162306a36Sopenharmony_ci/* 262306a36Sopenharmony_ci * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org> 362306a36Sopenharmony_ci * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com> 462306a36Sopenharmony_ci * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com> 562306a36Sopenharmony_ci * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org> 662306a36Sopenharmony_ci * 762306a36Sopenharmony_ci * Permission to use, copy, modify, and distribute this software for any 862306a36Sopenharmony_ci * purpose with or without fee is hereby granted, provided that the above 962306a36Sopenharmony_ci * copyright notice and this permission notice appear in all copies. 1062306a36Sopenharmony_ci * 1162306a36Sopenharmony_ci * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 1262306a36Sopenharmony_ci * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 1362306a36Sopenharmony_ci * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 1462306a36Sopenharmony_ci * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 1562306a36Sopenharmony_ci * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 1662306a36Sopenharmony_ci * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 1762306a36Sopenharmony_ci * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 1862306a36Sopenharmony_ci * 1962306a36Sopenharmony_ci */ 2062306a36Sopenharmony_ci 2162306a36Sopenharmony_ci/***********************\ 2262306a36Sopenharmony_ci* PHY related functions * 2362306a36Sopenharmony_ci\***********************/ 2462306a36Sopenharmony_ci 2562306a36Sopenharmony_ci#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 2662306a36Sopenharmony_ci 2762306a36Sopenharmony_ci#include <linux/delay.h> 2862306a36Sopenharmony_ci#include <linux/slab.h> 2962306a36Sopenharmony_ci#include <linux/sort.h> 3062306a36Sopenharmony_ci#include <asm/unaligned.h> 3162306a36Sopenharmony_ci 3262306a36Sopenharmony_ci#include "ath5k.h" 3362306a36Sopenharmony_ci#include "reg.h" 3462306a36Sopenharmony_ci#include "rfbuffer.h" 3562306a36Sopenharmony_ci#include "rfgain.h" 3662306a36Sopenharmony_ci#include "../regd.h" 3762306a36Sopenharmony_ci 3862306a36Sopenharmony_ci 3962306a36Sopenharmony_ci/** 4062306a36Sopenharmony_ci * DOC: PHY related functions 4162306a36Sopenharmony_ci * 4262306a36Sopenharmony_ci * Here we handle the low-level functions related to baseband 4362306a36Sopenharmony_ci * and analog frontend (RF) parts. This is by far the most complex 4462306a36Sopenharmony_ci * part of the hw code so make sure you know what you are doing. 4562306a36Sopenharmony_ci * 4662306a36Sopenharmony_ci * Here is a list of what this is all about: 4762306a36Sopenharmony_ci * 4862306a36Sopenharmony_ci * - Channel setting/switching 4962306a36Sopenharmony_ci * 5062306a36Sopenharmony_ci * - Automatic Gain Control (AGC) calibration 5162306a36Sopenharmony_ci * 5262306a36Sopenharmony_ci * - Noise Floor calibration 5362306a36Sopenharmony_ci * 5462306a36Sopenharmony_ci * - I/Q imbalance calibration (QAM correction) 5562306a36Sopenharmony_ci * 5662306a36Sopenharmony_ci * - Calibration due to thermal changes (gain_F) 5762306a36Sopenharmony_ci * 5862306a36Sopenharmony_ci * - Spur noise mitigation 5962306a36Sopenharmony_ci * 6062306a36Sopenharmony_ci * - RF/PHY initialization for the various operating modes and bwmodes 6162306a36Sopenharmony_ci * 6262306a36Sopenharmony_ci * - Antenna control 6362306a36Sopenharmony_ci * 6462306a36Sopenharmony_ci * - TX power control per channel/rate/packet type 6562306a36Sopenharmony_ci * 6662306a36Sopenharmony_ci * Also have in mind we never got documentation for most of these 6762306a36Sopenharmony_ci * functions, what we have comes mostly from Atheros's code, reverse 6862306a36Sopenharmony_ci * engineering and patent docs/presentations etc. 6962306a36Sopenharmony_ci */ 7062306a36Sopenharmony_ci 7162306a36Sopenharmony_ci 7262306a36Sopenharmony_ci/******************\ 7362306a36Sopenharmony_ci* Helper functions * 7462306a36Sopenharmony_ci\******************/ 7562306a36Sopenharmony_ci 7662306a36Sopenharmony_ci/** 7762306a36Sopenharmony_ci * ath5k_hw_radio_revision() - Get the PHY Chip revision 7862306a36Sopenharmony_ci * @ah: The &struct ath5k_hw 7962306a36Sopenharmony_ci * @band: One of enum nl80211_band 8062306a36Sopenharmony_ci * 8162306a36Sopenharmony_ci * Returns the revision number of a 2GHz, 5GHz or single chip 8262306a36Sopenharmony_ci * radio. 8362306a36Sopenharmony_ci */ 8462306a36Sopenharmony_ciu16 8562306a36Sopenharmony_ciath5k_hw_radio_revision(struct ath5k_hw *ah, enum nl80211_band band) 8662306a36Sopenharmony_ci{ 8762306a36Sopenharmony_ci unsigned int i; 8862306a36Sopenharmony_ci u32 srev; 8962306a36Sopenharmony_ci u16 ret; 9062306a36Sopenharmony_ci 9162306a36Sopenharmony_ci /* 9262306a36Sopenharmony_ci * Set the radio chip access register 9362306a36Sopenharmony_ci */ 9462306a36Sopenharmony_ci switch (band) { 9562306a36Sopenharmony_ci case NL80211_BAND_2GHZ: 9662306a36Sopenharmony_ci ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0)); 9762306a36Sopenharmony_ci break; 9862306a36Sopenharmony_ci case NL80211_BAND_5GHZ: 9962306a36Sopenharmony_ci ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0)); 10062306a36Sopenharmony_ci break; 10162306a36Sopenharmony_ci default: 10262306a36Sopenharmony_ci return 0; 10362306a36Sopenharmony_ci } 10462306a36Sopenharmony_ci 10562306a36Sopenharmony_ci usleep_range(2000, 2500); 10662306a36Sopenharmony_ci 10762306a36Sopenharmony_ci /* ...wait until PHY is ready and read the selected radio revision */ 10862306a36Sopenharmony_ci ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34)); 10962306a36Sopenharmony_ci 11062306a36Sopenharmony_ci for (i = 0; i < 8; i++) 11162306a36Sopenharmony_ci ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20)); 11262306a36Sopenharmony_ci 11362306a36Sopenharmony_ci if (ah->ah_version == AR5K_AR5210) { 11462306a36Sopenharmony_ci srev = (ath5k_hw_reg_read(ah, AR5K_PHY(256)) >> 28) & 0xf; 11562306a36Sopenharmony_ci ret = (u16)ath5k_hw_bitswap(srev, 4) + 1; 11662306a36Sopenharmony_ci } else { 11762306a36Sopenharmony_ci srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff; 11862306a36Sopenharmony_ci ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) | 11962306a36Sopenharmony_ci ((srev & 0x0f) << 4), 8); 12062306a36Sopenharmony_ci } 12162306a36Sopenharmony_ci 12262306a36Sopenharmony_ci /* Reset to the 5GHz mode */ 12362306a36Sopenharmony_ci ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0)); 12462306a36Sopenharmony_ci 12562306a36Sopenharmony_ci return ret; 12662306a36Sopenharmony_ci} 12762306a36Sopenharmony_ci 12862306a36Sopenharmony_ci/** 12962306a36Sopenharmony_ci * ath5k_channel_ok() - Check if a channel is supported by the hw 13062306a36Sopenharmony_ci * @ah: The &struct ath5k_hw 13162306a36Sopenharmony_ci * @channel: The &struct ieee80211_channel 13262306a36Sopenharmony_ci * 13362306a36Sopenharmony_ci * Note: We don't do any regulatory domain checks here, it's just 13462306a36Sopenharmony_ci * a sanity check. 13562306a36Sopenharmony_ci */ 13662306a36Sopenharmony_cibool 13762306a36Sopenharmony_ciath5k_channel_ok(struct ath5k_hw *ah, struct ieee80211_channel *channel) 13862306a36Sopenharmony_ci{ 13962306a36Sopenharmony_ci u16 freq = channel->center_freq; 14062306a36Sopenharmony_ci 14162306a36Sopenharmony_ci /* Check if the channel is in our supported range */ 14262306a36Sopenharmony_ci if (channel->band == NL80211_BAND_2GHZ) { 14362306a36Sopenharmony_ci if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) && 14462306a36Sopenharmony_ci (freq <= ah->ah_capabilities.cap_range.range_2ghz_max)) 14562306a36Sopenharmony_ci return true; 14662306a36Sopenharmony_ci } else if (channel->band == NL80211_BAND_5GHZ) 14762306a36Sopenharmony_ci if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) && 14862306a36Sopenharmony_ci (freq <= ah->ah_capabilities.cap_range.range_5ghz_max)) 14962306a36Sopenharmony_ci return true; 15062306a36Sopenharmony_ci 15162306a36Sopenharmony_ci return false; 15262306a36Sopenharmony_ci} 15362306a36Sopenharmony_ci 15462306a36Sopenharmony_ci/** 15562306a36Sopenharmony_ci * ath5k_hw_chan_has_spur_noise() - Check if channel is sensitive to spur noise 15662306a36Sopenharmony_ci * @ah: The &struct ath5k_hw 15762306a36Sopenharmony_ci * @channel: The &struct ieee80211_channel 15862306a36Sopenharmony_ci */ 15962306a36Sopenharmony_cibool 16062306a36Sopenharmony_ciath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah, 16162306a36Sopenharmony_ci struct ieee80211_channel *channel) 16262306a36Sopenharmony_ci{ 16362306a36Sopenharmony_ci u8 refclk_freq; 16462306a36Sopenharmony_ci 16562306a36Sopenharmony_ci if ((ah->ah_radio == AR5K_RF5112) || 16662306a36Sopenharmony_ci (ah->ah_radio == AR5K_RF5413) || 16762306a36Sopenharmony_ci (ah->ah_radio == AR5K_RF2413) || 16862306a36Sopenharmony_ci (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))) 16962306a36Sopenharmony_ci refclk_freq = 40; 17062306a36Sopenharmony_ci else 17162306a36Sopenharmony_ci refclk_freq = 32; 17262306a36Sopenharmony_ci 17362306a36Sopenharmony_ci if ((channel->center_freq % refclk_freq != 0) && 17462306a36Sopenharmony_ci ((channel->center_freq % refclk_freq < 10) || 17562306a36Sopenharmony_ci (channel->center_freq % refclk_freq > 22))) 17662306a36Sopenharmony_ci return true; 17762306a36Sopenharmony_ci else 17862306a36Sopenharmony_ci return false; 17962306a36Sopenharmony_ci} 18062306a36Sopenharmony_ci 18162306a36Sopenharmony_ci/** 18262306a36Sopenharmony_ci * ath5k_hw_rfb_op() - Perform an operation on the given RF Buffer 18362306a36Sopenharmony_ci * @ah: The &struct ath5k_hw 18462306a36Sopenharmony_ci * @rf_regs: The struct ath5k_rf_reg 18562306a36Sopenharmony_ci * @val: New value 18662306a36Sopenharmony_ci * @reg_id: RF register ID 18762306a36Sopenharmony_ci * @set: Indicate we need to swap data 18862306a36Sopenharmony_ci * 18962306a36Sopenharmony_ci * This is an internal function used to modify RF Banks before 19062306a36Sopenharmony_ci * writing them to AR5K_RF_BUFFER. Check out rfbuffer.h for more 19162306a36Sopenharmony_ci * infos. 19262306a36Sopenharmony_ci */ 19362306a36Sopenharmony_cistatic unsigned int 19462306a36Sopenharmony_ciath5k_hw_rfb_op(struct ath5k_hw *ah, const struct ath5k_rf_reg *rf_regs, 19562306a36Sopenharmony_ci u32 val, u8 reg_id, bool set) 19662306a36Sopenharmony_ci{ 19762306a36Sopenharmony_ci const struct ath5k_rf_reg *rfreg = NULL; 19862306a36Sopenharmony_ci u8 offset, bank, num_bits, col, position; 19962306a36Sopenharmony_ci u16 entry; 20062306a36Sopenharmony_ci u32 mask, data, last_bit, bits_shifted, first_bit; 20162306a36Sopenharmony_ci u32 *rfb; 20262306a36Sopenharmony_ci s32 bits_left; 20362306a36Sopenharmony_ci int i; 20462306a36Sopenharmony_ci 20562306a36Sopenharmony_ci data = 0; 20662306a36Sopenharmony_ci rfb = ah->ah_rf_banks; 20762306a36Sopenharmony_ci 20862306a36Sopenharmony_ci for (i = 0; i < ah->ah_rf_regs_count; i++) { 20962306a36Sopenharmony_ci if (rf_regs[i].index == reg_id) { 21062306a36Sopenharmony_ci rfreg = &rf_regs[i]; 21162306a36Sopenharmony_ci break; 21262306a36Sopenharmony_ci } 21362306a36Sopenharmony_ci } 21462306a36Sopenharmony_ci 21562306a36Sopenharmony_ci if (rfb == NULL || rfreg == NULL) { 21662306a36Sopenharmony_ci ATH5K_PRINTF("Rf register not found!\n"); 21762306a36Sopenharmony_ci /* should not happen */ 21862306a36Sopenharmony_ci return 0; 21962306a36Sopenharmony_ci } 22062306a36Sopenharmony_ci 22162306a36Sopenharmony_ci bank = rfreg->bank; 22262306a36Sopenharmony_ci num_bits = rfreg->field.len; 22362306a36Sopenharmony_ci first_bit = rfreg->field.pos; 22462306a36Sopenharmony_ci col = rfreg->field.col; 22562306a36Sopenharmony_ci 22662306a36Sopenharmony_ci /* first_bit is an offset from bank's 22762306a36Sopenharmony_ci * start. Since we have all banks on 22862306a36Sopenharmony_ci * the same array, we use this offset 22962306a36Sopenharmony_ci * to mark each bank's start */ 23062306a36Sopenharmony_ci offset = ah->ah_offset[bank]; 23162306a36Sopenharmony_ci 23262306a36Sopenharmony_ci /* Boundary check */ 23362306a36Sopenharmony_ci if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) { 23462306a36Sopenharmony_ci ATH5K_PRINTF("invalid values at offset %u\n", offset); 23562306a36Sopenharmony_ci return 0; 23662306a36Sopenharmony_ci } 23762306a36Sopenharmony_ci 23862306a36Sopenharmony_ci entry = ((first_bit - 1) / 8) + offset; 23962306a36Sopenharmony_ci position = (first_bit - 1) % 8; 24062306a36Sopenharmony_ci 24162306a36Sopenharmony_ci if (set) 24262306a36Sopenharmony_ci data = ath5k_hw_bitswap(val, num_bits); 24362306a36Sopenharmony_ci 24462306a36Sopenharmony_ci for (bits_shifted = 0, bits_left = num_bits; bits_left > 0; 24562306a36Sopenharmony_ci position = 0, entry++) { 24662306a36Sopenharmony_ci 24762306a36Sopenharmony_ci last_bit = (position + bits_left > 8) ? 8 : 24862306a36Sopenharmony_ci position + bits_left; 24962306a36Sopenharmony_ci 25062306a36Sopenharmony_ci mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) << 25162306a36Sopenharmony_ci (col * 8); 25262306a36Sopenharmony_ci 25362306a36Sopenharmony_ci if (set) { 25462306a36Sopenharmony_ci rfb[entry] &= ~mask; 25562306a36Sopenharmony_ci rfb[entry] |= ((data << position) << (col * 8)) & mask; 25662306a36Sopenharmony_ci data >>= (8 - position); 25762306a36Sopenharmony_ci } else { 25862306a36Sopenharmony_ci data |= (((rfb[entry] & mask) >> (col * 8)) >> position) 25962306a36Sopenharmony_ci << bits_shifted; 26062306a36Sopenharmony_ci bits_shifted += last_bit - position; 26162306a36Sopenharmony_ci } 26262306a36Sopenharmony_ci 26362306a36Sopenharmony_ci bits_left -= 8 - position; 26462306a36Sopenharmony_ci } 26562306a36Sopenharmony_ci 26662306a36Sopenharmony_ci data = set ? 1 : ath5k_hw_bitswap(data, num_bits); 26762306a36Sopenharmony_ci 26862306a36Sopenharmony_ci return data; 26962306a36Sopenharmony_ci} 27062306a36Sopenharmony_ci 27162306a36Sopenharmony_ci/** 27262306a36Sopenharmony_ci * ath5k_hw_write_ofdm_timings() - set OFDM timings on AR5212 27362306a36Sopenharmony_ci * @ah: the &struct ath5k_hw 27462306a36Sopenharmony_ci * @channel: the currently set channel upon reset 27562306a36Sopenharmony_ci * 27662306a36Sopenharmony_ci * Write the delta slope coefficient (used on pilot tracking ?) for OFDM 27762306a36Sopenharmony_ci * operation on the AR5212 upon reset. This is a helper for ath5k_hw_phy_init. 27862306a36Sopenharmony_ci * 27962306a36Sopenharmony_ci * Since delta slope is floating point we split it on its exponent and 28062306a36Sopenharmony_ci * mantissa and provide these values on hw. 28162306a36Sopenharmony_ci * 28262306a36Sopenharmony_ci * For more infos i think this patent is related 28362306a36Sopenharmony_ci * "http://www.freepatentsonline.com/7184495.html" 28462306a36Sopenharmony_ci */ 28562306a36Sopenharmony_cistatic inline int 28662306a36Sopenharmony_ciath5k_hw_write_ofdm_timings(struct ath5k_hw *ah, 28762306a36Sopenharmony_ci struct ieee80211_channel *channel) 28862306a36Sopenharmony_ci{ 28962306a36Sopenharmony_ci /* Get exponent and mantissa and set it */ 29062306a36Sopenharmony_ci u32 coef_scaled, coef_exp, coef_man, 29162306a36Sopenharmony_ci ds_coef_exp, ds_coef_man, clock; 29262306a36Sopenharmony_ci 29362306a36Sopenharmony_ci BUG_ON(!(ah->ah_version == AR5K_AR5212) || 29462306a36Sopenharmony_ci (channel->hw_value == AR5K_MODE_11B)); 29562306a36Sopenharmony_ci 29662306a36Sopenharmony_ci /* Get coefficient 29762306a36Sopenharmony_ci * ALGO: coef = (5 * clock / carrier_freq) / 2 29862306a36Sopenharmony_ci * we scale coef by shifting clock value by 24 for 29962306a36Sopenharmony_ci * better precision since we use integers */ 30062306a36Sopenharmony_ci switch (ah->ah_bwmode) { 30162306a36Sopenharmony_ci case AR5K_BWMODE_40MHZ: 30262306a36Sopenharmony_ci clock = 40 * 2; 30362306a36Sopenharmony_ci break; 30462306a36Sopenharmony_ci case AR5K_BWMODE_10MHZ: 30562306a36Sopenharmony_ci clock = 40 / 2; 30662306a36Sopenharmony_ci break; 30762306a36Sopenharmony_ci case AR5K_BWMODE_5MHZ: 30862306a36Sopenharmony_ci clock = 40 / 4; 30962306a36Sopenharmony_ci break; 31062306a36Sopenharmony_ci default: 31162306a36Sopenharmony_ci clock = 40; 31262306a36Sopenharmony_ci break; 31362306a36Sopenharmony_ci } 31462306a36Sopenharmony_ci coef_scaled = ((5 * (clock << 24)) / 2) / channel->center_freq; 31562306a36Sopenharmony_ci 31662306a36Sopenharmony_ci /* Get exponent 31762306a36Sopenharmony_ci * ALGO: coef_exp = 14 - highest set bit position */ 31862306a36Sopenharmony_ci coef_exp = ilog2(coef_scaled); 31962306a36Sopenharmony_ci 32062306a36Sopenharmony_ci /* Doesn't make sense if it's zero*/ 32162306a36Sopenharmony_ci if (!coef_scaled || !coef_exp) 32262306a36Sopenharmony_ci return -EINVAL; 32362306a36Sopenharmony_ci 32462306a36Sopenharmony_ci /* Note: we've shifted coef_scaled by 24 */ 32562306a36Sopenharmony_ci coef_exp = 14 - (coef_exp - 24); 32662306a36Sopenharmony_ci 32762306a36Sopenharmony_ci 32862306a36Sopenharmony_ci /* Get mantissa (significant digits) 32962306a36Sopenharmony_ci * ALGO: coef_mant = floor(coef_scaled* 2^coef_exp+0.5) */ 33062306a36Sopenharmony_ci coef_man = coef_scaled + 33162306a36Sopenharmony_ci (1 << (24 - coef_exp - 1)); 33262306a36Sopenharmony_ci 33362306a36Sopenharmony_ci /* Calculate delta slope coefficient exponent 33462306a36Sopenharmony_ci * and mantissa (remove scaling) and set them on hw */ 33562306a36Sopenharmony_ci ds_coef_man = coef_man >> (24 - coef_exp); 33662306a36Sopenharmony_ci ds_coef_exp = coef_exp - 16; 33762306a36Sopenharmony_ci 33862306a36Sopenharmony_ci AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3, 33962306a36Sopenharmony_ci AR5K_PHY_TIMING_3_DSC_MAN, ds_coef_man); 34062306a36Sopenharmony_ci AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3, 34162306a36Sopenharmony_ci AR5K_PHY_TIMING_3_DSC_EXP, ds_coef_exp); 34262306a36Sopenharmony_ci 34362306a36Sopenharmony_ci return 0; 34462306a36Sopenharmony_ci} 34562306a36Sopenharmony_ci 34662306a36Sopenharmony_ci/** 34762306a36Sopenharmony_ci * ath5k_hw_phy_disable() - Disable PHY 34862306a36Sopenharmony_ci * @ah: The &struct ath5k_hw 34962306a36Sopenharmony_ci */ 35062306a36Sopenharmony_ciint ath5k_hw_phy_disable(struct ath5k_hw *ah) 35162306a36Sopenharmony_ci{ 35262306a36Sopenharmony_ci /*Just a try M.F.*/ 35362306a36Sopenharmony_ci ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT); 35462306a36Sopenharmony_ci 35562306a36Sopenharmony_ci return 0; 35662306a36Sopenharmony_ci} 35762306a36Sopenharmony_ci 35862306a36Sopenharmony_ci/** 35962306a36Sopenharmony_ci * ath5k_hw_wait_for_synth() - Wait for synth to settle 36062306a36Sopenharmony_ci * @ah: The &struct ath5k_hw 36162306a36Sopenharmony_ci * @channel: The &struct ieee80211_channel 36262306a36Sopenharmony_ci */ 36362306a36Sopenharmony_cistatic void 36462306a36Sopenharmony_ciath5k_hw_wait_for_synth(struct ath5k_hw *ah, 36562306a36Sopenharmony_ci struct ieee80211_channel *channel) 36662306a36Sopenharmony_ci{ 36762306a36Sopenharmony_ci /* 36862306a36Sopenharmony_ci * On 5211+ read activation -> rx delay 36962306a36Sopenharmony_ci * and use it (100ns steps). 37062306a36Sopenharmony_ci */ 37162306a36Sopenharmony_ci if (ah->ah_version != AR5K_AR5210) { 37262306a36Sopenharmony_ci u32 delay; 37362306a36Sopenharmony_ci delay = ath5k_hw_reg_read(ah, AR5K_PHY_RX_DELAY) & 37462306a36Sopenharmony_ci AR5K_PHY_RX_DELAY_M; 37562306a36Sopenharmony_ci delay = (channel->hw_value == AR5K_MODE_11B) ? 37662306a36Sopenharmony_ci ((delay << 2) / 22) : (delay / 10); 37762306a36Sopenharmony_ci if (ah->ah_bwmode == AR5K_BWMODE_10MHZ) 37862306a36Sopenharmony_ci delay = delay << 1; 37962306a36Sopenharmony_ci if (ah->ah_bwmode == AR5K_BWMODE_5MHZ) 38062306a36Sopenharmony_ci delay = delay << 2; 38162306a36Sopenharmony_ci /* XXX: /2 on turbo ? Let's be safe 38262306a36Sopenharmony_ci * for now */ 38362306a36Sopenharmony_ci usleep_range(100 + delay, 100 + (2 * delay)); 38462306a36Sopenharmony_ci } else { 38562306a36Sopenharmony_ci usleep_range(1000, 1500); 38662306a36Sopenharmony_ci } 38762306a36Sopenharmony_ci} 38862306a36Sopenharmony_ci 38962306a36Sopenharmony_ci 39062306a36Sopenharmony_ci/**********************\ 39162306a36Sopenharmony_ci* RF Gain optimization * 39262306a36Sopenharmony_ci\**********************/ 39362306a36Sopenharmony_ci 39462306a36Sopenharmony_ci/** 39562306a36Sopenharmony_ci * DOC: RF Gain optimization 39662306a36Sopenharmony_ci * 39762306a36Sopenharmony_ci * This code is used to optimize RF gain on different environments 39862306a36Sopenharmony_ci * (temperature mostly) based on feedback from a power detector. 39962306a36Sopenharmony_ci * 40062306a36Sopenharmony_ci * It's only used on RF5111 and RF5112, later RF chips seem to have 40162306a36Sopenharmony_ci * auto adjustment on hw -notice they have a much smaller BANK 7 and 40262306a36Sopenharmony_ci * no gain optimization ladder-. 40362306a36Sopenharmony_ci * 40462306a36Sopenharmony_ci * For more infos check out this patent doc 40562306a36Sopenharmony_ci * "http://www.freepatentsonline.com/7400691.html" 40662306a36Sopenharmony_ci * 40762306a36Sopenharmony_ci * This paper describes power drops as seen on the receiver due to 40862306a36Sopenharmony_ci * probe packets 40962306a36Sopenharmony_ci * "http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues 41062306a36Sopenharmony_ci * %20of%20Power%20Control.pdf" 41162306a36Sopenharmony_ci * 41262306a36Sopenharmony_ci * And this is the MadWiFi bug entry related to the above 41362306a36Sopenharmony_ci * "http://madwifi-project.org/ticket/1659" 41462306a36Sopenharmony_ci * with various measurements and diagrams 41562306a36Sopenharmony_ci */ 41662306a36Sopenharmony_ci 41762306a36Sopenharmony_ci/** 41862306a36Sopenharmony_ci * ath5k_hw_rfgain_opt_init() - Initialize ah_gain during attach 41962306a36Sopenharmony_ci * @ah: The &struct ath5k_hw 42062306a36Sopenharmony_ci */ 42162306a36Sopenharmony_ciint ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah) 42262306a36Sopenharmony_ci{ 42362306a36Sopenharmony_ci /* Initialize the gain optimization values */ 42462306a36Sopenharmony_ci switch (ah->ah_radio) { 42562306a36Sopenharmony_ci case AR5K_RF5111: 42662306a36Sopenharmony_ci ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default; 42762306a36Sopenharmony_ci ah->ah_gain.g_low = 20; 42862306a36Sopenharmony_ci ah->ah_gain.g_high = 35; 42962306a36Sopenharmony_ci ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE; 43062306a36Sopenharmony_ci break; 43162306a36Sopenharmony_ci case AR5K_RF5112: 43262306a36Sopenharmony_ci ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default; 43362306a36Sopenharmony_ci ah->ah_gain.g_low = 20; 43462306a36Sopenharmony_ci ah->ah_gain.g_high = 85; 43562306a36Sopenharmony_ci ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE; 43662306a36Sopenharmony_ci break; 43762306a36Sopenharmony_ci default: 43862306a36Sopenharmony_ci return -EINVAL; 43962306a36Sopenharmony_ci } 44062306a36Sopenharmony_ci 44162306a36Sopenharmony_ci return 0; 44262306a36Sopenharmony_ci} 44362306a36Sopenharmony_ci 44462306a36Sopenharmony_ci/** 44562306a36Sopenharmony_ci * ath5k_hw_request_rfgain_probe() - Request a PAPD probe packet 44662306a36Sopenharmony_ci * @ah: The &struct ath5k_hw 44762306a36Sopenharmony_ci * 44862306a36Sopenharmony_ci * Schedules a gain probe check on the next transmitted packet. 44962306a36Sopenharmony_ci * That means our next packet is going to be sent with lower 45062306a36Sopenharmony_ci * tx power and a Peak to Average Power Detector (PAPD) will try 45162306a36Sopenharmony_ci * to measure the gain. 45262306a36Sopenharmony_ci * 45362306a36Sopenharmony_ci * TODO: Force a tx packet (bypassing PCU arbitrator etc) 45462306a36Sopenharmony_ci * just after we enable the probe so that we don't mess with 45562306a36Sopenharmony_ci * standard traffic. 45662306a36Sopenharmony_ci */ 45762306a36Sopenharmony_cistatic void 45862306a36Sopenharmony_ciath5k_hw_request_rfgain_probe(struct ath5k_hw *ah) 45962306a36Sopenharmony_ci{ 46062306a36Sopenharmony_ci 46162306a36Sopenharmony_ci /* Skip if gain calibration is inactive or 46262306a36Sopenharmony_ci * we already handle a probe request */ 46362306a36Sopenharmony_ci if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE) 46462306a36Sopenharmony_ci return; 46562306a36Sopenharmony_ci 46662306a36Sopenharmony_ci /* Send the packet with 2dB below max power as 46762306a36Sopenharmony_ci * patent doc suggest */ 46862306a36Sopenharmony_ci ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_ofdm - 4, 46962306a36Sopenharmony_ci AR5K_PHY_PAPD_PROBE_TXPOWER) | 47062306a36Sopenharmony_ci AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE); 47162306a36Sopenharmony_ci 47262306a36Sopenharmony_ci ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED; 47362306a36Sopenharmony_ci 47462306a36Sopenharmony_ci} 47562306a36Sopenharmony_ci 47662306a36Sopenharmony_ci/** 47762306a36Sopenharmony_ci * ath5k_hw_rf_gainf_corr() - Calculate Gain_F measurement correction 47862306a36Sopenharmony_ci * @ah: The &struct ath5k_hw 47962306a36Sopenharmony_ci * 48062306a36Sopenharmony_ci * Calculate Gain_F measurement correction 48162306a36Sopenharmony_ci * based on the current step for RF5112 rev. 2 48262306a36Sopenharmony_ci */ 48362306a36Sopenharmony_cistatic u32 48462306a36Sopenharmony_ciath5k_hw_rf_gainf_corr(struct ath5k_hw *ah) 48562306a36Sopenharmony_ci{ 48662306a36Sopenharmony_ci u32 mix, step; 48762306a36Sopenharmony_ci const struct ath5k_gain_opt *go; 48862306a36Sopenharmony_ci const struct ath5k_gain_opt_step *g_step; 48962306a36Sopenharmony_ci const struct ath5k_rf_reg *rf_regs; 49062306a36Sopenharmony_ci 49162306a36Sopenharmony_ci /* Only RF5112 Rev. 2 supports it */ 49262306a36Sopenharmony_ci if ((ah->ah_radio != AR5K_RF5112) || 49362306a36Sopenharmony_ci (ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A)) 49462306a36Sopenharmony_ci return 0; 49562306a36Sopenharmony_ci 49662306a36Sopenharmony_ci go = &rfgain_opt_5112; 49762306a36Sopenharmony_ci rf_regs = rf_regs_5112a; 49862306a36Sopenharmony_ci ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a); 49962306a36Sopenharmony_ci 50062306a36Sopenharmony_ci g_step = &go->go_step[ah->ah_gain.g_step_idx]; 50162306a36Sopenharmony_ci 50262306a36Sopenharmony_ci if (ah->ah_rf_banks == NULL) 50362306a36Sopenharmony_ci return 0; 50462306a36Sopenharmony_ci 50562306a36Sopenharmony_ci ah->ah_gain.g_f_corr = 0; 50662306a36Sopenharmony_ci 50762306a36Sopenharmony_ci /* No VGA (Variable Gain Amplifier) override, skip */ 50862306a36Sopenharmony_ci if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1) 50962306a36Sopenharmony_ci return 0; 51062306a36Sopenharmony_ci 51162306a36Sopenharmony_ci /* Mix gain stepping */ 51262306a36Sopenharmony_ci step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false); 51362306a36Sopenharmony_ci 51462306a36Sopenharmony_ci /* Mix gain override */ 51562306a36Sopenharmony_ci mix = g_step->gos_param[0]; 51662306a36Sopenharmony_ci 51762306a36Sopenharmony_ci switch (mix) { 51862306a36Sopenharmony_ci case 3: 51962306a36Sopenharmony_ci ah->ah_gain.g_f_corr = step * 2; 52062306a36Sopenharmony_ci break; 52162306a36Sopenharmony_ci case 2: 52262306a36Sopenharmony_ci ah->ah_gain.g_f_corr = (step - 5) * 2; 52362306a36Sopenharmony_ci break; 52462306a36Sopenharmony_ci case 1: 52562306a36Sopenharmony_ci ah->ah_gain.g_f_corr = step; 52662306a36Sopenharmony_ci break; 52762306a36Sopenharmony_ci default: 52862306a36Sopenharmony_ci ah->ah_gain.g_f_corr = 0; 52962306a36Sopenharmony_ci break; 53062306a36Sopenharmony_ci } 53162306a36Sopenharmony_ci 53262306a36Sopenharmony_ci return ah->ah_gain.g_f_corr; 53362306a36Sopenharmony_ci} 53462306a36Sopenharmony_ci 53562306a36Sopenharmony_ci/** 53662306a36Sopenharmony_ci * ath5k_hw_rf_check_gainf_readback() - Validate Gain_F feedback from detector 53762306a36Sopenharmony_ci * @ah: The &struct ath5k_hw 53862306a36Sopenharmony_ci * 53962306a36Sopenharmony_ci * Check if current gain_F measurement is in the range of our 54062306a36Sopenharmony_ci * power detector windows. If we get a measurement outside range 54162306a36Sopenharmony_ci * we know it's not accurate (detectors can't measure anything outside 54262306a36Sopenharmony_ci * their detection window) so we must ignore it. 54362306a36Sopenharmony_ci * 54462306a36Sopenharmony_ci * Returns true if readback was O.K. or false on failure 54562306a36Sopenharmony_ci */ 54662306a36Sopenharmony_cistatic bool 54762306a36Sopenharmony_ciath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah) 54862306a36Sopenharmony_ci{ 54962306a36Sopenharmony_ci const struct ath5k_rf_reg *rf_regs; 55062306a36Sopenharmony_ci u32 step, mix_ovr, level[4]; 55162306a36Sopenharmony_ci 55262306a36Sopenharmony_ci if (ah->ah_rf_banks == NULL) 55362306a36Sopenharmony_ci return false; 55462306a36Sopenharmony_ci 55562306a36Sopenharmony_ci if (ah->ah_radio == AR5K_RF5111) { 55662306a36Sopenharmony_ci 55762306a36Sopenharmony_ci rf_regs = rf_regs_5111; 55862306a36Sopenharmony_ci ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111); 55962306a36Sopenharmony_ci 56062306a36Sopenharmony_ci step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP, 56162306a36Sopenharmony_ci false); 56262306a36Sopenharmony_ci 56362306a36Sopenharmony_ci level[0] = 0; 56462306a36Sopenharmony_ci level[1] = (step == 63) ? 50 : step + 4; 56562306a36Sopenharmony_ci level[2] = (step != 63) ? 64 : level[0]; 56662306a36Sopenharmony_ci level[3] = level[2] + 50; 56762306a36Sopenharmony_ci 56862306a36Sopenharmony_ci ah->ah_gain.g_high = level[3] - 56962306a36Sopenharmony_ci (step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5); 57062306a36Sopenharmony_ci ah->ah_gain.g_low = level[0] + 57162306a36Sopenharmony_ci (step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0); 57262306a36Sopenharmony_ci } else { 57362306a36Sopenharmony_ci 57462306a36Sopenharmony_ci rf_regs = rf_regs_5112; 57562306a36Sopenharmony_ci ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112); 57662306a36Sopenharmony_ci 57762306a36Sopenharmony_ci mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, 57862306a36Sopenharmony_ci false); 57962306a36Sopenharmony_ci 58062306a36Sopenharmony_ci level[0] = level[2] = 0; 58162306a36Sopenharmony_ci 58262306a36Sopenharmony_ci if (mix_ovr == 1) { 58362306a36Sopenharmony_ci level[1] = level[3] = 83; 58462306a36Sopenharmony_ci } else { 58562306a36Sopenharmony_ci level[1] = level[3] = 107; 58662306a36Sopenharmony_ci ah->ah_gain.g_high = 55; 58762306a36Sopenharmony_ci } 58862306a36Sopenharmony_ci } 58962306a36Sopenharmony_ci 59062306a36Sopenharmony_ci return (ah->ah_gain.g_current >= level[0] && 59162306a36Sopenharmony_ci ah->ah_gain.g_current <= level[1]) || 59262306a36Sopenharmony_ci (ah->ah_gain.g_current >= level[2] && 59362306a36Sopenharmony_ci ah->ah_gain.g_current <= level[3]); 59462306a36Sopenharmony_ci} 59562306a36Sopenharmony_ci 59662306a36Sopenharmony_ci/** 59762306a36Sopenharmony_ci * ath5k_hw_rf_gainf_adjust() - Perform Gain_F adjustment 59862306a36Sopenharmony_ci * @ah: The &struct ath5k_hw 59962306a36Sopenharmony_ci * 60062306a36Sopenharmony_ci * Choose the right target gain based on current gain 60162306a36Sopenharmony_ci * and RF gain optimization ladder 60262306a36Sopenharmony_ci */ 60362306a36Sopenharmony_cistatic s8 60462306a36Sopenharmony_ciath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah) 60562306a36Sopenharmony_ci{ 60662306a36Sopenharmony_ci const struct ath5k_gain_opt *go; 60762306a36Sopenharmony_ci const struct ath5k_gain_opt_step *g_step; 60862306a36Sopenharmony_ci int ret = 0; 60962306a36Sopenharmony_ci 61062306a36Sopenharmony_ci switch (ah->ah_radio) { 61162306a36Sopenharmony_ci case AR5K_RF5111: 61262306a36Sopenharmony_ci go = &rfgain_opt_5111; 61362306a36Sopenharmony_ci break; 61462306a36Sopenharmony_ci case AR5K_RF5112: 61562306a36Sopenharmony_ci go = &rfgain_opt_5112; 61662306a36Sopenharmony_ci break; 61762306a36Sopenharmony_ci default: 61862306a36Sopenharmony_ci return 0; 61962306a36Sopenharmony_ci } 62062306a36Sopenharmony_ci 62162306a36Sopenharmony_ci g_step = &go->go_step[ah->ah_gain.g_step_idx]; 62262306a36Sopenharmony_ci 62362306a36Sopenharmony_ci if (ah->ah_gain.g_current >= ah->ah_gain.g_high) { 62462306a36Sopenharmony_ci 62562306a36Sopenharmony_ci /* Reached maximum */ 62662306a36Sopenharmony_ci if (ah->ah_gain.g_step_idx == 0) 62762306a36Sopenharmony_ci return -1; 62862306a36Sopenharmony_ci 62962306a36Sopenharmony_ci for (ah->ah_gain.g_target = ah->ah_gain.g_current; 63062306a36Sopenharmony_ci ah->ah_gain.g_target >= ah->ah_gain.g_high && 63162306a36Sopenharmony_ci ah->ah_gain.g_step_idx > 0; 63262306a36Sopenharmony_ci g_step = &go->go_step[ah->ah_gain.g_step_idx]) 63362306a36Sopenharmony_ci ah->ah_gain.g_target -= 2 * 63462306a36Sopenharmony_ci (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain - 63562306a36Sopenharmony_ci g_step->gos_gain); 63662306a36Sopenharmony_ci 63762306a36Sopenharmony_ci ret = 1; 63862306a36Sopenharmony_ci goto done; 63962306a36Sopenharmony_ci } 64062306a36Sopenharmony_ci 64162306a36Sopenharmony_ci if (ah->ah_gain.g_current <= ah->ah_gain.g_low) { 64262306a36Sopenharmony_ci 64362306a36Sopenharmony_ci /* Reached minimum */ 64462306a36Sopenharmony_ci if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1)) 64562306a36Sopenharmony_ci return -2; 64662306a36Sopenharmony_ci 64762306a36Sopenharmony_ci for (ah->ah_gain.g_target = ah->ah_gain.g_current; 64862306a36Sopenharmony_ci ah->ah_gain.g_target <= ah->ah_gain.g_low && 64962306a36Sopenharmony_ci ah->ah_gain.g_step_idx < go->go_steps_count - 1; 65062306a36Sopenharmony_ci g_step = &go->go_step[ah->ah_gain.g_step_idx]) 65162306a36Sopenharmony_ci ah->ah_gain.g_target -= 2 * 65262306a36Sopenharmony_ci (go->go_step[++ah->ah_gain.g_step_idx].gos_gain - 65362306a36Sopenharmony_ci g_step->gos_gain); 65462306a36Sopenharmony_ci 65562306a36Sopenharmony_ci ret = 2; 65662306a36Sopenharmony_ci goto done; 65762306a36Sopenharmony_ci } 65862306a36Sopenharmony_ci 65962306a36Sopenharmony_cidone: 66062306a36Sopenharmony_ci ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE, 66162306a36Sopenharmony_ci "ret %d, gain step %u, current gain %u, target gain %u\n", 66262306a36Sopenharmony_ci ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current, 66362306a36Sopenharmony_ci ah->ah_gain.g_target); 66462306a36Sopenharmony_ci 66562306a36Sopenharmony_ci return ret; 66662306a36Sopenharmony_ci} 66762306a36Sopenharmony_ci 66862306a36Sopenharmony_ci/** 66962306a36Sopenharmony_ci * ath5k_hw_gainf_calibrate() - Do a gain_F calibration 67062306a36Sopenharmony_ci * @ah: The &struct ath5k_hw 67162306a36Sopenharmony_ci * 67262306a36Sopenharmony_ci * Main callback for thermal RF gain calibration engine 67362306a36Sopenharmony_ci * Check for a new gain reading and schedule an adjustment 67462306a36Sopenharmony_ci * if needed. 67562306a36Sopenharmony_ci * 67662306a36Sopenharmony_ci * Returns one of enum ath5k_rfgain codes 67762306a36Sopenharmony_ci */ 67862306a36Sopenharmony_cienum ath5k_rfgain 67962306a36Sopenharmony_ciath5k_hw_gainf_calibrate(struct ath5k_hw *ah) 68062306a36Sopenharmony_ci{ 68162306a36Sopenharmony_ci u32 data, type; 68262306a36Sopenharmony_ci struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; 68362306a36Sopenharmony_ci 68462306a36Sopenharmony_ci if (ah->ah_rf_banks == NULL || 68562306a36Sopenharmony_ci ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE) 68662306a36Sopenharmony_ci return AR5K_RFGAIN_INACTIVE; 68762306a36Sopenharmony_ci 68862306a36Sopenharmony_ci /* No check requested, either engine is inactive 68962306a36Sopenharmony_ci * or an adjustment is already requested */ 69062306a36Sopenharmony_ci if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED) 69162306a36Sopenharmony_ci goto done; 69262306a36Sopenharmony_ci 69362306a36Sopenharmony_ci /* Read the PAPD (Peak to Average Power Detector) 69462306a36Sopenharmony_ci * register */ 69562306a36Sopenharmony_ci data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE); 69662306a36Sopenharmony_ci 69762306a36Sopenharmony_ci /* No probe is scheduled, read gain_F measurement */ 69862306a36Sopenharmony_ci if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) { 69962306a36Sopenharmony_ci ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S; 70062306a36Sopenharmony_ci type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE); 70162306a36Sopenharmony_ci 70262306a36Sopenharmony_ci /* If tx packet is CCK correct the gain_F measurement 70362306a36Sopenharmony_ci * by cck ofdm gain delta */ 70462306a36Sopenharmony_ci if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) { 70562306a36Sopenharmony_ci if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) 70662306a36Sopenharmony_ci ah->ah_gain.g_current += 70762306a36Sopenharmony_ci ee->ee_cck_ofdm_gain_delta; 70862306a36Sopenharmony_ci else 70962306a36Sopenharmony_ci ah->ah_gain.g_current += 71062306a36Sopenharmony_ci AR5K_GAIN_CCK_PROBE_CORR; 71162306a36Sopenharmony_ci } 71262306a36Sopenharmony_ci 71362306a36Sopenharmony_ci /* Further correct gain_F measurement for 71462306a36Sopenharmony_ci * RF5112A radios */ 71562306a36Sopenharmony_ci if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) { 71662306a36Sopenharmony_ci ath5k_hw_rf_gainf_corr(ah); 71762306a36Sopenharmony_ci ah->ah_gain.g_current = 71862306a36Sopenharmony_ci ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ? 71962306a36Sopenharmony_ci (ah->ah_gain.g_current - ah->ah_gain.g_f_corr) : 72062306a36Sopenharmony_ci 0; 72162306a36Sopenharmony_ci } 72262306a36Sopenharmony_ci 72362306a36Sopenharmony_ci /* Check if measurement is ok and if we need 72462306a36Sopenharmony_ci * to adjust gain, schedule a gain adjustment, 72562306a36Sopenharmony_ci * else switch back to the active state */ 72662306a36Sopenharmony_ci if (ath5k_hw_rf_check_gainf_readback(ah) && 72762306a36Sopenharmony_ci AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) && 72862306a36Sopenharmony_ci ath5k_hw_rf_gainf_adjust(ah)) { 72962306a36Sopenharmony_ci ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE; 73062306a36Sopenharmony_ci } else { 73162306a36Sopenharmony_ci ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE; 73262306a36Sopenharmony_ci } 73362306a36Sopenharmony_ci } 73462306a36Sopenharmony_ci 73562306a36Sopenharmony_cidone: 73662306a36Sopenharmony_ci return ah->ah_gain.g_state; 73762306a36Sopenharmony_ci} 73862306a36Sopenharmony_ci 73962306a36Sopenharmony_ci/** 74062306a36Sopenharmony_ci * ath5k_hw_rfgain_init() - Write initial RF gain settings to hw 74162306a36Sopenharmony_ci * @ah: The &struct ath5k_hw 74262306a36Sopenharmony_ci * @band: One of enum nl80211_band 74362306a36Sopenharmony_ci * 74462306a36Sopenharmony_ci * Write initial RF gain table to set the RF sensitivity. 74562306a36Sopenharmony_ci * 74662306a36Sopenharmony_ci * NOTE: This one works on all RF chips and has nothing to do 74762306a36Sopenharmony_ci * with Gain_F calibration 74862306a36Sopenharmony_ci */ 74962306a36Sopenharmony_cistatic int 75062306a36Sopenharmony_ciath5k_hw_rfgain_init(struct ath5k_hw *ah, enum nl80211_band band) 75162306a36Sopenharmony_ci{ 75262306a36Sopenharmony_ci const struct ath5k_ini_rfgain *ath5k_rfg; 75362306a36Sopenharmony_ci unsigned int i, size, index; 75462306a36Sopenharmony_ci 75562306a36Sopenharmony_ci switch (ah->ah_radio) { 75662306a36Sopenharmony_ci case AR5K_RF5111: 75762306a36Sopenharmony_ci ath5k_rfg = rfgain_5111; 75862306a36Sopenharmony_ci size = ARRAY_SIZE(rfgain_5111); 75962306a36Sopenharmony_ci break; 76062306a36Sopenharmony_ci case AR5K_RF5112: 76162306a36Sopenharmony_ci ath5k_rfg = rfgain_5112; 76262306a36Sopenharmony_ci size = ARRAY_SIZE(rfgain_5112); 76362306a36Sopenharmony_ci break; 76462306a36Sopenharmony_ci case AR5K_RF2413: 76562306a36Sopenharmony_ci ath5k_rfg = rfgain_2413; 76662306a36Sopenharmony_ci size = ARRAY_SIZE(rfgain_2413); 76762306a36Sopenharmony_ci break; 76862306a36Sopenharmony_ci case AR5K_RF2316: 76962306a36Sopenharmony_ci ath5k_rfg = rfgain_2316; 77062306a36Sopenharmony_ci size = ARRAY_SIZE(rfgain_2316); 77162306a36Sopenharmony_ci break; 77262306a36Sopenharmony_ci case AR5K_RF5413: 77362306a36Sopenharmony_ci ath5k_rfg = rfgain_5413; 77462306a36Sopenharmony_ci size = ARRAY_SIZE(rfgain_5413); 77562306a36Sopenharmony_ci break; 77662306a36Sopenharmony_ci case AR5K_RF2317: 77762306a36Sopenharmony_ci case AR5K_RF2425: 77862306a36Sopenharmony_ci ath5k_rfg = rfgain_2425; 77962306a36Sopenharmony_ci size = ARRAY_SIZE(rfgain_2425); 78062306a36Sopenharmony_ci break; 78162306a36Sopenharmony_ci default: 78262306a36Sopenharmony_ci return -EINVAL; 78362306a36Sopenharmony_ci } 78462306a36Sopenharmony_ci 78562306a36Sopenharmony_ci index = (band == NL80211_BAND_2GHZ) ? 1 : 0; 78662306a36Sopenharmony_ci 78762306a36Sopenharmony_ci for (i = 0; i < size; i++) { 78862306a36Sopenharmony_ci AR5K_REG_WAIT(i); 78962306a36Sopenharmony_ci ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[index], 79062306a36Sopenharmony_ci (u32)ath5k_rfg[i].rfg_register); 79162306a36Sopenharmony_ci } 79262306a36Sopenharmony_ci 79362306a36Sopenharmony_ci return 0; 79462306a36Sopenharmony_ci} 79562306a36Sopenharmony_ci 79662306a36Sopenharmony_ci 79762306a36Sopenharmony_ci/********************\ 79862306a36Sopenharmony_ci* RF Registers setup * 79962306a36Sopenharmony_ci\********************/ 80062306a36Sopenharmony_ci 80162306a36Sopenharmony_ci/** 80262306a36Sopenharmony_ci * ath5k_hw_rfregs_init() - Initialize RF register settings 80362306a36Sopenharmony_ci * @ah: The &struct ath5k_hw 80462306a36Sopenharmony_ci * @channel: The &struct ieee80211_channel 80562306a36Sopenharmony_ci * @mode: One of enum ath5k_driver_mode 80662306a36Sopenharmony_ci * 80762306a36Sopenharmony_ci * Setup RF registers by writing RF buffer on hw. For 80862306a36Sopenharmony_ci * more infos on this, check out rfbuffer.h 80962306a36Sopenharmony_ci */ 81062306a36Sopenharmony_cistatic int 81162306a36Sopenharmony_ciath5k_hw_rfregs_init(struct ath5k_hw *ah, 81262306a36Sopenharmony_ci struct ieee80211_channel *channel, 81362306a36Sopenharmony_ci unsigned int mode) 81462306a36Sopenharmony_ci{ 81562306a36Sopenharmony_ci const struct ath5k_rf_reg *rf_regs; 81662306a36Sopenharmony_ci const struct ath5k_ini_rfbuffer *ini_rfb; 81762306a36Sopenharmony_ci const struct ath5k_gain_opt *go = NULL; 81862306a36Sopenharmony_ci const struct ath5k_gain_opt_step *g_step; 81962306a36Sopenharmony_ci struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; 82062306a36Sopenharmony_ci u8 ee_mode = 0; 82162306a36Sopenharmony_ci u32 *rfb; 82262306a36Sopenharmony_ci int i, obdb = -1, bank = -1; 82362306a36Sopenharmony_ci 82462306a36Sopenharmony_ci switch (ah->ah_radio) { 82562306a36Sopenharmony_ci case AR5K_RF5111: 82662306a36Sopenharmony_ci rf_regs = rf_regs_5111; 82762306a36Sopenharmony_ci ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111); 82862306a36Sopenharmony_ci ini_rfb = rfb_5111; 82962306a36Sopenharmony_ci ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111); 83062306a36Sopenharmony_ci go = &rfgain_opt_5111; 83162306a36Sopenharmony_ci break; 83262306a36Sopenharmony_ci case AR5K_RF5112: 83362306a36Sopenharmony_ci if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) { 83462306a36Sopenharmony_ci rf_regs = rf_regs_5112a; 83562306a36Sopenharmony_ci ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a); 83662306a36Sopenharmony_ci ini_rfb = rfb_5112a; 83762306a36Sopenharmony_ci ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a); 83862306a36Sopenharmony_ci } else { 83962306a36Sopenharmony_ci rf_regs = rf_regs_5112; 84062306a36Sopenharmony_ci ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112); 84162306a36Sopenharmony_ci ini_rfb = rfb_5112; 84262306a36Sopenharmony_ci ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112); 84362306a36Sopenharmony_ci } 84462306a36Sopenharmony_ci go = &rfgain_opt_5112; 84562306a36Sopenharmony_ci break; 84662306a36Sopenharmony_ci case AR5K_RF2413: 84762306a36Sopenharmony_ci rf_regs = rf_regs_2413; 84862306a36Sopenharmony_ci ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413); 84962306a36Sopenharmony_ci ini_rfb = rfb_2413; 85062306a36Sopenharmony_ci ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413); 85162306a36Sopenharmony_ci break; 85262306a36Sopenharmony_ci case AR5K_RF2316: 85362306a36Sopenharmony_ci rf_regs = rf_regs_2316; 85462306a36Sopenharmony_ci ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316); 85562306a36Sopenharmony_ci ini_rfb = rfb_2316; 85662306a36Sopenharmony_ci ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316); 85762306a36Sopenharmony_ci break; 85862306a36Sopenharmony_ci case AR5K_RF5413: 85962306a36Sopenharmony_ci rf_regs = rf_regs_5413; 86062306a36Sopenharmony_ci ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413); 86162306a36Sopenharmony_ci ini_rfb = rfb_5413; 86262306a36Sopenharmony_ci ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413); 86362306a36Sopenharmony_ci break; 86462306a36Sopenharmony_ci case AR5K_RF2317: 86562306a36Sopenharmony_ci rf_regs = rf_regs_2425; 86662306a36Sopenharmony_ci ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425); 86762306a36Sopenharmony_ci ini_rfb = rfb_2317; 86862306a36Sopenharmony_ci ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317); 86962306a36Sopenharmony_ci break; 87062306a36Sopenharmony_ci case AR5K_RF2425: 87162306a36Sopenharmony_ci rf_regs = rf_regs_2425; 87262306a36Sopenharmony_ci ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425); 87362306a36Sopenharmony_ci if (ah->ah_mac_srev < AR5K_SREV_AR2417) { 87462306a36Sopenharmony_ci ini_rfb = rfb_2425; 87562306a36Sopenharmony_ci ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425); 87662306a36Sopenharmony_ci } else { 87762306a36Sopenharmony_ci ini_rfb = rfb_2417; 87862306a36Sopenharmony_ci ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417); 87962306a36Sopenharmony_ci } 88062306a36Sopenharmony_ci break; 88162306a36Sopenharmony_ci default: 88262306a36Sopenharmony_ci return -EINVAL; 88362306a36Sopenharmony_ci } 88462306a36Sopenharmony_ci 88562306a36Sopenharmony_ci /* If it's the first time we set RF buffer, allocate 88662306a36Sopenharmony_ci * ah->ah_rf_banks based on ah->ah_rf_banks_size 88762306a36Sopenharmony_ci * we set above */ 88862306a36Sopenharmony_ci if (ah->ah_rf_banks == NULL) { 88962306a36Sopenharmony_ci ah->ah_rf_banks = kmalloc_array(ah->ah_rf_banks_size, 89062306a36Sopenharmony_ci sizeof(u32), 89162306a36Sopenharmony_ci GFP_KERNEL); 89262306a36Sopenharmony_ci if (ah->ah_rf_banks == NULL) { 89362306a36Sopenharmony_ci ATH5K_ERR(ah, "out of memory\n"); 89462306a36Sopenharmony_ci return -ENOMEM; 89562306a36Sopenharmony_ci } 89662306a36Sopenharmony_ci } 89762306a36Sopenharmony_ci 89862306a36Sopenharmony_ci /* Copy values to modify them */ 89962306a36Sopenharmony_ci rfb = ah->ah_rf_banks; 90062306a36Sopenharmony_ci 90162306a36Sopenharmony_ci for (i = 0; i < ah->ah_rf_banks_size; i++) { 90262306a36Sopenharmony_ci if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) { 90362306a36Sopenharmony_ci ATH5K_ERR(ah, "invalid bank\n"); 90462306a36Sopenharmony_ci return -EINVAL; 90562306a36Sopenharmony_ci } 90662306a36Sopenharmony_ci 90762306a36Sopenharmony_ci /* Bank changed, write down the offset */ 90862306a36Sopenharmony_ci if (bank != ini_rfb[i].rfb_bank) { 90962306a36Sopenharmony_ci bank = ini_rfb[i].rfb_bank; 91062306a36Sopenharmony_ci ah->ah_offset[bank] = i; 91162306a36Sopenharmony_ci } 91262306a36Sopenharmony_ci 91362306a36Sopenharmony_ci rfb[i] = ini_rfb[i].rfb_mode_data[mode]; 91462306a36Sopenharmony_ci } 91562306a36Sopenharmony_ci 91662306a36Sopenharmony_ci /* Set Output and Driver bias current (OB/DB) */ 91762306a36Sopenharmony_ci if (channel->band == NL80211_BAND_2GHZ) { 91862306a36Sopenharmony_ci 91962306a36Sopenharmony_ci if (channel->hw_value == AR5K_MODE_11B) 92062306a36Sopenharmony_ci ee_mode = AR5K_EEPROM_MODE_11B; 92162306a36Sopenharmony_ci else 92262306a36Sopenharmony_ci ee_mode = AR5K_EEPROM_MODE_11G; 92362306a36Sopenharmony_ci 92462306a36Sopenharmony_ci /* For RF511X/RF211X combination we 92562306a36Sopenharmony_ci * use b_OB and b_DB parameters stored 92662306a36Sopenharmony_ci * in eeprom on ee->ee_ob[ee_mode][0] 92762306a36Sopenharmony_ci * 92862306a36Sopenharmony_ci * For all other chips we use OB/DB for 2GHz 92962306a36Sopenharmony_ci * stored in the b/g modal section just like 93062306a36Sopenharmony_ci * 802.11a on ee->ee_ob[ee_mode][1] */ 93162306a36Sopenharmony_ci if ((ah->ah_radio == AR5K_RF5111) || 93262306a36Sopenharmony_ci (ah->ah_radio == AR5K_RF5112)) 93362306a36Sopenharmony_ci obdb = 0; 93462306a36Sopenharmony_ci else 93562306a36Sopenharmony_ci obdb = 1; 93662306a36Sopenharmony_ci 93762306a36Sopenharmony_ci ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb], 93862306a36Sopenharmony_ci AR5K_RF_OB_2GHZ, true); 93962306a36Sopenharmony_ci 94062306a36Sopenharmony_ci ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb], 94162306a36Sopenharmony_ci AR5K_RF_DB_2GHZ, true); 94262306a36Sopenharmony_ci 94362306a36Sopenharmony_ci /* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */ 94462306a36Sopenharmony_ci } else if ((channel->band == NL80211_BAND_5GHZ) || 94562306a36Sopenharmony_ci (ah->ah_radio == AR5K_RF5111)) { 94662306a36Sopenharmony_ci 94762306a36Sopenharmony_ci /* For 11a, Turbo and XR we need to choose 94862306a36Sopenharmony_ci * OB/DB based on frequency range */ 94962306a36Sopenharmony_ci ee_mode = AR5K_EEPROM_MODE_11A; 95062306a36Sopenharmony_ci obdb = channel->center_freq >= 5725 ? 3 : 95162306a36Sopenharmony_ci (channel->center_freq >= 5500 ? 2 : 95262306a36Sopenharmony_ci (channel->center_freq >= 5260 ? 1 : 95362306a36Sopenharmony_ci (channel->center_freq > 4000 ? 0 : -1))); 95462306a36Sopenharmony_ci 95562306a36Sopenharmony_ci if (obdb < 0) 95662306a36Sopenharmony_ci return -EINVAL; 95762306a36Sopenharmony_ci 95862306a36Sopenharmony_ci ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb], 95962306a36Sopenharmony_ci AR5K_RF_OB_5GHZ, true); 96062306a36Sopenharmony_ci 96162306a36Sopenharmony_ci ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb], 96262306a36Sopenharmony_ci AR5K_RF_DB_5GHZ, true); 96362306a36Sopenharmony_ci } 96462306a36Sopenharmony_ci 96562306a36Sopenharmony_ci g_step = &go->go_step[ah->ah_gain.g_step_idx]; 96662306a36Sopenharmony_ci 96762306a36Sopenharmony_ci /* Set turbo mode (N/A on RF5413) */ 96862306a36Sopenharmony_ci if ((ah->ah_bwmode == AR5K_BWMODE_40MHZ) && 96962306a36Sopenharmony_ci (ah->ah_radio != AR5K_RF5413)) 97062306a36Sopenharmony_ci ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_TURBO, false); 97162306a36Sopenharmony_ci 97262306a36Sopenharmony_ci /* Bank Modifications (chip-specific) */ 97362306a36Sopenharmony_ci if (ah->ah_radio == AR5K_RF5111) { 97462306a36Sopenharmony_ci 97562306a36Sopenharmony_ci /* Set gain_F settings according to current step */ 97662306a36Sopenharmony_ci if (channel->hw_value != AR5K_MODE_11B) { 97762306a36Sopenharmony_ci 97862306a36Sopenharmony_ci AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL, 97962306a36Sopenharmony_ci AR5K_PHY_FRAME_CTL_TX_CLIP, 98062306a36Sopenharmony_ci g_step->gos_param[0]); 98162306a36Sopenharmony_ci 98262306a36Sopenharmony_ci ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1], 98362306a36Sopenharmony_ci AR5K_RF_PWD_90, true); 98462306a36Sopenharmony_ci 98562306a36Sopenharmony_ci ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2], 98662306a36Sopenharmony_ci AR5K_RF_PWD_84, true); 98762306a36Sopenharmony_ci 98862306a36Sopenharmony_ci ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3], 98962306a36Sopenharmony_ci AR5K_RF_RFGAIN_SEL, true); 99062306a36Sopenharmony_ci 99162306a36Sopenharmony_ci /* We programmed gain_F parameters, switch back 99262306a36Sopenharmony_ci * to active state */ 99362306a36Sopenharmony_ci ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE; 99462306a36Sopenharmony_ci 99562306a36Sopenharmony_ci } 99662306a36Sopenharmony_ci 99762306a36Sopenharmony_ci /* Bank 6/7 setup */ 99862306a36Sopenharmony_ci 99962306a36Sopenharmony_ci ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode], 100062306a36Sopenharmony_ci AR5K_RF_PWD_XPD, true); 100162306a36Sopenharmony_ci 100262306a36Sopenharmony_ci ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode], 100362306a36Sopenharmony_ci AR5K_RF_XPD_GAIN, true); 100462306a36Sopenharmony_ci 100562306a36Sopenharmony_ci ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode], 100662306a36Sopenharmony_ci AR5K_RF_GAIN_I, true); 100762306a36Sopenharmony_ci 100862306a36Sopenharmony_ci ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode], 100962306a36Sopenharmony_ci AR5K_RF_PLO_SEL, true); 101062306a36Sopenharmony_ci 101162306a36Sopenharmony_ci /* Tweak power detectors for half/quarter rate support */ 101262306a36Sopenharmony_ci if (ah->ah_bwmode == AR5K_BWMODE_5MHZ || 101362306a36Sopenharmony_ci ah->ah_bwmode == AR5K_BWMODE_10MHZ) { 101462306a36Sopenharmony_ci u8 wait_i; 101562306a36Sopenharmony_ci 101662306a36Sopenharmony_ci ath5k_hw_rfb_op(ah, rf_regs, 0x1f, 101762306a36Sopenharmony_ci AR5K_RF_WAIT_S, true); 101862306a36Sopenharmony_ci 101962306a36Sopenharmony_ci wait_i = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ? 102062306a36Sopenharmony_ci 0x1f : 0x10; 102162306a36Sopenharmony_ci 102262306a36Sopenharmony_ci ath5k_hw_rfb_op(ah, rf_regs, wait_i, 102362306a36Sopenharmony_ci AR5K_RF_WAIT_I, true); 102462306a36Sopenharmony_ci ath5k_hw_rfb_op(ah, rf_regs, 3, 102562306a36Sopenharmony_ci AR5K_RF_MAX_TIME, true); 102662306a36Sopenharmony_ci 102762306a36Sopenharmony_ci } 102862306a36Sopenharmony_ci } 102962306a36Sopenharmony_ci 103062306a36Sopenharmony_ci if (ah->ah_radio == AR5K_RF5112) { 103162306a36Sopenharmony_ci 103262306a36Sopenharmony_ci /* Set gain_F settings according to current step */ 103362306a36Sopenharmony_ci if (channel->hw_value != AR5K_MODE_11B) { 103462306a36Sopenharmony_ci 103562306a36Sopenharmony_ci ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0], 103662306a36Sopenharmony_ci AR5K_RF_MIXGAIN_OVR, true); 103762306a36Sopenharmony_ci 103862306a36Sopenharmony_ci ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1], 103962306a36Sopenharmony_ci AR5K_RF_PWD_138, true); 104062306a36Sopenharmony_ci 104162306a36Sopenharmony_ci ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2], 104262306a36Sopenharmony_ci AR5K_RF_PWD_137, true); 104362306a36Sopenharmony_ci 104462306a36Sopenharmony_ci ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3], 104562306a36Sopenharmony_ci AR5K_RF_PWD_136, true); 104662306a36Sopenharmony_ci 104762306a36Sopenharmony_ci ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4], 104862306a36Sopenharmony_ci AR5K_RF_PWD_132, true); 104962306a36Sopenharmony_ci 105062306a36Sopenharmony_ci ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5], 105162306a36Sopenharmony_ci AR5K_RF_PWD_131, true); 105262306a36Sopenharmony_ci 105362306a36Sopenharmony_ci ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6], 105462306a36Sopenharmony_ci AR5K_RF_PWD_130, true); 105562306a36Sopenharmony_ci 105662306a36Sopenharmony_ci /* We programmed gain_F parameters, switch back 105762306a36Sopenharmony_ci * to active state */ 105862306a36Sopenharmony_ci ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE; 105962306a36Sopenharmony_ci } 106062306a36Sopenharmony_ci 106162306a36Sopenharmony_ci /* Bank 6/7 setup */ 106262306a36Sopenharmony_ci 106362306a36Sopenharmony_ci ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode], 106462306a36Sopenharmony_ci AR5K_RF_XPD_SEL, true); 106562306a36Sopenharmony_ci 106662306a36Sopenharmony_ci if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) { 106762306a36Sopenharmony_ci /* Rev. 1 supports only one xpd */ 106862306a36Sopenharmony_ci ath5k_hw_rfb_op(ah, rf_regs, 106962306a36Sopenharmony_ci ee->ee_x_gain[ee_mode], 107062306a36Sopenharmony_ci AR5K_RF_XPD_GAIN, true); 107162306a36Sopenharmony_ci 107262306a36Sopenharmony_ci } else { 107362306a36Sopenharmony_ci u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode]; 107462306a36Sopenharmony_ci if (ee->ee_pd_gains[ee_mode] > 1) { 107562306a36Sopenharmony_ci ath5k_hw_rfb_op(ah, rf_regs, 107662306a36Sopenharmony_ci pdg_curve_to_idx[0], 107762306a36Sopenharmony_ci AR5K_RF_PD_GAIN_LO, true); 107862306a36Sopenharmony_ci ath5k_hw_rfb_op(ah, rf_regs, 107962306a36Sopenharmony_ci pdg_curve_to_idx[1], 108062306a36Sopenharmony_ci AR5K_RF_PD_GAIN_HI, true); 108162306a36Sopenharmony_ci } else { 108262306a36Sopenharmony_ci ath5k_hw_rfb_op(ah, rf_regs, 108362306a36Sopenharmony_ci pdg_curve_to_idx[0], 108462306a36Sopenharmony_ci AR5K_RF_PD_GAIN_LO, true); 108562306a36Sopenharmony_ci ath5k_hw_rfb_op(ah, rf_regs, 108662306a36Sopenharmony_ci pdg_curve_to_idx[0], 108762306a36Sopenharmony_ci AR5K_RF_PD_GAIN_HI, true); 108862306a36Sopenharmony_ci } 108962306a36Sopenharmony_ci 109062306a36Sopenharmony_ci /* Lower synth voltage on Rev 2 */ 109162306a36Sopenharmony_ci if (ah->ah_radio == AR5K_RF5112 && 109262306a36Sopenharmony_ci (ah->ah_radio_5ghz_revision & AR5K_SREV_REV) > 0) { 109362306a36Sopenharmony_ci ath5k_hw_rfb_op(ah, rf_regs, 2, 109462306a36Sopenharmony_ci AR5K_RF_HIGH_VC_CP, true); 109562306a36Sopenharmony_ci 109662306a36Sopenharmony_ci ath5k_hw_rfb_op(ah, rf_regs, 2, 109762306a36Sopenharmony_ci AR5K_RF_MID_VC_CP, true); 109862306a36Sopenharmony_ci 109962306a36Sopenharmony_ci ath5k_hw_rfb_op(ah, rf_regs, 2, 110062306a36Sopenharmony_ci AR5K_RF_LOW_VC_CP, true); 110162306a36Sopenharmony_ci 110262306a36Sopenharmony_ci ath5k_hw_rfb_op(ah, rf_regs, 2, 110362306a36Sopenharmony_ci AR5K_RF_PUSH_UP, true); 110462306a36Sopenharmony_ci } 110562306a36Sopenharmony_ci 110662306a36Sopenharmony_ci /* Decrease power consumption on 5213+ BaseBand */ 110762306a36Sopenharmony_ci if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) { 110862306a36Sopenharmony_ci ath5k_hw_rfb_op(ah, rf_regs, 1, 110962306a36Sopenharmony_ci AR5K_RF_PAD2GND, true); 111062306a36Sopenharmony_ci 111162306a36Sopenharmony_ci ath5k_hw_rfb_op(ah, rf_regs, 1, 111262306a36Sopenharmony_ci AR5K_RF_XB2_LVL, true); 111362306a36Sopenharmony_ci 111462306a36Sopenharmony_ci ath5k_hw_rfb_op(ah, rf_regs, 1, 111562306a36Sopenharmony_ci AR5K_RF_XB5_LVL, true); 111662306a36Sopenharmony_ci 111762306a36Sopenharmony_ci ath5k_hw_rfb_op(ah, rf_regs, 1, 111862306a36Sopenharmony_ci AR5K_RF_PWD_167, true); 111962306a36Sopenharmony_ci 112062306a36Sopenharmony_ci ath5k_hw_rfb_op(ah, rf_regs, 1, 112162306a36Sopenharmony_ci AR5K_RF_PWD_166, true); 112262306a36Sopenharmony_ci } 112362306a36Sopenharmony_ci } 112462306a36Sopenharmony_ci 112562306a36Sopenharmony_ci ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode], 112662306a36Sopenharmony_ci AR5K_RF_GAIN_I, true); 112762306a36Sopenharmony_ci 112862306a36Sopenharmony_ci /* Tweak power detector for half/quarter rates */ 112962306a36Sopenharmony_ci if (ah->ah_bwmode == AR5K_BWMODE_5MHZ || 113062306a36Sopenharmony_ci ah->ah_bwmode == AR5K_BWMODE_10MHZ) { 113162306a36Sopenharmony_ci u8 pd_delay; 113262306a36Sopenharmony_ci 113362306a36Sopenharmony_ci pd_delay = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ? 113462306a36Sopenharmony_ci 0xf : 0x8; 113562306a36Sopenharmony_ci 113662306a36Sopenharmony_ci ath5k_hw_rfb_op(ah, rf_regs, pd_delay, 113762306a36Sopenharmony_ci AR5K_RF_PD_PERIOD_A, true); 113862306a36Sopenharmony_ci ath5k_hw_rfb_op(ah, rf_regs, 0xf, 113962306a36Sopenharmony_ci AR5K_RF_PD_DELAY_A, true); 114062306a36Sopenharmony_ci 114162306a36Sopenharmony_ci } 114262306a36Sopenharmony_ci } 114362306a36Sopenharmony_ci 114462306a36Sopenharmony_ci if (ah->ah_radio == AR5K_RF5413 && 114562306a36Sopenharmony_ci channel->band == NL80211_BAND_2GHZ) { 114662306a36Sopenharmony_ci 114762306a36Sopenharmony_ci ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE, 114862306a36Sopenharmony_ci true); 114962306a36Sopenharmony_ci 115062306a36Sopenharmony_ci /* Set optimum value for early revisions (on pci-e chips) */ 115162306a36Sopenharmony_ci if (ah->ah_mac_srev >= AR5K_SREV_AR5424 && 115262306a36Sopenharmony_ci ah->ah_mac_srev < AR5K_SREV_AR5413) 115362306a36Sopenharmony_ci ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3), 115462306a36Sopenharmony_ci AR5K_RF_PWD_ICLOBUF_2G, true); 115562306a36Sopenharmony_ci 115662306a36Sopenharmony_ci } 115762306a36Sopenharmony_ci 115862306a36Sopenharmony_ci /* Write RF banks on hw */ 115962306a36Sopenharmony_ci for (i = 0; i < ah->ah_rf_banks_size; i++) { 116062306a36Sopenharmony_ci AR5K_REG_WAIT(i); 116162306a36Sopenharmony_ci ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register); 116262306a36Sopenharmony_ci } 116362306a36Sopenharmony_ci 116462306a36Sopenharmony_ci return 0; 116562306a36Sopenharmony_ci} 116662306a36Sopenharmony_ci 116762306a36Sopenharmony_ci 116862306a36Sopenharmony_ci/**************************\ 116962306a36Sopenharmony_ci PHY/RF channel functions 117062306a36Sopenharmony_ci\**************************/ 117162306a36Sopenharmony_ci 117262306a36Sopenharmony_ci/** 117362306a36Sopenharmony_ci * ath5k_hw_rf5110_chan2athchan() - Convert channel freq on RF5110 117462306a36Sopenharmony_ci * @channel: The &struct ieee80211_channel 117562306a36Sopenharmony_ci * 117662306a36Sopenharmony_ci * Map channel frequency to IEEE channel number and convert it 117762306a36Sopenharmony_ci * to an internal channel value used by the RF5110 chipset. 117862306a36Sopenharmony_ci */ 117962306a36Sopenharmony_cistatic u32 118062306a36Sopenharmony_ciath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel) 118162306a36Sopenharmony_ci{ 118262306a36Sopenharmony_ci u32 athchan; 118362306a36Sopenharmony_ci 118462306a36Sopenharmony_ci athchan = (ath5k_hw_bitswap( 118562306a36Sopenharmony_ci (ieee80211_frequency_to_channel( 118662306a36Sopenharmony_ci channel->center_freq) - 24) / 2, 5) 118762306a36Sopenharmony_ci << 1) | (1 << 6) | 0x1; 118862306a36Sopenharmony_ci return athchan; 118962306a36Sopenharmony_ci} 119062306a36Sopenharmony_ci 119162306a36Sopenharmony_ci/** 119262306a36Sopenharmony_ci * ath5k_hw_rf5110_channel() - Set channel frequency on RF5110 119362306a36Sopenharmony_ci * @ah: The &struct ath5k_hw 119462306a36Sopenharmony_ci * @channel: The &struct ieee80211_channel 119562306a36Sopenharmony_ci */ 119662306a36Sopenharmony_cistatic int 119762306a36Sopenharmony_ciath5k_hw_rf5110_channel(struct ath5k_hw *ah, 119862306a36Sopenharmony_ci struct ieee80211_channel *channel) 119962306a36Sopenharmony_ci{ 120062306a36Sopenharmony_ci u32 data; 120162306a36Sopenharmony_ci 120262306a36Sopenharmony_ci /* 120362306a36Sopenharmony_ci * Set the channel and wait 120462306a36Sopenharmony_ci */ 120562306a36Sopenharmony_ci data = ath5k_hw_rf5110_chan2athchan(channel); 120662306a36Sopenharmony_ci ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER); 120762306a36Sopenharmony_ci ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0); 120862306a36Sopenharmony_ci usleep_range(1000, 1500); 120962306a36Sopenharmony_ci 121062306a36Sopenharmony_ci return 0; 121162306a36Sopenharmony_ci} 121262306a36Sopenharmony_ci 121362306a36Sopenharmony_ci/** 121462306a36Sopenharmony_ci * ath5k_hw_rf5111_chan2athchan() - Handle 2GHz channels on RF5111/2111 121562306a36Sopenharmony_ci * @ieee: IEEE channel number 121662306a36Sopenharmony_ci * @athchan: The &struct ath5k_athchan_2ghz 121762306a36Sopenharmony_ci * 121862306a36Sopenharmony_ci * In order to enable the RF2111 frequency converter on RF5111/2111 setups 121962306a36Sopenharmony_ci * we need to add some offsets and extra flags to the data values we pass 122062306a36Sopenharmony_ci * on to the PHY. So for every 2GHz channel this function gets called 122162306a36Sopenharmony_ci * to do the conversion. 122262306a36Sopenharmony_ci */ 122362306a36Sopenharmony_cistatic int 122462306a36Sopenharmony_ciath5k_hw_rf5111_chan2athchan(unsigned int ieee, 122562306a36Sopenharmony_ci struct ath5k_athchan_2ghz *athchan) 122662306a36Sopenharmony_ci{ 122762306a36Sopenharmony_ci int channel; 122862306a36Sopenharmony_ci 122962306a36Sopenharmony_ci /* Cast this value to catch negative channel numbers (>= -19) */ 123062306a36Sopenharmony_ci channel = (int)ieee; 123162306a36Sopenharmony_ci 123262306a36Sopenharmony_ci /* 123362306a36Sopenharmony_ci * Map 2GHz IEEE channel to 5GHz Atheros channel 123462306a36Sopenharmony_ci */ 123562306a36Sopenharmony_ci if (channel <= 13) { 123662306a36Sopenharmony_ci athchan->a2_athchan = 115 + channel; 123762306a36Sopenharmony_ci athchan->a2_flags = 0x46; 123862306a36Sopenharmony_ci } else if (channel == 14) { 123962306a36Sopenharmony_ci athchan->a2_athchan = 124; 124062306a36Sopenharmony_ci athchan->a2_flags = 0x44; 124162306a36Sopenharmony_ci } else if (channel >= 15 && channel <= 26) { 124262306a36Sopenharmony_ci athchan->a2_athchan = ((channel - 14) * 4) + 132; 124362306a36Sopenharmony_ci athchan->a2_flags = 0x46; 124462306a36Sopenharmony_ci } else 124562306a36Sopenharmony_ci return -EINVAL; 124662306a36Sopenharmony_ci 124762306a36Sopenharmony_ci return 0; 124862306a36Sopenharmony_ci} 124962306a36Sopenharmony_ci 125062306a36Sopenharmony_ci/** 125162306a36Sopenharmony_ci * ath5k_hw_rf5111_channel() - Set channel frequency on RF5111/2111 125262306a36Sopenharmony_ci * @ah: The &struct ath5k_hw 125362306a36Sopenharmony_ci * @channel: The &struct ieee80211_channel 125462306a36Sopenharmony_ci */ 125562306a36Sopenharmony_cistatic int 125662306a36Sopenharmony_ciath5k_hw_rf5111_channel(struct ath5k_hw *ah, 125762306a36Sopenharmony_ci struct ieee80211_channel *channel) 125862306a36Sopenharmony_ci{ 125962306a36Sopenharmony_ci struct ath5k_athchan_2ghz ath5k_channel_2ghz; 126062306a36Sopenharmony_ci unsigned int ath5k_channel = 126162306a36Sopenharmony_ci ieee80211_frequency_to_channel(channel->center_freq); 126262306a36Sopenharmony_ci u32 data0, data1, clock; 126362306a36Sopenharmony_ci int ret; 126462306a36Sopenharmony_ci 126562306a36Sopenharmony_ci /* 126662306a36Sopenharmony_ci * Set the channel on the RF5111 radio 126762306a36Sopenharmony_ci */ 126862306a36Sopenharmony_ci data0 = data1 = 0; 126962306a36Sopenharmony_ci 127062306a36Sopenharmony_ci if (channel->band == NL80211_BAND_2GHZ) { 127162306a36Sopenharmony_ci /* Map 2GHz channel to 5GHz Atheros channel ID */ 127262306a36Sopenharmony_ci ret = ath5k_hw_rf5111_chan2athchan( 127362306a36Sopenharmony_ci ieee80211_frequency_to_channel(channel->center_freq), 127462306a36Sopenharmony_ci &ath5k_channel_2ghz); 127562306a36Sopenharmony_ci if (ret) 127662306a36Sopenharmony_ci return ret; 127762306a36Sopenharmony_ci 127862306a36Sopenharmony_ci ath5k_channel = ath5k_channel_2ghz.a2_athchan; 127962306a36Sopenharmony_ci data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff) 128062306a36Sopenharmony_ci << 5) | (1 << 4); 128162306a36Sopenharmony_ci } 128262306a36Sopenharmony_ci 128362306a36Sopenharmony_ci if (ath5k_channel < 145 || !(ath5k_channel & 1)) { 128462306a36Sopenharmony_ci clock = 1; 128562306a36Sopenharmony_ci data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) | 128662306a36Sopenharmony_ci (clock << 1) | (1 << 10) | 1; 128762306a36Sopenharmony_ci } else { 128862306a36Sopenharmony_ci clock = 0; 128962306a36Sopenharmony_ci data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff) 129062306a36Sopenharmony_ci << 2) | (clock << 1) | (1 << 10) | 1; 129162306a36Sopenharmony_ci } 129262306a36Sopenharmony_ci 129362306a36Sopenharmony_ci ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8), 129462306a36Sopenharmony_ci AR5K_RF_BUFFER); 129562306a36Sopenharmony_ci ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00), 129662306a36Sopenharmony_ci AR5K_RF_BUFFER_CONTROL_3); 129762306a36Sopenharmony_ci 129862306a36Sopenharmony_ci return 0; 129962306a36Sopenharmony_ci} 130062306a36Sopenharmony_ci 130162306a36Sopenharmony_ci/** 130262306a36Sopenharmony_ci * ath5k_hw_rf5112_channel() - Set channel frequency on 5112 and newer 130362306a36Sopenharmony_ci * @ah: The &struct ath5k_hw 130462306a36Sopenharmony_ci * @channel: The &struct ieee80211_channel 130562306a36Sopenharmony_ci * 130662306a36Sopenharmony_ci * On RF5112/2112 and newer we don't need to do any conversion. 130762306a36Sopenharmony_ci * We pass the frequency value after a few modifications to the 130862306a36Sopenharmony_ci * chip directly. 130962306a36Sopenharmony_ci * 131062306a36Sopenharmony_ci * NOTE: Make sure channel frequency given is within our range or else 131162306a36Sopenharmony_ci * we might damage the chip ! Use ath5k_channel_ok before calling this one. 131262306a36Sopenharmony_ci */ 131362306a36Sopenharmony_cistatic int 131462306a36Sopenharmony_ciath5k_hw_rf5112_channel(struct ath5k_hw *ah, 131562306a36Sopenharmony_ci struct ieee80211_channel *channel) 131662306a36Sopenharmony_ci{ 131762306a36Sopenharmony_ci u32 data, data0, data1, data2; 131862306a36Sopenharmony_ci u16 c; 131962306a36Sopenharmony_ci 132062306a36Sopenharmony_ci data = data0 = data1 = data2 = 0; 132162306a36Sopenharmony_ci c = channel->center_freq; 132262306a36Sopenharmony_ci 132362306a36Sopenharmony_ci /* My guess based on code: 132462306a36Sopenharmony_ci * 2GHz RF has 2 synth modes, one with a Local Oscillator 132562306a36Sopenharmony_ci * at 2224Hz and one with a LO at 2192Hz. IF is 1520Hz 132662306a36Sopenharmony_ci * (3040/2). data0 is used to set the PLL divider and data1 132762306a36Sopenharmony_ci * selects synth mode. */ 132862306a36Sopenharmony_ci if (c < 4800) { 132962306a36Sopenharmony_ci /* Channel 14 and all frequencies with 2Hz spacing 133062306a36Sopenharmony_ci * below/above (non-standard channels) */ 133162306a36Sopenharmony_ci if (!((c - 2224) % 5)) { 133262306a36Sopenharmony_ci /* Same as (c - 2224) / 5 */ 133362306a36Sopenharmony_ci data0 = ((2 * (c - 704)) - 3040) / 10; 133462306a36Sopenharmony_ci data1 = 1; 133562306a36Sopenharmony_ci /* Channel 1 and all frequencies with 5Hz spacing 133662306a36Sopenharmony_ci * below/above (standard channels without channel 14) */ 133762306a36Sopenharmony_ci } else if (!((c - 2192) % 5)) { 133862306a36Sopenharmony_ci /* Same as (c - 2192) / 5 */ 133962306a36Sopenharmony_ci data0 = ((2 * (c - 672)) - 3040) / 10; 134062306a36Sopenharmony_ci data1 = 0; 134162306a36Sopenharmony_ci } else 134262306a36Sopenharmony_ci return -EINVAL; 134362306a36Sopenharmony_ci 134462306a36Sopenharmony_ci data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8); 134562306a36Sopenharmony_ci /* This is more complex, we have a single synthesizer with 134662306a36Sopenharmony_ci * 4 reference clock settings (?) based on frequency spacing 134762306a36Sopenharmony_ci * and set using data2. LO is at 4800Hz and data0 is again used 134862306a36Sopenharmony_ci * to set some divider. 134962306a36Sopenharmony_ci * 135062306a36Sopenharmony_ci * NOTE: There is an old atheros presentation at Stanford 135162306a36Sopenharmony_ci * that mentions a method called dual direct conversion 135262306a36Sopenharmony_ci * with 1GHz sliding IF for RF5110. Maybe that's what we 135362306a36Sopenharmony_ci * have here, or an updated version. */ 135462306a36Sopenharmony_ci } else if ((c % 5) != 2 || c > 5435) { 135562306a36Sopenharmony_ci if (!(c % 20) && c >= 5120) { 135662306a36Sopenharmony_ci data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8); 135762306a36Sopenharmony_ci data2 = ath5k_hw_bitswap(3, 2); 135862306a36Sopenharmony_ci } else if (!(c % 10)) { 135962306a36Sopenharmony_ci data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8); 136062306a36Sopenharmony_ci data2 = ath5k_hw_bitswap(2, 2); 136162306a36Sopenharmony_ci } else if (!(c % 5)) { 136262306a36Sopenharmony_ci data0 = ath5k_hw_bitswap((c - 4800) / 5, 8); 136362306a36Sopenharmony_ci data2 = ath5k_hw_bitswap(1, 2); 136462306a36Sopenharmony_ci } else 136562306a36Sopenharmony_ci return -EINVAL; 136662306a36Sopenharmony_ci } else { 136762306a36Sopenharmony_ci data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8); 136862306a36Sopenharmony_ci data2 = ath5k_hw_bitswap(0, 2); 136962306a36Sopenharmony_ci } 137062306a36Sopenharmony_ci 137162306a36Sopenharmony_ci data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001; 137262306a36Sopenharmony_ci 137362306a36Sopenharmony_ci ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER); 137462306a36Sopenharmony_ci ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5); 137562306a36Sopenharmony_ci 137662306a36Sopenharmony_ci return 0; 137762306a36Sopenharmony_ci} 137862306a36Sopenharmony_ci 137962306a36Sopenharmony_ci/** 138062306a36Sopenharmony_ci * ath5k_hw_rf2425_channel() - Set channel frequency on RF2425 138162306a36Sopenharmony_ci * @ah: The &struct ath5k_hw 138262306a36Sopenharmony_ci * @channel: The &struct ieee80211_channel 138362306a36Sopenharmony_ci * 138462306a36Sopenharmony_ci * AR2425/2417 have a different 2GHz RF so code changes 138562306a36Sopenharmony_ci * a little bit from RF5112. 138662306a36Sopenharmony_ci */ 138762306a36Sopenharmony_cistatic int 138862306a36Sopenharmony_ciath5k_hw_rf2425_channel(struct ath5k_hw *ah, 138962306a36Sopenharmony_ci struct ieee80211_channel *channel) 139062306a36Sopenharmony_ci{ 139162306a36Sopenharmony_ci u32 data, data0, data2; 139262306a36Sopenharmony_ci u16 c; 139362306a36Sopenharmony_ci 139462306a36Sopenharmony_ci data = data0 = data2 = 0; 139562306a36Sopenharmony_ci c = channel->center_freq; 139662306a36Sopenharmony_ci 139762306a36Sopenharmony_ci if (c < 4800) { 139862306a36Sopenharmony_ci data0 = ath5k_hw_bitswap((c - 2272), 8); 139962306a36Sopenharmony_ci data2 = 0; 140062306a36Sopenharmony_ci /* ? 5GHz ? */ 140162306a36Sopenharmony_ci } else if ((c % 5) != 2 || c > 5435) { 140262306a36Sopenharmony_ci if (!(c % 20) && c < 5120) 140362306a36Sopenharmony_ci data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8); 140462306a36Sopenharmony_ci else if (!(c % 10)) 140562306a36Sopenharmony_ci data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8); 140662306a36Sopenharmony_ci else if (!(c % 5)) 140762306a36Sopenharmony_ci data0 = ath5k_hw_bitswap((c - 4800) / 5, 8); 140862306a36Sopenharmony_ci else 140962306a36Sopenharmony_ci return -EINVAL; 141062306a36Sopenharmony_ci data2 = ath5k_hw_bitswap(1, 2); 141162306a36Sopenharmony_ci } else { 141262306a36Sopenharmony_ci data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8); 141362306a36Sopenharmony_ci data2 = ath5k_hw_bitswap(0, 2); 141462306a36Sopenharmony_ci } 141562306a36Sopenharmony_ci 141662306a36Sopenharmony_ci data = (data0 << 4) | data2 << 2 | 0x1001; 141762306a36Sopenharmony_ci 141862306a36Sopenharmony_ci ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER); 141962306a36Sopenharmony_ci ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5); 142062306a36Sopenharmony_ci 142162306a36Sopenharmony_ci return 0; 142262306a36Sopenharmony_ci} 142362306a36Sopenharmony_ci 142462306a36Sopenharmony_ci/** 142562306a36Sopenharmony_ci * ath5k_hw_channel() - Set a channel on the radio chip 142662306a36Sopenharmony_ci * @ah: The &struct ath5k_hw 142762306a36Sopenharmony_ci * @channel: The &struct ieee80211_channel 142862306a36Sopenharmony_ci * 142962306a36Sopenharmony_ci * This is the main function called to set a channel on the 143062306a36Sopenharmony_ci * radio chip based on the radio chip version. 143162306a36Sopenharmony_ci */ 143262306a36Sopenharmony_cistatic int 143362306a36Sopenharmony_ciath5k_hw_channel(struct ath5k_hw *ah, 143462306a36Sopenharmony_ci struct ieee80211_channel *channel) 143562306a36Sopenharmony_ci{ 143662306a36Sopenharmony_ci int ret; 143762306a36Sopenharmony_ci /* 143862306a36Sopenharmony_ci * Check bounds supported by the PHY (we don't care about regulatory 143962306a36Sopenharmony_ci * restrictions at this point). 144062306a36Sopenharmony_ci */ 144162306a36Sopenharmony_ci if (!ath5k_channel_ok(ah, channel)) { 144262306a36Sopenharmony_ci ATH5K_ERR(ah, 144362306a36Sopenharmony_ci "channel frequency (%u MHz) out of supported " 144462306a36Sopenharmony_ci "band range\n", 144562306a36Sopenharmony_ci channel->center_freq); 144662306a36Sopenharmony_ci return -EINVAL; 144762306a36Sopenharmony_ci } 144862306a36Sopenharmony_ci 144962306a36Sopenharmony_ci /* 145062306a36Sopenharmony_ci * Set the channel and wait 145162306a36Sopenharmony_ci */ 145262306a36Sopenharmony_ci switch (ah->ah_radio) { 145362306a36Sopenharmony_ci case AR5K_RF5110: 145462306a36Sopenharmony_ci ret = ath5k_hw_rf5110_channel(ah, channel); 145562306a36Sopenharmony_ci break; 145662306a36Sopenharmony_ci case AR5K_RF5111: 145762306a36Sopenharmony_ci ret = ath5k_hw_rf5111_channel(ah, channel); 145862306a36Sopenharmony_ci break; 145962306a36Sopenharmony_ci case AR5K_RF2317: 146062306a36Sopenharmony_ci case AR5K_RF2425: 146162306a36Sopenharmony_ci ret = ath5k_hw_rf2425_channel(ah, channel); 146262306a36Sopenharmony_ci break; 146362306a36Sopenharmony_ci default: 146462306a36Sopenharmony_ci ret = ath5k_hw_rf5112_channel(ah, channel); 146562306a36Sopenharmony_ci break; 146662306a36Sopenharmony_ci } 146762306a36Sopenharmony_ci 146862306a36Sopenharmony_ci if (ret) 146962306a36Sopenharmony_ci return ret; 147062306a36Sopenharmony_ci 147162306a36Sopenharmony_ci /* Set JAPAN setting for channel 14 */ 147262306a36Sopenharmony_ci if (channel->center_freq == 2484) { 147362306a36Sopenharmony_ci AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL, 147462306a36Sopenharmony_ci AR5K_PHY_CCKTXCTL_JAPAN); 147562306a36Sopenharmony_ci } else { 147662306a36Sopenharmony_ci AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL, 147762306a36Sopenharmony_ci AR5K_PHY_CCKTXCTL_WORLD); 147862306a36Sopenharmony_ci } 147962306a36Sopenharmony_ci 148062306a36Sopenharmony_ci ah->ah_current_channel = channel; 148162306a36Sopenharmony_ci 148262306a36Sopenharmony_ci return 0; 148362306a36Sopenharmony_ci} 148462306a36Sopenharmony_ci 148562306a36Sopenharmony_ci 148662306a36Sopenharmony_ci/*****************\ 148762306a36Sopenharmony_ci PHY calibration 148862306a36Sopenharmony_ci\*****************/ 148962306a36Sopenharmony_ci 149062306a36Sopenharmony_ci/** 149162306a36Sopenharmony_ci * DOC: PHY Calibration routines 149262306a36Sopenharmony_ci * 149362306a36Sopenharmony_ci * Noise floor calibration: When we tell the hardware to 149462306a36Sopenharmony_ci * perform a noise floor calibration by setting the 149562306a36Sopenharmony_ci * AR5K_PHY_AGCCTL_NF bit on AR5K_PHY_AGCCTL, it will periodically 149662306a36Sopenharmony_ci * sample-and-hold the minimum noise level seen at the antennas. 149762306a36Sopenharmony_ci * This value is then stored in a ring buffer of recently measured 149862306a36Sopenharmony_ci * noise floor values so we have a moving window of the last few 149962306a36Sopenharmony_ci * samples. The median of the values in the history is then loaded 150062306a36Sopenharmony_ci * into the hardware for its own use for RSSI and CCA measurements. 150162306a36Sopenharmony_ci * This type of calibration doesn't interfere with traffic. 150262306a36Sopenharmony_ci * 150362306a36Sopenharmony_ci * AGC calibration: When we tell the hardware to perform 150462306a36Sopenharmony_ci * an AGC (Automatic Gain Control) calibration by setting the 150562306a36Sopenharmony_ci * AR5K_PHY_AGCCTL_CAL, hw disconnects the antennas and does 150662306a36Sopenharmony_ci * a calibration on the DC offsets of ADCs. During this period 150762306a36Sopenharmony_ci * rx/tx gets disabled so we have to deal with it on the driver 150862306a36Sopenharmony_ci * part. 150962306a36Sopenharmony_ci * 151062306a36Sopenharmony_ci * I/Q calibration: When we tell the hardware to perform 151162306a36Sopenharmony_ci * an I/Q calibration, it tries to correct I/Q imbalance and 151262306a36Sopenharmony_ci * fix QAM constellation by sampling data from rxed frames. 151362306a36Sopenharmony_ci * It doesn't interfere with traffic. 151462306a36Sopenharmony_ci * 151562306a36Sopenharmony_ci * For more infos on AGC and I/Q calibration check out patent doc 151662306a36Sopenharmony_ci * #03/094463. 151762306a36Sopenharmony_ci */ 151862306a36Sopenharmony_ci 151962306a36Sopenharmony_ci/** 152062306a36Sopenharmony_ci * ath5k_hw_read_measured_noise_floor() - Read measured NF from hw 152162306a36Sopenharmony_ci * @ah: The &struct ath5k_hw 152262306a36Sopenharmony_ci */ 152362306a36Sopenharmony_cistatic s32 152462306a36Sopenharmony_ciath5k_hw_read_measured_noise_floor(struct ath5k_hw *ah) 152562306a36Sopenharmony_ci{ 152662306a36Sopenharmony_ci s32 val; 152762306a36Sopenharmony_ci 152862306a36Sopenharmony_ci val = ath5k_hw_reg_read(ah, AR5K_PHY_NF); 152962306a36Sopenharmony_ci return sign_extend32(AR5K_REG_MS(val, AR5K_PHY_NF_MINCCA_PWR), 8); 153062306a36Sopenharmony_ci} 153162306a36Sopenharmony_ci 153262306a36Sopenharmony_ci/** 153362306a36Sopenharmony_ci * ath5k_hw_init_nfcal_hist() - Initialize NF calibration history buffer 153462306a36Sopenharmony_ci * @ah: The &struct ath5k_hw 153562306a36Sopenharmony_ci */ 153662306a36Sopenharmony_civoid 153762306a36Sopenharmony_ciath5k_hw_init_nfcal_hist(struct ath5k_hw *ah) 153862306a36Sopenharmony_ci{ 153962306a36Sopenharmony_ci int i; 154062306a36Sopenharmony_ci 154162306a36Sopenharmony_ci ah->ah_nfcal_hist.index = 0; 154262306a36Sopenharmony_ci for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++) 154362306a36Sopenharmony_ci ah->ah_nfcal_hist.nfval[i] = AR5K_TUNE_CCA_MAX_GOOD_VALUE; 154462306a36Sopenharmony_ci} 154562306a36Sopenharmony_ci 154662306a36Sopenharmony_ci/** 154762306a36Sopenharmony_ci * ath5k_hw_update_nfcal_hist() - Update NF calibration history buffer 154862306a36Sopenharmony_ci * @ah: The &struct ath5k_hw 154962306a36Sopenharmony_ci * @noise_floor: The NF we got from hw 155062306a36Sopenharmony_ci */ 155162306a36Sopenharmony_cistatic void ath5k_hw_update_nfcal_hist(struct ath5k_hw *ah, s16 noise_floor) 155262306a36Sopenharmony_ci{ 155362306a36Sopenharmony_ci struct ath5k_nfcal_hist *hist = &ah->ah_nfcal_hist; 155462306a36Sopenharmony_ci hist->index = (hist->index + 1) & (ATH5K_NF_CAL_HIST_MAX - 1); 155562306a36Sopenharmony_ci hist->nfval[hist->index] = noise_floor; 155662306a36Sopenharmony_ci} 155762306a36Sopenharmony_ci 155862306a36Sopenharmony_cistatic int cmps16(const void *a, const void *b) 155962306a36Sopenharmony_ci{ 156062306a36Sopenharmony_ci return *(s16 *)a - *(s16 *)b; 156162306a36Sopenharmony_ci} 156262306a36Sopenharmony_ci 156362306a36Sopenharmony_ci/** 156462306a36Sopenharmony_ci * ath5k_hw_get_median_noise_floor() - Get median NF from history buffer 156562306a36Sopenharmony_ci * @ah: The &struct ath5k_hw 156662306a36Sopenharmony_ci */ 156762306a36Sopenharmony_cistatic s16 156862306a36Sopenharmony_ciath5k_hw_get_median_noise_floor(struct ath5k_hw *ah) 156962306a36Sopenharmony_ci{ 157062306a36Sopenharmony_ci s16 sorted_nfval[ATH5K_NF_CAL_HIST_MAX]; 157162306a36Sopenharmony_ci int i; 157262306a36Sopenharmony_ci 157362306a36Sopenharmony_ci memcpy(sorted_nfval, ah->ah_nfcal_hist.nfval, sizeof(sorted_nfval)); 157462306a36Sopenharmony_ci sort(sorted_nfval, ATH5K_NF_CAL_HIST_MAX, sizeof(s16), cmps16, NULL); 157562306a36Sopenharmony_ci for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++) { 157662306a36Sopenharmony_ci ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE, 157762306a36Sopenharmony_ci "cal %d:%d\n", i, sorted_nfval[i]); 157862306a36Sopenharmony_ci } 157962306a36Sopenharmony_ci return sorted_nfval[(ATH5K_NF_CAL_HIST_MAX - 1) / 2]; 158062306a36Sopenharmony_ci} 158162306a36Sopenharmony_ci 158262306a36Sopenharmony_ci/** 158362306a36Sopenharmony_ci * ath5k_hw_update_noise_floor() - Update NF on hardware 158462306a36Sopenharmony_ci * @ah: The &struct ath5k_hw 158562306a36Sopenharmony_ci * 158662306a36Sopenharmony_ci * This is the main function we call to perform a NF calibration, 158762306a36Sopenharmony_ci * it reads NF from hardware, calculates the median and updates 158862306a36Sopenharmony_ci * NF on hw. 158962306a36Sopenharmony_ci */ 159062306a36Sopenharmony_civoid 159162306a36Sopenharmony_ciath5k_hw_update_noise_floor(struct ath5k_hw *ah) 159262306a36Sopenharmony_ci{ 159362306a36Sopenharmony_ci struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; 159462306a36Sopenharmony_ci u32 val; 159562306a36Sopenharmony_ci s16 nf, threshold; 159662306a36Sopenharmony_ci u8 ee_mode; 159762306a36Sopenharmony_ci 159862306a36Sopenharmony_ci /* keep last value if calibration hasn't completed */ 159962306a36Sopenharmony_ci if (ath5k_hw_reg_read(ah, AR5K_PHY_AGCCTL) & AR5K_PHY_AGCCTL_NF) { 160062306a36Sopenharmony_ci ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE, 160162306a36Sopenharmony_ci "NF did not complete in calibration window\n"); 160262306a36Sopenharmony_ci 160362306a36Sopenharmony_ci return; 160462306a36Sopenharmony_ci } 160562306a36Sopenharmony_ci 160662306a36Sopenharmony_ci ah->ah_cal_mask |= AR5K_CALIBRATION_NF; 160762306a36Sopenharmony_ci 160862306a36Sopenharmony_ci ee_mode = ath5k_eeprom_mode_from_channel(ah, ah->ah_current_channel); 160962306a36Sopenharmony_ci 161062306a36Sopenharmony_ci /* completed NF calibration, test threshold */ 161162306a36Sopenharmony_ci nf = ath5k_hw_read_measured_noise_floor(ah); 161262306a36Sopenharmony_ci threshold = ee->ee_noise_floor_thr[ee_mode]; 161362306a36Sopenharmony_ci 161462306a36Sopenharmony_ci if (nf > threshold) { 161562306a36Sopenharmony_ci ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE, 161662306a36Sopenharmony_ci "noise floor failure detected; " 161762306a36Sopenharmony_ci "read %d, threshold %d\n", 161862306a36Sopenharmony_ci nf, threshold); 161962306a36Sopenharmony_ci 162062306a36Sopenharmony_ci nf = AR5K_TUNE_CCA_MAX_GOOD_VALUE; 162162306a36Sopenharmony_ci } 162262306a36Sopenharmony_ci 162362306a36Sopenharmony_ci ath5k_hw_update_nfcal_hist(ah, nf); 162462306a36Sopenharmony_ci nf = ath5k_hw_get_median_noise_floor(ah); 162562306a36Sopenharmony_ci 162662306a36Sopenharmony_ci /* load noise floor (in .5 dBm) so the hardware will use it */ 162762306a36Sopenharmony_ci val = ath5k_hw_reg_read(ah, AR5K_PHY_NF) & ~AR5K_PHY_NF_M; 162862306a36Sopenharmony_ci val |= (nf * 2) & AR5K_PHY_NF_M; 162962306a36Sopenharmony_ci ath5k_hw_reg_write(ah, val, AR5K_PHY_NF); 163062306a36Sopenharmony_ci 163162306a36Sopenharmony_ci AR5K_REG_MASKED_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF, 163262306a36Sopenharmony_ci ~(AR5K_PHY_AGCCTL_NF_EN | AR5K_PHY_AGCCTL_NF_NOUPDATE)); 163362306a36Sopenharmony_ci 163462306a36Sopenharmony_ci ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF, 163562306a36Sopenharmony_ci 0, false); 163662306a36Sopenharmony_ci 163762306a36Sopenharmony_ci /* 163862306a36Sopenharmony_ci * Load a high max CCA Power value (-50 dBm in .5 dBm units) 163962306a36Sopenharmony_ci * so that we're not capped by the median we just loaded. 164062306a36Sopenharmony_ci * This will be used as the initial value for the next noise 164162306a36Sopenharmony_ci * floor calibration. 164262306a36Sopenharmony_ci */ 164362306a36Sopenharmony_ci val = (val & ~AR5K_PHY_NF_M) | ((-50 * 2) & AR5K_PHY_NF_M); 164462306a36Sopenharmony_ci ath5k_hw_reg_write(ah, val, AR5K_PHY_NF); 164562306a36Sopenharmony_ci AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, 164662306a36Sopenharmony_ci AR5K_PHY_AGCCTL_NF_EN | 164762306a36Sopenharmony_ci AR5K_PHY_AGCCTL_NF_NOUPDATE | 164862306a36Sopenharmony_ci AR5K_PHY_AGCCTL_NF); 164962306a36Sopenharmony_ci 165062306a36Sopenharmony_ci ah->ah_noise_floor = nf; 165162306a36Sopenharmony_ci 165262306a36Sopenharmony_ci ah->ah_cal_mask &= ~AR5K_CALIBRATION_NF; 165362306a36Sopenharmony_ci 165462306a36Sopenharmony_ci ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE, 165562306a36Sopenharmony_ci "noise floor calibrated: %d\n", nf); 165662306a36Sopenharmony_ci} 165762306a36Sopenharmony_ci 165862306a36Sopenharmony_ci/** 165962306a36Sopenharmony_ci * ath5k_hw_rf5110_calibrate() - Perform a PHY calibration on RF5110 166062306a36Sopenharmony_ci * @ah: The &struct ath5k_hw 166162306a36Sopenharmony_ci * @channel: The &struct ieee80211_channel 166262306a36Sopenharmony_ci * 166362306a36Sopenharmony_ci * Do a complete PHY calibration (AGC + NF + I/Q) on RF5110 166462306a36Sopenharmony_ci */ 166562306a36Sopenharmony_cistatic int 166662306a36Sopenharmony_ciath5k_hw_rf5110_calibrate(struct ath5k_hw *ah, 166762306a36Sopenharmony_ci struct ieee80211_channel *channel) 166862306a36Sopenharmony_ci{ 166962306a36Sopenharmony_ci u32 phy_sig, phy_agc, phy_sat, beacon; 167062306a36Sopenharmony_ci int ret; 167162306a36Sopenharmony_ci 167262306a36Sopenharmony_ci if (!(ah->ah_cal_mask & AR5K_CALIBRATION_FULL)) 167362306a36Sopenharmony_ci return 0; 167462306a36Sopenharmony_ci 167562306a36Sopenharmony_ci /* 167662306a36Sopenharmony_ci * Disable beacons and RX/TX queues, wait 167762306a36Sopenharmony_ci */ 167862306a36Sopenharmony_ci AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210, 167962306a36Sopenharmony_ci AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210); 168062306a36Sopenharmony_ci beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210); 168162306a36Sopenharmony_ci ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210); 168262306a36Sopenharmony_ci 168362306a36Sopenharmony_ci usleep_range(2000, 2500); 168462306a36Sopenharmony_ci 168562306a36Sopenharmony_ci /* 168662306a36Sopenharmony_ci * Set the channel (with AGC turned off) 168762306a36Sopenharmony_ci */ 168862306a36Sopenharmony_ci AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE); 168962306a36Sopenharmony_ci udelay(10); 169062306a36Sopenharmony_ci ret = ath5k_hw_channel(ah, channel); 169162306a36Sopenharmony_ci 169262306a36Sopenharmony_ci /* 169362306a36Sopenharmony_ci * Activate PHY and wait 169462306a36Sopenharmony_ci */ 169562306a36Sopenharmony_ci ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT); 169662306a36Sopenharmony_ci usleep_range(1000, 1500); 169762306a36Sopenharmony_ci 169862306a36Sopenharmony_ci AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE); 169962306a36Sopenharmony_ci 170062306a36Sopenharmony_ci if (ret) 170162306a36Sopenharmony_ci return ret; 170262306a36Sopenharmony_ci 170362306a36Sopenharmony_ci /* 170462306a36Sopenharmony_ci * Calibrate the radio chip 170562306a36Sopenharmony_ci */ 170662306a36Sopenharmony_ci 170762306a36Sopenharmony_ci /* Remember normal state */ 170862306a36Sopenharmony_ci phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG); 170962306a36Sopenharmony_ci phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE); 171062306a36Sopenharmony_ci phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT); 171162306a36Sopenharmony_ci 171262306a36Sopenharmony_ci /* Update radio registers */ 171362306a36Sopenharmony_ci ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) | 171462306a36Sopenharmony_ci AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG); 171562306a36Sopenharmony_ci 171662306a36Sopenharmony_ci ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI | 171762306a36Sopenharmony_ci AR5K_PHY_AGCCOARSE_LO)) | 171862306a36Sopenharmony_ci AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) | 171962306a36Sopenharmony_ci AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE); 172062306a36Sopenharmony_ci 172162306a36Sopenharmony_ci ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT | 172262306a36Sopenharmony_ci AR5K_PHY_ADCSAT_THR)) | 172362306a36Sopenharmony_ci AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) | 172462306a36Sopenharmony_ci AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT); 172562306a36Sopenharmony_ci 172662306a36Sopenharmony_ci udelay(20); 172762306a36Sopenharmony_ci 172862306a36Sopenharmony_ci AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE); 172962306a36Sopenharmony_ci udelay(10); 173062306a36Sopenharmony_ci ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG); 173162306a36Sopenharmony_ci AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE); 173262306a36Sopenharmony_ci 173362306a36Sopenharmony_ci usleep_range(1000, 1500); 173462306a36Sopenharmony_ci 173562306a36Sopenharmony_ci /* 173662306a36Sopenharmony_ci * Enable calibration and wait until completion 173762306a36Sopenharmony_ci */ 173862306a36Sopenharmony_ci AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL); 173962306a36Sopenharmony_ci 174062306a36Sopenharmony_ci ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, 174162306a36Sopenharmony_ci AR5K_PHY_AGCCTL_CAL, 0, false); 174262306a36Sopenharmony_ci 174362306a36Sopenharmony_ci /* Reset to normal state */ 174462306a36Sopenharmony_ci ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG); 174562306a36Sopenharmony_ci ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE); 174662306a36Sopenharmony_ci ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT); 174762306a36Sopenharmony_ci 174862306a36Sopenharmony_ci if (ret) { 174962306a36Sopenharmony_ci ATH5K_ERR(ah, "calibration timeout (%uMHz)\n", 175062306a36Sopenharmony_ci channel->center_freq); 175162306a36Sopenharmony_ci return ret; 175262306a36Sopenharmony_ci } 175362306a36Sopenharmony_ci 175462306a36Sopenharmony_ci /* 175562306a36Sopenharmony_ci * Re-enable RX/TX and beacons 175662306a36Sopenharmony_ci */ 175762306a36Sopenharmony_ci AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210, 175862306a36Sopenharmony_ci AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210); 175962306a36Sopenharmony_ci ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210); 176062306a36Sopenharmony_ci 176162306a36Sopenharmony_ci return 0; 176262306a36Sopenharmony_ci} 176362306a36Sopenharmony_ci 176462306a36Sopenharmony_ci/** 176562306a36Sopenharmony_ci * ath5k_hw_rf511x_iq_calibrate() - Perform I/Q calibration on RF5111 and newer 176662306a36Sopenharmony_ci * @ah: The &struct ath5k_hw 176762306a36Sopenharmony_ci */ 176862306a36Sopenharmony_cistatic int 176962306a36Sopenharmony_ciath5k_hw_rf511x_iq_calibrate(struct ath5k_hw *ah) 177062306a36Sopenharmony_ci{ 177162306a36Sopenharmony_ci u32 i_pwr, q_pwr; 177262306a36Sopenharmony_ci s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd; 177362306a36Sopenharmony_ci int i; 177462306a36Sopenharmony_ci 177562306a36Sopenharmony_ci /* Skip if I/Q calibration is not needed or if it's still running */ 177662306a36Sopenharmony_ci if (!ah->ah_iq_cal_needed) 177762306a36Sopenharmony_ci return -EINVAL; 177862306a36Sopenharmony_ci else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN) { 177962306a36Sopenharmony_ci ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE, 178062306a36Sopenharmony_ci "I/Q calibration still running"); 178162306a36Sopenharmony_ci return -EBUSY; 178262306a36Sopenharmony_ci } 178362306a36Sopenharmony_ci 178462306a36Sopenharmony_ci /* Calibration has finished, get the results and re-run */ 178562306a36Sopenharmony_ci 178662306a36Sopenharmony_ci /* Work around for empty results which can apparently happen on 5212: 178762306a36Sopenharmony_ci * Read registers up to 10 times until we get both i_pr and q_pwr */ 178862306a36Sopenharmony_ci for (i = 0; i <= 10; i++) { 178962306a36Sopenharmony_ci iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR); 179062306a36Sopenharmony_ci i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I); 179162306a36Sopenharmony_ci q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q); 179262306a36Sopenharmony_ci ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE, 179362306a36Sopenharmony_ci "iq_corr:%x i_pwr:%x q_pwr:%x", iq_corr, i_pwr, q_pwr); 179462306a36Sopenharmony_ci if (i_pwr && q_pwr) 179562306a36Sopenharmony_ci break; 179662306a36Sopenharmony_ci } 179762306a36Sopenharmony_ci 179862306a36Sopenharmony_ci i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7; 179962306a36Sopenharmony_ci 180062306a36Sopenharmony_ci if (ah->ah_version == AR5K_AR5211) 180162306a36Sopenharmony_ci q_coffd = q_pwr >> 6; 180262306a36Sopenharmony_ci else 180362306a36Sopenharmony_ci q_coffd = q_pwr >> 7; 180462306a36Sopenharmony_ci 180562306a36Sopenharmony_ci /* In case i_coffd became zero, cancel calibration 180662306a36Sopenharmony_ci * not only it's too small, it'll also result a divide 180762306a36Sopenharmony_ci * by zero later on. */ 180862306a36Sopenharmony_ci if (i_coffd == 0 || q_coffd < 2) 180962306a36Sopenharmony_ci return -ECANCELED; 181062306a36Sopenharmony_ci 181162306a36Sopenharmony_ci /* Protect against loss of sign bits */ 181262306a36Sopenharmony_ci 181362306a36Sopenharmony_ci i_coff = (-iq_corr) / i_coffd; 181462306a36Sopenharmony_ci i_coff = clamp(i_coff, -32, 31); /* signed 6 bit */ 181562306a36Sopenharmony_ci 181662306a36Sopenharmony_ci if (ah->ah_version == AR5K_AR5211) 181762306a36Sopenharmony_ci q_coff = (i_pwr / q_coffd) - 64; 181862306a36Sopenharmony_ci else 181962306a36Sopenharmony_ci q_coff = (i_pwr / q_coffd) - 128; 182062306a36Sopenharmony_ci q_coff = clamp(q_coff, -16, 15); /* signed 5 bit */ 182162306a36Sopenharmony_ci 182262306a36Sopenharmony_ci ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE, 182362306a36Sopenharmony_ci "new I:%d Q:%d (i_coffd:%x q_coffd:%x)", 182462306a36Sopenharmony_ci i_coff, q_coff, i_coffd, q_coffd); 182562306a36Sopenharmony_ci 182662306a36Sopenharmony_ci /* Commit new I/Q values (set enable bit last to match HAL sources) */ 182762306a36Sopenharmony_ci AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_I_COFF, i_coff); 182862306a36Sopenharmony_ci AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_Q_COFF, q_coff); 182962306a36Sopenharmony_ci AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE); 183062306a36Sopenharmony_ci 183162306a36Sopenharmony_ci /* Re-enable calibration -if we don't we'll commit 183262306a36Sopenharmony_ci * the same values again and again */ 183362306a36Sopenharmony_ci AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, 183462306a36Sopenharmony_ci AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15); 183562306a36Sopenharmony_ci AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN); 183662306a36Sopenharmony_ci 183762306a36Sopenharmony_ci return 0; 183862306a36Sopenharmony_ci} 183962306a36Sopenharmony_ci 184062306a36Sopenharmony_ci/** 184162306a36Sopenharmony_ci * ath5k_hw_phy_calibrate() - Perform a PHY calibration 184262306a36Sopenharmony_ci * @ah: The &struct ath5k_hw 184362306a36Sopenharmony_ci * @channel: The &struct ieee80211_channel 184462306a36Sopenharmony_ci * 184562306a36Sopenharmony_ci * The main function we call from above to perform 184662306a36Sopenharmony_ci * a short or full PHY calibration based on RF chip 184762306a36Sopenharmony_ci * and current channel 184862306a36Sopenharmony_ci */ 184962306a36Sopenharmony_ciint 185062306a36Sopenharmony_ciath5k_hw_phy_calibrate(struct ath5k_hw *ah, 185162306a36Sopenharmony_ci struct ieee80211_channel *channel) 185262306a36Sopenharmony_ci{ 185362306a36Sopenharmony_ci int ret; 185462306a36Sopenharmony_ci 185562306a36Sopenharmony_ci if (ah->ah_radio == AR5K_RF5110) 185662306a36Sopenharmony_ci return ath5k_hw_rf5110_calibrate(ah, channel); 185762306a36Sopenharmony_ci 185862306a36Sopenharmony_ci ret = ath5k_hw_rf511x_iq_calibrate(ah); 185962306a36Sopenharmony_ci if (ret) { 186062306a36Sopenharmony_ci ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE, 186162306a36Sopenharmony_ci "No I/Q correction performed (%uMHz)\n", 186262306a36Sopenharmony_ci channel->center_freq); 186362306a36Sopenharmony_ci 186462306a36Sopenharmony_ci /* Happens all the time if there is not much 186562306a36Sopenharmony_ci * traffic, consider it normal behaviour. */ 186662306a36Sopenharmony_ci ret = 0; 186762306a36Sopenharmony_ci } 186862306a36Sopenharmony_ci 186962306a36Sopenharmony_ci /* On full calibration request a PAPD probe for 187062306a36Sopenharmony_ci * gainf calibration if needed */ 187162306a36Sopenharmony_ci if ((ah->ah_cal_mask & AR5K_CALIBRATION_FULL) && 187262306a36Sopenharmony_ci (ah->ah_radio == AR5K_RF5111 || 187362306a36Sopenharmony_ci ah->ah_radio == AR5K_RF5112) && 187462306a36Sopenharmony_ci channel->hw_value != AR5K_MODE_11B) 187562306a36Sopenharmony_ci ath5k_hw_request_rfgain_probe(ah); 187662306a36Sopenharmony_ci 187762306a36Sopenharmony_ci /* Update noise floor */ 187862306a36Sopenharmony_ci if (!(ah->ah_cal_mask & AR5K_CALIBRATION_NF)) 187962306a36Sopenharmony_ci ath5k_hw_update_noise_floor(ah); 188062306a36Sopenharmony_ci 188162306a36Sopenharmony_ci return ret; 188262306a36Sopenharmony_ci} 188362306a36Sopenharmony_ci 188462306a36Sopenharmony_ci 188562306a36Sopenharmony_ci/***************************\ 188662306a36Sopenharmony_ci* Spur mitigation functions * 188762306a36Sopenharmony_ci\***************************/ 188862306a36Sopenharmony_ci 188962306a36Sopenharmony_ci/** 189062306a36Sopenharmony_ci * ath5k_hw_set_spur_mitigation_filter() - Configure SPUR filter 189162306a36Sopenharmony_ci * @ah: The &struct ath5k_hw 189262306a36Sopenharmony_ci * @channel: The &struct ieee80211_channel 189362306a36Sopenharmony_ci * 189462306a36Sopenharmony_ci * This function gets called during PHY initialization to 189562306a36Sopenharmony_ci * configure the spur filter for the given channel. Spur is noise 189662306a36Sopenharmony_ci * generated due to "reflection" effects, for more information on this 189762306a36Sopenharmony_ci * method check out patent US7643810 189862306a36Sopenharmony_ci */ 189962306a36Sopenharmony_cistatic void 190062306a36Sopenharmony_ciath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah, 190162306a36Sopenharmony_ci struct ieee80211_channel *channel) 190262306a36Sopenharmony_ci{ 190362306a36Sopenharmony_ci struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; 190462306a36Sopenharmony_ci u32 mag_mask[4] = {0, 0, 0, 0}; 190562306a36Sopenharmony_ci u32 pilot_mask[2] = {0, 0}; 190662306a36Sopenharmony_ci /* Note: fbin values are scaled up by 2 */ 190762306a36Sopenharmony_ci u16 spur_chan_fbin, chan_fbin, symbol_width, spur_detection_window; 190862306a36Sopenharmony_ci s32 spur_delta_phase, spur_freq_sigma_delta; 190962306a36Sopenharmony_ci s32 spur_offset, num_symbols_x16; 191062306a36Sopenharmony_ci u8 num_symbol_offsets, i, freq_band; 191162306a36Sopenharmony_ci 191262306a36Sopenharmony_ci /* Convert current frequency to fbin value (the same way channels 191362306a36Sopenharmony_ci * are stored on EEPROM, check out ath5k_eeprom_bin2freq) and scale 191462306a36Sopenharmony_ci * up by 2 so we can compare it later */ 191562306a36Sopenharmony_ci if (channel->band == NL80211_BAND_2GHZ) { 191662306a36Sopenharmony_ci chan_fbin = (channel->center_freq - 2300) * 10; 191762306a36Sopenharmony_ci freq_band = AR5K_EEPROM_BAND_2GHZ; 191862306a36Sopenharmony_ci } else { 191962306a36Sopenharmony_ci chan_fbin = (channel->center_freq - 4900) * 10; 192062306a36Sopenharmony_ci freq_band = AR5K_EEPROM_BAND_5GHZ; 192162306a36Sopenharmony_ci } 192262306a36Sopenharmony_ci 192362306a36Sopenharmony_ci /* Check if any spur_chan_fbin from EEPROM is 192462306a36Sopenharmony_ci * within our current channel's spur detection range */ 192562306a36Sopenharmony_ci spur_chan_fbin = AR5K_EEPROM_NO_SPUR; 192662306a36Sopenharmony_ci spur_detection_window = AR5K_SPUR_CHAN_WIDTH; 192762306a36Sopenharmony_ci /* XXX: Half/Quarter channels ?*/ 192862306a36Sopenharmony_ci if (ah->ah_bwmode == AR5K_BWMODE_40MHZ) 192962306a36Sopenharmony_ci spur_detection_window *= 2; 193062306a36Sopenharmony_ci 193162306a36Sopenharmony_ci for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) { 193262306a36Sopenharmony_ci spur_chan_fbin = ee->ee_spur_chans[i][freq_band]; 193362306a36Sopenharmony_ci 193462306a36Sopenharmony_ci /* Note: mask cleans AR5K_EEPROM_NO_SPUR flag 193562306a36Sopenharmony_ci * so it's zero if we got nothing from EEPROM */ 193662306a36Sopenharmony_ci if (spur_chan_fbin == AR5K_EEPROM_NO_SPUR) { 193762306a36Sopenharmony_ci spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK; 193862306a36Sopenharmony_ci break; 193962306a36Sopenharmony_ci } 194062306a36Sopenharmony_ci 194162306a36Sopenharmony_ci if ((chan_fbin - spur_detection_window <= 194262306a36Sopenharmony_ci (spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK)) && 194362306a36Sopenharmony_ci (chan_fbin + spur_detection_window >= 194462306a36Sopenharmony_ci (spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK))) { 194562306a36Sopenharmony_ci spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK; 194662306a36Sopenharmony_ci break; 194762306a36Sopenharmony_ci } 194862306a36Sopenharmony_ci } 194962306a36Sopenharmony_ci 195062306a36Sopenharmony_ci /* We need to enable spur filter for this channel */ 195162306a36Sopenharmony_ci if (spur_chan_fbin) { 195262306a36Sopenharmony_ci spur_offset = spur_chan_fbin - chan_fbin; 195362306a36Sopenharmony_ci /* 195462306a36Sopenharmony_ci * Calculate deltas: 195562306a36Sopenharmony_ci * spur_freq_sigma_delta -> spur_offset / sample_freq << 21 195662306a36Sopenharmony_ci * spur_delta_phase -> spur_offset / chip_freq << 11 195762306a36Sopenharmony_ci * Note: Both values have 100Hz resolution 195862306a36Sopenharmony_ci */ 195962306a36Sopenharmony_ci switch (ah->ah_bwmode) { 196062306a36Sopenharmony_ci case AR5K_BWMODE_40MHZ: 196162306a36Sopenharmony_ci /* Both sample_freq and chip_freq are 80MHz */ 196262306a36Sopenharmony_ci spur_delta_phase = (spur_offset << 16) / 25; 196362306a36Sopenharmony_ci spur_freq_sigma_delta = (spur_delta_phase >> 10); 196462306a36Sopenharmony_ci symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz * 2; 196562306a36Sopenharmony_ci break; 196662306a36Sopenharmony_ci case AR5K_BWMODE_10MHZ: 196762306a36Sopenharmony_ci /* Both sample_freq and chip_freq are 20MHz (?) */ 196862306a36Sopenharmony_ci spur_delta_phase = (spur_offset << 18) / 25; 196962306a36Sopenharmony_ci spur_freq_sigma_delta = (spur_delta_phase >> 10); 197062306a36Sopenharmony_ci symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 2; 197162306a36Sopenharmony_ci break; 197262306a36Sopenharmony_ci case AR5K_BWMODE_5MHZ: 197362306a36Sopenharmony_ci /* Both sample_freq and chip_freq are 10MHz (?) */ 197462306a36Sopenharmony_ci spur_delta_phase = (spur_offset << 19) / 25; 197562306a36Sopenharmony_ci spur_freq_sigma_delta = (spur_delta_phase >> 10); 197662306a36Sopenharmony_ci symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 4; 197762306a36Sopenharmony_ci break; 197862306a36Sopenharmony_ci default: 197962306a36Sopenharmony_ci if (channel->band == NL80211_BAND_5GHZ) { 198062306a36Sopenharmony_ci /* Both sample_freq and chip_freq are 40MHz */ 198162306a36Sopenharmony_ci spur_delta_phase = (spur_offset << 17) / 25; 198262306a36Sopenharmony_ci spur_freq_sigma_delta = 198362306a36Sopenharmony_ci (spur_delta_phase >> 10); 198462306a36Sopenharmony_ci symbol_width = 198562306a36Sopenharmony_ci AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz; 198662306a36Sopenharmony_ci } else { 198762306a36Sopenharmony_ci /* sample_freq -> 40MHz chip_freq -> 44MHz 198862306a36Sopenharmony_ci * (for b compatibility) */ 198962306a36Sopenharmony_ci spur_delta_phase = (spur_offset << 17) / 25; 199062306a36Sopenharmony_ci spur_freq_sigma_delta = 199162306a36Sopenharmony_ci (spur_offset << 8) / 55; 199262306a36Sopenharmony_ci symbol_width = 199362306a36Sopenharmony_ci AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz; 199462306a36Sopenharmony_ci } 199562306a36Sopenharmony_ci break; 199662306a36Sopenharmony_ci } 199762306a36Sopenharmony_ci 199862306a36Sopenharmony_ci /* Calculate pilot and magnitude masks */ 199962306a36Sopenharmony_ci 200062306a36Sopenharmony_ci /* Scale up spur_offset by 1000 to switch to 100HZ resolution 200162306a36Sopenharmony_ci * and divide by symbol_width to find how many symbols we have 200262306a36Sopenharmony_ci * Note: number of symbols is scaled up by 16 */ 200362306a36Sopenharmony_ci num_symbols_x16 = ((spur_offset * 1000) << 4) / symbol_width; 200462306a36Sopenharmony_ci 200562306a36Sopenharmony_ci /* Spur is on a symbol if num_symbols_x16 % 16 is zero */ 200662306a36Sopenharmony_ci if (!(num_symbols_x16 & 0xF)) 200762306a36Sopenharmony_ci /* _X_ */ 200862306a36Sopenharmony_ci num_symbol_offsets = 3; 200962306a36Sopenharmony_ci else 201062306a36Sopenharmony_ci /* _xx_ */ 201162306a36Sopenharmony_ci num_symbol_offsets = 4; 201262306a36Sopenharmony_ci 201362306a36Sopenharmony_ci for (i = 0; i < num_symbol_offsets; i++) { 201462306a36Sopenharmony_ci 201562306a36Sopenharmony_ci /* Calculate pilot mask */ 201662306a36Sopenharmony_ci s32 curr_sym_off = 201762306a36Sopenharmony_ci (num_symbols_x16 / 16) + i + 25; 201862306a36Sopenharmony_ci 201962306a36Sopenharmony_ci /* Pilot magnitude mask seems to be a way to 202062306a36Sopenharmony_ci * declare the boundaries for our detection 202162306a36Sopenharmony_ci * window or something, it's 2 for the middle 202262306a36Sopenharmony_ci * value(s) where the symbol is expected to be 202362306a36Sopenharmony_ci * and 1 on the boundary values */ 202462306a36Sopenharmony_ci u8 plt_mag_map = 202562306a36Sopenharmony_ci (i == 0 || i == (num_symbol_offsets - 1)) 202662306a36Sopenharmony_ci ? 1 : 2; 202762306a36Sopenharmony_ci 202862306a36Sopenharmony_ci if (curr_sym_off >= 0 && curr_sym_off <= 32) { 202962306a36Sopenharmony_ci if (curr_sym_off <= 25) 203062306a36Sopenharmony_ci pilot_mask[0] |= 1 << curr_sym_off; 203162306a36Sopenharmony_ci else if (curr_sym_off >= 27) 203262306a36Sopenharmony_ci pilot_mask[0] |= 1 << (curr_sym_off - 1); 203362306a36Sopenharmony_ci } else if (curr_sym_off >= 33 && curr_sym_off <= 52) 203462306a36Sopenharmony_ci pilot_mask[1] |= 1 << (curr_sym_off - 33); 203562306a36Sopenharmony_ci 203662306a36Sopenharmony_ci /* Calculate magnitude mask (for viterbi decoder) */ 203762306a36Sopenharmony_ci if (curr_sym_off >= -1 && curr_sym_off <= 14) 203862306a36Sopenharmony_ci mag_mask[0] |= 203962306a36Sopenharmony_ci plt_mag_map << (curr_sym_off + 1) * 2; 204062306a36Sopenharmony_ci else if (curr_sym_off >= 15 && curr_sym_off <= 30) 204162306a36Sopenharmony_ci mag_mask[1] |= 204262306a36Sopenharmony_ci plt_mag_map << (curr_sym_off - 15) * 2; 204362306a36Sopenharmony_ci else if (curr_sym_off >= 31 && curr_sym_off <= 46) 204462306a36Sopenharmony_ci mag_mask[2] |= 204562306a36Sopenharmony_ci plt_mag_map << (curr_sym_off - 31) * 2; 204662306a36Sopenharmony_ci else if (curr_sym_off >= 47 && curr_sym_off <= 53) 204762306a36Sopenharmony_ci mag_mask[3] |= 204862306a36Sopenharmony_ci plt_mag_map << (curr_sym_off - 47) * 2; 204962306a36Sopenharmony_ci 205062306a36Sopenharmony_ci } 205162306a36Sopenharmony_ci 205262306a36Sopenharmony_ci /* Write settings on hw to enable spur filter */ 205362306a36Sopenharmony_ci AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL, 205462306a36Sopenharmony_ci AR5K_PHY_BIN_MASK_CTL_RATE, 0xff); 205562306a36Sopenharmony_ci /* XXX: Self correlator also ? */ 205662306a36Sopenharmony_ci AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, 205762306a36Sopenharmony_ci AR5K_PHY_IQ_PILOT_MASK_EN | 205862306a36Sopenharmony_ci AR5K_PHY_IQ_CHAN_MASK_EN | 205962306a36Sopenharmony_ci AR5K_PHY_IQ_SPUR_FILT_EN); 206062306a36Sopenharmony_ci 206162306a36Sopenharmony_ci /* Set delta phase and freq sigma delta */ 206262306a36Sopenharmony_ci ath5k_hw_reg_write(ah, 206362306a36Sopenharmony_ci AR5K_REG_SM(spur_delta_phase, 206462306a36Sopenharmony_ci AR5K_PHY_TIMING_11_SPUR_DELTA_PHASE) | 206562306a36Sopenharmony_ci AR5K_REG_SM(spur_freq_sigma_delta, 206662306a36Sopenharmony_ci AR5K_PHY_TIMING_11_SPUR_FREQ_SD) | 206762306a36Sopenharmony_ci AR5K_PHY_TIMING_11_USE_SPUR_IN_AGC, 206862306a36Sopenharmony_ci AR5K_PHY_TIMING_11); 206962306a36Sopenharmony_ci 207062306a36Sopenharmony_ci /* Write pilot masks */ 207162306a36Sopenharmony_ci ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_7); 207262306a36Sopenharmony_ci AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8, 207362306a36Sopenharmony_ci AR5K_PHY_TIMING_8_PILOT_MASK_2, 207462306a36Sopenharmony_ci pilot_mask[1]); 207562306a36Sopenharmony_ci 207662306a36Sopenharmony_ci ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_9); 207762306a36Sopenharmony_ci AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10, 207862306a36Sopenharmony_ci AR5K_PHY_TIMING_10_PILOT_MASK_2, 207962306a36Sopenharmony_ci pilot_mask[1]); 208062306a36Sopenharmony_ci 208162306a36Sopenharmony_ci /* Write magnitude masks */ 208262306a36Sopenharmony_ci ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK_1); 208362306a36Sopenharmony_ci ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK_2); 208462306a36Sopenharmony_ci ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK_3); 208562306a36Sopenharmony_ci AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL, 208662306a36Sopenharmony_ci AR5K_PHY_BIN_MASK_CTL_MASK_4, 208762306a36Sopenharmony_ci mag_mask[3]); 208862306a36Sopenharmony_ci 208962306a36Sopenharmony_ci ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK2_1); 209062306a36Sopenharmony_ci ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK2_2); 209162306a36Sopenharmony_ci ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK2_3); 209262306a36Sopenharmony_ci AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4, 209362306a36Sopenharmony_ci AR5K_PHY_BIN_MASK2_4_MASK_4, 209462306a36Sopenharmony_ci mag_mask[3]); 209562306a36Sopenharmony_ci 209662306a36Sopenharmony_ci } else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & 209762306a36Sopenharmony_ci AR5K_PHY_IQ_SPUR_FILT_EN) { 209862306a36Sopenharmony_ci /* Clean up spur mitigation settings and disable filter */ 209962306a36Sopenharmony_ci AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL, 210062306a36Sopenharmony_ci AR5K_PHY_BIN_MASK_CTL_RATE, 0); 210162306a36Sopenharmony_ci AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_IQ, 210262306a36Sopenharmony_ci AR5K_PHY_IQ_PILOT_MASK_EN | 210362306a36Sopenharmony_ci AR5K_PHY_IQ_CHAN_MASK_EN | 210462306a36Sopenharmony_ci AR5K_PHY_IQ_SPUR_FILT_EN); 210562306a36Sopenharmony_ci ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_11); 210662306a36Sopenharmony_ci 210762306a36Sopenharmony_ci /* Clear pilot masks */ 210862306a36Sopenharmony_ci ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_7); 210962306a36Sopenharmony_ci AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8, 211062306a36Sopenharmony_ci AR5K_PHY_TIMING_8_PILOT_MASK_2, 211162306a36Sopenharmony_ci 0); 211262306a36Sopenharmony_ci 211362306a36Sopenharmony_ci ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_9); 211462306a36Sopenharmony_ci AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10, 211562306a36Sopenharmony_ci AR5K_PHY_TIMING_10_PILOT_MASK_2, 211662306a36Sopenharmony_ci 0); 211762306a36Sopenharmony_ci 211862306a36Sopenharmony_ci /* Clear magnitude masks */ 211962306a36Sopenharmony_ci ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_1); 212062306a36Sopenharmony_ci ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_2); 212162306a36Sopenharmony_ci ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_3); 212262306a36Sopenharmony_ci AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL, 212362306a36Sopenharmony_ci AR5K_PHY_BIN_MASK_CTL_MASK_4, 212462306a36Sopenharmony_ci 0); 212562306a36Sopenharmony_ci 212662306a36Sopenharmony_ci ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_1); 212762306a36Sopenharmony_ci ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_2); 212862306a36Sopenharmony_ci ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_3); 212962306a36Sopenharmony_ci AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4, 213062306a36Sopenharmony_ci AR5K_PHY_BIN_MASK2_4_MASK_4, 213162306a36Sopenharmony_ci 0); 213262306a36Sopenharmony_ci } 213362306a36Sopenharmony_ci} 213462306a36Sopenharmony_ci 213562306a36Sopenharmony_ci 213662306a36Sopenharmony_ci/*****************\ 213762306a36Sopenharmony_ci* Antenna control * 213862306a36Sopenharmony_ci\*****************/ 213962306a36Sopenharmony_ci 214062306a36Sopenharmony_ci/** 214162306a36Sopenharmony_ci * DOC: Antenna control 214262306a36Sopenharmony_ci * 214362306a36Sopenharmony_ci * Hw supports up to 14 antennas ! I haven't found any card that implements 214462306a36Sopenharmony_ci * that. The maximum number of antennas I've seen is up to 4 (2 for 2GHz and 2 214562306a36Sopenharmony_ci * for 5GHz). Antenna 1 (MAIN) should be omnidirectional, 2 (AUX) 214662306a36Sopenharmony_ci * omnidirectional or sectorial and antennas 3-14 sectorial (or directional). 214762306a36Sopenharmony_ci * 214862306a36Sopenharmony_ci * We can have a single antenna for RX and multiple antennas for TX. 214962306a36Sopenharmony_ci * RX antenna is our "default" antenna (usually antenna 1) set on 215062306a36Sopenharmony_ci * DEFAULT_ANTENNA register and TX antenna is set on each TX control descriptor 215162306a36Sopenharmony_ci * (0 for automatic selection, 1 - 14 antenna number). 215262306a36Sopenharmony_ci * 215362306a36Sopenharmony_ci * We can let hw do all the work doing fast antenna diversity for both 215462306a36Sopenharmony_ci * tx and rx or we can do things manually. Here are the options we have 215562306a36Sopenharmony_ci * (all are bits of STA_ID1 register): 215662306a36Sopenharmony_ci * 215762306a36Sopenharmony_ci * AR5K_STA_ID1_DEFAULT_ANTENNA -> When 0 is set as the TX antenna on TX 215862306a36Sopenharmony_ci * control descriptor, use the default antenna to transmit or else use the last 215962306a36Sopenharmony_ci * antenna on which we received an ACK. 216062306a36Sopenharmony_ci * 216162306a36Sopenharmony_ci * AR5K_STA_ID1_DESC_ANTENNA -> Update default antenna after each TX frame to 216262306a36Sopenharmony_ci * the antenna on which we got the ACK for that frame. 216362306a36Sopenharmony_ci * 216462306a36Sopenharmony_ci * AR5K_STA_ID1_RTS_DEF_ANTENNA -> Use default antenna for RTS or else use the 216562306a36Sopenharmony_ci * one on the TX descriptor. 216662306a36Sopenharmony_ci * 216762306a36Sopenharmony_ci * AR5K_STA_ID1_SELFGEN_DEF_ANT -> Use default antenna for self generated frames 216862306a36Sopenharmony_ci * (ACKs etc), or else use current antenna (the one we just used for TX). 216962306a36Sopenharmony_ci * 217062306a36Sopenharmony_ci * Using the above we support the following scenarios: 217162306a36Sopenharmony_ci * 217262306a36Sopenharmony_ci * AR5K_ANTMODE_DEFAULT -> Hw handles antenna diversity etc automatically 217362306a36Sopenharmony_ci * 217462306a36Sopenharmony_ci * AR5K_ANTMODE_FIXED_A -> Only antenna A (MAIN) is present 217562306a36Sopenharmony_ci * 217662306a36Sopenharmony_ci * AR5K_ANTMODE_FIXED_B -> Only antenna B (AUX) is present 217762306a36Sopenharmony_ci * 217862306a36Sopenharmony_ci * AR5K_ANTMODE_SINGLE_AP -> Sta locked on a single ap 217962306a36Sopenharmony_ci * 218062306a36Sopenharmony_ci * AR5K_ANTMODE_SECTOR_AP -> AP with tx antenna set on tx desc 218162306a36Sopenharmony_ci * 218262306a36Sopenharmony_ci * AR5K_ANTMODE_SECTOR_STA -> STA with tx antenna set on tx desc 218362306a36Sopenharmony_ci * 218462306a36Sopenharmony_ci * AR5K_ANTMODE_DEBUG Debug mode -A -> Rx, B-> Tx- 218562306a36Sopenharmony_ci * 218662306a36Sopenharmony_ci * Also note that when setting antenna to F on tx descriptor card inverts 218762306a36Sopenharmony_ci * current tx antenna. 218862306a36Sopenharmony_ci */ 218962306a36Sopenharmony_ci 219062306a36Sopenharmony_ci/** 219162306a36Sopenharmony_ci * ath5k_hw_set_def_antenna() - Set default rx antenna on AR5211/5212 and newer 219262306a36Sopenharmony_ci * @ah: The &struct ath5k_hw 219362306a36Sopenharmony_ci * @ant: Antenna number 219462306a36Sopenharmony_ci */ 219562306a36Sopenharmony_cistatic void 219662306a36Sopenharmony_ciath5k_hw_set_def_antenna(struct ath5k_hw *ah, u8 ant) 219762306a36Sopenharmony_ci{ 219862306a36Sopenharmony_ci if (ah->ah_version != AR5K_AR5210) 219962306a36Sopenharmony_ci ath5k_hw_reg_write(ah, ant & 0x7, AR5K_DEFAULT_ANTENNA); 220062306a36Sopenharmony_ci} 220162306a36Sopenharmony_ci 220262306a36Sopenharmony_ci/** 220362306a36Sopenharmony_ci * ath5k_hw_set_fast_div() - Enable/disable fast rx antenna diversity 220462306a36Sopenharmony_ci * @ah: The &struct ath5k_hw 220562306a36Sopenharmony_ci * @ee_mode: One of enum ath5k_driver_mode 220662306a36Sopenharmony_ci * @enable: True to enable, false to disable 220762306a36Sopenharmony_ci */ 220862306a36Sopenharmony_cistatic void 220962306a36Sopenharmony_ciath5k_hw_set_fast_div(struct ath5k_hw *ah, u8 ee_mode, bool enable) 221062306a36Sopenharmony_ci{ 221162306a36Sopenharmony_ci switch (ee_mode) { 221262306a36Sopenharmony_ci case AR5K_EEPROM_MODE_11G: 221362306a36Sopenharmony_ci /* XXX: This is set to 221462306a36Sopenharmony_ci * disabled on initvals !!! */ 221562306a36Sopenharmony_ci case AR5K_EEPROM_MODE_11A: 221662306a36Sopenharmony_ci if (enable) 221762306a36Sopenharmony_ci AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGCCTL, 221862306a36Sopenharmony_ci AR5K_PHY_AGCCTL_OFDM_DIV_DIS); 221962306a36Sopenharmony_ci else 222062306a36Sopenharmony_ci AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, 222162306a36Sopenharmony_ci AR5K_PHY_AGCCTL_OFDM_DIV_DIS); 222262306a36Sopenharmony_ci break; 222362306a36Sopenharmony_ci case AR5K_EEPROM_MODE_11B: 222462306a36Sopenharmony_ci AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, 222562306a36Sopenharmony_ci AR5K_PHY_AGCCTL_OFDM_DIV_DIS); 222662306a36Sopenharmony_ci break; 222762306a36Sopenharmony_ci default: 222862306a36Sopenharmony_ci return; 222962306a36Sopenharmony_ci } 223062306a36Sopenharmony_ci 223162306a36Sopenharmony_ci if (enable) { 223262306a36Sopenharmony_ci AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART, 223362306a36Sopenharmony_ci AR5K_PHY_RESTART_DIV_GC, 4); 223462306a36Sopenharmony_ci 223562306a36Sopenharmony_ci AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV, 223662306a36Sopenharmony_ci AR5K_PHY_FAST_ANT_DIV_EN); 223762306a36Sopenharmony_ci } else { 223862306a36Sopenharmony_ci AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART, 223962306a36Sopenharmony_ci AR5K_PHY_RESTART_DIV_GC, 0); 224062306a36Sopenharmony_ci 224162306a36Sopenharmony_ci AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV, 224262306a36Sopenharmony_ci AR5K_PHY_FAST_ANT_DIV_EN); 224362306a36Sopenharmony_ci } 224462306a36Sopenharmony_ci} 224562306a36Sopenharmony_ci 224662306a36Sopenharmony_ci/** 224762306a36Sopenharmony_ci * ath5k_hw_set_antenna_switch() - Set up antenna switch table 224862306a36Sopenharmony_ci * @ah: The &struct ath5k_hw 224962306a36Sopenharmony_ci * @ee_mode: One of enum ath5k_driver_mode 225062306a36Sopenharmony_ci * 225162306a36Sopenharmony_ci * Switch table comes from EEPROM and includes information on controlling 225262306a36Sopenharmony_ci * the 2 antenna RX attenuators 225362306a36Sopenharmony_ci */ 225462306a36Sopenharmony_civoid 225562306a36Sopenharmony_ciath5k_hw_set_antenna_switch(struct ath5k_hw *ah, u8 ee_mode) 225662306a36Sopenharmony_ci{ 225762306a36Sopenharmony_ci u8 ant0, ant1; 225862306a36Sopenharmony_ci 225962306a36Sopenharmony_ci /* 226062306a36Sopenharmony_ci * In case a fixed antenna was set as default 226162306a36Sopenharmony_ci * use the same switch table twice. 226262306a36Sopenharmony_ci */ 226362306a36Sopenharmony_ci if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_A) 226462306a36Sopenharmony_ci ant0 = ant1 = AR5K_ANT_SWTABLE_A; 226562306a36Sopenharmony_ci else if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_B) 226662306a36Sopenharmony_ci ant0 = ant1 = AR5K_ANT_SWTABLE_B; 226762306a36Sopenharmony_ci else { 226862306a36Sopenharmony_ci ant0 = AR5K_ANT_SWTABLE_A; 226962306a36Sopenharmony_ci ant1 = AR5K_ANT_SWTABLE_B; 227062306a36Sopenharmony_ci } 227162306a36Sopenharmony_ci 227262306a36Sopenharmony_ci /* Set antenna idle switch table */ 227362306a36Sopenharmony_ci AR5K_REG_WRITE_BITS(ah, AR5K_PHY_ANT_CTL, 227462306a36Sopenharmony_ci AR5K_PHY_ANT_CTL_SWTABLE_IDLE, 227562306a36Sopenharmony_ci (ah->ah_ant_ctl[ee_mode][AR5K_ANT_CTL] | 227662306a36Sopenharmony_ci AR5K_PHY_ANT_CTL_TXRX_EN)); 227762306a36Sopenharmony_ci 227862306a36Sopenharmony_ci /* Set antenna switch tables */ 227962306a36Sopenharmony_ci ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant0], 228062306a36Sopenharmony_ci AR5K_PHY_ANT_SWITCH_TABLE_0); 228162306a36Sopenharmony_ci ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant1], 228262306a36Sopenharmony_ci AR5K_PHY_ANT_SWITCH_TABLE_1); 228362306a36Sopenharmony_ci} 228462306a36Sopenharmony_ci 228562306a36Sopenharmony_ci/** 228662306a36Sopenharmony_ci * ath5k_hw_set_antenna_mode() - Set antenna operating mode 228762306a36Sopenharmony_ci * @ah: The &struct ath5k_hw 228862306a36Sopenharmony_ci * @ant_mode: One of enum ath5k_ant_mode 228962306a36Sopenharmony_ci */ 229062306a36Sopenharmony_civoid 229162306a36Sopenharmony_ciath5k_hw_set_antenna_mode(struct ath5k_hw *ah, u8 ant_mode) 229262306a36Sopenharmony_ci{ 229362306a36Sopenharmony_ci struct ieee80211_channel *channel = ah->ah_current_channel; 229462306a36Sopenharmony_ci bool use_def_for_tx, update_def_on_tx, use_def_for_rts, fast_div; 229562306a36Sopenharmony_ci bool use_def_for_sg; 229662306a36Sopenharmony_ci int ee_mode; 229762306a36Sopenharmony_ci u8 def_ant, tx_ant; 229862306a36Sopenharmony_ci u32 sta_id1 = 0; 229962306a36Sopenharmony_ci 230062306a36Sopenharmony_ci /* if channel is not initialized yet we can't set the antennas 230162306a36Sopenharmony_ci * so just store the mode. it will be set on the next reset */ 230262306a36Sopenharmony_ci if (channel == NULL) { 230362306a36Sopenharmony_ci ah->ah_ant_mode = ant_mode; 230462306a36Sopenharmony_ci return; 230562306a36Sopenharmony_ci } 230662306a36Sopenharmony_ci 230762306a36Sopenharmony_ci def_ant = ah->ah_def_ant; 230862306a36Sopenharmony_ci 230962306a36Sopenharmony_ci ee_mode = ath5k_eeprom_mode_from_channel(ah, channel); 231062306a36Sopenharmony_ci 231162306a36Sopenharmony_ci switch (ant_mode) { 231262306a36Sopenharmony_ci case AR5K_ANTMODE_DEFAULT: 231362306a36Sopenharmony_ci tx_ant = 0; 231462306a36Sopenharmony_ci use_def_for_tx = false; 231562306a36Sopenharmony_ci update_def_on_tx = false; 231662306a36Sopenharmony_ci use_def_for_rts = false; 231762306a36Sopenharmony_ci use_def_for_sg = false; 231862306a36Sopenharmony_ci fast_div = true; 231962306a36Sopenharmony_ci break; 232062306a36Sopenharmony_ci case AR5K_ANTMODE_FIXED_A: 232162306a36Sopenharmony_ci def_ant = 1; 232262306a36Sopenharmony_ci tx_ant = 1; 232362306a36Sopenharmony_ci use_def_for_tx = true; 232462306a36Sopenharmony_ci update_def_on_tx = false; 232562306a36Sopenharmony_ci use_def_for_rts = true; 232662306a36Sopenharmony_ci use_def_for_sg = true; 232762306a36Sopenharmony_ci fast_div = false; 232862306a36Sopenharmony_ci break; 232962306a36Sopenharmony_ci case AR5K_ANTMODE_FIXED_B: 233062306a36Sopenharmony_ci def_ant = 2; 233162306a36Sopenharmony_ci tx_ant = 2; 233262306a36Sopenharmony_ci use_def_for_tx = true; 233362306a36Sopenharmony_ci update_def_on_tx = false; 233462306a36Sopenharmony_ci use_def_for_rts = true; 233562306a36Sopenharmony_ci use_def_for_sg = true; 233662306a36Sopenharmony_ci fast_div = false; 233762306a36Sopenharmony_ci break; 233862306a36Sopenharmony_ci case AR5K_ANTMODE_SINGLE_AP: 233962306a36Sopenharmony_ci def_ant = 1; /* updated on tx */ 234062306a36Sopenharmony_ci tx_ant = 0; 234162306a36Sopenharmony_ci use_def_for_tx = true; 234262306a36Sopenharmony_ci update_def_on_tx = true; 234362306a36Sopenharmony_ci use_def_for_rts = true; 234462306a36Sopenharmony_ci use_def_for_sg = true; 234562306a36Sopenharmony_ci fast_div = true; 234662306a36Sopenharmony_ci break; 234762306a36Sopenharmony_ci case AR5K_ANTMODE_SECTOR_AP: 234862306a36Sopenharmony_ci tx_ant = 1; /* variable */ 234962306a36Sopenharmony_ci use_def_for_tx = false; 235062306a36Sopenharmony_ci update_def_on_tx = false; 235162306a36Sopenharmony_ci use_def_for_rts = true; 235262306a36Sopenharmony_ci use_def_for_sg = false; 235362306a36Sopenharmony_ci fast_div = false; 235462306a36Sopenharmony_ci break; 235562306a36Sopenharmony_ci case AR5K_ANTMODE_SECTOR_STA: 235662306a36Sopenharmony_ci tx_ant = 1; /* variable */ 235762306a36Sopenharmony_ci use_def_for_tx = true; 235862306a36Sopenharmony_ci update_def_on_tx = false; 235962306a36Sopenharmony_ci use_def_for_rts = true; 236062306a36Sopenharmony_ci use_def_for_sg = false; 236162306a36Sopenharmony_ci fast_div = true; 236262306a36Sopenharmony_ci break; 236362306a36Sopenharmony_ci case AR5K_ANTMODE_DEBUG: 236462306a36Sopenharmony_ci def_ant = 1; 236562306a36Sopenharmony_ci tx_ant = 2; 236662306a36Sopenharmony_ci use_def_for_tx = false; 236762306a36Sopenharmony_ci update_def_on_tx = false; 236862306a36Sopenharmony_ci use_def_for_rts = false; 236962306a36Sopenharmony_ci use_def_for_sg = false; 237062306a36Sopenharmony_ci fast_div = false; 237162306a36Sopenharmony_ci break; 237262306a36Sopenharmony_ci default: 237362306a36Sopenharmony_ci return; 237462306a36Sopenharmony_ci } 237562306a36Sopenharmony_ci 237662306a36Sopenharmony_ci ah->ah_tx_ant = tx_ant; 237762306a36Sopenharmony_ci ah->ah_ant_mode = ant_mode; 237862306a36Sopenharmony_ci ah->ah_def_ant = def_ant; 237962306a36Sopenharmony_ci 238062306a36Sopenharmony_ci sta_id1 |= use_def_for_tx ? AR5K_STA_ID1_DEFAULT_ANTENNA : 0; 238162306a36Sopenharmony_ci sta_id1 |= update_def_on_tx ? AR5K_STA_ID1_DESC_ANTENNA : 0; 238262306a36Sopenharmony_ci sta_id1 |= use_def_for_rts ? AR5K_STA_ID1_RTS_DEF_ANTENNA : 0; 238362306a36Sopenharmony_ci sta_id1 |= use_def_for_sg ? AR5K_STA_ID1_SELFGEN_DEF_ANT : 0; 238462306a36Sopenharmony_ci 238562306a36Sopenharmony_ci AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_ANTENNA_SETTINGS); 238662306a36Sopenharmony_ci 238762306a36Sopenharmony_ci if (sta_id1) 238862306a36Sopenharmony_ci AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, sta_id1); 238962306a36Sopenharmony_ci 239062306a36Sopenharmony_ci ath5k_hw_set_antenna_switch(ah, ee_mode); 239162306a36Sopenharmony_ci /* Note: set diversity before default antenna 239262306a36Sopenharmony_ci * because it won't work correctly */ 239362306a36Sopenharmony_ci ath5k_hw_set_fast_div(ah, ee_mode, fast_div); 239462306a36Sopenharmony_ci ath5k_hw_set_def_antenna(ah, def_ant); 239562306a36Sopenharmony_ci} 239662306a36Sopenharmony_ci 239762306a36Sopenharmony_ci 239862306a36Sopenharmony_ci/****************\ 239962306a36Sopenharmony_ci* TX power setup * 240062306a36Sopenharmony_ci\****************/ 240162306a36Sopenharmony_ci 240262306a36Sopenharmony_ci/* 240362306a36Sopenharmony_ci * Helper functions 240462306a36Sopenharmony_ci */ 240562306a36Sopenharmony_ci 240662306a36Sopenharmony_ci/** 240762306a36Sopenharmony_ci * ath5k_get_interpolated_value() - Get interpolated Y val between two points 240862306a36Sopenharmony_ci * @target: X value of the middle point 240962306a36Sopenharmony_ci * @x_left: X value of the left point 241062306a36Sopenharmony_ci * @x_right: X value of the right point 241162306a36Sopenharmony_ci * @y_left: Y value of the left point 241262306a36Sopenharmony_ci * @y_right: Y value of the right point 241362306a36Sopenharmony_ci */ 241462306a36Sopenharmony_cistatic s16 241562306a36Sopenharmony_ciath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right, 241662306a36Sopenharmony_ci s16 y_left, s16 y_right) 241762306a36Sopenharmony_ci{ 241862306a36Sopenharmony_ci s16 ratio, result; 241962306a36Sopenharmony_ci 242062306a36Sopenharmony_ci /* Avoid divide by zero and skip interpolation 242162306a36Sopenharmony_ci * if we have the same point */ 242262306a36Sopenharmony_ci if ((x_left == x_right) || (y_left == y_right)) 242362306a36Sopenharmony_ci return y_left; 242462306a36Sopenharmony_ci 242562306a36Sopenharmony_ci /* 242662306a36Sopenharmony_ci * Since we use ints and not fps, we need to scale up in 242762306a36Sopenharmony_ci * order to get a sane ratio value (or else we 'll eg. get 242862306a36Sopenharmony_ci * always 1 instead of 1.25, 1.75 etc). We scale up by 100 242962306a36Sopenharmony_ci * to have some accuracy both for 0.5 and 0.25 steps. 243062306a36Sopenharmony_ci */ 243162306a36Sopenharmony_ci ratio = ((100 * y_right - 100 * y_left) / (x_right - x_left)); 243262306a36Sopenharmony_ci 243362306a36Sopenharmony_ci /* Now scale down to be in range */ 243462306a36Sopenharmony_ci result = y_left + (ratio * (target - x_left) / 100); 243562306a36Sopenharmony_ci 243662306a36Sopenharmony_ci return result; 243762306a36Sopenharmony_ci} 243862306a36Sopenharmony_ci 243962306a36Sopenharmony_ci/** 244062306a36Sopenharmony_ci * ath5k_get_linear_pcdac_min() - Find vertical boundary (min pwr) for the 244162306a36Sopenharmony_ci * linear PCDAC curve 244262306a36Sopenharmony_ci * @stepL: Left array with y values (pcdac steps) 244362306a36Sopenharmony_ci * @stepR: Right array with y values (pcdac steps) 244462306a36Sopenharmony_ci * @pwrL: Left array with x values (power steps) 244562306a36Sopenharmony_ci * @pwrR: Right array with x values (power steps) 244662306a36Sopenharmony_ci * 244762306a36Sopenharmony_ci * Since we have the top of the curve and we draw the line below 244862306a36Sopenharmony_ci * until we reach 1 (1 pcdac step) we need to know which point 244962306a36Sopenharmony_ci * (x value) that is so that we don't go below x axis and have negative 245062306a36Sopenharmony_ci * pcdac values when creating the curve, or fill the table with zeros. 245162306a36Sopenharmony_ci */ 245262306a36Sopenharmony_cistatic s16 245362306a36Sopenharmony_ciath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR, 245462306a36Sopenharmony_ci const s16 *pwrL, const s16 *pwrR) 245562306a36Sopenharmony_ci{ 245662306a36Sopenharmony_ci s8 tmp; 245762306a36Sopenharmony_ci s16 min_pwrL, min_pwrR; 245862306a36Sopenharmony_ci s16 pwr_i; 245962306a36Sopenharmony_ci 246062306a36Sopenharmony_ci /* Some vendors write the same pcdac value twice !!! */ 246162306a36Sopenharmony_ci if (stepL[0] == stepL[1] || stepR[0] == stepR[1]) 246262306a36Sopenharmony_ci return max(pwrL[0], pwrR[0]); 246362306a36Sopenharmony_ci 246462306a36Sopenharmony_ci if (pwrL[0] == pwrL[1]) 246562306a36Sopenharmony_ci min_pwrL = pwrL[0]; 246662306a36Sopenharmony_ci else { 246762306a36Sopenharmony_ci pwr_i = pwrL[0]; 246862306a36Sopenharmony_ci do { 246962306a36Sopenharmony_ci pwr_i--; 247062306a36Sopenharmony_ci tmp = (s8) ath5k_get_interpolated_value(pwr_i, 247162306a36Sopenharmony_ci pwrL[0], pwrL[1], 247262306a36Sopenharmony_ci stepL[0], stepL[1]); 247362306a36Sopenharmony_ci } while (tmp > 1); 247462306a36Sopenharmony_ci 247562306a36Sopenharmony_ci min_pwrL = pwr_i; 247662306a36Sopenharmony_ci } 247762306a36Sopenharmony_ci 247862306a36Sopenharmony_ci if (pwrR[0] == pwrR[1]) 247962306a36Sopenharmony_ci min_pwrR = pwrR[0]; 248062306a36Sopenharmony_ci else { 248162306a36Sopenharmony_ci pwr_i = pwrR[0]; 248262306a36Sopenharmony_ci do { 248362306a36Sopenharmony_ci pwr_i--; 248462306a36Sopenharmony_ci tmp = (s8) ath5k_get_interpolated_value(pwr_i, 248562306a36Sopenharmony_ci pwrR[0], pwrR[1], 248662306a36Sopenharmony_ci stepR[0], stepR[1]); 248762306a36Sopenharmony_ci } while (tmp > 1); 248862306a36Sopenharmony_ci 248962306a36Sopenharmony_ci min_pwrR = pwr_i; 249062306a36Sopenharmony_ci } 249162306a36Sopenharmony_ci 249262306a36Sopenharmony_ci /* Keep the right boundary so that it works for both curves */ 249362306a36Sopenharmony_ci return max(min_pwrL, min_pwrR); 249462306a36Sopenharmony_ci} 249562306a36Sopenharmony_ci 249662306a36Sopenharmony_ci/** 249762306a36Sopenharmony_ci * ath5k_create_power_curve() - Create a Power to PDADC or PCDAC curve 249862306a36Sopenharmony_ci * @pmin: Minimum power value (xmin) 249962306a36Sopenharmony_ci * @pmax: Maximum power value (xmax) 250062306a36Sopenharmony_ci * @pwr: Array of power steps (x values) 250162306a36Sopenharmony_ci * @vpd: Array of matching PCDAC/PDADC steps (y values) 250262306a36Sopenharmony_ci * @num_points: Number of provided points 250362306a36Sopenharmony_ci * @vpd_table: Array to fill with the full PCDAC/PDADC values (y values) 250462306a36Sopenharmony_ci * @type: One of enum ath5k_powertable_type (eeprom.h) 250562306a36Sopenharmony_ci * 250662306a36Sopenharmony_ci * Interpolate (pwr,vpd) points to create a Power to PDADC or a 250762306a36Sopenharmony_ci * Power to PCDAC curve. 250862306a36Sopenharmony_ci * 250962306a36Sopenharmony_ci * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC 251062306a36Sopenharmony_ci * steps (offsets) on y axis. Power can go up to 31.5dB and max 251162306a36Sopenharmony_ci * PCDAC/PDADC step for each curve is 64 but we can write more than 251262306a36Sopenharmony_ci * one curves on hw so we can go up to 128 (which is the max step we 251362306a36Sopenharmony_ci * can write on the final table). 251462306a36Sopenharmony_ci * 251562306a36Sopenharmony_ci * We write y values (PCDAC/PDADC steps) on hw. 251662306a36Sopenharmony_ci */ 251762306a36Sopenharmony_cistatic void 251862306a36Sopenharmony_ciath5k_create_power_curve(s16 pmin, s16 pmax, 251962306a36Sopenharmony_ci const s16 *pwr, const u8 *vpd, 252062306a36Sopenharmony_ci u8 num_points, 252162306a36Sopenharmony_ci u8 *vpd_table, u8 type) 252262306a36Sopenharmony_ci{ 252362306a36Sopenharmony_ci u8 idx[2] = { 0, 1 }; 252462306a36Sopenharmony_ci s16 pwr_i = 2 * pmin; 252562306a36Sopenharmony_ci int i; 252662306a36Sopenharmony_ci 252762306a36Sopenharmony_ci if (num_points < 2) 252862306a36Sopenharmony_ci return; 252962306a36Sopenharmony_ci 253062306a36Sopenharmony_ci /* We want the whole line, so adjust boundaries 253162306a36Sopenharmony_ci * to cover the entire power range. Note that 253262306a36Sopenharmony_ci * power values are already 0.25dB so no need 253362306a36Sopenharmony_ci * to multiply pwr_i by 2 */ 253462306a36Sopenharmony_ci if (type == AR5K_PWRTABLE_LINEAR_PCDAC) { 253562306a36Sopenharmony_ci pwr_i = pmin; 253662306a36Sopenharmony_ci pmin = 0; 253762306a36Sopenharmony_ci pmax = 63; 253862306a36Sopenharmony_ci } 253962306a36Sopenharmony_ci 254062306a36Sopenharmony_ci /* Find surrounding turning points (TPs) 254162306a36Sopenharmony_ci * and interpolate between them */ 254262306a36Sopenharmony_ci for (i = 0; (i <= (u16) (pmax - pmin)) && 254362306a36Sopenharmony_ci (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) { 254462306a36Sopenharmony_ci 254562306a36Sopenharmony_ci /* We passed the right TP, move to the next set of TPs 254662306a36Sopenharmony_ci * if we pass the last TP, extrapolate above using the last 254762306a36Sopenharmony_ci * two TPs for ratio */ 254862306a36Sopenharmony_ci if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) { 254962306a36Sopenharmony_ci idx[0]++; 255062306a36Sopenharmony_ci idx[1]++; 255162306a36Sopenharmony_ci } 255262306a36Sopenharmony_ci 255362306a36Sopenharmony_ci vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i, 255462306a36Sopenharmony_ci pwr[idx[0]], pwr[idx[1]], 255562306a36Sopenharmony_ci vpd[idx[0]], vpd[idx[1]]); 255662306a36Sopenharmony_ci 255762306a36Sopenharmony_ci /* Increase by 0.5dB 255862306a36Sopenharmony_ci * (0.25 dB units) */ 255962306a36Sopenharmony_ci pwr_i += 2; 256062306a36Sopenharmony_ci } 256162306a36Sopenharmony_ci} 256262306a36Sopenharmony_ci 256362306a36Sopenharmony_ci/** 256462306a36Sopenharmony_ci * ath5k_get_chan_pcal_surrounding_piers() - Get surrounding calibration piers 256562306a36Sopenharmony_ci * for a given channel. 256662306a36Sopenharmony_ci * @ah: The &struct ath5k_hw 256762306a36Sopenharmony_ci * @channel: The &struct ieee80211_channel 256862306a36Sopenharmony_ci * @pcinfo_l: The &struct ath5k_chan_pcal_info to put the left cal. pier 256962306a36Sopenharmony_ci * @pcinfo_r: The &struct ath5k_chan_pcal_info to put the right cal. pier 257062306a36Sopenharmony_ci * 257162306a36Sopenharmony_ci * Get the surrounding per-channel power calibration piers 257262306a36Sopenharmony_ci * for a given frequency so that we can interpolate between 257362306a36Sopenharmony_ci * them and come up with an appropriate dataset for our current 257462306a36Sopenharmony_ci * channel. 257562306a36Sopenharmony_ci */ 257662306a36Sopenharmony_cistatic void 257762306a36Sopenharmony_ciath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah, 257862306a36Sopenharmony_ci struct ieee80211_channel *channel, 257962306a36Sopenharmony_ci struct ath5k_chan_pcal_info **pcinfo_l, 258062306a36Sopenharmony_ci struct ath5k_chan_pcal_info **pcinfo_r) 258162306a36Sopenharmony_ci{ 258262306a36Sopenharmony_ci struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; 258362306a36Sopenharmony_ci struct ath5k_chan_pcal_info *pcinfo; 258462306a36Sopenharmony_ci u8 idx_l, idx_r; 258562306a36Sopenharmony_ci u8 mode, max, i; 258662306a36Sopenharmony_ci u32 target = channel->center_freq; 258762306a36Sopenharmony_ci 258862306a36Sopenharmony_ci idx_l = 0; 258962306a36Sopenharmony_ci idx_r = 0; 259062306a36Sopenharmony_ci 259162306a36Sopenharmony_ci switch (channel->hw_value) { 259262306a36Sopenharmony_ci case AR5K_EEPROM_MODE_11A: 259362306a36Sopenharmony_ci pcinfo = ee->ee_pwr_cal_a; 259462306a36Sopenharmony_ci mode = AR5K_EEPROM_MODE_11A; 259562306a36Sopenharmony_ci break; 259662306a36Sopenharmony_ci case AR5K_EEPROM_MODE_11B: 259762306a36Sopenharmony_ci pcinfo = ee->ee_pwr_cal_b; 259862306a36Sopenharmony_ci mode = AR5K_EEPROM_MODE_11B; 259962306a36Sopenharmony_ci break; 260062306a36Sopenharmony_ci case AR5K_EEPROM_MODE_11G: 260162306a36Sopenharmony_ci default: 260262306a36Sopenharmony_ci pcinfo = ee->ee_pwr_cal_g; 260362306a36Sopenharmony_ci mode = AR5K_EEPROM_MODE_11G; 260462306a36Sopenharmony_ci break; 260562306a36Sopenharmony_ci } 260662306a36Sopenharmony_ci max = ee->ee_n_piers[mode] - 1; 260762306a36Sopenharmony_ci 260862306a36Sopenharmony_ci /* Frequency is below our calibrated 260962306a36Sopenharmony_ci * range. Use the lowest power curve 261062306a36Sopenharmony_ci * we have */ 261162306a36Sopenharmony_ci if (target < pcinfo[0].freq) { 261262306a36Sopenharmony_ci idx_l = idx_r = 0; 261362306a36Sopenharmony_ci goto done; 261462306a36Sopenharmony_ci } 261562306a36Sopenharmony_ci 261662306a36Sopenharmony_ci /* Frequency is above our calibrated 261762306a36Sopenharmony_ci * range. Use the highest power curve 261862306a36Sopenharmony_ci * we have */ 261962306a36Sopenharmony_ci if (target > pcinfo[max].freq) { 262062306a36Sopenharmony_ci idx_l = idx_r = max; 262162306a36Sopenharmony_ci goto done; 262262306a36Sopenharmony_ci } 262362306a36Sopenharmony_ci 262462306a36Sopenharmony_ci /* Frequency is inside our calibrated 262562306a36Sopenharmony_ci * channel range. Pick the surrounding 262662306a36Sopenharmony_ci * calibration piers so that we can 262762306a36Sopenharmony_ci * interpolate */ 262862306a36Sopenharmony_ci for (i = 0; i <= max; i++) { 262962306a36Sopenharmony_ci 263062306a36Sopenharmony_ci /* Frequency matches one of our calibration 263162306a36Sopenharmony_ci * piers, no need to interpolate, just use 263262306a36Sopenharmony_ci * that calibration pier */ 263362306a36Sopenharmony_ci if (pcinfo[i].freq == target) { 263462306a36Sopenharmony_ci idx_l = idx_r = i; 263562306a36Sopenharmony_ci goto done; 263662306a36Sopenharmony_ci } 263762306a36Sopenharmony_ci 263862306a36Sopenharmony_ci /* We found a calibration pier that's above 263962306a36Sopenharmony_ci * frequency, use this pier and the previous 264062306a36Sopenharmony_ci * one to interpolate */ 264162306a36Sopenharmony_ci if (target < pcinfo[i].freq) { 264262306a36Sopenharmony_ci idx_r = i; 264362306a36Sopenharmony_ci idx_l = idx_r - 1; 264462306a36Sopenharmony_ci goto done; 264562306a36Sopenharmony_ci } 264662306a36Sopenharmony_ci } 264762306a36Sopenharmony_ci 264862306a36Sopenharmony_cidone: 264962306a36Sopenharmony_ci *pcinfo_l = &pcinfo[idx_l]; 265062306a36Sopenharmony_ci *pcinfo_r = &pcinfo[idx_r]; 265162306a36Sopenharmony_ci} 265262306a36Sopenharmony_ci 265362306a36Sopenharmony_ci/** 265462306a36Sopenharmony_ci * ath5k_get_rate_pcal_data() - Get the interpolated per-rate power 265562306a36Sopenharmony_ci * calibration data 265662306a36Sopenharmony_ci * @ah: The &struct ath5k_hw *ah, 265762306a36Sopenharmony_ci * @channel: The &struct ieee80211_channel 265862306a36Sopenharmony_ci * @rates: The &struct ath5k_rate_pcal_info to fill 265962306a36Sopenharmony_ci * 266062306a36Sopenharmony_ci * Get the surrounding per-rate power calibration data 266162306a36Sopenharmony_ci * for a given frequency and interpolate between power 266262306a36Sopenharmony_ci * values to set max target power supported by hw for 266362306a36Sopenharmony_ci * each rate on this frequency. 266462306a36Sopenharmony_ci */ 266562306a36Sopenharmony_cistatic void 266662306a36Sopenharmony_ciath5k_get_rate_pcal_data(struct ath5k_hw *ah, 266762306a36Sopenharmony_ci struct ieee80211_channel *channel, 266862306a36Sopenharmony_ci struct ath5k_rate_pcal_info *rates) 266962306a36Sopenharmony_ci{ 267062306a36Sopenharmony_ci struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; 267162306a36Sopenharmony_ci struct ath5k_rate_pcal_info *rpinfo; 267262306a36Sopenharmony_ci u8 idx_l, idx_r; 267362306a36Sopenharmony_ci u8 mode, max, i; 267462306a36Sopenharmony_ci u32 target = channel->center_freq; 267562306a36Sopenharmony_ci 267662306a36Sopenharmony_ci idx_l = 0; 267762306a36Sopenharmony_ci idx_r = 0; 267862306a36Sopenharmony_ci 267962306a36Sopenharmony_ci switch (channel->hw_value) { 268062306a36Sopenharmony_ci case AR5K_MODE_11A: 268162306a36Sopenharmony_ci rpinfo = ee->ee_rate_tpwr_a; 268262306a36Sopenharmony_ci mode = AR5K_EEPROM_MODE_11A; 268362306a36Sopenharmony_ci break; 268462306a36Sopenharmony_ci case AR5K_MODE_11B: 268562306a36Sopenharmony_ci rpinfo = ee->ee_rate_tpwr_b; 268662306a36Sopenharmony_ci mode = AR5K_EEPROM_MODE_11B; 268762306a36Sopenharmony_ci break; 268862306a36Sopenharmony_ci case AR5K_MODE_11G: 268962306a36Sopenharmony_ci default: 269062306a36Sopenharmony_ci rpinfo = ee->ee_rate_tpwr_g; 269162306a36Sopenharmony_ci mode = AR5K_EEPROM_MODE_11G; 269262306a36Sopenharmony_ci break; 269362306a36Sopenharmony_ci } 269462306a36Sopenharmony_ci max = ee->ee_rate_target_pwr_num[mode] - 1; 269562306a36Sopenharmony_ci 269662306a36Sopenharmony_ci /* Get the surrounding calibration 269762306a36Sopenharmony_ci * piers - same as above */ 269862306a36Sopenharmony_ci if (target < rpinfo[0].freq) { 269962306a36Sopenharmony_ci idx_l = idx_r = 0; 270062306a36Sopenharmony_ci goto done; 270162306a36Sopenharmony_ci } 270262306a36Sopenharmony_ci 270362306a36Sopenharmony_ci if (target > rpinfo[max].freq) { 270462306a36Sopenharmony_ci idx_l = idx_r = max; 270562306a36Sopenharmony_ci goto done; 270662306a36Sopenharmony_ci } 270762306a36Sopenharmony_ci 270862306a36Sopenharmony_ci for (i = 0; i <= max; i++) { 270962306a36Sopenharmony_ci 271062306a36Sopenharmony_ci if (rpinfo[i].freq == target) { 271162306a36Sopenharmony_ci idx_l = idx_r = i; 271262306a36Sopenharmony_ci goto done; 271362306a36Sopenharmony_ci } 271462306a36Sopenharmony_ci 271562306a36Sopenharmony_ci if (target < rpinfo[i].freq) { 271662306a36Sopenharmony_ci idx_r = i; 271762306a36Sopenharmony_ci idx_l = idx_r - 1; 271862306a36Sopenharmony_ci goto done; 271962306a36Sopenharmony_ci } 272062306a36Sopenharmony_ci } 272162306a36Sopenharmony_ci 272262306a36Sopenharmony_cidone: 272362306a36Sopenharmony_ci /* Now interpolate power value, based on the frequency */ 272462306a36Sopenharmony_ci rates->freq = target; 272562306a36Sopenharmony_ci 272662306a36Sopenharmony_ci rates->target_power_6to24 = 272762306a36Sopenharmony_ci ath5k_get_interpolated_value(target, rpinfo[idx_l].freq, 272862306a36Sopenharmony_ci rpinfo[idx_r].freq, 272962306a36Sopenharmony_ci rpinfo[idx_l].target_power_6to24, 273062306a36Sopenharmony_ci rpinfo[idx_r].target_power_6to24); 273162306a36Sopenharmony_ci 273262306a36Sopenharmony_ci rates->target_power_36 = 273362306a36Sopenharmony_ci ath5k_get_interpolated_value(target, rpinfo[idx_l].freq, 273462306a36Sopenharmony_ci rpinfo[idx_r].freq, 273562306a36Sopenharmony_ci rpinfo[idx_l].target_power_36, 273662306a36Sopenharmony_ci rpinfo[idx_r].target_power_36); 273762306a36Sopenharmony_ci 273862306a36Sopenharmony_ci rates->target_power_48 = 273962306a36Sopenharmony_ci ath5k_get_interpolated_value(target, rpinfo[idx_l].freq, 274062306a36Sopenharmony_ci rpinfo[idx_r].freq, 274162306a36Sopenharmony_ci rpinfo[idx_l].target_power_48, 274262306a36Sopenharmony_ci rpinfo[idx_r].target_power_48); 274362306a36Sopenharmony_ci 274462306a36Sopenharmony_ci rates->target_power_54 = 274562306a36Sopenharmony_ci ath5k_get_interpolated_value(target, rpinfo[idx_l].freq, 274662306a36Sopenharmony_ci rpinfo[idx_r].freq, 274762306a36Sopenharmony_ci rpinfo[idx_l].target_power_54, 274862306a36Sopenharmony_ci rpinfo[idx_r].target_power_54); 274962306a36Sopenharmony_ci} 275062306a36Sopenharmony_ci 275162306a36Sopenharmony_ci/** 275262306a36Sopenharmony_ci * ath5k_get_max_ctl_power() - Get max edge power for a given frequency 275362306a36Sopenharmony_ci * @ah: the &struct ath5k_hw 275462306a36Sopenharmony_ci * @channel: The &struct ieee80211_channel 275562306a36Sopenharmony_ci * 275662306a36Sopenharmony_ci * Get the max edge power for this channel if 275762306a36Sopenharmony_ci * we have such data from EEPROM's Conformance Test 275862306a36Sopenharmony_ci * Limits (CTL), and limit max power if needed. 275962306a36Sopenharmony_ci */ 276062306a36Sopenharmony_cistatic void 276162306a36Sopenharmony_ciath5k_get_max_ctl_power(struct ath5k_hw *ah, 276262306a36Sopenharmony_ci struct ieee80211_channel *channel) 276362306a36Sopenharmony_ci{ 276462306a36Sopenharmony_ci struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah); 276562306a36Sopenharmony_ci struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; 276662306a36Sopenharmony_ci struct ath5k_edge_power *rep = ee->ee_ctl_pwr; 276762306a36Sopenharmony_ci u8 *ctl_val = ee->ee_ctl; 276862306a36Sopenharmony_ci s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4; 276962306a36Sopenharmony_ci s16 edge_pwr = 0; 277062306a36Sopenharmony_ci u8 rep_idx; 277162306a36Sopenharmony_ci u8 i, ctl_mode; 277262306a36Sopenharmony_ci u8 ctl_idx = 0xFF; 277362306a36Sopenharmony_ci u32 target = channel->center_freq; 277462306a36Sopenharmony_ci 277562306a36Sopenharmony_ci ctl_mode = ath_regd_get_band_ctl(regulatory, channel->band); 277662306a36Sopenharmony_ci 277762306a36Sopenharmony_ci switch (channel->hw_value) { 277862306a36Sopenharmony_ci case AR5K_MODE_11A: 277962306a36Sopenharmony_ci if (ah->ah_bwmode == AR5K_BWMODE_40MHZ) 278062306a36Sopenharmony_ci ctl_mode |= AR5K_CTL_TURBO; 278162306a36Sopenharmony_ci else 278262306a36Sopenharmony_ci ctl_mode |= AR5K_CTL_11A; 278362306a36Sopenharmony_ci break; 278462306a36Sopenharmony_ci case AR5K_MODE_11G: 278562306a36Sopenharmony_ci if (ah->ah_bwmode == AR5K_BWMODE_40MHZ) 278662306a36Sopenharmony_ci ctl_mode |= AR5K_CTL_TURBOG; 278762306a36Sopenharmony_ci else 278862306a36Sopenharmony_ci ctl_mode |= AR5K_CTL_11G; 278962306a36Sopenharmony_ci break; 279062306a36Sopenharmony_ci case AR5K_MODE_11B: 279162306a36Sopenharmony_ci ctl_mode |= AR5K_CTL_11B; 279262306a36Sopenharmony_ci break; 279362306a36Sopenharmony_ci default: 279462306a36Sopenharmony_ci return; 279562306a36Sopenharmony_ci } 279662306a36Sopenharmony_ci 279762306a36Sopenharmony_ci for (i = 0; i < ee->ee_ctls; i++) { 279862306a36Sopenharmony_ci if (ctl_val[i] == ctl_mode) { 279962306a36Sopenharmony_ci ctl_idx = i; 280062306a36Sopenharmony_ci break; 280162306a36Sopenharmony_ci } 280262306a36Sopenharmony_ci } 280362306a36Sopenharmony_ci 280462306a36Sopenharmony_ci /* If we have a CTL dataset available grab it and find the 280562306a36Sopenharmony_ci * edge power for our frequency */ 280662306a36Sopenharmony_ci if (ctl_idx == 0xFF) 280762306a36Sopenharmony_ci return; 280862306a36Sopenharmony_ci 280962306a36Sopenharmony_ci /* Edge powers are sorted by frequency from lower 281062306a36Sopenharmony_ci * to higher. Each CTL corresponds to 8 edge power 281162306a36Sopenharmony_ci * measurements. */ 281262306a36Sopenharmony_ci rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES; 281362306a36Sopenharmony_ci 281462306a36Sopenharmony_ci /* Don't do boundaries check because we 281562306a36Sopenharmony_ci * might have more that one bands defined 281662306a36Sopenharmony_ci * for this mode */ 281762306a36Sopenharmony_ci 281862306a36Sopenharmony_ci /* Get the edge power that's closer to our 281962306a36Sopenharmony_ci * frequency */ 282062306a36Sopenharmony_ci for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) { 282162306a36Sopenharmony_ci rep_idx += i; 282262306a36Sopenharmony_ci if (target <= rep[rep_idx].freq) 282362306a36Sopenharmony_ci edge_pwr = (s16) rep[rep_idx].edge; 282462306a36Sopenharmony_ci } 282562306a36Sopenharmony_ci 282662306a36Sopenharmony_ci if (edge_pwr) 282762306a36Sopenharmony_ci ah->ah_txpower.txp_max_pwr = 4 * min(edge_pwr, max_chan_pwr); 282862306a36Sopenharmony_ci} 282962306a36Sopenharmony_ci 283062306a36Sopenharmony_ci 283162306a36Sopenharmony_ci/* 283262306a36Sopenharmony_ci * Power to PCDAC table functions 283362306a36Sopenharmony_ci */ 283462306a36Sopenharmony_ci 283562306a36Sopenharmony_ci/** 283662306a36Sopenharmony_ci * DOC: Power to PCDAC table functions 283762306a36Sopenharmony_ci * 283862306a36Sopenharmony_ci * For RF5111 we have an XPD -eXternal Power Detector- curve 283962306a36Sopenharmony_ci * for each calibrated channel. Each curve has 0,5dB Power steps 284062306a36Sopenharmony_ci * on x axis and PCDAC steps (offsets) on y axis and looks like an 284162306a36Sopenharmony_ci * exponential function. To recreate the curve we read 11 points 284262306a36Sopenharmony_ci * from eeprom (eeprom.c) and interpolate here. 284362306a36Sopenharmony_ci * 284462306a36Sopenharmony_ci * For RF5112 we have 4 XPD -eXternal Power Detector- curves 284562306a36Sopenharmony_ci * for each calibrated channel on 0, -6, -12 and -18dBm but we only 284662306a36Sopenharmony_ci * use the higher (3) and the lower (0) curves. Each curve again has 0.5dB 284762306a36Sopenharmony_ci * power steps on x axis and PCDAC steps on y axis and looks like a 284862306a36Sopenharmony_ci * linear function. To recreate the curve and pass the power values 284962306a36Sopenharmony_ci * on hw, we get 4 points for xpd 0 (lower gain -> max power) 285062306a36Sopenharmony_ci * and 3 points for xpd 3 (higher gain -> lower power) from eeprom (eeprom.c) 285162306a36Sopenharmony_ci * and interpolate here. 285262306a36Sopenharmony_ci * 285362306a36Sopenharmony_ci * For a given channel we get the calibrated points (piers) for it or 285462306a36Sopenharmony_ci * -if we don't have calibration data for this specific channel- from the 285562306a36Sopenharmony_ci * available surrounding channels we have calibration data for, after we do a 285662306a36Sopenharmony_ci * linear interpolation between them. Then since we have our calibrated points 285762306a36Sopenharmony_ci * for this channel, we do again a linear interpolation between them to get the 285862306a36Sopenharmony_ci * whole curve. 285962306a36Sopenharmony_ci * 286062306a36Sopenharmony_ci * We finally write the Y values of the curve(s) (the PCDAC values) on hw 286162306a36Sopenharmony_ci */ 286262306a36Sopenharmony_ci 286362306a36Sopenharmony_ci/** 286462306a36Sopenharmony_ci * ath5k_fill_pwr_to_pcdac_table() - Fill Power to PCDAC table on RF5111 286562306a36Sopenharmony_ci * @ah: The &struct ath5k_hw 286662306a36Sopenharmony_ci * @table_min: Minimum power (x min) 286762306a36Sopenharmony_ci * @table_max: Maximum power (x max) 286862306a36Sopenharmony_ci * 286962306a36Sopenharmony_ci * No further processing is needed for RF5111, the only thing we have to 287062306a36Sopenharmony_ci * do is fill the values below and above calibration range since eeprom data 287162306a36Sopenharmony_ci * may not cover the entire PCDAC table. 287262306a36Sopenharmony_ci */ 287362306a36Sopenharmony_cistatic void 287462306a36Sopenharmony_ciath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min, 287562306a36Sopenharmony_ci s16 *table_max) 287662306a36Sopenharmony_ci{ 287762306a36Sopenharmony_ci u8 *pcdac_out = ah->ah_txpower.txp_pd_table; 287862306a36Sopenharmony_ci u8 *pcdac_tmp = ah->ah_txpower.tmpL[0]; 287962306a36Sopenharmony_ci u8 pcdac_0, pcdac_n, pcdac_i, pwr_idx, i; 288062306a36Sopenharmony_ci s16 min_pwr, max_pwr; 288162306a36Sopenharmony_ci 288262306a36Sopenharmony_ci /* Get table boundaries */ 288362306a36Sopenharmony_ci min_pwr = table_min[0]; 288462306a36Sopenharmony_ci pcdac_0 = pcdac_tmp[0]; 288562306a36Sopenharmony_ci 288662306a36Sopenharmony_ci max_pwr = table_max[0]; 288762306a36Sopenharmony_ci pcdac_n = pcdac_tmp[table_max[0] - table_min[0]]; 288862306a36Sopenharmony_ci 288962306a36Sopenharmony_ci /* Extrapolate below minimum using pcdac_0 */ 289062306a36Sopenharmony_ci pcdac_i = 0; 289162306a36Sopenharmony_ci for (i = 0; i < min_pwr; i++) 289262306a36Sopenharmony_ci pcdac_out[pcdac_i++] = pcdac_0; 289362306a36Sopenharmony_ci 289462306a36Sopenharmony_ci /* Copy values from pcdac_tmp */ 289562306a36Sopenharmony_ci pwr_idx = min_pwr; 289662306a36Sopenharmony_ci for (i = 0; pwr_idx <= max_pwr && 289762306a36Sopenharmony_ci pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) { 289862306a36Sopenharmony_ci pcdac_out[pcdac_i++] = pcdac_tmp[i]; 289962306a36Sopenharmony_ci pwr_idx++; 290062306a36Sopenharmony_ci } 290162306a36Sopenharmony_ci 290262306a36Sopenharmony_ci /* Extrapolate above maximum */ 290362306a36Sopenharmony_ci while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE) 290462306a36Sopenharmony_ci pcdac_out[pcdac_i++] = pcdac_n; 290562306a36Sopenharmony_ci 290662306a36Sopenharmony_ci} 290762306a36Sopenharmony_ci 290862306a36Sopenharmony_ci/** 290962306a36Sopenharmony_ci * ath5k_combine_linear_pcdac_curves() - Combine available PCDAC Curves 291062306a36Sopenharmony_ci * @ah: The &struct ath5k_hw 291162306a36Sopenharmony_ci * @table_min: Minimum power (x min) 291262306a36Sopenharmony_ci * @table_max: Maximum power (x max) 291362306a36Sopenharmony_ci * @pdcurves: Number of pd curves 291462306a36Sopenharmony_ci * 291562306a36Sopenharmony_ci * Combine available XPD Curves and fill Linear Power to PCDAC table on RF5112 291662306a36Sopenharmony_ci * RFX112 can have up to 2 curves (one for low txpower range and one for 291762306a36Sopenharmony_ci * higher txpower range). We need to put them both on pcdac_out and place 291862306a36Sopenharmony_ci * them in the correct location. In case we only have one curve available 291962306a36Sopenharmony_ci * just fit it on pcdac_out (it's supposed to cover the entire range of 292062306a36Sopenharmony_ci * available pwr levels since it's always the higher power curve). Extrapolate 292162306a36Sopenharmony_ci * below and above final table if needed. 292262306a36Sopenharmony_ci */ 292362306a36Sopenharmony_cistatic void 292462306a36Sopenharmony_ciath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min, 292562306a36Sopenharmony_ci s16 *table_max, u8 pdcurves) 292662306a36Sopenharmony_ci{ 292762306a36Sopenharmony_ci u8 *pcdac_out = ah->ah_txpower.txp_pd_table; 292862306a36Sopenharmony_ci u8 *pcdac_low_pwr; 292962306a36Sopenharmony_ci u8 *pcdac_high_pwr; 293062306a36Sopenharmony_ci u8 *pcdac_tmp; 293162306a36Sopenharmony_ci u8 pwr; 293262306a36Sopenharmony_ci s16 max_pwr_idx; 293362306a36Sopenharmony_ci s16 min_pwr_idx; 293462306a36Sopenharmony_ci s16 mid_pwr_idx = 0; 293562306a36Sopenharmony_ci /* Edge flag turns on the 7nth bit on the PCDAC 293662306a36Sopenharmony_ci * to declare the higher power curve (force values 293762306a36Sopenharmony_ci * to be greater than 64). If we only have one curve 293862306a36Sopenharmony_ci * we don't need to set this, if we have 2 curves and 293962306a36Sopenharmony_ci * fill the table backwards this can also be used to 294062306a36Sopenharmony_ci * switch from higher power curve to lower power curve */ 294162306a36Sopenharmony_ci u8 edge_flag; 294262306a36Sopenharmony_ci int i; 294362306a36Sopenharmony_ci 294462306a36Sopenharmony_ci /* When we have only one curve available 294562306a36Sopenharmony_ci * that's the higher power curve. If we have 294662306a36Sopenharmony_ci * two curves the first is the high power curve 294762306a36Sopenharmony_ci * and the next is the low power curve. */ 294862306a36Sopenharmony_ci if (pdcurves > 1) { 294962306a36Sopenharmony_ci pcdac_low_pwr = ah->ah_txpower.tmpL[1]; 295062306a36Sopenharmony_ci pcdac_high_pwr = ah->ah_txpower.tmpL[0]; 295162306a36Sopenharmony_ci mid_pwr_idx = table_max[1] - table_min[1] - 1; 295262306a36Sopenharmony_ci max_pwr_idx = (table_max[0] - table_min[0]) / 2; 295362306a36Sopenharmony_ci 295462306a36Sopenharmony_ci /* If table size goes beyond 31.5dB, keep the 295562306a36Sopenharmony_ci * upper 31.5dB range when setting tx power. 295662306a36Sopenharmony_ci * Note: 126 = 31.5 dB in quarter dB steps */ 295762306a36Sopenharmony_ci if (table_max[0] - table_min[1] > 126) 295862306a36Sopenharmony_ci min_pwr_idx = table_max[0] - 126; 295962306a36Sopenharmony_ci else 296062306a36Sopenharmony_ci min_pwr_idx = table_min[1]; 296162306a36Sopenharmony_ci 296262306a36Sopenharmony_ci /* Since we fill table backwards 296362306a36Sopenharmony_ci * start from high power curve */ 296462306a36Sopenharmony_ci pcdac_tmp = pcdac_high_pwr; 296562306a36Sopenharmony_ci 296662306a36Sopenharmony_ci edge_flag = 0x40; 296762306a36Sopenharmony_ci } else { 296862306a36Sopenharmony_ci pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */ 296962306a36Sopenharmony_ci pcdac_high_pwr = ah->ah_txpower.tmpL[0]; 297062306a36Sopenharmony_ci min_pwr_idx = table_min[0]; 297162306a36Sopenharmony_ci max_pwr_idx = (table_max[0] - table_min[0]) / 2; 297262306a36Sopenharmony_ci pcdac_tmp = pcdac_high_pwr; 297362306a36Sopenharmony_ci edge_flag = 0; 297462306a36Sopenharmony_ci } 297562306a36Sopenharmony_ci 297662306a36Sopenharmony_ci /* This is used when setting tx power*/ 297762306a36Sopenharmony_ci ah->ah_txpower.txp_min_idx = min_pwr_idx / 2; 297862306a36Sopenharmony_ci 297962306a36Sopenharmony_ci /* Fill Power to PCDAC table backwards */ 298062306a36Sopenharmony_ci pwr = max_pwr_idx; 298162306a36Sopenharmony_ci for (i = 63; i >= 0; i--) { 298262306a36Sopenharmony_ci /* Entering lower power range, reset 298362306a36Sopenharmony_ci * edge flag and set pcdac_tmp to lower 298462306a36Sopenharmony_ci * power curve.*/ 298562306a36Sopenharmony_ci if (edge_flag == 0x40 && 298662306a36Sopenharmony_ci (2 * pwr <= (table_max[1] - table_min[0]) || pwr == 0)) { 298762306a36Sopenharmony_ci edge_flag = 0x00; 298862306a36Sopenharmony_ci pcdac_tmp = pcdac_low_pwr; 298962306a36Sopenharmony_ci pwr = mid_pwr_idx / 2; 299062306a36Sopenharmony_ci } 299162306a36Sopenharmony_ci 299262306a36Sopenharmony_ci /* Don't go below 1, extrapolate below if we have 299362306a36Sopenharmony_ci * already switched to the lower power curve -or 299462306a36Sopenharmony_ci * we only have one curve and edge_flag is zero 299562306a36Sopenharmony_ci * anyway */ 299662306a36Sopenharmony_ci if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) { 299762306a36Sopenharmony_ci while (i >= 0) { 299862306a36Sopenharmony_ci pcdac_out[i] = pcdac_out[i + 1]; 299962306a36Sopenharmony_ci i--; 300062306a36Sopenharmony_ci } 300162306a36Sopenharmony_ci break; 300262306a36Sopenharmony_ci } 300362306a36Sopenharmony_ci 300462306a36Sopenharmony_ci pcdac_out[i] = pcdac_tmp[pwr] | edge_flag; 300562306a36Sopenharmony_ci 300662306a36Sopenharmony_ci /* Extrapolate above if pcdac is greater than 300762306a36Sopenharmony_ci * 126 -this can happen because we OR pcdac_out 300862306a36Sopenharmony_ci * value with edge_flag on high power curve */ 300962306a36Sopenharmony_ci if (pcdac_out[i] > 126) 301062306a36Sopenharmony_ci pcdac_out[i] = 126; 301162306a36Sopenharmony_ci 301262306a36Sopenharmony_ci /* Decrease by a 0.5dB step */ 301362306a36Sopenharmony_ci pwr--; 301462306a36Sopenharmony_ci } 301562306a36Sopenharmony_ci} 301662306a36Sopenharmony_ci 301762306a36Sopenharmony_ci/** 301862306a36Sopenharmony_ci * ath5k_write_pcdac_table() - Write the PCDAC values on hw 301962306a36Sopenharmony_ci * @ah: The &struct ath5k_hw 302062306a36Sopenharmony_ci */ 302162306a36Sopenharmony_cistatic void 302262306a36Sopenharmony_ciath5k_write_pcdac_table(struct ath5k_hw *ah) 302362306a36Sopenharmony_ci{ 302462306a36Sopenharmony_ci u8 *pcdac_out = ah->ah_txpower.txp_pd_table; 302562306a36Sopenharmony_ci int i; 302662306a36Sopenharmony_ci 302762306a36Sopenharmony_ci /* 302862306a36Sopenharmony_ci * Write TX power values 302962306a36Sopenharmony_ci */ 303062306a36Sopenharmony_ci for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) { 303162306a36Sopenharmony_ci ath5k_hw_reg_write(ah, 303262306a36Sopenharmony_ci (((pcdac_out[2 * i + 0] << 8 | 0xff) & 0xffff) << 0) | 303362306a36Sopenharmony_ci (((pcdac_out[2 * i + 1] << 8 | 0xff) & 0xffff) << 16), 303462306a36Sopenharmony_ci AR5K_PHY_PCDAC_TXPOWER(i)); 303562306a36Sopenharmony_ci } 303662306a36Sopenharmony_ci} 303762306a36Sopenharmony_ci 303862306a36Sopenharmony_ci 303962306a36Sopenharmony_ci/* 304062306a36Sopenharmony_ci * Power to PDADC table functions 304162306a36Sopenharmony_ci */ 304262306a36Sopenharmony_ci 304362306a36Sopenharmony_ci/** 304462306a36Sopenharmony_ci * DOC: Power to PDADC table functions 304562306a36Sopenharmony_ci * 304662306a36Sopenharmony_ci * For RF2413 and later we have a Power to PDADC table (Power Detector) 304762306a36Sopenharmony_ci * instead of a PCDAC (Power Control) and 4 pd gain curves for each 304862306a36Sopenharmony_ci * calibrated channel. Each curve has power on x axis in 0.5 db steps and 304962306a36Sopenharmony_ci * PDADC steps on y axis and looks like an exponential function like the 305062306a36Sopenharmony_ci * RF5111 curve. 305162306a36Sopenharmony_ci * 305262306a36Sopenharmony_ci * To recreate the curves we read the points from eeprom (eeprom.c) 305362306a36Sopenharmony_ci * and interpolate here. Note that in most cases only 2 (higher and lower) 305462306a36Sopenharmony_ci * curves are used (like RF5112) but vendors have the opportunity to include 305562306a36Sopenharmony_ci * all 4 curves on eeprom. The final curve (higher power) has an extra 305662306a36Sopenharmony_ci * point for better accuracy like RF5112. 305762306a36Sopenharmony_ci * 305862306a36Sopenharmony_ci * The process is similar to what we do above for RF5111/5112 305962306a36Sopenharmony_ci */ 306062306a36Sopenharmony_ci 306162306a36Sopenharmony_ci/** 306262306a36Sopenharmony_ci * ath5k_combine_pwr_to_pdadc_curves() - Combine the various PDADC curves 306362306a36Sopenharmony_ci * @ah: The &struct ath5k_hw 306462306a36Sopenharmony_ci * @pwr_min: Minimum power (x min) 306562306a36Sopenharmony_ci * @pwr_max: Maximum power (x max) 306662306a36Sopenharmony_ci * @pdcurves: Number of available curves 306762306a36Sopenharmony_ci * 306862306a36Sopenharmony_ci * Combine the various pd curves and create the final Power to PDADC table 306962306a36Sopenharmony_ci * We can have up to 4 pd curves, we need to do a similar process 307062306a36Sopenharmony_ci * as we do for RF5112. This time we don't have an edge_flag but we 307162306a36Sopenharmony_ci * set the gain boundaries on a separate register. 307262306a36Sopenharmony_ci */ 307362306a36Sopenharmony_cistatic void 307462306a36Sopenharmony_ciath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah, 307562306a36Sopenharmony_ci s16 *pwr_min, s16 *pwr_max, u8 pdcurves) 307662306a36Sopenharmony_ci{ 307762306a36Sopenharmony_ci u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS]; 307862306a36Sopenharmony_ci u8 *pdadc_out = ah->ah_txpower.txp_pd_table; 307962306a36Sopenharmony_ci u8 *pdadc_tmp; 308062306a36Sopenharmony_ci s16 pdadc_0; 308162306a36Sopenharmony_ci u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size; 308262306a36Sopenharmony_ci u8 pd_gain_overlap; 308362306a36Sopenharmony_ci 308462306a36Sopenharmony_ci /* Note: Register value is initialized on initvals 308562306a36Sopenharmony_ci * there is no feedback from hw. 308662306a36Sopenharmony_ci * XXX: What about pd_gain_overlap from EEPROM ? */ 308762306a36Sopenharmony_ci pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) & 308862306a36Sopenharmony_ci AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP; 308962306a36Sopenharmony_ci 309062306a36Sopenharmony_ci /* Create final PDADC table */ 309162306a36Sopenharmony_ci for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) { 309262306a36Sopenharmony_ci pdadc_tmp = ah->ah_txpower.tmpL[pdg]; 309362306a36Sopenharmony_ci 309462306a36Sopenharmony_ci if (pdg == pdcurves - 1) 309562306a36Sopenharmony_ci /* 2 dB boundary stretch for last 309662306a36Sopenharmony_ci * (higher power) curve */ 309762306a36Sopenharmony_ci gain_boundaries[pdg] = pwr_max[pdg] + 4; 309862306a36Sopenharmony_ci else 309962306a36Sopenharmony_ci /* Set gain boundary in the middle 310062306a36Sopenharmony_ci * between this curve and the next one */ 310162306a36Sopenharmony_ci gain_boundaries[pdg] = 310262306a36Sopenharmony_ci (pwr_max[pdg] + pwr_min[pdg + 1]) / 2; 310362306a36Sopenharmony_ci 310462306a36Sopenharmony_ci /* Sanity check in case our 2 db stretch got out of 310562306a36Sopenharmony_ci * range. */ 310662306a36Sopenharmony_ci if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER) 310762306a36Sopenharmony_ci gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER; 310862306a36Sopenharmony_ci 310962306a36Sopenharmony_ci /* For the first curve (lower power) 311062306a36Sopenharmony_ci * start from 0 dB */ 311162306a36Sopenharmony_ci if (pdg == 0) 311262306a36Sopenharmony_ci pdadc_0 = 0; 311362306a36Sopenharmony_ci else 311462306a36Sopenharmony_ci /* For the other curves use the gain overlap */ 311562306a36Sopenharmony_ci pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) - 311662306a36Sopenharmony_ci pd_gain_overlap; 311762306a36Sopenharmony_ci 311862306a36Sopenharmony_ci /* Force each power step to be at least 0.5 dB */ 311962306a36Sopenharmony_ci if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1) 312062306a36Sopenharmony_ci pwr_step = pdadc_tmp[1] - pdadc_tmp[0]; 312162306a36Sopenharmony_ci else 312262306a36Sopenharmony_ci pwr_step = 1; 312362306a36Sopenharmony_ci 312462306a36Sopenharmony_ci /* If pdadc_0 is negative, we need to extrapolate 312562306a36Sopenharmony_ci * below this pdgain by a number of pwr_steps */ 312662306a36Sopenharmony_ci while ((pdadc_0 < 0) && (pdadc_i < 128)) { 312762306a36Sopenharmony_ci s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step; 312862306a36Sopenharmony_ci pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp; 312962306a36Sopenharmony_ci pdadc_0++; 313062306a36Sopenharmony_ci } 313162306a36Sopenharmony_ci 313262306a36Sopenharmony_ci /* Set last pwr level, using gain boundaries */ 313362306a36Sopenharmony_ci pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg]; 313462306a36Sopenharmony_ci /* Limit it to be inside pwr range */ 313562306a36Sopenharmony_ci table_size = pwr_max[pdg] - pwr_min[pdg]; 313662306a36Sopenharmony_ci max_idx = min(pdadc_n, table_size); 313762306a36Sopenharmony_ci 313862306a36Sopenharmony_ci /* Fill pdadc_out table */ 313962306a36Sopenharmony_ci while (pdadc_0 < max_idx && pdadc_i < 128) 314062306a36Sopenharmony_ci pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++]; 314162306a36Sopenharmony_ci 314262306a36Sopenharmony_ci /* Need to extrapolate above this pdgain? */ 314362306a36Sopenharmony_ci if (pdadc_n <= max_idx) 314462306a36Sopenharmony_ci continue; 314562306a36Sopenharmony_ci 314662306a36Sopenharmony_ci /* Force each power step to be at least 0.5 dB */ 314762306a36Sopenharmony_ci if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1) 314862306a36Sopenharmony_ci pwr_step = pdadc_tmp[table_size - 1] - 314962306a36Sopenharmony_ci pdadc_tmp[table_size - 2]; 315062306a36Sopenharmony_ci else 315162306a36Sopenharmony_ci pwr_step = 1; 315262306a36Sopenharmony_ci 315362306a36Sopenharmony_ci /* Extrapolate above */ 315462306a36Sopenharmony_ci while ((pdadc_0 < (s16) pdadc_n) && 315562306a36Sopenharmony_ci (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) { 315662306a36Sopenharmony_ci s16 tmp = pdadc_tmp[table_size - 1] + 315762306a36Sopenharmony_ci (pdadc_0 - max_idx) * pwr_step; 315862306a36Sopenharmony_ci pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp; 315962306a36Sopenharmony_ci pdadc_0++; 316062306a36Sopenharmony_ci } 316162306a36Sopenharmony_ci } 316262306a36Sopenharmony_ci 316362306a36Sopenharmony_ci while (pdg < AR5K_EEPROM_N_PD_GAINS) { 316462306a36Sopenharmony_ci gain_boundaries[pdg] = gain_boundaries[pdg - 1]; 316562306a36Sopenharmony_ci pdg++; 316662306a36Sopenharmony_ci } 316762306a36Sopenharmony_ci 316862306a36Sopenharmony_ci while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) { 316962306a36Sopenharmony_ci pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1]; 317062306a36Sopenharmony_ci pdadc_i++; 317162306a36Sopenharmony_ci } 317262306a36Sopenharmony_ci 317362306a36Sopenharmony_ci /* Set gain boundaries */ 317462306a36Sopenharmony_ci ath5k_hw_reg_write(ah, 317562306a36Sopenharmony_ci AR5K_REG_SM(pd_gain_overlap, 317662306a36Sopenharmony_ci AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) | 317762306a36Sopenharmony_ci AR5K_REG_SM(gain_boundaries[0], 317862306a36Sopenharmony_ci AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) | 317962306a36Sopenharmony_ci AR5K_REG_SM(gain_boundaries[1], 318062306a36Sopenharmony_ci AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) | 318162306a36Sopenharmony_ci AR5K_REG_SM(gain_boundaries[2], 318262306a36Sopenharmony_ci AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) | 318362306a36Sopenharmony_ci AR5K_REG_SM(gain_boundaries[3], 318462306a36Sopenharmony_ci AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4), 318562306a36Sopenharmony_ci AR5K_PHY_TPC_RG5); 318662306a36Sopenharmony_ci 318762306a36Sopenharmony_ci /* Used for setting rate power table */ 318862306a36Sopenharmony_ci ah->ah_txpower.txp_min_idx = pwr_min[0]; 318962306a36Sopenharmony_ci 319062306a36Sopenharmony_ci} 319162306a36Sopenharmony_ci 319262306a36Sopenharmony_ci/** 319362306a36Sopenharmony_ci * ath5k_write_pwr_to_pdadc_table() - Write the PDADC values on hw 319462306a36Sopenharmony_ci * @ah: The &struct ath5k_hw 319562306a36Sopenharmony_ci * @ee_mode: One of enum ath5k_driver_mode 319662306a36Sopenharmony_ci */ 319762306a36Sopenharmony_cistatic void 319862306a36Sopenharmony_ciath5k_write_pwr_to_pdadc_table(struct ath5k_hw *ah, u8 ee_mode) 319962306a36Sopenharmony_ci{ 320062306a36Sopenharmony_ci struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; 320162306a36Sopenharmony_ci u8 *pdadc_out = ah->ah_txpower.txp_pd_table; 320262306a36Sopenharmony_ci u8 *pdg_to_idx = ee->ee_pdc_to_idx[ee_mode]; 320362306a36Sopenharmony_ci u8 pdcurves = ee->ee_pd_gains[ee_mode]; 320462306a36Sopenharmony_ci u32 reg; 320562306a36Sopenharmony_ci u8 i; 320662306a36Sopenharmony_ci 320762306a36Sopenharmony_ci /* Select the right pdgain curves */ 320862306a36Sopenharmony_ci 320962306a36Sopenharmony_ci /* Clear current settings */ 321062306a36Sopenharmony_ci reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1); 321162306a36Sopenharmony_ci reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 | 321262306a36Sopenharmony_ci AR5K_PHY_TPC_RG1_PDGAIN_2 | 321362306a36Sopenharmony_ci AR5K_PHY_TPC_RG1_PDGAIN_3 | 321462306a36Sopenharmony_ci AR5K_PHY_TPC_RG1_NUM_PD_GAIN); 321562306a36Sopenharmony_ci 321662306a36Sopenharmony_ci /* 321762306a36Sopenharmony_ci * Use pd_gains curve from eeprom 321862306a36Sopenharmony_ci * 321962306a36Sopenharmony_ci * This overrides the default setting from initvals 322062306a36Sopenharmony_ci * in case some vendors (e.g. Zcomax) don't use the default 322162306a36Sopenharmony_ci * curves. If we don't honor their settings we 'll get a 322262306a36Sopenharmony_ci * 5dB (1 * gain overlap ?) drop. 322362306a36Sopenharmony_ci */ 322462306a36Sopenharmony_ci reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN); 322562306a36Sopenharmony_ci 322662306a36Sopenharmony_ci switch (pdcurves) { 322762306a36Sopenharmony_ci case 3: 322862306a36Sopenharmony_ci reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3); 322962306a36Sopenharmony_ci fallthrough; 323062306a36Sopenharmony_ci case 2: 323162306a36Sopenharmony_ci reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2); 323262306a36Sopenharmony_ci fallthrough; 323362306a36Sopenharmony_ci case 1: 323462306a36Sopenharmony_ci reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1); 323562306a36Sopenharmony_ci break; 323662306a36Sopenharmony_ci } 323762306a36Sopenharmony_ci ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1); 323862306a36Sopenharmony_ci 323962306a36Sopenharmony_ci /* 324062306a36Sopenharmony_ci * Write TX power values 324162306a36Sopenharmony_ci */ 324262306a36Sopenharmony_ci for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) { 324362306a36Sopenharmony_ci u32 val = get_unaligned_le32(&pdadc_out[4 * i]); 324462306a36Sopenharmony_ci ath5k_hw_reg_write(ah, val, AR5K_PHY_PDADC_TXPOWER(i)); 324562306a36Sopenharmony_ci } 324662306a36Sopenharmony_ci} 324762306a36Sopenharmony_ci 324862306a36Sopenharmony_ci 324962306a36Sopenharmony_ci/* 325062306a36Sopenharmony_ci * Common code for PCDAC/PDADC tables 325162306a36Sopenharmony_ci */ 325262306a36Sopenharmony_ci 325362306a36Sopenharmony_ci/** 325462306a36Sopenharmony_ci * ath5k_setup_channel_powertable() - Set up power table for this channel 325562306a36Sopenharmony_ci * @ah: The &struct ath5k_hw 325662306a36Sopenharmony_ci * @channel: The &struct ieee80211_channel 325762306a36Sopenharmony_ci * @ee_mode: One of enum ath5k_driver_mode 325862306a36Sopenharmony_ci * @type: One of enum ath5k_powertable_type (eeprom.h) 325962306a36Sopenharmony_ci * 326062306a36Sopenharmony_ci * This is the main function that uses all of the above 326162306a36Sopenharmony_ci * to set PCDAC/PDADC table on hw for the current channel. 326262306a36Sopenharmony_ci * This table is used for tx power calibration on the baseband, 326362306a36Sopenharmony_ci * without it we get weird tx power levels and in some cases 326462306a36Sopenharmony_ci * distorted spectral mask 326562306a36Sopenharmony_ci */ 326662306a36Sopenharmony_cistatic int 326762306a36Sopenharmony_ciath5k_setup_channel_powertable(struct ath5k_hw *ah, 326862306a36Sopenharmony_ci struct ieee80211_channel *channel, 326962306a36Sopenharmony_ci u8 ee_mode, u8 type) 327062306a36Sopenharmony_ci{ 327162306a36Sopenharmony_ci struct ath5k_pdgain_info *pdg_L, *pdg_R; 327262306a36Sopenharmony_ci struct ath5k_chan_pcal_info *pcinfo_L; 327362306a36Sopenharmony_ci struct ath5k_chan_pcal_info *pcinfo_R; 327462306a36Sopenharmony_ci struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; 327562306a36Sopenharmony_ci u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode]; 327662306a36Sopenharmony_ci s16 table_min[AR5K_EEPROM_N_PD_GAINS]; 327762306a36Sopenharmony_ci s16 table_max[AR5K_EEPROM_N_PD_GAINS]; 327862306a36Sopenharmony_ci u8 *tmpL; 327962306a36Sopenharmony_ci u8 *tmpR; 328062306a36Sopenharmony_ci u32 target = channel->center_freq; 328162306a36Sopenharmony_ci int pdg, i; 328262306a36Sopenharmony_ci 328362306a36Sopenharmony_ci /* Get surrounding freq piers for this channel */ 328462306a36Sopenharmony_ci ath5k_get_chan_pcal_surrounding_piers(ah, channel, 328562306a36Sopenharmony_ci &pcinfo_L, 328662306a36Sopenharmony_ci &pcinfo_R); 328762306a36Sopenharmony_ci 328862306a36Sopenharmony_ci /* Loop over pd gain curves on 328962306a36Sopenharmony_ci * surrounding freq piers by index */ 329062306a36Sopenharmony_ci for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) { 329162306a36Sopenharmony_ci 329262306a36Sopenharmony_ci /* Fill curves in reverse order 329362306a36Sopenharmony_ci * from lower power (max gain) 329462306a36Sopenharmony_ci * to higher power. Use curve -> idx 329562306a36Sopenharmony_ci * backmapping we did on eeprom init */ 329662306a36Sopenharmony_ci u8 idx = pdg_curve_to_idx[pdg]; 329762306a36Sopenharmony_ci 329862306a36Sopenharmony_ci /* Grab the needed curves by index */ 329962306a36Sopenharmony_ci pdg_L = &pcinfo_L->pd_curves[idx]; 330062306a36Sopenharmony_ci pdg_R = &pcinfo_R->pd_curves[idx]; 330162306a36Sopenharmony_ci 330262306a36Sopenharmony_ci /* Initialize the temp tables */ 330362306a36Sopenharmony_ci tmpL = ah->ah_txpower.tmpL[pdg]; 330462306a36Sopenharmony_ci tmpR = ah->ah_txpower.tmpR[pdg]; 330562306a36Sopenharmony_ci 330662306a36Sopenharmony_ci /* Set curve's x boundaries and create 330762306a36Sopenharmony_ci * curves so that they cover the same 330862306a36Sopenharmony_ci * range (if we don't do that one table 330962306a36Sopenharmony_ci * will have values on some range and the 331062306a36Sopenharmony_ci * other one won't have any so interpolation 331162306a36Sopenharmony_ci * will fail) */ 331262306a36Sopenharmony_ci table_min[pdg] = min(pdg_L->pd_pwr[0], 331362306a36Sopenharmony_ci pdg_R->pd_pwr[0]) / 2; 331462306a36Sopenharmony_ci 331562306a36Sopenharmony_ci table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1], 331662306a36Sopenharmony_ci pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2; 331762306a36Sopenharmony_ci 331862306a36Sopenharmony_ci /* Now create the curves on surrounding channels 331962306a36Sopenharmony_ci * and interpolate if needed to get the final 332062306a36Sopenharmony_ci * curve for this gain on this channel */ 332162306a36Sopenharmony_ci switch (type) { 332262306a36Sopenharmony_ci case AR5K_PWRTABLE_LINEAR_PCDAC: 332362306a36Sopenharmony_ci /* Override min/max so that we don't loose 332462306a36Sopenharmony_ci * accuracy (don't divide by 2) */ 332562306a36Sopenharmony_ci table_min[pdg] = min(pdg_L->pd_pwr[0], 332662306a36Sopenharmony_ci pdg_R->pd_pwr[0]); 332762306a36Sopenharmony_ci 332862306a36Sopenharmony_ci table_max[pdg] = 332962306a36Sopenharmony_ci max(pdg_L->pd_pwr[pdg_L->pd_points - 1], 333062306a36Sopenharmony_ci pdg_R->pd_pwr[pdg_R->pd_points - 1]); 333162306a36Sopenharmony_ci 333262306a36Sopenharmony_ci /* Override minimum so that we don't get 333362306a36Sopenharmony_ci * out of bounds while extrapolating 333462306a36Sopenharmony_ci * below. Don't do this when we have 2 333562306a36Sopenharmony_ci * curves and we are on the high power curve 333662306a36Sopenharmony_ci * because table_min is ok in this case */ 333762306a36Sopenharmony_ci if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) { 333862306a36Sopenharmony_ci 333962306a36Sopenharmony_ci table_min[pdg] = 334062306a36Sopenharmony_ci ath5k_get_linear_pcdac_min(pdg_L->pd_step, 334162306a36Sopenharmony_ci pdg_R->pd_step, 334262306a36Sopenharmony_ci pdg_L->pd_pwr, 334362306a36Sopenharmony_ci pdg_R->pd_pwr); 334462306a36Sopenharmony_ci 334562306a36Sopenharmony_ci /* Don't go too low because we will 334662306a36Sopenharmony_ci * miss the upper part of the curve. 334762306a36Sopenharmony_ci * Note: 126 = 31.5dB (max power supported) 334862306a36Sopenharmony_ci * in 0.25dB units */ 334962306a36Sopenharmony_ci if (table_max[pdg] - table_min[pdg] > 126) 335062306a36Sopenharmony_ci table_min[pdg] = table_max[pdg] - 126; 335162306a36Sopenharmony_ci } 335262306a36Sopenharmony_ci 335362306a36Sopenharmony_ci fallthrough; 335462306a36Sopenharmony_ci case AR5K_PWRTABLE_PWR_TO_PCDAC: 335562306a36Sopenharmony_ci case AR5K_PWRTABLE_PWR_TO_PDADC: 335662306a36Sopenharmony_ci 335762306a36Sopenharmony_ci ath5k_create_power_curve(table_min[pdg], 335862306a36Sopenharmony_ci table_max[pdg], 335962306a36Sopenharmony_ci pdg_L->pd_pwr, 336062306a36Sopenharmony_ci pdg_L->pd_step, 336162306a36Sopenharmony_ci pdg_L->pd_points, tmpL, type); 336262306a36Sopenharmony_ci 336362306a36Sopenharmony_ci /* We are in a calibration 336462306a36Sopenharmony_ci * pier, no need to interpolate 336562306a36Sopenharmony_ci * between freq piers */ 336662306a36Sopenharmony_ci if (pcinfo_L == pcinfo_R) 336762306a36Sopenharmony_ci continue; 336862306a36Sopenharmony_ci 336962306a36Sopenharmony_ci ath5k_create_power_curve(table_min[pdg], 337062306a36Sopenharmony_ci table_max[pdg], 337162306a36Sopenharmony_ci pdg_R->pd_pwr, 337262306a36Sopenharmony_ci pdg_R->pd_step, 337362306a36Sopenharmony_ci pdg_R->pd_points, tmpR, type); 337462306a36Sopenharmony_ci break; 337562306a36Sopenharmony_ci default: 337662306a36Sopenharmony_ci return -EINVAL; 337762306a36Sopenharmony_ci } 337862306a36Sopenharmony_ci 337962306a36Sopenharmony_ci /* Interpolate between curves 338062306a36Sopenharmony_ci * of surrounding freq piers to 338162306a36Sopenharmony_ci * get the final curve for this 338262306a36Sopenharmony_ci * pd gain. Re-use tmpL for interpolation 338362306a36Sopenharmony_ci * output */ 338462306a36Sopenharmony_ci for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) && 338562306a36Sopenharmony_ci (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) { 338662306a36Sopenharmony_ci tmpL[i] = (u8) ath5k_get_interpolated_value(target, 338762306a36Sopenharmony_ci (s16) pcinfo_L->freq, 338862306a36Sopenharmony_ci (s16) pcinfo_R->freq, 338962306a36Sopenharmony_ci (s16) tmpL[i], 339062306a36Sopenharmony_ci (s16) tmpR[i]); 339162306a36Sopenharmony_ci } 339262306a36Sopenharmony_ci } 339362306a36Sopenharmony_ci 339462306a36Sopenharmony_ci /* Now we have a set of curves for this 339562306a36Sopenharmony_ci * channel on tmpL (x range is table_max - table_min 339662306a36Sopenharmony_ci * and y values are tmpL[pdg][]) sorted in the same 339762306a36Sopenharmony_ci * order as EEPROM (because we've used the backmapping). 339862306a36Sopenharmony_ci * So for RF5112 it's from higher power to lower power 339962306a36Sopenharmony_ci * and for RF2413 it's from lower power to higher power. 340062306a36Sopenharmony_ci * For RF5111 we only have one curve. */ 340162306a36Sopenharmony_ci 340262306a36Sopenharmony_ci /* Fill min and max power levels for this 340362306a36Sopenharmony_ci * channel by interpolating the values on 340462306a36Sopenharmony_ci * surrounding channels to complete the dataset */ 340562306a36Sopenharmony_ci ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target, 340662306a36Sopenharmony_ci (s16) pcinfo_L->freq, 340762306a36Sopenharmony_ci (s16) pcinfo_R->freq, 340862306a36Sopenharmony_ci pcinfo_L->min_pwr, pcinfo_R->min_pwr); 340962306a36Sopenharmony_ci 341062306a36Sopenharmony_ci ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target, 341162306a36Sopenharmony_ci (s16) pcinfo_L->freq, 341262306a36Sopenharmony_ci (s16) pcinfo_R->freq, 341362306a36Sopenharmony_ci pcinfo_L->max_pwr, pcinfo_R->max_pwr); 341462306a36Sopenharmony_ci 341562306a36Sopenharmony_ci /* Fill PCDAC/PDADC table */ 341662306a36Sopenharmony_ci switch (type) { 341762306a36Sopenharmony_ci case AR5K_PWRTABLE_LINEAR_PCDAC: 341862306a36Sopenharmony_ci /* For RF5112 we can have one or two curves 341962306a36Sopenharmony_ci * and each curve covers a certain power lvl 342062306a36Sopenharmony_ci * range so we need to do some more processing */ 342162306a36Sopenharmony_ci ath5k_combine_linear_pcdac_curves(ah, table_min, table_max, 342262306a36Sopenharmony_ci ee->ee_pd_gains[ee_mode]); 342362306a36Sopenharmony_ci 342462306a36Sopenharmony_ci /* Set txp.offset so that we can 342562306a36Sopenharmony_ci * match max power value with max 342662306a36Sopenharmony_ci * table index */ 342762306a36Sopenharmony_ci ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2); 342862306a36Sopenharmony_ci break; 342962306a36Sopenharmony_ci case AR5K_PWRTABLE_PWR_TO_PCDAC: 343062306a36Sopenharmony_ci /* We are done for RF5111 since it has only 343162306a36Sopenharmony_ci * one curve, just fit the curve on the table */ 343262306a36Sopenharmony_ci ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max); 343362306a36Sopenharmony_ci 343462306a36Sopenharmony_ci /* No rate powertable adjustment for RF5111 */ 343562306a36Sopenharmony_ci ah->ah_txpower.txp_min_idx = 0; 343662306a36Sopenharmony_ci ah->ah_txpower.txp_offset = 0; 343762306a36Sopenharmony_ci break; 343862306a36Sopenharmony_ci case AR5K_PWRTABLE_PWR_TO_PDADC: 343962306a36Sopenharmony_ci /* Set PDADC boundaries and fill 344062306a36Sopenharmony_ci * final PDADC table */ 344162306a36Sopenharmony_ci ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max, 344262306a36Sopenharmony_ci ee->ee_pd_gains[ee_mode]); 344362306a36Sopenharmony_ci 344462306a36Sopenharmony_ci /* Set txp.offset, note that table_min 344562306a36Sopenharmony_ci * can be negative */ 344662306a36Sopenharmony_ci ah->ah_txpower.txp_offset = table_min[0]; 344762306a36Sopenharmony_ci break; 344862306a36Sopenharmony_ci default: 344962306a36Sopenharmony_ci return -EINVAL; 345062306a36Sopenharmony_ci } 345162306a36Sopenharmony_ci 345262306a36Sopenharmony_ci ah->ah_txpower.txp_setup = true; 345362306a36Sopenharmony_ci 345462306a36Sopenharmony_ci return 0; 345562306a36Sopenharmony_ci} 345662306a36Sopenharmony_ci 345762306a36Sopenharmony_ci/** 345862306a36Sopenharmony_ci * ath5k_write_channel_powertable() - Set power table for current channel on hw 345962306a36Sopenharmony_ci * @ah: The &struct ath5k_hw 346062306a36Sopenharmony_ci * @ee_mode: One of enum ath5k_driver_mode 346162306a36Sopenharmony_ci * @type: One of enum ath5k_powertable_type (eeprom.h) 346262306a36Sopenharmony_ci */ 346362306a36Sopenharmony_cistatic void 346462306a36Sopenharmony_ciath5k_write_channel_powertable(struct ath5k_hw *ah, u8 ee_mode, u8 type) 346562306a36Sopenharmony_ci{ 346662306a36Sopenharmony_ci if (type == AR5K_PWRTABLE_PWR_TO_PDADC) 346762306a36Sopenharmony_ci ath5k_write_pwr_to_pdadc_table(ah, ee_mode); 346862306a36Sopenharmony_ci else 346962306a36Sopenharmony_ci ath5k_write_pcdac_table(ah); 347062306a36Sopenharmony_ci} 347162306a36Sopenharmony_ci 347262306a36Sopenharmony_ci 347362306a36Sopenharmony_ci/** 347462306a36Sopenharmony_ci * DOC: Per-rate tx power setting 347562306a36Sopenharmony_ci * 347662306a36Sopenharmony_ci * This is the code that sets the desired tx power limit (below 347762306a36Sopenharmony_ci * maximum) on hw for each rate (we also have TPC that sets 347862306a36Sopenharmony_ci * power per packet type). We do that by providing an index on the 347962306a36Sopenharmony_ci * PCDAC/PDADC table we set up above, for each rate. 348062306a36Sopenharmony_ci * 348162306a36Sopenharmony_ci * For now we only limit txpower based on maximum tx power 348262306a36Sopenharmony_ci * supported by hw (what's inside rate_info) + conformance test 348362306a36Sopenharmony_ci * limits. We need to limit this even more, based on regulatory domain 348462306a36Sopenharmony_ci * etc to be safe. Normally this is done from above so we don't care 348562306a36Sopenharmony_ci * here, all we care is that the tx power we set will be O.K. 348662306a36Sopenharmony_ci * for the hw (e.g. won't create noise on PA etc). 348762306a36Sopenharmony_ci * 348862306a36Sopenharmony_ci * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps - 348962306a36Sopenharmony_ci * x values) and is indexed as follows: 349062306a36Sopenharmony_ci * rates[0] - rates[7] -> OFDM rates 349162306a36Sopenharmony_ci * rates[8] - rates[14] -> CCK rates 349262306a36Sopenharmony_ci * rates[15] -> XR rates (they all have the same power) 349362306a36Sopenharmony_ci */ 349462306a36Sopenharmony_ci 349562306a36Sopenharmony_ci/** 349662306a36Sopenharmony_ci * ath5k_setup_rate_powertable() - Set up rate power table for a given tx power 349762306a36Sopenharmony_ci * @ah: The &struct ath5k_hw 349862306a36Sopenharmony_ci * @max_pwr: The maximum tx power requested in 0.5dB steps 349962306a36Sopenharmony_ci * @rate_info: The &struct ath5k_rate_pcal_info to fill 350062306a36Sopenharmony_ci * @ee_mode: One of enum ath5k_driver_mode 350162306a36Sopenharmony_ci */ 350262306a36Sopenharmony_cistatic void 350362306a36Sopenharmony_ciath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr, 350462306a36Sopenharmony_ci struct ath5k_rate_pcal_info *rate_info, 350562306a36Sopenharmony_ci u8 ee_mode) 350662306a36Sopenharmony_ci{ 350762306a36Sopenharmony_ci unsigned int i; 350862306a36Sopenharmony_ci u16 *rates; 350962306a36Sopenharmony_ci s16 rate_idx_scaled = 0; 351062306a36Sopenharmony_ci 351162306a36Sopenharmony_ci /* max_pwr is power level we got from driver/user in 0.5dB 351262306a36Sopenharmony_ci * units, switch to 0.25dB units so we can compare */ 351362306a36Sopenharmony_ci max_pwr *= 2; 351462306a36Sopenharmony_ci max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2; 351562306a36Sopenharmony_ci 351662306a36Sopenharmony_ci /* apply rate limits */ 351762306a36Sopenharmony_ci rates = ah->ah_txpower.txp_rates_power_table; 351862306a36Sopenharmony_ci 351962306a36Sopenharmony_ci /* OFDM rates 6 to 24Mb/s */ 352062306a36Sopenharmony_ci for (i = 0; i < 5; i++) 352162306a36Sopenharmony_ci rates[i] = min(max_pwr, rate_info->target_power_6to24); 352262306a36Sopenharmony_ci 352362306a36Sopenharmony_ci /* Rest OFDM rates */ 352462306a36Sopenharmony_ci rates[5] = min(rates[0], rate_info->target_power_36); 352562306a36Sopenharmony_ci rates[6] = min(rates[0], rate_info->target_power_48); 352662306a36Sopenharmony_ci rates[7] = min(rates[0], rate_info->target_power_54); 352762306a36Sopenharmony_ci 352862306a36Sopenharmony_ci /* CCK rates */ 352962306a36Sopenharmony_ci /* 1L */ 353062306a36Sopenharmony_ci rates[8] = min(rates[0], rate_info->target_power_6to24); 353162306a36Sopenharmony_ci /* 2L */ 353262306a36Sopenharmony_ci rates[9] = min(rates[0], rate_info->target_power_36); 353362306a36Sopenharmony_ci /* 2S */ 353462306a36Sopenharmony_ci rates[10] = min(rates[0], rate_info->target_power_36); 353562306a36Sopenharmony_ci /* 5L */ 353662306a36Sopenharmony_ci rates[11] = min(rates[0], rate_info->target_power_48); 353762306a36Sopenharmony_ci /* 5S */ 353862306a36Sopenharmony_ci rates[12] = min(rates[0], rate_info->target_power_48); 353962306a36Sopenharmony_ci /* 11L */ 354062306a36Sopenharmony_ci rates[13] = min(rates[0], rate_info->target_power_54); 354162306a36Sopenharmony_ci /* 11S */ 354262306a36Sopenharmony_ci rates[14] = min(rates[0], rate_info->target_power_54); 354362306a36Sopenharmony_ci 354462306a36Sopenharmony_ci /* XR rates */ 354562306a36Sopenharmony_ci rates[15] = min(rates[0], rate_info->target_power_6to24); 354662306a36Sopenharmony_ci 354762306a36Sopenharmony_ci /* CCK rates have different peak to average ratio 354862306a36Sopenharmony_ci * so we have to tweak their power so that gainf 354962306a36Sopenharmony_ci * correction works ok. For this we use OFDM to 355062306a36Sopenharmony_ci * CCK delta from eeprom */ 355162306a36Sopenharmony_ci if ((ee_mode == AR5K_EEPROM_MODE_11G) && 355262306a36Sopenharmony_ci (ah->ah_phy_revision < AR5K_SREV_PHY_5212A)) 355362306a36Sopenharmony_ci for (i = 8; i <= 15; i++) 355462306a36Sopenharmony_ci rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta; 355562306a36Sopenharmony_ci 355662306a36Sopenharmony_ci /* Save min/max and current tx power for this channel 355762306a36Sopenharmony_ci * in 0.25dB units. 355862306a36Sopenharmony_ci * 355962306a36Sopenharmony_ci * Note: We use rates[0] for current tx power because 356062306a36Sopenharmony_ci * it covers most of the rates, in most cases. It's our 356162306a36Sopenharmony_ci * tx power limit and what the user expects to see. */ 356262306a36Sopenharmony_ci ah->ah_txpower.txp_min_pwr = 2 * rates[7]; 356362306a36Sopenharmony_ci ah->ah_txpower.txp_cur_pwr = 2 * rates[0]; 356462306a36Sopenharmony_ci 356562306a36Sopenharmony_ci /* Set max txpower for correct OFDM operation on all rates 356662306a36Sopenharmony_ci * -that is the txpower for 54Mbit-, it's used for the PAPD 356762306a36Sopenharmony_ci * gain probe and it's in 0.5dB units */ 356862306a36Sopenharmony_ci ah->ah_txpower.txp_ofdm = rates[7]; 356962306a36Sopenharmony_ci 357062306a36Sopenharmony_ci /* Now that we have all rates setup use table offset to 357162306a36Sopenharmony_ci * match the power range set by user with the power indices 357262306a36Sopenharmony_ci * on PCDAC/PDADC table */ 357362306a36Sopenharmony_ci for (i = 0; i < 16; i++) { 357462306a36Sopenharmony_ci rate_idx_scaled = rates[i] + ah->ah_txpower.txp_offset; 357562306a36Sopenharmony_ci /* Don't get out of bounds */ 357662306a36Sopenharmony_ci if (rate_idx_scaled > 63) 357762306a36Sopenharmony_ci rate_idx_scaled = 63; 357862306a36Sopenharmony_ci if (rate_idx_scaled < 0) 357962306a36Sopenharmony_ci rate_idx_scaled = 0; 358062306a36Sopenharmony_ci rates[i] = rate_idx_scaled; 358162306a36Sopenharmony_ci } 358262306a36Sopenharmony_ci} 358362306a36Sopenharmony_ci 358462306a36Sopenharmony_ci 358562306a36Sopenharmony_ci/** 358662306a36Sopenharmony_ci * ath5k_hw_txpower() - Set transmission power limit for a given channel 358762306a36Sopenharmony_ci * @ah: The &struct ath5k_hw 358862306a36Sopenharmony_ci * @channel: The &struct ieee80211_channel 358962306a36Sopenharmony_ci * @txpower: Requested tx power in 0.5dB steps 359062306a36Sopenharmony_ci * 359162306a36Sopenharmony_ci * Combines all of the above to set the requested tx power limit 359262306a36Sopenharmony_ci * on hw. 359362306a36Sopenharmony_ci */ 359462306a36Sopenharmony_cistatic int 359562306a36Sopenharmony_ciath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel, 359662306a36Sopenharmony_ci u8 txpower) 359762306a36Sopenharmony_ci{ 359862306a36Sopenharmony_ci struct ath5k_rate_pcal_info rate_info; 359962306a36Sopenharmony_ci struct ieee80211_channel *curr_channel = ah->ah_current_channel; 360062306a36Sopenharmony_ci int ee_mode; 360162306a36Sopenharmony_ci u8 type; 360262306a36Sopenharmony_ci int ret; 360362306a36Sopenharmony_ci 360462306a36Sopenharmony_ci if (txpower > AR5K_TUNE_MAX_TXPOWER) { 360562306a36Sopenharmony_ci ATH5K_ERR(ah, "invalid tx power: %u\n", txpower); 360662306a36Sopenharmony_ci return -EINVAL; 360762306a36Sopenharmony_ci } 360862306a36Sopenharmony_ci 360962306a36Sopenharmony_ci ee_mode = ath5k_eeprom_mode_from_channel(ah, channel); 361062306a36Sopenharmony_ci 361162306a36Sopenharmony_ci /* Initialize TX power table */ 361262306a36Sopenharmony_ci switch (ah->ah_radio) { 361362306a36Sopenharmony_ci case AR5K_RF5110: 361462306a36Sopenharmony_ci /* TODO */ 361562306a36Sopenharmony_ci return 0; 361662306a36Sopenharmony_ci case AR5K_RF5111: 361762306a36Sopenharmony_ci type = AR5K_PWRTABLE_PWR_TO_PCDAC; 361862306a36Sopenharmony_ci break; 361962306a36Sopenharmony_ci case AR5K_RF5112: 362062306a36Sopenharmony_ci type = AR5K_PWRTABLE_LINEAR_PCDAC; 362162306a36Sopenharmony_ci break; 362262306a36Sopenharmony_ci case AR5K_RF2413: 362362306a36Sopenharmony_ci case AR5K_RF5413: 362462306a36Sopenharmony_ci case AR5K_RF2316: 362562306a36Sopenharmony_ci case AR5K_RF2317: 362662306a36Sopenharmony_ci case AR5K_RF2425: 362762306a36Sopenharmony_ci type = AR5K_PWRTABLE_PWR_TO_PDADC; 362862306a36Sopenharmony_ci break; 362962306a36Sopenharmony_ci default: 363062306a36Sopenharmony_ci return -EINVAL; 363162306a36Sopenharmony_ci } 363262306a36Sopenharmony_ci 363362306a36Sopenharmony_ci /* 363462306a36Sopenharmony_ci * If we don't change channel/mode skip tx powertable calculation 363562306a36Sopenharmony_ci * and use the cached one. 363662306a36Sopenharmony_ci */ 363762306a36Sopenharmony_ci if (!ah->ah_txpower.txp_setup || 363862306a36Sopenharmony_ci (channel->hw_value != curr_channel->hw_value) || 363962306a36Sopenharmony_ci (channel->center_freq != curr_channel->center_freq)) { 364062306a36Sopenharmony_ci /* Reset TX power values but preserve requested 364162306a36Sopenharmony_ci * tx power from above */ 364262306a36Sopenharmony_ci int requested_txpower = ah->ah_txpower.txp_requested; 364362306a36Sopenharmony_ci 364462306a36Sopenharmony_ci memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower)); 364562306a36Sopenharmony_ci 364662306a36Sopenharmony_ci /* Restore TPC setting and requested tx power */ 364762306a36Sopenharmony_ci ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER; 364862306a36Sopenharmony_ci 364962306a36Sopenharmony_ci ah->ah_txpower.txp_requested = requested_txpower; 365062306a36Sopenharmony_ci 365162306a36Sopenharmony_ci /* Calculate the powertable */ 365262306a36Sopenharmony_ci ret = ath5k_setup_channel_powertable(ah, channel, 365362306a36Sopenharmony_ci ee_mode, type); 365462306a36Sopenharmony_ci if (ret) 365562306a36Sopenharmony_ci return ret; 365662306a36Sopenharmony_ci } 365762306a36Sopenharmony_ci 365862306a36Sopenharmony_ci /* Write table on hw */ 365962306a36Sopenharmony_ci ath5k_write_channel_powertable(ah, ee_mode, type); 366062306a36Sopenharmony_ci 366162306a36Sopenharmony_ci /* Limit max power if we have a CTL available */ 366262306a36Sopenharmony_ci ath5k_get_max_ctl_power(ah, channel); 366362306a36Sopenharmony_ci 366462306a36Sopenharmony_ci /* FIXME: Antenna reduction stuff */ 366562306a36Sopenharmony_ci 366662306a36Sopenharmony_ci /* FIXME: Limit power on turbo modes */ 366762306a36Sopenharmony_ci 366862306a36Sopenharmony_ci /* FIXME: TPC scale reduction */ 366962306a36Sopenharmony_ci 367062306a36Sopenharmony_ci /* Get surrounding channels for per-rate power table 367162306a36Sopenharmony_ci * calibration */ 367262306a36Sopenharmony_ci ath5k_get_rate_pcal_data(ah, channel, &rate_info); 367362306a36Sopenharmony_ci 367462306a36Sopenharmony_ci /* Setup rate power table */ 367562306a36Sopenharmony_ci ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode); 367662306a36Sopenharmony_ci 367762306a36Sopenharmony_ci /* Write rate power table on hw */ 367862306a36Sopenharmony_ci ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) | 367962306a36Sopenharmony_ci AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) | 368062306a36Sopenharmony_ci AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1); 368162306a36Sopenharmony_ci 368262306a36Sopenharmony_ci ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) | 368362306a36Sopenharmony_ci AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) | 368462306a36Sopenharmony_ci AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2); 368562306a36Sopenharmony_ci 368662306a36Sopenharmony_ci ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) | 368762306a36Sopenharmony_ci AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) | 368862306a36Sopenharmony_ci AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3); 368962306a36Sopenharmony_ci 369062306a36Sopenharmony_ci ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) | 369162306a36Sopenharmony_ci AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) | 369262306a36Sopenharmony_ci AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4); 369362306a36Sopenharmony_ci 369462306a36Sopenharmony_ci /* FIXME: TPC support */ 369562306a36Sopenharmony_ci if (ah->ah_txpower.txp_tpc) { 369662306a36Sopenharmony_ci ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE | 369762306a36Sopenharmony_ci AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX); 369862306a36Sopenharmony_ci 369962306a36Sopenharmony_ci ath5k_hw_reg_write(ah, 370062306a36Sopenharmony_ci AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) | 370162306a36Sopenharmony_ci AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) | 370262306a36Sopenharmony_ci AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP), 370362306a36Sopenharmony_ci AR5K_TPC); 370462306a36Sopenharmony_ci } else { 370562306a36Sopenharmony_ci ath5k_hw_reg_write(ah, AR5K_TUNE_MAX_TXPOWER, 370662306a36Sopenharmony_ci AR5K_PHY_TXPOWER_RATE_MAX); 370762306a36Sopenharmony_ci } 370862306a36Sopenharmony_ci 370962306a36Sopenharmony_ci return 0; 371062306a36Sopenharmony_ci} 371162306a36Sopenharmony_ci 371262306a36Sopenharmony_ci/** 371362306a36Sopenharmony_ci * ath5k_hw_set_txpower_limit() - Set txpower limit for the current channel 371462306a36Sopenharmony_ci * @ah: The &struct ath5k_hw 371562306a36Sopenharmony_ci * @txpower: The requested tx power limit in 0.5dB steps 371662306a36Sopenharmony_ci * 371762306a36Sopenharmony_ci * This function provides access to ath5k_hw_txpower to the driver in 371862306a36Sopenharmony_ci * case user or an application changes it while PHY is running. 371962306a36Sopenharmony_ci */ 372062306a36Sopenharmony_ciint 372162306a36Sopenharmony_ciath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 txpower) 372262306a36Sopenharmony_ci{ 372362306a36Sopenharmony_ci ATH5K_DBG(ah, ATH5K_DEBUG_TXPOWER, 372462306a36Sopenharmony_ci "changing txpower to %d\n", txpower); 372562306a36Sopenharmony_ci 372662306a36Sopenharmony_ci return ath5k_hw_txpower(ah, ah->ah_current_channel, txpower); 372762306a36Sopenharmony_ci} 372862306a36Sopenharmony_ci 372962306a36Sopenharmony_ci 373062306a36Sopenharmony_ci/*************\ 373162306a36Sopenharmony_ci Init function 373262306a36Sopenharmony_ci\*************/ 373362306a36Sopenharmony_ci 373462306a36Sopenharmony_ci/** 373562306a36Sopenharmony_ci * ath5k_hw_phy_init() - Initialize PHY 373662306a36Sopenharmony_ci * @ah: The &struct ath5k_hw 373762306a36Sopenharmony_ci * @channel: The @struct ieee80211_channel 373862306a36Sopenharmony_ci * @mode: One of enum ath5k_driver_mode 373962306a36Sopenharmony_ci * @fast: Try a fast channel switch instead 374062306a36Sopenharmony_ci * 374162306a36Sopenharmony_ci * This is the main function used during reset to initialize PHY 374262306a36Sopenharmony_ci * or do a fast channel change if possible. 374362306a36Sopenharmony_ci * 374462306a36Sopenharmony_ci * NOTE: Do not call this one from the driver, it assumes PHY is in a 374562306a36Sopenharmony_ci * warm reset state ! 374662306a36Sopenharmony_ci */ 374762306a36Sopenharmony_ciint 374862306a36Sopenharmony_ciath5k_hw_phy_init(struct ath5k_hw *ah, struct ieee80211_channel *channel, 374962306a36Sopenharmony_ci u8 mode, bool fast) 375062306a36Sopenharmony_ci{ 375162306a36Sopenharmony_ci struct ieee80211_channel *curr_channel; 375262306a36Sopenharmony_ci int ret, i; 375362306a36Sopenharmony_ci u32 phy_tst1; 375462306a36Sopenharmony_ci ret = 0; 375562306a36Sopenharmony_ci 375662306a36Sopenharmony_ci /* 375762306a36Sopenharmony_ci * Sanity check for fast flag 375862306a36Sopenharmony_ci * Don't try fast channel change when changing modulation 375962306a36Sopenharmony_ci * mode/band. We check for chip compatibility on 376062306a36Sopenharmony_ci * ath5k_hw_reset. 376162306a36Sopenharmony_ci */ 376262306a36Sopenharmony_ci curr_channel = ah->ah_current_channel; 376362306a36Sopenharmony_ci if (fast && (channel->hw_value != curr_channel->hw_value)) 376462306a36Sopenharmony_ci return -EINVAL; 376562306a36Sopenharmony_ci 376662306a36Sopenharmony_ci /* 376762306a36Sopenharmony_ci * On fast channel change we only set the synth parameters 376862306a36Sopenharmony_ci * while PHY is running, enable calibration and skip the rest. 376962306a36Sopenharmony_ci */ 377062306a36Sopenharmony_ci if (fast) { 377162306a36Sopenharmony_ci AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_RFBUS_REQ, 377262306a36Sopenharmony_ci AR5K_PHY_RFBUS_REQ_REQUEST); 377362306a36Sopenharmony_ci for (i = 0; i < 100; i++) { 377462306a36Sopenharmony_ci if (ath5k_hw_reg_read(ah, AR5K_PHY_RFBUS_GRANT)) 377562306a36Sopenharmony_ci break; 377662306a36Sopenharmony_ci udelay(5); 377762306a36Sopenharmony_ci } 377862306a36Sopenharmony_ci /* Failed */ 377962306a36Sopenharmony_ci if (i >= 100) 378062306a36Sopenharmony_ci return -EIO; 378162306a36Sopenharmony_ci 378262306a36Sopenharmony_ci /* Set channel and wait for synth */ 378362306a36Sopenharmony_ci ret = ath5k_hw_channel(ah, channel); 378462306a36Sopenharmony_ci if (ret) 378562306a36Sopenharmony_ci return ret; 378662306a36Sopenharmony_ci 378762306a36Sopenharmony_ci ath5k_hw_wait_for_synth(ah, channel); 378862306a36Sopenharmony_ci } 378962306a36Sopenharmony_ci 379062306a36Sopenharmony_ci /* 379162306a36Sopenharmony_ci * Set TX power 379262306a36Sopenharmony_ci * 379362306a36Sopenharmony_ci * Note: We need to do that before we set 379462306a36Sopenharmony_ci * RF buffer settings on 5211/5212+ so that we 379562306a36Sopenharmony_ci * properly set curve indices. 379662306a36Sopenharmony_ci */ 379762306a36Sopenharmony_ci ret = ath5k_hw_txpower(ah, channel, ah->ah_txpower.txp_requested ? 379862306a36Sopenharmony_ci ah->ah_txpower.txp_requested * 2 : 379962306a36Sopenharmony_ci AR5K_TUNE_MAX_TXPOWER); 380062306a36Sopenharmony_ci if (ret) 380162306a36Sopenharmony_ci return ret; 380262306a36Sopenharmony_ci 380362306a36Sopenharmony_ci /* Write OFDM timings on 5212*/ 380462306a36Sopenharmony_ci if (ah->ah_version == AR5K_AR5212 && 380562306a36Sopenharmony_ci channel->hw_value != AR5K_MODE_11B) { 380662306a36Sopenharmony_ci 380762306a36Sopenharmony_ci ret = ath5k_hw_write_ofdm_timings(ah, channel); 380862306a36Sopenharmony_ci if (ret) 380962306a36Sopenharmony_ci return ret; 381062306a36Sopenharmony_ci 381162306a36Sopenharmony_ci /* Spur info is available only from EEPROM versions 381262306a36Sopenharmony_ci * greater than 5.3, but the EEPROM routines will use 381362306a36Sopenharmony_ci * static values for older versions */ 381462306a36Sopenharmony_ci if (ah->ah_mac_srev >= AR5K_SREV_AR5424) 381562306a36Sopenharmony_ci ath5k_hw_set_spur_mitigation_filter(ah, 381662306a36Sopenharmony_ci channel); 381762306a36Sopenharmony_ci } 381862306a36Sopenharmony_ci 381962306a36Sopenharmony_ci /* If we used fast channel switching 382062306a36Sopenharmony_ci * we are done, release RF bus and 382162306a36Sopenharmony_ci * fire up NF calibration. 382262306a36Sopenharmony_ci * 382362306a36Sopenharmony_ci * Note: Only NF calibration due to 382462306a36Sopenharmony_ci * channel change, not AGC calibration 382562306a36Sopenharmony_ci * since AGC is still running ! 382662306a36Sopenharmony_ci */ 382762306a36Sopenharmony_ci if (fast) { 382862306a36Sopenharmony_ci /* 382962306a36Sopenharmony_ci * Release RF Bus grant 383062306a36Sopenharmony_ci */ 383162306a36Sopenharmony_ci AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_RFBUS_REQ, 383262306a36Sopenharmony_ci AR5K_PHY_RFBUS_REQ_REQUEST); 383362306a36Sopenharmony_ci 383462306a36Sopenharmony_ci /* 383562306a36Sopenharmony_ci * Start NF calibration 383662306a36Sopenharmony_ci */ 383762306a36Sopenharmony_ci AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, 383862306a36Sopenharmony_ci AR5K_PHY_AGCCTL_NF); 383962306a36Sopenharmony_ci 384062306a36Sopenharmony_ci return ret; 384162306a36Sopenharmony_ci } 384262306a36Sopenharmony_ci 384362306a36Sopenharmony_ci /* 384462306a36Sopenharmony_ci * For 5210 we do all initialization using 384562306a36Sopenharmony_ci * initvals, so we don't have to modify 384662306a36Sopenharmony_ci * any settings (5210 also only supports 384762306a36Sopenharmony_ci * a/aturbo modes) 384862306a36Sopenharmony_ci */ 384962306a36Sopenharmony_ci if (ah->ah_version != AR5K_AR5210) { 385062306a36Sopenharmony_ci 385162306a36Sopenharmony_ci /* 385262306a36Sopenharmony_ci * Write initial RF gain settings 385362306a36Sopenharmony_ci * This should work for both 5111/5112 385462306a36Sopenharmony_ci */ 385562306a36Sopenharmony_ci ret = ath5k_hw_rfgain_init(ah, channel->band); 385662306a36Sopenharmony_ci if (ret) 385762306a36Sopenharmony_ci return ret; 385862306a36Sopenharmony_ci 385962306a36Sopenharmony_ci usleep_range(1000, 1500); 386062306a36Sopenharmony_ci 386162306a36Sopenharmony_ci /* 386262306a36Sopenharmony_ci * Write RF buffer 386362306a36Sopenharmony_ci */ 386462306a36Sopenharmony_ci ret = ath5k_hw_rfregs_init(ah, channel, mode); 386562306a36Sopenharmony_ci if (ret) 386662306a36Sopenharmony_ci return ret; 386762306a36Sopenharmony_ci 386862306a36Sopenharmony_ci /*Enable/disable 802.11b mode on 5111 386962306a36Sopenharmony_ci (enable 2111 frequency converter + CCK)*/ 387062306a36Sopenharmony_ci if (ah->ah_radio == AR5K_RF5111) { 387162306a36Sopenharmony_ci if (mode == AR5K_MODE_11B) 387262306a36Sopenharmony_ci AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG, 387362306a36Sopenharmony_ci AR5K_TXCFG_B_MODE); 387462306a36Sopenharmony_ci else 387562306a36Sopenharmony_ci AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG, 387662306a36Sopenharmony_ci AR5K_TXCFG_B_MODE); 387762306a36Sopenharmony_ci } 387862306a36Sopenharmony_ci 387962306a36Sopenharmony_ci } else if (ah->ah_version == AR5K_AR5210) { 388062306a36Sopenharmony_ci usleep_range(1000, 1500); 388162306a36Sopenharmony_ci /* Disable phy and wait */ 388262306a36Sopenharmony_ci ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT); 388362306a36Sopenharmony_ci usleep_range(1000, 1500); 388462306a36Sopenharmony_ci } 388562306a36Sopenharmony_ci 388662306a36Sopenharmony_ci /* Set channel on PHY */ 388762306a36Sopenharmony_ci ret = ath5k_hw_channel(ah, channel); 388862306a36Sopenharmony_ci if (ret) 388962306a36Sopenharmony_ci return ret; 389062306a36Sopenharmony_ci 389162306a36Sopenharmony_ci /* 389262306a36Sopenharmony_ci * Enable the PHY and wait until completion 389362306a36Sopenharmony_ci * This includes BaseBand and Synthesizer 389462306a36Sopenharmony_ci * activation. 389562306a36Sopenharmony_ci */ 389662306a36Sopenharmony_ci ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT); 389762306a36Sopenharmony_ci 389862306a36Sopenharmony_ci ath5k_hw_wait_for_synth(ah, channel); 389962306a36Sopenharmony_ci 390062306a36Sopenharmony_ci /* 390162306a36Sopenharmony_ci * Perform ADC test to see if baseband is ready 390262306a36Sopenharmony_ci * Set tx hold and check adc test register 390362306a36Sopenharmony_ci */ 390462306a36Sopenharmony_ci phy_tst1 = ath5k_hw_reg_read(ah, AR5K_PHY_TST1); 390562306a36Sopenharmony_ci ath5k_hw_reg_write(ah, AR5K_PHY_TST1_TXHOLD, AR5K_PHY_TST1); 390662306a36Sopenharmony_ci for (i = 0; i <= 20; i++) { 390762306a36Sopenharmony_ci if (!(ath5k_hw_reg_read(ah, AR5K_PHY_ADC_TEST) & 0x10)) 390862306a36Sopenharmony_ci break; 390962306a36Sopenharmony_ci usleep_range(200, 250); 391062306a36Sopenharmony_ci } 391162306a36Sopenharmony_ci ath5k_hw_reg_write(ah, phy_tst1, AR5K_PHY_TST1); 391262306a36Sopenharmony_ci 391362306a36Sopenharmony_ci /* 391462306a36Sopenharmony_ci * Start automatic gain control calibration 391562306a36Sopenharmony_ci * 391662306a36Sopenharmony_ci * During AGC calibration RX path is re-routed to 391762306a36Sopenharmony_ci * a power detector so we don't receive anything. 391862306a36Sopenharmony_ci * 391962306a36Sopenharmony_ci * This method is used to calibrate some static offsets 392062306a36Sopenharmony_ci * used together with on-the fly I/Q calibration (the 392162306a36Sopenharmony_ci * one performed via ath5k_hw_phy_calibrate), which doesn't 392262306a36Sopenharmony_ci * interrupt rx path. 392362306a36Sopenharmony_ci * 392462306a36Sopenharmony_ci * While rx path is re-routed to the power detector we also 392562306a36Sopenharmony_ci * start a noise floor calibration to measure the 392662306a36Sopenharmony_ci * card's noise floor (the noise we measure when we are not 392762306a36Sopenharmony_ci * transmitting or receiving anything). 392862306a36Sopenharmony_ci * 392962306a36Sopenharmony_ci * If we are in a noisy environment, AGC calibration may time 393062306a36Sopenharmony_ci * out and/or noise floor calibration might timeout. 393162306a36Sopenharmony_ci */ 393262306a36Sopenharmony_ci AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, 393362306a36Sopenharmony_ci AR5K_PHY_AGCCTL_CAL | AR5K_PHY_AGCCTL_NF); 393462306a36Sopenharmony_ci 393562306a36Sopenharmony_ci /* At the same time start I/Q calibration for QAM constellation 393662306a36Sopenharmony_ci * -no need for CCK- */ 393762306a36Sopenharmony_ci ah->ah_iq_cal_needed = false; 393862306a36Sopenharmony_ci if (!(mode == AR5K_MODE_11B)) { 393962306a36Sopenharmony_ci ah->ah_iq_cal_needed = true; 394062306a36Sopenharmony_ci AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, 394162306a36Sopenharmony_ci AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15); 394262306a36Sopenharmony_ci AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, 394362306a36Sopenharmony_ci AR5K_PHY_IQ_RUN); 394462306a36Sopenharmony_ci } 394562306a36Sopenharmony_ci 394662306a36Sopenharmony_ci /* Wait for gain calibration to finish (we check for I/Q calibration 394762306a36Sopenharmony_ci * during ath5k_phy_calibrate) */ 394862306a36Sopenharmony_ci if (ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, 394962306a36Sopenharmony_ci AR5K_PHY_AGCCTL_CAL, 0, false)) { 395062306a36Sopenharmony_ci ATH5K_ERR(ah, "gain calibration timeout (%uMHz)\n", 395162306a36Sopenharmony_ci channel->center_freq); 395262306a36Sopenharmony_ci } 395362306a36Sopenharmony_ci 395462306a36Sopenharmony_ci /* Restore antenna mode */ 395562306a36Sopenharmony_ci ath5k_hw_set_antenna_mode(ah, ah->ah_ant_mode); 395662306a36Sopenharmony_ci 395762306a36Sopenharmony_ci return ret; 395862306a36Sopenharmony_ci} 3959