1// SPDX-License-Identifier: GPL-2.0+
2#include <linux/bitfield.h>
3#include <linux/bitmap.h>
4#include <linux/mfd/syscon.h>
5#include <linux/module.h>
6#include <linux/nvmem-consumer.h>
7#include <linux/pinctrl/consumer.h>
8#include <linux/phy.h>
9#include <linux/regmap.h>
10
11#define MTK_GPHY_ID_MT7981			0x03a29461
12#define MTK_GPHY_ID_MT7988			0x03a29481
13
14#define MTK_EXT_PAGE_ACCESS			0x1f
15#define MTK_PHY_PAGE_STANDARD			0x0000
16#define MTK_PHY_PAGE_EXTENDED_3			0x0003
17
18#define MTK_PHY_LPI_REG_14			0x14
19#define MTK_PHY_LPI_WAKE_TIMER_1000_MASK	GENMASK(8, 0)
20
21#define MTK_PHY_LPI_REG_1c			0x1c
22#define MTK_PHY_SMI_DET_ON_THRESH_MASK		GENMASK(13, 8)
23
24#define MTK_PHY_PAGE_EXTENDED_2A30		0x2a30
25#define MTK_PHY_PAGE_EXTENDED_52B5		0x52b5
26
27#define ANALOG_INTERNAL_OPERATION_MAX_US	20
28#define TXRESERVE_MIN				0
29#define TXRESERVE_MAX				7
30
31#define MTK_PHY_ANARG_RG			0x10
32#define   MTK_PHY_TCLKOFFSET_MASK		GENMASK(12, 8)
33
34/* Registers on MDIO_MMD_VEND1 */
35#define MTK_PHY_TXVLD_DA_RG			0x12
36#define   MTK_PHY_DA_TX_I2MPB_A_GBE_MASK	GENMASK(15, 10)
37#define   MTK_PHY_DA_TX_I2MPB_A_TBT_MASK	GENMASK(5, 0)
38
39#define MTK_PHY_TX_I2MPB_TEST_MODE_A2		0x16
40#define   MTK_PHY_DA_TX_I2MPB_A_HBT_MASK	GENMASK(15, 10)
41#define   MTK_PHY_DA_TX_I2MPB_A_TST_MASK	GENMASK(5, 0)
42
43#define MTK_PHY_TX_I2MPB_TEST_MODE_B1		0x17
44#define   MTK_PHY_DA_TX_I2MPB_B_GBE_MASK	GENMASK(13, 8)
45#define   MTK_PHY_DA_TX_I2MPB_B_TBT_MASK	GENMASK(5, 0)
46
47#define MTK_PHY_TX_I2MPB_TEST_MODE_B2		0x18
48#define   MTK_PHY_DA_TX_I2MPB_B_HBT_MASK	GENMASK(13, 8)
49#define   MTK_PHY_DA_TX_I2MPB_B_TST_MASK	GENMASK(5, 0)
50
51#define MTK_PHY_TX_I2MPB_TEST_MODE_C1		0x19
52#define   MTK_PHY_DA_TX_I2MPB_C_GBE_MASK	GENMASK(13, 8)
53#define   MTK_PHY_DA_TX_I2MPB_C_TBT_MASK	GENMASK(5, 0)
54
55#define MTK_PHY_TX_I2MPB_TEST_MODE_C2		0x20
56#define   MTK_PHY_DA_TX_I2MPB_C_HBT_MASK	GENMASK(13, 8)
57#define   MTK_PHY_DA_TX_I2MPB_C_TST_MASK	GENMASK(5, 0)
58
59#define MTK_PHY_TX_I2MPB_TEST_MODE_D1		0x21
60#define   MTK_PHY_DA_TX_I2MPB_D_GBE_MASK	GENMASK(13, 8)
61#define   MTK_PHY_DA_TX_I2MPB_D_TBT_MASK	GENMASK(5, 0)
62
63#define MTK_PHY_TX_I2MPB_TEST_MODE_D2		0x22
64#define   MTK_PHY_DA_TX_I2MPB_D_HBT_MASK	GENMASK(13, 8)
65#define   MTK_PHY_DA_TX_I2MPB_D_TST_MASK	GENMASK(5, 0)
66
67#define MTK_PHY_RXADC_CTRL_RG7			0xc6
68#define   MTK_PHY_DA_AD_BUF_BIAS_LP_MASK	GENMASK(9, 8)
69
70#define MTK_PHY_RXADC_CTRL_RG9			0xc8
71#define   MTK_PHY_DA_RX_PSBN_TBT_MASK		GENMASK(14, 12)
72#define   MTK_PHY_DA_RX_PSBN_HBT_MASK		GENMASK(10, 8)
73#define   MTK_PHY_DA_RX_PSBN_GBE_MASK		GENMASK(6, 4)
74#define   MTK_PHY_DA_RX_PSBN_LP_MASK		GENMASK(2, 0)
75
76#define MTK_PHY_LDO_OUTPUT_V			0xd7
77
78#define MTK_PHY_RG_ANA_CAL_RG0			0xdb
79#define   MTK_PHY_RG_CAL_CKINV			BIT(12)
80#define   MTK_PHY_RG_ANA_CALEN			BIT(8)
81#define   MTK_PHY_RG_ZCALEN_A			BIT(0)
82
83#define MTK_PHY_RG_ANA_CAL_RG1			0xdc
84#define   MTK_PHY_RG_ZCALEN_B			BIT(12)
85#define   MTK_PHY_RG_ZCALEN_C			BIT(8)
86#define   MTK_PHY_RG_ZCALEN_D			BIT(4)
87#define   MTK_PHY_RG_TXVOS_CALEN		BIT(0)
88
89#define MTK_PHY_RG_ANA_CAL_RG5			0xe0
90#define   MTK_PHY_RG_REXT_TRIM_MASK		GENMASK(13, 8)
91
92#define MTK_PHY_RG_TX_FILTER			0xfe
93
94#define MTK_PHY_RG_LPI_PCS_DSP_CTRL_REG120	0x120
95#define   MTK_PHY_LPI_SIG_EN_LO_THRESH1000_MASK	GENMASK(12, 8)
96#define   MTK_PHY_LPI_SIG_EN_HI_THRESH1000_MASK	GENMASK(4, 0)
97
98#define MTK_PHY_RG_LPI_PCS_DSP_CTRL_REG122	0x122
99#define   MTK_PHY_LPI_NORM_MSE_HI_THRESH1000_MASK	GENMASK(7, 0)
100
101#define MTK_PHY_RG_TESTMUX_ADC_CTRL		0x144
102#define   MTK_PHY_RG_TXEN_DIG_MASK		GENMASK(5, 5)
103
104#define MTK_PHY_RG_CR_TX_AMP_OFFSET_A_B		0x172
105#define   MTK_PHY_CR_TX_AMP_OFFSET_A_MASK	GENMASK(13, 8)
106#define   MTK_PHY_CR_TX_AMP_OFFSET_B_MASK	GENMASK(6, 0)
107
108#define MTK_PHY_RG_CR_TX_AMP_OFFSET_C_D		0x173
109#define   MTK_PHY_CR_TX_AMP_OFFSET_C_MASK	GENMASK(13, 8)
110#define   MTK_PHY_CR_TX_AMP_OFFSET_D_MASK	GENMASK(6, 0)
111
112#define MTK_PHY_RG_AD_CAL_COMP			0x17a
113#define   MTK_PHY_AD_CAL_COMP_OUT_SHIFT		(8)
114
115#define MTK_PHY_RG_AD_CAL_CLK			0x17b
116#define   MTK_PHY_DA_CAL_CLK			BIT(0)
117
118#define MTK_PHY_RG_AD_CALIN			0x17c
119#define   MTK_PHY_DA_CALIN_FLAG			BIT(0)
120
121#define MTK_PHY_RG_DASN_DAC_IN0_A		0x17d
122#define   MTK_PHY_DASN_DAC_IN0_A_MASK		GENMASK(9, 0)
123
124#define MTK_PHY_RG_DASN_DAC_IN0_B		0x17e
125#define   MTK_PHY_DASN_DAC_IN0_B_MASK		GENMASK(9, 0)
126
127#define MTK_PHY_RG_DASN_DAC_IN0_C		0x17f
128#define   MTK_PHY_DASN_DAC_IN0_C_MASK		GENMASK(9, 0)
129
130#define MTK_PHY_RG_DASN_DAC_IN0_D		0x180
131#define   MTK_PHY_DASN_DAC_IN0_D_MASK		GENMASK(9, 0)
132
133#define MTK_PHY_RG_DASN_DAC_IN1_A		0x181
134#define   MTK_PHY_DASN_DAC_IN1_A_MASK		GENMASK(9, 0)
135
136#define MTK_PHY_RG_DASN_DAC_IN1_B		0x182
137#define   MTK_PHY_DASN_DAC_IN1_B_MASK		GENMASK(9, 0)
138
139#define MTK_PHY_RG_DASN_DAC_IN1_C		0x183
140#define   MTK_PHY_DASN_DAC_IN1_C_MASK		GENMASK(9, 0)
141
142#define MTK_PHY_RG_DASN_DAC_IN1_D		0x184
143#define   MTK_PHY_DASN_DAC_IN1_D_MASK		GENMASK(9, 0)
144
145#define MTK_PHY_RG_DEV1E_REG19b			0x19b
146#define   MTK_PHY_BYPASS_DSP_LPI_READY		BIT(8)
147
148#define MTK_PHY_RG_LP_IIR2_K1_L			0x22a
149#define MTK_PHY_RG_LP_IIR2_K1_U			0x22b
150#define MTK_PHY_RG_LP_IIR2_K2_L			0x22c
151#define MTK_PHY_RG_LP_IIR2_K2_U			0x22d
152#define MTK_PHY_RG_LP_IIR2_K3_L			0x22e
153#define MTK_PHY_RG_LP_IIR2_K3_U			0x22f
154#define MTK_PHY_RG_LP_IIR2_K4_L			0x230
155#define MTK_PHY_RG_LP_IIR2_K4_U			0x231
156#define MTK_PHY_RG_LP_IIR2_K5_L			0x232
157#define MTK_PHY_RG_LP_IIR2_K5_U			0x233
158
159#define MTK_PHY_RG_DEV1E_REG234			0x234
160#define   MTK_PHY_TR_OPEN_LOOP_EN_MASK		GENMASK(0, 0)
161#define   MTK_PHY_LPF_X_AVERAGE_MASK		GENMASK(7, 4)
162#define   MTK_PHY_TR_LP_IIR_EEE_EN		BIT(12)
163
164#define MTK_PHY_RG_LPF_CNT_VAL			0x235
165
166#define MTK_PHY_RG_DEV1E_REG238			0x238
167#define   MTK_PHY_LPI_SLV_SEND_TX_TIMER_MASK	GENMASK(8, 0)
168#define   MTK_PHY_LPI_SLV_SEND_TX_EN		BIT(12)
169
170#define MTK_PHY_RG_DEV1E_REG239			0x239
171#define   MTK_PHY_LPI_SEND_LOC_TIMER_MASK	GENMASK(8, 0)
172#define   MTK_PHY_LPI_TXPCS_LOC_RCV		BIT(12)
173
174#define MTK_PHY_RG_DEV1E_REG27C			0x27c
175#define   MTK_PHY_VGASTATE_FFE_THR_ST1_MASK	GENMASK(12, 8)
176#define MTK_PHY_RG_DEV1E_REG27D			0x27d
177#define   MTK_PHY_VGASTATE_FFE_THR_ST2_MASK	GENMASK(4, 0)
178
179#define MTK_PHY_RG_DEV1E_REG2C7			0x2c7
180#define   MTK_PHY_MAX_GAIN_MASK			GENMASK(4, 0)
181#define   MTK_PHY_MIN_GAIN_MASK			GENMASK(12, 8)
182
183#define MTK_PHY_RG_DEV1E_REG2D1			0x2d1
184#define   MTK_PHY_VCO_SLICER_THRESH_BITS_HIGH_EEE_MASK	GENMASK(7, 0)
185#define   MTK_PHY_LPI_SKIP_SD_SLV_TR		BIT(8)
186#define   MTK_PHY_LPI_TR_READY			BIT(9)
187#define   MTK_PHY_LPI_VCO_EEE_STG0_EN		BIT(10)
188
189#define MTK_PHY_RG_DEV1E_REG323			0x323
190#define   MTK_PHY_EEE_WAKE_MAS_INT_DC		BIT(0)
191#define   MTK_PHY_EEE_WAKE_SLV_INT_DC		BIT(4)
192
193#define MTK_PHY_RG_DEV1E_REG324			0x324
194#define   MTK_PHY_SMI_DETCNT_MAX_MASK		GENMASK(5, 0)
195#define   MTK_PHY_SMI_DET_MAX_EN		BIT(8)
196
197#define MTK_PHY_RG_DEV1E_REG326			0x326
198#define   MTK_PHY_LPI_MODE_SD_ON		BIT(0)
199#define   MTK_PHY_RESET_RANDUPD_CNT		BIT(1)
200#define   MTK_PHY_TREC_UPDATE_ENAB_CLR		BIT(2)
201#define   MTK_PHY_LPI_QUIT_WAIT_DFE_SIG_DET_OFF	BIT(4)
202#define   MTK_PHY_TR_READY_SKIP_AFE_WAKEUP	BIT(5)
203
204#define MTK_PHY_LDO_PUMP_EN_PAIRAB		0x502
205#define MTK_PHY_LDO_PUMP_EN_PAIRCD		0x503
206
207#define MTK_PHY_DA_TX_R50_PAIR_A		0x53d
208#define MTK_PHY_DA_TX_R50_PAIR_B		0x53e
209#define MTK_PHY_DA_TX_R50_PAIR_C		0x53f
210#define MTK_PHY_DA_TX_R50_PAIR_D		0x540
211
212/* Registers on MDIO_MMD_VEND2 */
213#define MTK_PHY_LED0_ON_CTRL			0x24
214#define MTK_PHY_LED1_ON_CTRL			0x26
215#define   MTK_PHY_LED_ON_MASK			GENMASK(6, 0)
216#define   MTK_PHY_LED_ON_LINK1000		BIT(0)
217#define   MTK_PHY_LED_ON_LINK100		BIT(1)
218#define   MTK_PHY_LED_ON_LINK10			BIT(2)
219#define   MTK_PHY_LED_ON_LINKDOWN		BIT(3)
220#define   MTK_PHY_LED_ON_FDX			BIT(4) /* Full duplex */
221#define   MTK_PHY_LED_ON_HDX			BIT(5) /* Half duplex */
222#define   MTK_PHY_LED_ON_FORCE_ON		BIT(6)
223#define   MTK_PHY_LED_ON_POLARITY		BIT(14)
224#define   MTK_PHY_LED_ON_ENABLE			BIT(15)
225
226#define MTK_PHY_LED0_BLINK_CTRL			0x25
227#define MTK_PHY_LED1_BLINK_CTRL			0x27
228#define   MTK_PHY_LED_BLINK_1000TX		BIT(0)
229#define   MTK_PHY_LED_BLINK_1000RX		BIT(1)
230#define   MTK_PHY_LED_BLINK_100TX		BIT(2)
231#define   MTK_PHY_LED_BLINK_100RX		BIT(3)
232#define   MTK_PHY_LED_BLINK_10TX		BIT(4)
233#define   MTK_PHY_LED_BLINK_10RX		BIT(5)
234#define   MTK_PHY_LED_BLINK_COLLISION		BIT(6)
235#define   MTK_PHY_LED_BLINK_RX_CRC_ERR		BIT(7)
236#define   MTK_PHY_LED_BLINK_RX_IDLE_ERR		BIT(8)
237#define   MTK_PHY_LED_BLINK_FORCE_BLINK		BIT(9)
238
239#define MTK_PHY_LED1_DEFAULT_POLARITIES		BIT(1)
240
241#define MTK_PHY_RG_BG_RASEL			0x115
242#define   MTK_PHY_RG_BG_RASEL_MASK		GENMASK(2, 0)
243
244/* 'boottrap' register reflecting the configuration of the 4 PHY LEDs */
245#define RG_GPIO_MISC_TPBANK0			0x6f0
246#define   RG_GPIO_MISC_TPBANK0_BOOTMODE		GENMASK(11, 8)
247
248/* These macro privides efuse parsing for internal phy. */
249#define EFS_DA_TX_I2MPB_A(x)			(((x) >> 0) & GENMASK(5, 0))
250#define EFS_DA_TX_I2MPB_B(x)			(((x) >> 6) & GENMASK(5, 0))
251#define EFS_DA_TX_I2MPB_C(x)			(((x) >> 12) & GENMASK(5, 0))
252#define EFS_DA_TX_I2MPB_D(x)			(((x) >> 18) & GENMASK(5, 0))
253#define EFS_DA_TX_AMP_OFFSET_A(x)		(((x) >> 24) & GENMASK(5, 0))
254
255#define EFS_DA_TX_AMP_OFFSET_B(x)		(((x) >> 0) & GENMASK(5, 0))
256#define EFS_DA_TX_AMP_OFFSET_C(x)		(((x) >> 6) & GENMASK(5, 0))
257#define EFS_DA_TX_AMP_OFFSET_D(x)		(((x) >> 12) & GENMASK(5, 0))
258#define EFS_DA_TX_R50_A(x)			(((x) >> 18) & GENMASK(5, 0))
259#define EFS_DA_TX_R50_B(x)			(((x) >> 24) & GENMASK(5, 0))
260
261#define EFS_DA_TX_R50_C(x)			(((x) >> 0) & GENMASK(5, 0))
262#define EFS_DA_TX_R50_D(x)			(((x) >> 6) & GENMASK(5, 0))
263
264#define EFS_RG_BG_RASEL(x)			(((x) >> 4) & GENMASK(2, 0))
265#define EFS_RG_REXT_TRIM(x)			(((x) >> 7) & GENMASK(5, 0))
266
267enum {
268	NO_PAIR,
269	PAIR_A,
270	PAIR_B,
271	PAIR_C,
272	PAIR_D,
273};
274
275enum calibration_mode {
276	EFUSE_K,
277	SW_K
278};
279
280enum CAL_ITEM {
281	REXT,
282	TX_OFFSET,
283	TX_AMP,
284	TX_R50,
285	TX_VCM
286};
287
288enum CAL_MODE {
289	EFUSE_M,
290	SW_M
291};
292
293#define MTK_PHY_LED_STATE_FORCE_ON	0
294#define MTK_PHY_LED_STATE_FORCE_BLINK	1
295#define MTK_PHY_LED_STATE_NETDEV	2
296
297struct mtk_socphy_priv {
298	unsigned long		led_state;
299};
300
301struct mtk_socphy_shared {
302	u32			boottrap;
303	struct mtk_socphy_priv	priv[4];
304};
305
306static int mtk_socphy_read_page(struct phy_device *phydev)
307{
308	return __phy_read(phydev, MTK_EXT_PAGE_ACCESS);
309}
310
311static int mtk_socphy_write_page(struct phy_device *phydev, int page)
312{
313	return __phy_write(phydev, MTK_EXT_PAGE_ACCESS, page);
314}
315
316/* One calibration cycle consists of:
317 * 1.Set DA_CALIN_FLAG high to start calibration. Keep it high
318 *   until AD_CAL_COMP is ready to output calibration result.
319 * 2.Wait until DA_CAL_CLK is available.
320 * 3.Fetch AD_CAL_COMP_OUT.
321 */
322static int cal_cycle(struct phy_device *phydev, int devad,
323		     u32 regnum, u16 mask, u16 cal_val)
324{
325	int reg_val;
326	int ret;
327
328	phy_modify_mmd(phydev, devad, regnum,
329		       mask, cal_val);
330	phy_set_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_AD_CALIN,
331			 MTK_PHY_DA_CALIN_FLAG);
332
333	ret = phy_read_mmd_poll_timeout(phydev, MDIO_MMD_VEND1,
334					MTK_PHY_RG_AD_CAL_CLK, reg_val,
335					reg_val & MTK_PHY_DA_CAL_CLK, 500,
336					ANALOG_INTERNAL_OPERATION_MAX_US, false);
337	if (ret) {
338		phydev_err(phydev, "Calibration cycle timeout\n");
339		return ret;
340	}
341
342	phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_AD_CALIN,
343			   MTK_PHY_DA_CALIN_FLAG);
344	ret = phy_read_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_AD_CAL_COMP) >>
345			   MTK_PHY_AD_CAL_COMP_OUT_SHIFT;
346	phydev_dbg(phydev, "cal_val: 0x%x, ret: %d\n", cal_val, ret);
347
348	return ret;
349}
350
351static int rext_fill_result(struct phy_device *phydev, u16 *buf)
352{
353	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG5,
354		       MTK_PHY_RG_REXT_TRIM_MASK, buf[0] << 8);
355	phy_modify_mmd(phydev, MDIO_MMD_VEND2, MTK_PHY_RG_BG_RASEL,
356		       MTK_PHY_RG_BG_RASEL_MASK, buf[1]);
357
358	return 0;
359}
360
361static int rext_cal_efuse(struct phy_device *phydev, u32 *buf)
362{
363	u16 rext_cal_val[2];
364
365	rext_cal_val[0] = EFS_RG_REXT_TRIM(buf[3]);
366	rext_cal_val[1] = EFS_RG_BG_RASEL(buf[3]);
367	rext_fill_result(phydev, rext_cal_val);
368
369	return 0;
370}
371
372static int tx_offset_fill_result(struct phy_device *phydev, u16 *buf)
373{
374	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_CR_TX_AMP_OFFSET_A_B,
375		       MTK_PHY_CR_TX_AMP_OFFSET_A_MASK, buf[0] << 8);
376	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_CR_TX_AMP_OFFSET_A_B,
377		       MTK_PHY_CR_TX_AMP_OFFSET_B_MASK, buf[1]);
378	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_CR_TX_AMP_OFFSET_C_D,
379		       MTK_PHY_CR_TX_AMP_OFFSET_C_MASK, buf[2] << 8);
380	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_CR_TX_AMP_OFFSET_C_D,
381		       MTK_PHY_CR_TX_AMP_OFFSET_D_MASK, buf[3]);
382
383	return 0;
384}
385
386static int tx_offset_cal_efuse(struct phy_device *phydev, u32 *buf)
387{
388	u16 tx_offset_cal_val[4];
389
390	tx_offset_cal_val[0] = EFS_DA_TX_AMP_OFFSET_A(buf[0]);
391	tx_offset_cal_val[1] = EFS_DA_TX_AMP_OFFSET_B(buf[1]);
392	tx_offset_cal_val[2] = EFS_DA_TX_AMP_OFFSET_C(buf[1]);
393	tx_offset_cal_val[3] = EFS_DA_TX_AMP_OFFSET_D(buf[1]);
394
395	tx_offset_fill_result(phydev, tx_offset_cal_val);
396
397	return 0;
398}
399
400static int tx_amp_fill_result(struct phy_device *phydev, u16 *buf)
401{
402	int i;
403	int bias[16] = {};
404	const int vals_9461[16] = { 7, 1, 4, 7,
405				    7, 1, 4, 7,
406				    7, 1, 4, 7,
407				    7, 1, 4, 7 };
408	const int vals_9481[16] = { 10, 6, 6, 10,
409				    10, 6, 6, 10,
410				    10, 6, 6, 10,
411				    10, 6, 6, 10 };
412	switch (phydev->drv->phy_id) {
413	case MTK_GPHY_ID_MT7981:
414		/* We add some calibration to efuse values
415		 * due to board level influence.
416		 * GBE: +7, TBT: +1, HBT: +4, TST: +7
417		 */
418		memcpy(bias, (const void *)vals_9461, sizeof(bias));
419		break;
420	case MTK_GPHY_ID_MT7988:
421		memcpy(bias, (const void *)vals_9481, sizeof(bias));
422		break;
423	}
424
425	/* Prevent overflow */
426	for (i = 0; i < 12; i++) {
427		if (buf[i >> 2] + bias[i] > 63) {
428			buf[i >> 2] = 63;
429			bias[i] = 0;
430		}
431	}
432
433	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TXVLD_DA_RG,
434		       MTK_PHY_DA_TX_I2MPB_A_GBE_MASK, (buf[0] + bias[0]) << 10);
435	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TXVLD_DA_RG,
436		       MTK_PHY_DA_TX_I2MPB_A_TBT_MASK, buf[0] + bias[1]);
437	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_A2,
438		       MTK_PHY_DA_TX_I2MPB_A_HBT_MASK, (buf[0] + bias[2]) << 10);
439	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_A2,
440		       MTK_PHY_DA_TX_I2MPB_A_TST_MASK, buf[0] + bias[3]);
441
442	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_B1,
443		       MTK_PHY_DA_TX_I2MPB_B_GBE_MASK, (buf[1] + bias[4]) << 8);
444	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_B1,
445		       MTK_PHY_DA_TX_I2MPB_B_TBT_MASK, buf[1] + bias[5]);
446	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_B2,
447		       MTK_PHY_DA_TX_I2MPB_B_HBT_MASK, (buf[1] + bias[6]) << 8);
448	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_B2,
449		       MTK_PHY_DA_TX_I2MPB_B_TST_MASK, buf[1] + bias[7]);
450
451	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_C1,
452		       MTK_PHY_DA_TX_I2MPB_C_GBE_MASK, (buf[2] + bias[8]) << 8);
453	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_C1,
454		       MTK_PHY_DA_TX_I2MPB_C_TBT_MASK, buf[2] + bias[9]);
455	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_C2,
456		       MTK_PHY_DA_TX_I2MPB_C_HBT_MASK, (buf[2] + bias[10]) << 8);
457	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_C2,
458		       MTK_PHY_DA_TX_I2MPB_C_TST_MASK, buf[2] + bias[11]);
459
460	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_D1,
461		       MTK_PHY_DA_TX_I2MPB_D_GBE_MASK, (buf[3] + bias[12]) << 8);
462	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_D1,
463		       MTK_PHY_DA_TX_I2MPB_D_TBT_MASK, buf[3] + bias[13]);
464	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_D2,
465		       MTK_PHY_DA_TX_I2MPB_D_HBT_MASK, (buf[3] + bias[14]) << 8);
466	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_D2,
467		       MTK_PHY_DA_TX_I2MPB_D_TST_MASK, buf[3] + bias[15]);
468
469	return 0;
470}
471
472static int tx_amp_cal_efuse(struct phy_device *phydev, u32 *buf)
473{
474	u16 tx_amp_cal_val[4];
475
476	tx_amp_cal_val[0] = EFS_DA_TX_I2MPB_A(buf[0]);
477	tx_amp_cal_val[1] = EFS_DA_TX_I2MPB_B(buf[0]);
478	tx_amp_cal_val[2] = EFS_DA_TX_I2MPB_C(buf[0]);
479	tx_amp_cal_val[3] = EFS_DA_TX_I2MPB_D(buf[0]);
480	tx_amp_fill_result(phydev, tx_amp_cal_val);
481
482	return 0;
483}
484
485static int tx_r50_fill_result(struct phy_device *phydev, u16 tx_r50_cal_val,
486			      u8 txg_calen_x)
487{
488	int bias = 0;
489	u16 reg, val;
490
491	if (phydev->drv->phy_id == MTK_GPHY_ID_MT7988)
492		bias = -1;
493
494	val = clamp_val(bias + tx_r50_cal_val, 0, 63);
495
496	switch (txg_calen_x) {
497	case PAIR_A:
498		reg = MTK_PHY_DA_TX_R50_PAIR_A;
499		break;
500	case PAIR_B:
501		reg = MTK_PHY_DA_TX_R50_PAIR_B;
502		break;
503	case PAIR_C:
504		reg = MTK_PHY_DA_TX_R50_PAIR_C;
505		break;
506	case PAIR_D:
507		reg = MTK_PHY_DA_TX_R50_PAIR_D;
508		break;
509	default:
510		return -EINVAL;
511	}
512
513	phy_write_mmd(phydev, MDIO_MMD_VEND1, reg, val | val << 8);
514
515	return 0;
516}
517
518static int tx_r50_cal_efuse(struct phy_device *phydev, u32 *buf,
519			    u8 txg_calen_x)
520{
521	u16 tx_r50_cal_val;
522
523	switch (txg_calen_x) {
524	case PAIR_A:
525		tx_r50_cal_val = EFS_DA_TX_R50_A(buf[1]);
526		break;
527	case PAIR_B:
528		tx_r50_cal_val = EFS_DA_TX_R50_B(buf[1]);
529		break;
530	case PAIR_C:
531		tx_r50_cal_val = EFS_DA_TX_R50_C(buf[2]);
532		break;
533	case PAIR_D:
534		tx_r50_cal_val = EFS_DA_TX_R50_D(buf[2]);
535		break;
536	default:
537		return -EINVAL;
538	}
539	tx_r50_fill_result(phydev, tx_r50_cal_val, txg_calen_x);
540
541	return 0;
542}
543
544static int tx_vcm_cal_sw(struct phy_device *phydev, u8 rg_txreserve_x)
545{
546	u8 lower_idx, upper_idx, txreserve_val;
547	u8 lower_ret, upper_ret;
548	int ret;
549
550	phy_set_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG0,
551			 MTK_PHY_RG_ANA_CALEN);
552	phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG0,
553			   MTK_PHY_RG_CAL_CKINV);
554	phy_set_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG1,
555			 MTK_PHY_RG_TXVOS_CALEN);
556
557	switch (rg_txreserve_x) {
558	case PAIR_A:
559		phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
560				   MTK_PHY_RG_DASN_DAC_IN0_A,
561				   MTK_PHY_DASN_DAC_IN0_A_MASK);
562		phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
563				   MTK_PHY_RG_DASN_DAC_IN1_A,
564				   MTK_PHY_DASN_DAC_IN1_A_MASK);
565		phy_set_bits_mmd(phydev, MDIO_MMD_VEND1,
566				 MTK_PHY_RG_ANA_CAL_RG0,
567				 MTK_PHY_RG_ZCALEN_A);
568		break;
569	case PAIR_B:
570		phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
571				   MTK_PHY_RG_DASN_DAC_IN0_B,
572				   MTK_PHY_DASN_DAC_IN0_B_MASK);
573		phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
574				   MTK_PHY_RG_DASN_DAC_IN1_B,
575				   MTK_PHY_DASN_DAC_IN1_B_MASK);
576		phy_set_bits_mmd(phydev, MDIO_MMD_VEND1,
577				 MTK_PHY_RG_ANA_CAL_RG1,
578				 MTK_PHY_RG_ZCALEN_B);
579		break;
580	case PAIR_C:
581		phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
582				   MTK_PHY_RG_DASN_DAC_IN0_C,
583				   MTK_PHY_DASN_DAC_IN0_C_MASK);
584		phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
585				   MTK_PHY_RG_DASN_DAC_IN1_C,
586				   MTK_PHY_DASN_DAC_IN1_C_MASK);
587		phy_set_bits_mmd(phydev, MDIO_MMD_VEND1,
588				 MTK_PHY_RG_ANA_CAL_RG1,
589				 MTK_PHY_RG_ZCALEN_C);
590		break;
591	case PAIR_D:
592		phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
593				   MTK_PHY_RG_DASN_DAC_IN0_D,
594				   MTK_PHY_DASN_DAC_IN0_D_MASK);
595		phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
596				   MTK_PHY_RG_DASN_DAC_IN1_D,
597				   MTK_PHY_DASN_DAC_IN1_D_MASK);
598		phy_set_bits_mmd(phydev, MDIO_MMD_VEND1,
599				 MTK_PHY_RG_ANA_CAL_RG1,
600				 MTK_PHY_RG_ZCALEN_D);
601		break;
602	default:
603		ret = -EINVAL;
604		goto restore;
605	}
606
607	lower_idx = TXRESERVE_MIN;
608	upper_idx = TXRESERVE_MAX;
609
610	phydev_dbg(phydev, "Start TX-VCM SW cal.\n");
611	while ((upper_idx - lower_idx) > 1) {
612		txreserve_val = DIV_ROUND_CLOSEST(lower_idx + upper_idx, 2);
613		ret = cal_cycle(phydev, MDIO_MMD_VEND1, MTK_PHY_RXADC_CTRL_RG9,
614				MTK_PHY_DA_RX_PSBN_TBT_MASK |
615				MTK_PHY_DA_RX_PSBN_HBT_MASK |
616				MTK_PHY_DA_RX_PSBN_GBE_MASK |
617				MTK_PHY_DA_RX_PSBN_LP_MASK,
618				txreserve_val << 12 | txreserve_val << 8 |
619				txreserve_val << 4 | txreserve_val);
620		if (ret == 1) {
621			upper_idx = txreserve_val;
622			upper_ret = ret;
623		} else if (ret == 0) {
624			lower_idx = txreserve_val;
625			lower_ret = ret;
626		} else {
627			goto restore;
628		}
629	}
630
631	if (lower_idx == TXRESERVE_MIN) {
632		lower_ret = cal_cycle(phydev, MDIO_MMD_VEND1,
633				      MTK_PHY_RXADC_CTRL_RG9,
634				      MTK_PHY_DA_RX_PSBN_TBT_MASK |
635				      MTK_PHY_DA_RX_PSBN_HBT_MASK |
636				      MTK_PHY_DA_RX_PSBN_GBE_MASK |
637				      MTK_PHY_DA_RX_PSBN_LP_MASK,
638				      lower_idx << 12 | lower_idx << 8 |
639				      lower_idx << 4 | lower_idx);
640		ret = lower_ret;
641	} else if (upper_idx == TXRESERVE_MAX) {
642		upper_ret = cal_cycle(phydev, MDIO_MMD_VEND1,
643				      MTK_PHY_RXADC_CTRL_RG9,
644				      MTK_PHY_DA_RX_PSBN_TBT_MASK |
645				      MTK_PHY_DA_RX_PSBN_HBT_MASK |
646				      MTK_PHY_DA_RX_PSBN_GBE_MASK |
647				      MTK_PHY_DA_RX_PSBN_LP_MASK,
648				      upper_idx << 12 | upper_idx << 8 |
649				      upper_idx << 4 | upper_idx);
650		ret = upper_ret;
651	}
652	if (ret < 0)
653		goto restore;
654
655	/* We calibrate TX-VCM in different logic. Check upper index and then
656	 * lower index. If this calibration is valid, apply lower index's result.
657	 */
658	ret = upper_ret - lower_ret;
659	if (ret == 1) {
660		ret = 0;
661		/* Make sure we use upper_idx in our calibration system */
662		cal_cycle(phydev, MDIO_MMD_VEND1, MTK_PHY_RXADC_CTRL_RG9,
663			  MTK_PHY_DA_RX_PSBN_TBT_MASK |
664			  MTK_PHY_DA_RX_PSBN_HBT_MASK |
665			  MTK_PHY_DA_RX_PSBN_GBE_MASK |
666			  MTK_PHY_DA_RX_PSBN_LP_MASK,
667			  upper_idx << 12 | upper_idx << 8 |
668			  upper_idx << 4 | upper_idx);
669		phydev_dbg(phydev, "TX-VCM SW cal result: 0x%x\n", upper_idx);
670	} else if (lower_idx == TXRESERVE_MIN && upper_ret == 1 &&
671		   lower_ret == 1) {
672		ret = 0;
673		cal_cycle(phydev, MDIO_MMD_VEND1, MTK_PHY_RXADC_CTRL_RG9,
674			  MTK_PHY_DA_RX_PSBN_TBT_MASK |
675			  MTK_PHY_DA_RX_PSBN_HBT_MASK |
676			  MTK_PHY_DA_RX_PSBN_GBE_MASK |
677			  MTK_PHY_DA_RX_PSBN_LP_MASK,
678			  lower_idx << 12 | lower_idx << 8 |
679			  lower_idx << 4 | lower_idx);
680		phydev_warn(phydev, "TX-VCM SW cal result at low margin 0x%x\n",
681			    lower_idx);
682	} else if (upper_idx == TXRESERVE_MAX && upper_ret == 0 &&
683		   lower_ret == 0) {
684		ret = 0;
685		phydev_warn(phydev, "TX-VCM SW cal result at high margin 0x%x\n",
686			    upper_idx);
687	} else {
688		ret = -EINVAL;
689	}
690
691restore:
692	phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG0,
693			   MTK_PHY_RG_ANA_CALEN);
694	phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG1,
695			   MTK_PHY_RG_TXVOS_CALEN);
696	phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG0,
697			   MTK_PHY_RG_ZCALEN_A);
698	phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG1,
699			   MTK_PHY_RG_ZCALEN_B | MTK_PHY_RG_ZCALEN_C |
700			   MTK_PHY_RG_ZCALEN_D);
701
702	return ret;
703}
704
705static void mt798x_phy_common_finetune(struct phy_device *phydev)
706{
707	phy_select_page(phydev, MTK_PHY_PAGE_EXTENDED_52B5);
708	/* SlvDSPreadyTime = 24, MasDSPreadyTime = 24 */
709	__phy_write(phydev, 0x11, 0xc71);
710	__phy_write(phydev, 0x12, 0xc);
711	__phy_write(phydev, 0x10, 0x8fae);
712
713	/* EnabRandUpdTrig = 1 */
714	__phy_write(phydev, 0x11, 0x2f00);
715	__phy_write(phydev, 0x12, 0xe);
716	__phy_write(phydev, 0x10, 0x8fb0);
717
718	/* NormMseLoThresh = 85 */
719	__phy_write(phydev, 0x11, 0x55a0);
720	__phy_write(phydev, 0x12, 0x0);
721	__phy_write(phydev, 0x10, 0x83aa);
722
723	/* FfeUpdGainForce = 1(Enable), FfeUpdGainForceVal = 4 */
724	__phy_write(phydev, 0x11, 0x240);
725	__phy_write(phydev, 0x12, 0x0);
726	__phy_write(phydev, 0x10, 0x9680);
727
728	/* TrFreeze = 0 (mt7988 default) */
729	__phy_write(phydev, 0x11, 0x0);
730	__phy_write(phydev, 0x12, 0x0);
731	__phy_write(phydev, 0x10, 0x9686);
732
733	/* SSTrKp100 = 5 */
734	/* SSTrKf100 = 6 */
735	/* SSTrKp1000Mas = 5 */
736	/* SSTrKf1000Mas = 6 */
737	/* SSTrKp1000Slv = 5 */
738	/* SSTrKf1000Slv = 6 */
739	__phy_write(phydev, 0x11, 0xbaef);
740	__phy_write(phydev, 0x12, 0x2e);
741	__phy_write(phydev, 0x10, 0x968c);
742	phy_restore_page(phydev, MTK_PHY_PAGE_STANDARD, 0);
743}
744
745static void mt7981_phy_finetune(struct phy_device *phydev)
746{
747	u16 val[8] = { 0x01ce, 0x01c1,
748		       0x020f, 0x0202,
749		       0x03d0, 0x03c0,
750		       0x0013, 0x0005 };
751	int i, k;
752
753	/* 100M eye finetune:
754	 * Keep middle level of TX MLT3 shapper as default.
755	 * Only change TX MLT3 overshoot level here.
756	 */
757	for (k = 0, i = 1; i < 12; i++) {
758		if (i % 3 == 0)
759			continue;
760		phy_write_mmd(phydev, MDIO_MMD_VEND1, i, val[k++]);
761	}
762
763	phy_select_page(phydev, MTK_PHY_PAGE_EXTENDED_52B5);
764	/* ResetSyncOffset = 6 */
765	__phy_write(phydev, 0x11, 0x600);
766	__phy_write(phydev, 0x12, 0x0);
767	__phy_write(phydev, 0x10, 0x8fc0);
768
769	/* VgaDecRate = 1 */
770	__phy_write(phydev, 0x11, 0x4c2a);
771	__phy_write(phydev, 0x12, 0x3e);
772	__phy_write(phydev, 0x10, 0x8fa4);
773
774	/* MrvlTrFix100Kp = 3, MrvlTrFix100Kf = 2,
775	 * MrvlTrFix1000Kp = 3, MrvlTrFix1000Kf = 2
776	 */
777	__phy_write(phydev, 0x11, 0xd10a);
778	__phy_write(phydev, 0x12, 0x34);
779	__phy_write(phydev, 0x10, 0x8f82);
780
781	/* VcoSlicerThreshBitsHigh */
782	__phy_write(phydev, 0x11, 0x5555);
783	__phy_write(phydev, 0x12, 0x55);
784	__phy_write(phydev, 0x10, 0x8ec0);
785	phy_restore_page(phydev, MTK_PHY_PAGE_STANDARD, 0);
786
787	/* TR_OPEN_LOOP_EN = 1, lpf_x_average = 9 */
788	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG234,
789		       MTK_PHY_TR_OPEN_LOOP_EN_MASK | MTK_PHY_LPF_X_AVERAGE_MASK,
790		       BIT(0) | FIELD_PREP(MTK_PHY_LPF_X_AVERAGE_MASK, 0x9));
791
792	/* rg_tr_lpf_cnt_val = 512 */
793	phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LPF_CNT_VAL, 0x200);
794
795	/* IIR2 related */
796	phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K1_L, 0x82);
797	phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K1_U, 0x0);
798	phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K2_L, 0x103);
799	phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K2_U, 0x0);
800	phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K3_L, 0x82);
801	phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K3_U, 0x0);
802	phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K4_L, 0xd177);
803	phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K4_U, 0x3);
804	phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K5_L, 0x2c82);
805	phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K5_U, 0xe);
806
807	/* FFE peaking */
808	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG27C,
809		       MTK_PHY_VGASTATE_FFE_THR_ST1_MASK, 0x1b << 8);
810	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG27D,
811		       MTK_PHY_VGASTATE_FFE_THR_ST2_MASK, 0x1e);
812
813	/* Disable LDO pump */
814	phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_LDO_PUMP_EN_PAIRAB, 0x0);
815	phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_LDO_PUMP_EN_PAIRCD, 0x0);
816	/* Adjust LDO output voltage */
817	phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_LDO_OUTPUT_V, 0x2222);
818}
819
820static void mt7988_phy_finetune(struct phy_device *phydev)
821{
822	u16 val[12] = { 0x0187, 0x01cd, 0x01c8, 0x0182,
823			0x020d, 0x0206, 0x0384, 0x03d0,
824			0x03c6, 0x030a, 0x0011, 0x0005 };
825	int i;
826
827	/* Set default MLT3 shaper first */
828	for (i = 0; i < 12; i++)
829		phy_write_mmd(phydev, MDIO_MMD_VEND1, i, val[i]);
830
831	/* TCT finetune */
832	phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_TX_FILTER, 0x5);
833
834	phy_select_page(phydev, MTK_PHY_PAGE_EXTENDED_52B5);
835	/* ResetSyncOffset = 5 */
836	__phy_write(phydev, 0x11, 0x500);
837	__phy_write(phydev, 0x12, 0x0);
838	__phy_write(phydev, 0x10, 0x8fc0);
839
840	/* VgaDecRate is 1 at default on mt7988 */
841
842	/* MrvlTrFix100Kp = 6, MrvlTrFix100Kf = 7,
843	 * MrvlTrFix1000Kp = 6, MrvlTrFix1000Kf = 7
844	 */
845	__phy_write(phydev, 0x11, 0xb90a);
846	__phy_write(phydev, 0x12, 0x6f);
847	__phy_write(phydev, 0x10, 0x8f82);
848
849	/* RemAckCntLimitCtrl = 1 */
850	__phy_write(phydev, 0x11, 0xfbba);
851	__phy_write(phydev, 0x12, 0xc3);
852	__phy_write(phydev, 0x10, 0x87f8);
853
854	phy_restore_page(phydev, MTK_PHY_PAGE_STANDARD, 0);
855
856	/* TR_OPEN_LOOP_EN = 1, lpf_x_average = 10 */
857	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG234,
858		       MTK_PHY_TR_OPEN_LOOP_EN_MASK | MTK_PHY_LPF_X_AVERAGE_MASK,
859		       BIT(0) | FIELD_PREP(MTK_PHY_LPF_X_AVERAGE_MASK, 0xa));
860
861	/* rg_tr_lpf_cnt_val = 1023 */
862	phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LPF_CNT_VAL, 0x3ff);
863}
864
865static void mt798x_phy_eee(struct phy_device *phydev)
866{
867	phy_modify_mmd(phydev, MDIO_MMD_VEND1,
868		       MTK_PHY_RG_LPI_PCS_DSP_CTRL_REG120,
869		       MTK_PHY_LPI_SIG_EN_LO_THRESH1000_MASK |
870		       MTK_PHY_LPI_SIG_EN_HI_THRESH1000_MASK,
871		       FIELD_PREP(MTK_PHY_LPI_SIG_EN_LO_THRESH1000_MASK, 0x0) |
872		       FIELD_PREP(MTK_PHY_LPI_SIG_EN_HI_THRESH1000_MASK, 0x14));
873
874	phy_modify_mmd(phydev, MDIO_MMD_VEND1,
875		       MTK_PHY_RG_LPI_PCS_DSP_CTRL_REG122,
876		       MTK_PHY_LPI_NORM_MSE_HI_THRESH1000_MASK,
877		       FIELD_PREP(MTK_PHY_LPI_NORM_MSE_HI_THRESH1000_MASK,
878				  0xff));
879
880	phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
881			   MTK_PHY_RG_TESTMUX_ADC_CTRL,
882			   MTK_PHY_RG_TXEN_DIG_MASK);
883
884	phy_set_bits_mmd(phydev, MDIO_MMD_VEND1,
885			 MTK_PHY_RG_DEV1E_REG19b, MTK_PHY_BYPASS_DSP_LPI_READY);
886
887	phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
888			   MTK_PHY_RG_DEV1E_REG234, MTK_PHY_TR_LP_IIR_EEE_EN);
889
890	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG238,
891		       MTK_PHY_LPI_SLV_SEND_TX_TIMER_MASK |
892		       MTK_PHY_LPI_SLV_SEND_TX_EN,
893		       FIELD_PREP(MTK_PHY_LPI_SLV_SEND_TX_TIMER_MASK, 0x120));
894
895	/* Keep MTK_PHY_LPI_SEND_LOC_TIMER as 375 */
896	phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG239,
897			   MTK_PHY_LPI_TXPCS_LOC_RCV);
898
899	/* This also fixes some IoT issues, such as CH340 */
900	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG2C7,
901		       MTK_PHY_MAX_GAIN_MASK | MTK_PHY_MIN_GAIN_MASK,
902		       FIELD_PREP(MTK_PHY_MAX_GAIN_MASK, 0x8) |
903		       FIELD_PREP(MTK_PHY_MIN_GAIN_MASK, 0x13));
904
905	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG2D1,
906		       MTK_PHY_VCO_SLICER_THRESH_BITS_HIGH_EEE_MASK,
907		       FIELD_PREP(MTK_PHY_VCO_SLICER_THRESH_BITS_HIGH_EEE_MASK,
908				  0x33) |
909		       MTK_PHY_LPI_SKIP_SD_SLV_TR | MTK_PHY_LPI_TR_READY |
910		       MTK_PHY_LPI_VCO_EEE_STG0_EN);
911
912	phy_set_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG323,
913			 MTK_PHY_EEE_WAKE_MAS_INT_DC |
914			 MTK_PHY_EEE_WAKE_SLV_INT_DC);
915
916	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG324,
917		       MTK_PHY_SMI_DETCNT_MAX_MASK,
918		       FIELD_PREP(MTK_PHY_SMI_DETCNT_MAX_MASK, 0x3f) |
919		       MTK_PHY_SMI_DET_MAX_EN);
920
921	phy_set_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG326,
922			 MTK_PHY_LPI_MODE_SD_ON | MTK_PHY_RESET_RANDUPD_CNT |
923			 MTK_PHY_TREC_UPDATE_ENAB_CLR |
924			 MTK_PHY_LPI_QUIT_WAIT_DFE_SIG_DET_OFF |
925			 MTK_PHY_TR_READY_SKIP_AFE_WAKEUP);
926
927	phy_select_page(phydev, MTK_PHY_PAGE_EXTENDED_52B5);
928	/* Regsigdet_sel_1000 = 0 */
929	__phy_write(phydev, 0x11, 0xb);
930	__phy_write(phydev, 0x12, 0x0);
931	__phy_write(phydev, 0x10, 0x9690);
932
933	/* REG_EEE_st2TrKf1000 = 2 */
934	__phy_write(phydev, 0x11, 0x114f);
935	__phy_write(phydev, 0x12, 0x2);
936	__phy_write(phydev, 0x10, 0x969a);
937
938	/* RegEEE_slv_wake_tr_timer_tar = 6, RegEEE_slv_remtx_timer_tar = 20 */
939	__phy_write(phydev, 0x11, 0x3028);
940	__phy_write(phydev, 0x12, 0x0);
941	__phy_write(phydev, 0x10, 0x969e);
942
943	/* RegEEE_slv_wake_int_timer_tar = 8 */
944	__phy_write(phydev, 0x11, 0x5010);
945	__phy_write(phydev, 0x12, 0x0);
946	__phy_write(phydev, 0x10, 0x96a0);
947
948	/* RegEEE_trfreeze_timer2 = 586 */
949	__phy_write(phydev, 0x11, 0x24a);
950	__phy_write(phydev, 0x12, 0x0);
951	__phy_write(phydev, 0x10, 0x96a8);
952
953	/* RegEEE100Stg1_tar = 16 */
954	__phy_write(phydev, 0x11, 0x3210);
955	__phy_write(phydev, 0x12, 0x0);
956	__phy_write(phydev, 0x10, 0x96b8);
957
958	/* REGEEE_wake_slv_tr_wait_dfesigdet_en = 0 */
959	__phy_write(phydev, 0x11, 0x1463);
960	__phy_write(phydev, 0x12, 0x0);
961	__phy_write(phydev, 0x10, 0x96ca);
962
963	/* DfeTailEnableVgaThresh1000 = 27 */
964	__phy_write(phydev, 0x11, 0x36);
965	__phy_write(phydev, 0x12, 0x0);
966	__phy_write(phydev, 0x10, 0x8f80);
967	phy_restore_page(phydev, MTK_PHY_PAGE_STANDARD, 0);
968
969	phy_select_page(phydev, MTK_PHY_PAGE_EXTENDED_3);
970	__phy_modify(phydev, MTK_PHY_LPI_REG_14, MTK_PHY_LPI_WAKE_TIMER_1000_MASK,
971		     FIELD_PREP(MTK_PHY_LPI_WAKE_TIMER_1000_MASK, 0x19c));
972
973	__phy_modify(phydev, MTK_PHY_LPI_REG_1c, MTK_PHY_SMI_DET_ON_THRESH_MASK,
974		     FIELD_PREP(MTK_PHY_SMI_DET_ON_THRESH_MASK, 0xc));
975	phy_restore_page(phydev, MTK_PHY_PAGE_STANDARD, 0);
976
977	phy_modify_mmd(phydev, MDIO_MMD_VEND1,
978		       MTK_PHY_RG_LPI_PCS_DSP_CTRL_REG122,
979		       MTK_PHY_LPI_NORM_MSE_HI_THRESH1000_MASK,
980		       FIELD_PREP(MTK_PHY_LPI_NORM_MSE_HI_THRESH1000_MASK, 0xff));
981}
982
983static int cal_sw(struct phy_device *phydev, enum CAL_ITEM cal_item,
984		  u8 start_pair, u8 end_pair)
985{
986	u8 pair_n;
987	int ret;
988
989	for (pair_n = start_pair; pair_n <= end_pair; pair_n++) {
990		/* TX_OFFSET & TX_AMP have no SW calibration. */
991		switch (cal_item) {
992		case TX_VCM:
993			ret = tx_vcm_cal_sw(phydev, pair_n);
994			break;
995		default:
996			return -EINVAL;
997		}
998		if (ret)
999			return ret;
1000	}
1001	return 0;
1002}
1003
1004static int cal_efuse(struct phy_device *phydev, enum CAL_ITEM cal_item,
1005		     u8 start_pair, u8 end_pair, u32 *buf)
1006{
1007	u8 pair_n;
1008	int ret;
1009
1010	for (pair_n = start_pair; pair_n <= end_pair; pair_n++) {
1011		/* TX_VCM has no efuse calibration. */
1012		switch (cal_item) {
1013		case REXT:
1014			ret = rext_cal_efuse(phydev, buf);
1015			break;
1016		case TX_OFFSET:
1017			ret = tx_offset_cal_efuse(phydev, buf);
1018			break;
1019		case TX_AMP:
1020			ret = tx_amp_cal_efuse(phydev, buf);
1021			break;
1022		case TX_R50:
1023			ret = tx_r50_cal_efuse(phydev, buf, pair_n);
1024			break;
1025		default:
1026			return -EINVAL;
1027		}
1028		if (ret)
1029			return ret;
1030	}
1031
1032	return 0;
1033}
1034
1035static int start_cal(struct phy_device *phydev, enum CAL_ITEM cal_item,
1036		     enum CAL_MODE cal_mode, u8 start_pair,
1037		     u8 end_pair, u32 *buf)
1038{
1039	int ret;
1040
1041	switch (cal_mode) {
1042	case EFUSE_M:
1043		ret = cal_efuse(phydev, cal_item, start_pair,
1044				end_pair, buf);
1045		break;
1046	case SW_M:
1047		ret = cal_sw(phydev, cal_item, start_pair, end_pair);
1048		break;
1049	default:
1050		return -EINVAL;
1051	}
1052
1053	if (ret) {
1054		phydev_err(phydev, "cal %d failed\n", cal_item);
1055		return -EIO;
1056	}
1057
1058	return 0;
1059}
1060
1061static int mt798x_phy_calibration(struct phy_device *phydev)
1062{
1063	int ret = 0;
1064	u32 *buf;
1065	size_t len;
1066	struct nvmem_cell *cell;
1067
1068	cell = nvmem_cell_get(&phydev->mdio.dev, "phy-cal-data");
1069	if (IS_ERR(cell)) {
1070		if (PTR_ERR(cell) == -EPROBE_DEFER)
1071			return PTR_ERR(cell);
1072		return 0;
1073	}
1074
1075	buf = (u32 *)nvmem_cell_read(cell, &len);
1076	if (IS_ERR(buf))
1077		return PTR_ERR(buf);
1078	nvmem_cell_put(cell);
1079
1080	if (!buf[0] || !buf[1] || !buf[2] || !buf[3] || len < 4 * sizeof(u32)) {
1081		phydev_err(phydev, "invalid efuse data\n");
1082		ret = -EINVAL;
1083		goto out;
1084	}
1085
1086	ret = start_cal(phydev, REXT, EFUSE_M, NO_PAIR, NO_PAIR, buf);
1087	if (ret)
1088		goto out;
1089	ret = start_cal(phydev, TX_OFFSET, EFUSE_M, NO_PAIR, NO_PAIR, buf);
1090	if (ret)
1091		goto out;
1092	ret = start_cal(phydev, TX_AMP, EFUSE_M, NO_PAIR, NO_PAIR, buf);
1093	if (ret)
1094		goto out;
1095	ret = start_cal(phydev, TX_R50, EFUSE_M, PAIR_A, PAIR_D, buf);
1096	if (ret)
1097		goto out;
1098	ret = start_cal(phydev, TX_VCM, SW_M, PAIR_A, PAIR_A, buf);
1099	if (ret)
1100		goto out;
1101
1102out:
1103	kfree(buf);
1104	return ret;
1105}
1106
1107static int mt798x_phy_config_init(struct phy_device *phydev)
1108{
1109	switch (phydev->drv->phy_id) {
1110	case MTK_GPHY_ID_MT7981:
1111		mt7981_phy_finetune(phydev);
1112		break;
1113	case MTK_GPHY_ID_MT7988:
1114		mt7988_phy_finetune(phydev);
1115		break;
1116	}
1117
1118	mt798x_phy_common_finetune(phydev);
1119	mt798x_phy_eee(phydev);
1120
1121	return mt798x_phy_calibration(phydev);
1122}
1123
1124static int mt798x_phy_hw_led_on_set(struct phy_device *phydev, u8 index,
1125				    bool on)
1126{
1127	unsigned int bit_on = MTK_PHY_LED_STATE_FORCE_ON + (index ? 16 : 0);
1128	struct mtk_socphy_priv *priv = phydev->priv;
1129	bool changed;
1130
1131	if (on)
1132		changed = !test_and_set_bit(bit_on, &priv->led_state);
1133	else
1134		changed = !!test_and_clear_bit(bit_on, &priv->led_state);
1135
1136	changed |= !!test_and_clear_bit(MTK_PHY_LED_STATE_NETDEV +
1137					(index ? 16 : 0), &priv->led_state);
1138	if (changed)
1139		return phy_modify_mmd(phydev, MDIO_MMD_VEND2, index ?
1140				      MTK_PHY_LED1_ON_CTRL : MTK_PHY_LED0_ON_CTRL,
1141				      MTK_PHY_LED_ON_MASK,
1142				      on ? MTK_PHY_LED_ON_FORCE_ON : 0);
1143	else
1144		return 0;
1145}
1146
1147static int mt798x_phy_hw_led_blink_set(struct phy_device *phydev, u8 index,
1148				       bool blinking)
1149{
1150	unsigned int bit_blink = MTK_PHY_LED_STATE_FORCE_BLINK + (index ? 16 : 0);
1151	struct mtk_socphy_priv *priv = phydev->priv;
1152	bool changed;
1153
1154	if (blinking)
1155		changed = !test_and_set_bit(bit_blink, &priv->led_state);
1156	else
1157		changed = !!test_and_clear_bit(bit_blink, &priv->led_state);
1158
1159	changed |= !!test_bit(MTK_PHY_LED_STATE_NETDEV +
1160			      (index ? 16 : 0), &priv->led_state);
1161	if (changed)
1162		return phy_write_mmd(phydev, MDIO_MMD_VEND2, index ?
1163				     MTK_PHY_LED1_BLINK_CTRL : MTK_PHY_LED0_BLINK_CTRL,
1164				     blinking ? MTK_PHY_LED_BLINK_FORCE_BLINK : 0);
1165	else
1166		return 0;
1167}
1168
1169static int mt798x_phy_led_blink_set(struct phy_device *phydev, u8 index,
1170				    unsigned long *delay_on,
1171				    unsigned long *delay_off)
1172{
1173	bool blinking = false;
1174	int err = 0;
1175
1176	if (index > 1)
1177		return -EINVAL;
1178
1179	if (delay_on && delay_off && (*delay_on > 0) && (*delay_off > 0)) {
1180		blinking = true;
1181		*delay_on = 50;
1182		*delay_off = 50;
1183	}
1184
1185	err = mt798x_phy_hw_led_blink_set(phydev, index, blinking);
1186	if (err)
1187		return err;
1188
1189	return mt798x_phy_hw_led_on_set(phydev, index, false);
1190}
1191
1192static int mt798x_phy_led_brightness_set(struct phy_device *phydev,
1193					 u8 index, enum led_brightness value)
1194{
1195	int err;
1196
1197	err = mt798x_phy_hw_led_blink_set(phydev, index, false);
1198	if (err)
1199		return err;
1200
1201	return mt798x_phy_hw_led_on_set(phydev, index, (value != LED_OFF));
1202}
1203
1204static const unsigned long supported_triggers = (BIT(TRIGGER_NETDEV_FULL_DUPLEX) |
1205						 BIT(TRIGGER_NETDEV_HALF_DUPLEX) |
1206						 BIT(TRIGGER_NETDEV_LINK)        |
1207						 BIT(TRIGGER_NETDEV_LINK_10)     |
1208						 BIT(TRIGGER_NETDEV_LINK_100)    |
1209						 BIT(TRIGGER_NETDEV_LINK_1000)   |
1210						 BIT(TRIGGER_NETDEV_RX)          |
1211						 BIT(TRIGGER_NETDEV_TX));
1212
1213static int mt798x_phy_led_hw_is_supported(struct phy_device *phydev, u8 index,
1214					  unsigned long rules)
1215{
1216	if (index > 1)
1217		return -EINVAL;
1218
1219	/* All combinations of the supported triggers are allowed */
1220	if (rules & ~supported_triggers)
1221		return -EOPNOTSUPP;
1222
1223	return 0;
1224};
1225
1226static int mt798x_phy_led_hw_control_get(struct phy_device *phydev, u8 index,
1227					 unsigned long *rules)
1228{
1229	unsigned int bit_blink = MTK_PHY_LED_STATE_FORCE_BLINK + (index ? 16 : 0);
1230	unsigned int bit_netdev = MTK_PHY_LED_STATE_NETDEV + (index ? 16 : 0);
1231	unsigned int bit_on = MTK_PHY_LED_STATE_FORCE_ON + (index ? 16 : 0);
1232	struct mtk_socphy_priv *priv = phydev->priv;
1233	int on, blink;
1234
1235	if (index > 1)
1236		return -EINVAL;
1237
1238	on = phy_read_mmd(phydev, MDIO_MMD_VEND2,
1239			  index ? MTK_PHY_LED1_ON_CTRL : MTK_PHY_LED0_ON_CTRL);
1240
1241	if (on < 0)
1242		return -EIO;
1243
1244	blink = phy_read_mmd(phydev, MDIO_MMD_VEND2,
1245			     index ? MTK_PHY_LED1_BLINK_CTRL :
1246				     MTK_PHY_LED0_BLINK_CTRL);
1247	if (blink < 0)
1248		return -EIO;
1249
1250	if ((on & (MTK_PHY_LED_ON_LINK1000 | MTK_PHY_LED_ON_LINK100 |
1251		   MTK_PHY_LED_ON_LINK10)) ||
1252	    (blink & (MTK_PHY_LED_BLINK_1000RX | MTK_PHY_LED_BLINK_100RX |
1253		      MTK_PHY_LED_BLINK_10RX | MTK_PHY_LED_BLINK_1000TX |
1254		      MTK_PHY_LED_BLINK_100TX | MTK_PHY_LED_BLINK_10TX)))
1255		set_bit(bit_netdev, &priv->led_state);
1256	else
1257		clear_bit(bit_netdev, &priv->led_state);
1258
1259	if (on & MTK_PHY_LED_ON_FORCE_ON)
1260		set_bit(bit_on, &priv->led_state);
1261	else
1262		clear_bit(bit_on, &priv->led_state);
1263
1264	if (blink & MTK_PHY_LED_BLINK_FORCE_BLINK)
1265		set_bit(bit_blink, &priv->led_state);
1266	else
1267		clear_bit(bit_blink, &priv->led_state);
1268
1269	if (!rules)
1270		return 0;
1271
1272	if (on & (MTK_PHY_LED_ON_LINK1000 | MTK_PHY_LED_ON_LINK100 | MTK_PHY_LED_ON_LINK10))
1273		*rules |= BIT(TRIGGER_NETDEV_LINK);
1274
1275	if (on & MTK_PHY_LED_ON_LINK10)
1276		*rules |= BIT(TRIGGER_NETDEV_LINK_10);
1277
1278	if (on & MTK_PHY_LED_ON_LINK100)
1279		*rules |= BIT(TRIGGER_NETDEV_LINK_100);
1280
1281	if (on & MTK_PHY_LED_ON_LINK1000)
1282		*rules |= BIT(TRIGGER_NETDEV_LINK_1000);
1283
1284	if (on & MTK_PHY_LED_ON_FDX)
1285		*rules |= BIT(TRIGGER_NETDEV_FULL_DUPLEX);
1286
1287	if (on & MTK_PHY_LED_ON_HDX)
1288		*rules |= BIT(TRIGGER_NETDEV_HALF_DUPLEX);
1289
1290	if (blink & (MTK_PHY_LED_BLINK_1000RX | MTK_PHY_LED_BLINK_100RX | MTK_PHY_LED_BLINK_10RX))
1291		*rules |= BIT(TRIGGER_NETDEV_RX);
1292
1293	if (blink & (MTK_PHY_LED_BLINK_1000TX | MTK_PHY_LED_BLINK_100TX | MTK_PHY_LED_BLINK_10TX))
1294		*rules |= BIT(TRIGGER_NETDEV_TX);
1295
1296	return 0;
1297};
1298
1299static int mt798x_phy_led_hw_control_set(struct phy_device *phydev, u8 index,
1300					 unsigned long rules)
1301{
1302	unsigned int bit_netdev = MTK_PHY_LED_STATE_NETDEV + (index ? 16 : 0);
1303	struct mtk_socphy_priv *priv = phydev->priv;
1304	u16 on = 0, blink = 0;
1305	int ret;
1306
1307	if (index > 1)
1308		return -EINVAL;
1309
1310	if (rules & BIT(TRIGGER_NETDEV_FULL_DUPLEX))
1311		on |= MTK_PHY_LED_ON_FDX;
1312
1313	if (rules & BIT(TRIGGER_NETDEV_HALF_DUPLEX))
1314		on |= MTK_PHY_LED_ON_HDX;
1315
1316	if (rules & (BIT(TRIGGER_NETDEV_LINK_10) | BIT(TRIGGER_NETDEV_LINK)))
1317		on |= MTK_PHY_LED_ON_LINK10;
1318
1319	if (rules & (BIT(TRIGGER_NETDEV_LINK_100) | BIT(TRIGGER_NETDEV_LINK)))
1320		on |= MTK_PHY_LED_ON_LINK100;
1321
1322	if (rules & (BIT(TRIGGER_NETDEV_LINK_1000) | BIT(TRIGGER_NETDEV_LINK)))
1323		on |= MTK_PHY_LED_ON_LINK1000;
1324
1325	if (rules & BIT(TRIGGER_NETDEV_RX)) {
1326		blink |= MTK_PHY_LED_BLINK_10RX  |
1327			 MTK_PHY_LED_BLINK_100RX |
1328			 MTK_PHY_LED_BLINK_1000RX;
1329	}
1330
1331	if (rules & BIT(TRIGGER_NETDEV_TX)) {
1332		blink |= MTK_PHY_LED_BLINK_10TX  |
1333			 MTK_PHY_LED_BLINK_100TX |
1334			 MTK_PHY_LED_BLINK_1000TX;
1335	}
1336
1337	if (blink || on)
1338		set_bit(bit_netdev, &priv->led_state);
1339	else
1340		clear_bit(bit_netdev, &priv->led_state);
1341
1342	ret = phy_modify_mmd(phydev, MDIO_MMD_VEND2, index ?
1343				MTK_PHY_LED1_ON_CTRL :
1344				MTK_PHY_LED0_ON_CTRL,
1345			     MTK_PHY_LED_ON_FDX     |
1346			     MTK_PHY_LED_ON_HDX     |
1347			     MTK_PHY_LED_ON_LINK10  |
1348			     MTK_PHY_LED_ON_LINK100 |
1349			     MTK_PHY_LED_ON_LINK1000,
1350			     on);
1351
1352	if (ret)
1353		return ret;
1354
1355	return phy_write_mmd(phydev, MDIO_MMD_VEND2, index ?
1356				MTK_PHY_LED1_BLINK_CTRL :
1357				MTK_PHY_LED0_BLINK_CTRL, blink);
1358};
1359
1360static bool mt7988_phy_led_get_polarity(struct phy_device *phydev, int led_num)
1361{
1362	struct mtk_socphy_shared *priv = phydev->shared->priv;
1363	u32 polarities;
1364
1365	if (led_num == 0)
1366		polarities = ~(priv->boottrap);
1367	else
1368		polarities = MTK_PHY_LED1_DEFAULT_POLARITIES;
1369
1370	if (polarities & BIT(phydev->mdio.addr))
1371		return true;
1372
1373	return false;
1374}
1375
1376static int mt7988_phy_fix_leds_polarities(struct phy_device *phydev)
1377{
1378	struct pinctrl *pinctrl;
1379	int index;
1380
1381	/* Setup LED polarity according to bootstrap use of LED pins */
1382	for (index = 0; index < 2; ++index)
1383		phy_modify_mmd(phydev, MDIO_MMD_VEND2, index ?
1384				MTK_PHY_LED1_ON_CTRL : MTK_PHY_LED0_ON_CTRL,
1385			       MTK_PHY_LED_ON_POLARITY,
1386			       mt7988_phy_led_get_polarity(phydev, index) ?
1387				MTK_PHY_LED_ON_POLARITY : 0);
1388
1389	/* Only now setup pinctrl to avoid bogus blinking */
1390	pinctrl = devm_pinctrl_get_select(&phydev->mdio.dev, "gbe-led");
1391	if (IS_ERR(pinctrl))
1392		dev_err(&phydev->mdio.bus->dev, "Failed to setup PHY LED pinctrl\n");
1393
1394	return 0;
1395}
1396
1397static int mt7988_phy_probe_shared(struct phy_device *phydev)
1398{
1399	struct device_node *np = dev_of_node(&phydev->mdio.bus->dev);
1400	struct mtk_socphy_shared *shared = phydev->shared->priv;
1401	struct regmap *regmap;
1402	u32 reg;
1403	int ret;
1404
1405	/* The LED0 of the 4 PHYs in MT7988 are wired to SoC pins LED_A, LED_B,
1406	 * LED_C and LED_D respectively. At the same time those pins are used to
1407	 * bootstrap configuration of the reference clock source (LED_A),
1408	 * DRAM DDRx16b x2/x1 (LED_B) and boot device (LED_C, LED_D).
1409	 * In practise this is done using a LED and a resistor pulling the pin
1410	 * either to GND or to VIO.
1411	 * The detected value at boot time is accessible at run-time using the
1412	 * TPBANK0 register located in the gpio base of the pinctrl, in order
1413	 * to read it here it needs to be referenced by a phandle called
1414	 * 'mediatek,pio' in the MDIO bus hosting the PHY.
1415	 * The 4 bits in TPBANK0 are kept as package shared data and are used to
1416	 * set LED polarity for each of the LED0.
1417	 */
1418	regmap = syscon_regmap_lookup_by_phandle(np, "mediatek,pio");
1419	if (IS_ERR(regmap))
1420		return PTR_ERR(regmap);
1421
1422	ret = regmap_read(regmap, RG_GPIO_MISC_TPBANK0, &reg);
1423	if (ret)
1424		return ret;
1425
1426	shared->boottrap = FIELD_GET(RG_GPIO_MISC_TPBANK0_BOOTMODE, reg);
1427
1428	return 0;
1429}
1430
1431static void mt798x_phy_leds_state_init(struct phy_device *phydev)
1432{
1433	int i;
1434
1435	for (i = 0; i < 2; ++i)
1436		mt798x_phy_led_hw_control_get(phydev, i, NULL);
1437}
1438
1439static int mt7988_phy_probe(struct phy_device *phydev)
1440{
1441	struct mtk_socphy_shared *shared;
1442	struct mtk_socphy_priv *priv;
1443	int err;
1444
1445	if (phydev->mdio.addr > 3)
1446		return -EINVAL;
1447
1448	err = devm_phy_package_join(&phydev->mdio.dev, phydev, 0,
1449				    sizeof(struct mtk_socphy_shared));
1450	if (err)
1451		return err;
1452
1453	if (phy_package_probe_once(phydev)) {
1454		err = mt7988_phy_probe_shared(phydev);
1455		if (err)
1456			return err;
1457	}
1458
1459	shared = phydev->shared->priv;
1460	priv = &shared->priv[phydev->mdio.addr];
1461
1462	phydev->priv = priv;
1463
1464	mt798x_phy_leds_state_init(phydev);
1465
1466	err = mt7988_phy_fix_leds_polarities(phydev);
1467	if (err)
1468		return err;
1469
1470	/* Disable TX power saving at probing to:
1471	 * 1. Meet common mode compliance test criteria
1472	 * 2. Make sure that TX-VCM calibration works fine
1473	 */
1474	phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RXADC_CTRL_RG7,
1475		       MTK_PHY_DA_AD_BUF_BIAS_LP_MASK, 0x3 << 8);
1476
1477	return mt798x_phy_calibration(phydev);
1478}
1479
1480static int mt7981_phy_probe(struct phy_device *phydev)
1481{
1482	struct mtk_socphy_priv *priv;
1483
1484	priv = devm_kzalloc(&phydev->mdio.dev, sizeof(struct mtk_socphy_priv),
1485			    GFP_KERNEL);
1486	if (!priv)
1487		return -ENOMEM;
1488
1489	phydev->priv = priv;
1490
1491	mt798x_phy_leds_state_init(phydev);
1492
1493	return mt798x_phy_calibration(phydev);
1494}
1495
1496static struct phy_driver mtk_socphy_driver[] = {
1497	{
1498		PHY_ID_MATCH_EXACT(MTK_GPHY_ID_MT7981),
1499		.name		= "MediaTek MT7981 PHY",
1500		.config_init	= mt798x_phy_config_init,
1501		.config_intr	= genphy_no_config_intr,
1502		.handle_interrupt = genphy_handle_interrupt_no_ack,
1503		.probe		= mt7981_phy_probe,
1504		.suspend	= genphy_suspend,
1505		.resume		= genphy_resume,
1506		.read_page	= mtk_socphy_read_page,
1507		.write_page	= mtk_socphy_write_page,
1508		.led_blink_set	= mt798x_phy_led_blink_set,
1509		.led_brightness_set = mt798x_phy_led_brightness_set,
1510		.led_hw_is_supported = mt798x_phy_led_hw_is_supported,
1511		.led_hw_control_set = mt798x_phy_led_hw_control_set,
1512		.led_hw_control_get = mt798x_phy_led_hw_control_get,
1513	},
1514	{
1515		PHY_ID_MATCH_EXACT(MTK_GPHY_ID_MT7988),
1516		.name		= "MediaTek MT7988 PHY",
1517		.config_init	= mt798x_phy_config_init,
1518		.config_intr	= genphy_no_config_intr,
1519		.handle_interrupt = genphy_handle_interrupt_no_ack,
1520		.probe		= mt7988_phy_probe,
1521		.suspend	= genphy_suspend,
1522		.resume		= genphy_resume,
1523		.read_page	= mtk_socphy_read_page,
1524		.write_page	= mtk_socphy_write_page,
1525		.led_blink_set	= mt798x_phy_led_blink_set,
1526		.led_brightness_set = mt798x_phy_led_brightness_set,
1527		.led_hw_is_supported = mt798x_phy_led_hw_is_supported,
1528		.led_hw_control_set = mt798x_phy_led_hw_control_set,
1529		.led_hw_control_get = mt798x_phy_led_hw_control_get,
1530	},
1531};
1532
1533module_phy_driver(mtk_socphy_driver);
1534
1535static struct mdio_device_id __maybe_unused mtk_socphy_tbl[] = {
1536	{ PHY_ID_MATCH_EXACT(MTK_GPHY_ID_MT7981) },
1537	{ PHY_ID_MATCH_EXACT(MTK_GPHY_ID_MT7988) },
1538	{ }
1539};
1540
1541MODULE_DESCRIPTION("MediaTek SoC Gigabit Ethernet PHY driver");
1542MODULE_AUTHOR("Daniel Golle <daniel@makrotopia.org>");
1543MODULE_AUTHOR("SkyLake Huang <SkyLake.Huang@mediatek.com>");
1544MODULE_LICENSE("GPL");
1545
1546MODULE_DEVICE_TABLE(mdio, mtk_socphy_tbl);
1547