICE_FAMILY_9000) {
2591				iwl_mvm_flip_address(hdr->addr3);
2592
2593				if (ieee80211_has_a4(hdr->frame_control))
2594					iwl_mvm_flip_address(hdr->addr4);
2595			}
2596		}
2597		if (baid != IWL_RX_REORDER_DATA_INVALID_BAID) {
2598			u32 reorder_data = le32_to_cpu(desc->reorder_data);
2599
2600			iwl_mvm_agg_rx_received(mvm, reorder_data, baid);
2601		}
2602	}
2603
2604	/* management stuff on default queue */
2605	if (!queue) {
2606		if (unlikely((ieee80211_is_beacon(hdr->frame_control) ||
2607			      ieee80211_is_probe_resp(hdr->frame_control)) &&
2608			     mvm->sched_scan_pass_all ==
2609			     SCHED_SCAN_PASS_ALL_ENABLED))
2610			mvm->sched_scan_pass_all = SCHED_SCAN_PASS_ALL_FOUND;
2611
2612		if (unlikely(ieee80211_is_beacon(hdr->frame_control) ||
2613			     ieee80211_is_probe_resp(hdr->frame_control)))
2614			rx_status->boottime_ns = ktime_get_boottime_ns();
2615	}
2616
2617	if (iwl_mvm_create_skb(mvm, skb, hdr, len, crypt_len, rxb)) {
2618		kfree_skb(skb);
2619		goto out;
2620	}
2621
2622	if (!iwl_mvm_reorder(mvm, napi, queue, sta, skb, desc) &&
2623	    likely(!iwl_mvm_time_sync_frame(mvm, skb, hdr->addr2)) &&
2624	    likely(!iwl_mvm_mei_filter_scan(mvm, skb)))
2625		iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, queue, sta,
2626						link_sta);
2627out:
2628	rcu_read_unlock();
2629}
2630
2631void iwl_mvm_rx_monitor_no_data(struct iwl_mvm *mvm, struct napi_struct *napi,
2632				struct iwl_rx_cmd_buffer *rxb, int queue)
2633{
2634	struct ieee80211_rx_status *rx_status;
2635	struct iwl_rx_packet *pkt = rxb_addr(rxb);
2636	struct iwl_rx_no_data_ver_3 *desc = (void *)pkt->data;
2637	u32 rssi;
2638	u32 info_type;
2639	struct ieee80211_sta *sta = NULL;
2640	struct sk_buff *skb;
2641	struct iwl_mvm_rx_phy_data phy_data;
2642	u32 format;
2643
2644	if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status)))
2645		return;
2646
2647	if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(struct iwl_rx_no_data)))
2648		return;
2649
2650	rssi = le32_to_cpu(desc->rssi);
2651	info_type = le32_to_cpu(desc->info) & RX_NO_DATA_INFO_TYPE_MSK;
2652	phy_data.d0 = desc->phy_info[0];
2653	phy_data.d1 = desc->phy_info[1];
2654	phy_data.phy_info = IWL_RX_MPDU_PHY_TSF_OVERLOAD;
2655	phy_data.gp2_on_air_rise = le32_to_cpu(desc->on_air_rise_time);
2656	phy_data.rate_n_flags = le32_to_cpu(desc->rate);
2657	phy_data.energy_a = u32_get_bits(rssi, RX_NO_DATA_CHAIN_A_MSK);
2658	phy_data.energy_b = u32_get_bits(rssi, RX_NO_DATA_CHAIN_B_MSK);
2659	phy_data.channel = u32_get_bits(rssi, RX_NO_DATA_CHANNEL_MSK);
2660	phy_data.with_data = false;
2661	phy_data.rx_vec[0] = desc->rx_vec[0];
2662	phy_data.rx_vec[1] = desc->rx_vec[1];
2663
2664	if (iwl_fw_lookup_notif_ver(mvm->fw, DATA_PATH_GROUP,
2665				    RX_NO_DATA_NOTIF, 0) < 2) {
2666		IWL_DEBUG_DROP(mvm, "Got an old rate format. Old rate: 0x%x\n",
2667			       phy_data.rate_n_flags);
2668		phy_data.rate_n_flags = iwl_new_rate_from_v1(phy_data.rate_n_flags);
2669		IWL_DEBUG_DROP(mvm, " Rate after conversion to the new format: 0x%x\n",
2670			       phy_data.rate_n_flags);
2671	}
2672
2673	format = phy_data.rate_n_flags & RATE_MCS_MOD_TYPE_MSK;
2674
2675	if (iwl_fw_lookup_notif_ver(mvm->fw, DATA_PATH_GROUP,
2676				    RX_NO_DATA_NOTIF, 0) >= 3) {
2677		if (unlikely(iwl_rx_packet_payload_len(pkt) <
2678		    sizeof(struct iwl_rx_no_data_ver_3)))
2679		/* invalid len for ver 3 */
2680			return;
2681		phy_data.rx_vec[2] = desc->rx_vec[2];
2682		phy_data.rx_vec[3] = desc->rx_vec[3];
2683	} else {
2684		if (format == RATE_MCS_EHT_MSK)
2685			/* no support for EHT before version 3 API */
2686			return;
2687	}
2688
2689	/* Dont use dev_alloc_skb(), we'll have enough headroom once
2690	 * ieee80211_hdr pulled.
2691	 */
2692	skb = alloc_skb(128, GFP_ATOMIC);
2693	if (!skb) {
2694		IWL_ERR(mvm, "alloc_skb failed\n");
2695		return;
2696	}
2697
2698	rx_status = IEEE80211_SKB_RXCB(skb);
2699
2700	/* 0-length PSDU */
2701	rx_status->flag |= RX_FLAG_NO_PSDU;
2702
2703	switch (info_type) {
2704	case RX_NO_DATA_INFO_TYPE_NDP:
2705		rx_status->zero_length_psdu_type =
2706			IEEE80211_RADIOTAP_ZERO_LEN_PSDU_SOUNDING;
2707		break;
2708	case RX_NO_DATA_INFO_TYPE_MU_UNMATCHED:
2709	case RX_NO_DATA_INFO_TYPE_TB_UNMATCHED:
2710		rx_status->zero_length_psdu_type =
2711			IEEE80211_RADIOTAP_ZERO_LEN_PSDU_NOT_CAPTURED;
2712		break;
2713	default:
2714		rx_status->zero_length_psdu_type =
2715			IEEE80211_RADIOTAP_ZERO_LEN_PSDU_VENDOR;
2716		break;
2717	}
2718
2719	rx_status->band = phy_data.channel > 14 ? NL80211_BAND_5GHZ :
2720		NL80211_BAND_2GHZ;
2721
2722	iwl_mvm_rx_fill_status(mvm, skb, &phy_data, queue);
2723
2724	/* no more radio tap info should be put after this point.
2725	 *
2726	 * We mark it as mac header, for upper layers to know where
2727	 * all radio tap header ends.
2728	 */
2729	skb_reset_mac_header(skb);
2730
2731	/*
2732	 * Override the nss from the rx_vec since the rate_n_flags has
2733	 * only 2 bits for the nss which gives a max of 4 ss but there
2734	 * may be up to 8 spatial streams.
2735	 */
2736	switch (format) {
2737	case RATE_MCS_VHT_MSK:
2738		rx_status->nss =
2739			le32_get_bits(desc->rx_vec[0],
2740				      RX_NO_DATA_RX_VEC0_VHT_NSTS_MSK) + 1;
2741		break;
2742	case RATE_MCS_HE_MSK:
2743		rx_status->nss =
2744			le32_get_bits(desc->rx_vec[0],
2745				      RX_NO_DATA_RX_VEC0_HE_NSTS_MSK) + 1;
2746		break;
2747	case RATE_MCS_EHT_MSK:
2748		rx_status->nss =
2749			le32_get_bits(desc->rx_vec[2],
2750				      RX_NO_DATA_RX_VEC2_EHT_NSTS_MSK) + 1;
2751	}
2752
2753	rcu_read_lock();
2754	ieee80211_rx_napi(mvm->hw, sta, skb, napi);
2755	rcu_read_unlock();
2756}
2757
2758void iwl_mvm_rx_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi,
2759			      struct iwl_rx_cmd_buffer *rxb, int queue)
2760{
2761	struct iwl_rx_packet *pkt = rxb_addr(rxb);
2762	struct iwl_frame_release *release = (void *)pkt->data;
2763
2764	if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*release)))
2765		return;
2766
2767	iwl_mvm_release_frames_from_notif(mvm, napi, release->baid,
2768					  le16_to_cpu(release->nssn),
2769					  queue, 0);
2770}
2771
2772void iwl_mvm_rx_bar_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi,
2773				  struct iwl_rx_cmd_buffer *rxb, int queue)
2774{
2775	struct iwl_rx_packet *pkt = rxb_addr(rxb);
2776	struct iwl_bar_frame_release *release = (void *)pkt->data;
2777	unsigned int baid = le32_get_bits(release->ba_info,
2778					  IWL_BAR_FRAME_RELEASE_BAID_MASK);
2779	unsigned int nssn = le32_get_bits(release->ba_info,
2780					  IWL_BAR_FRAME_RELEASE_NSSN_MASK);
2781	unsigned int sta_id = le32_get_bits(release->sta_tid,
2782					    IWL_BAR_FRAME_RELEASE_STA_MASK);
2783	unsigned int tid = le32_get_bits(release->sta_tid,
2784					 IWL_BAR_FRAME_RELEASE_TID_MASK);
2785	struct iwl_mvm_baid_data *baid_data;
2786
2787	if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*release)))
2788		return;
2789
2790	if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID ||
2791			 baid >= ARRAY_SIZE(mvm->baid_map)))
2792		return;
2793
2794	rcu_read_lock();
2795	baid_data = rcu_dereference(mvm->baid_map[baid]);
2796	if (!baid_data) {
2797		IWL_DEBUG_RX(mvm,
2798			     "Got valid BAID %d but not allocated, invalid BAR release!\n",
2799			      baid);
2800		goto out;
2801	}
2802
2803	if (WARN(tid != baid_data->tid || sta_id > IWL_MVM_STATION_COUNT_MAX ||
2804		 !(baid_data->sta_mask & BIT(sta_id)),
2805		 "baid 0x%x is mapped to sta_mask:0x%x tid:%d, but BAR release received for sta:%d tid:%d\n",
2806		 baid, baid_data->sta_mask, baid_data->tid, sta_id,
2807		 tid))
2808		goto out;
2809
2810	iwl_mvm_release_frames_from_notif(mvm, napi, baid, nssn, queue, 0);
2811out:
2812	rcu_read_unlock();
2813}
2814