1// SPDX-License-Identifier: GPL-2.0
2
3/* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved.
4 * Copyright (C) 2018-2023 Linaro Ltd.
5 */
6
7#include <linux/types.h>
8#include <linux/atomic.h>
9#include <linux/bitfield.h>
10#include <linux/device.h>
11#include <linux/bug.h>
12#include <linux/io.h>
13#include <linux/firmware.h>
14#include <linux/module.h>
15#include <linux/of.h>
16#include <linux/of_address.h>
17#include <linux/platform_device.h>
18#include <linux/pm_runtime.h>
19#include <linux/firmware/qcom/qcom_scm.h>
20#include <linux/soc/qcom/mdt_loader.h>
21
22#include "ipa.h"
23#include "ipa_power.h"
24#include "ipa_data.h"
25#include "ipa_endpoint.h"
26#include "ipa_resource.h"
27#include "ipa_cmd.h"
28#include "ipa_reg.h"
29#include "ipa_mem.h"
30#include "ipa_table.h"
31#include "ipa_smp2p.h"
32#include "ipa_modem.h"
33#include "ipa_uc.h"
34#include "ipa_interrupt.h"
35#include "gsi_trans.h"
36#include "ipa_sysfs.h"
37
38/**
39 * DOC: The IP Accelerator
40 *
41 * This driver supports the Qualcomm IP Accelerator (IPA), which is a
42 * networking component found in many Qualcomm SoCs.  The IPA is connected
43 * to the application processor (AP), but is also connected (and partially
44 * controlled by) other "execution environments" (EEs), such as a modem.
45 *
46 * The IPA is the conduit between the AP and the modem that carries network
47 * traffic.  This driver presents a network interface representing the
48 * connection of the modem to external (e.g. LTE) networks.
49 *
50 * The IPA provides protocol checksum calculation, offloading this work
51 * from the AP.  The IPA offers additional functionality, including routing,
52 * filtering, and NAT support, but that more advanced functionality is not
53 * currently supported.  Despite that, some resources--including routing
54 * tables and filter tables--are defined in this driver because they must
55 * be initialized even when the advanced hardware features are not used.
56 *
57 * There are two distinct layers that implement the IPA hardware, and this
58 * is reflected in the organization of the driver.  The generic software
59 * interface (GSI) is an integral component of the IPA, providing a
60 * well-defined communication layer between the AP subsystem and the IPA
61 * core.  The GSI implements a set of "channels" used for communication
62 * between the AP and the IPA.
63 *
64 * The IPA layer uses GSI channels to implement its "endpoints".  And while
65 * a GSI channel carries data between the AP and the IPA, a pair of IPA
66 * endpoints is used to carry traffic between two EEs.  Specifically, the main
67 * modem network interface is implemented by two pairs of endpoints:  a TX
68 * endpoint on the AP coupled with an RX endpoint on the modem; and another
69 * RX endpoint on the AP receiving data from a TX endpoint on the modem.
70 */
71
72/* The name of the GSI firmware file relative to /lib/firmware */
73#define IPA_FW_PATH_DEFAULT	"ipa_fws.mdt"
74#define IPA_PAS_ID		15
75
76/* Shift of 19.2 MHz timestamp to achieve lower resolution timestamps */
77#define DPL_TIMESTAMP_SHIFT	14	/* ~1.172 kHz, ~853 usec per tick */
78#define TAG_TIMESTAMP_SHIFT	14
79#define NAT_TIMESTAMP_SHIFT	24	/* ~1.144 Hz, ~874 msec per tick */
80
81/* Divider for 19.2 MHz crystal oscillator clock to get common timer clock */
82#define IPA_XO_CLOCK_DIVIDER	192	/* 1 is subtracted where used */
83
84/**
85 * enum ipa_firmware_loader: How GSI firmware gets loaded
86 *
87 * @IPA_LOADER_DEFER:		System not ready; try again later
88 * @IPA_LOADER_SELF:		AP loads GSI firmware
89 * @IPA_LOADER_MODEM:		Modem loads GSI firmware, signals when done
90 * @IPA_LOADER_SKIP:		Neither AP nor modem need to load GSI firmware
91 * @IPA_LOADER_INVALID:	GSI firmware loader specification is invalid
92 */
93enum ipa_firmware_loader {
94	IPA_LOADER_DEFER,
95	IPA_LOADER_SELF,
96	IPA_LOADER_MODEM,
97	IPA_LOADER_SKIP,
98	IPA_LOADER_INVALID,
99};
100
101/**
102 * ipa_setup() - Set up IPA hardware
103 * @ipa:	IPA pointer
104 *
105 * Perform initialization that requires issuing immediate commands on
106 * the command TX endpoint.  If the modem is doing GSI firmware load
107 * and initialization, this function will be called when an SMP2P
108 * interrupt has been signaled by the modem.  Otherwise it will be
109 * called from ipa_probe() after GSI firmware has been successfully
110 * loaded, authenticated, and started by Trust Zone.
111 */
112int ipa_setup(struct ipa *ipa)
113{
114	struct ipa_endpoint *exception_endpoint;
115	struct ipa_endpoint *command_endpoint;
116	struct device *dev = &ipa->pdev->dev;
117	int ret;
118
119	ret = gsi_setup(&ipa->gsi);
120	if (ret)
121		return ret;
122
123	ret = ipa_power_setup(ipa);
124	if (ret)
125		goto err_gsi_teardown;
126
127	ipa_endpoint_setup(ipa);
128
129	/* We need to use the AP command TX endpoint to perform other
130	 * initialization, so we enable first.
131	 */
132	command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX];
133	ret = ipa_endpoint_enable_one(command_endpoint);
134	if (ret)
135		goto err_endpoint_teardown;
136
137	ret = ipa_mem_setup(ipa);	/* No matching teardown required */
138	if (ret)
139		goto err_command_disable;
140
141	ret = ipa_table_setup(ipa);	/* No matching teardown required */
142	if (ret)
143		goto err_command_disable;
144
145	/* Enable the exception handling endpoint, and tell the hardware
146	 * to use it by default.
147	 */
148	exception_endpoint = ipa->name_map[IPA_ENDPOINT_AP_LAN_RX];
149	ret = ipa_endpoint_enable_one(exception_endpoint);
150	if (ret)
151		goto err_command_disable;
152
153	ipa_endpoint_default_route_set(ipa, exception_endpoint->endpoint_id);
154
155	/* We're all set.  Now prepare for communication with the modem */
156	ret = ipa_qmi_setup(ipa);
157	if (ret)
158		goto err_default_route_clear;
159
160	ipa->setup_complete = true;
161
162	dev_info(dev, "IPA driver setup completed successfully\n");
163
164	return 0;
165
166err_default_route_clear:
167	ipa_endpoint_default_route_clear(ipa);
168	ipa_endpoint_disable_one(exception_endpoint);
169err_command_disable:
170	ipa_endpoint_disable_one(command_endpoint);
171err_endpoint_teardown:
172	ipa_endpoint_teardown(ipa);
173	ipa_power_teardown(ipa);
174err_gsi_teardown:
175	gsi_teardown(&ipa->gsi);
176
177	return ret;
178}
179
180/**
181 * ipa_teardown() - Inverse of ipa_setup()
182 * @ipa:	IPA pointer
183 */
184static void ipa_teardown(struct ipa *ipa)
185{
186	struct ipa_endpoint *exception_endpoint;
187	struct ipa_endpoint *command_endpoint;
188
189	/* We're going to tear everything down, as if setup never completed */
190	ipa->setup_complete = false;
191
192	ipa_qmi_teardown(ipa);
193	ipa_endpoint_default_route_clear(ipa);
194	exception_endpoint = ipa->name_map[IPA_ENDPOINT_AP_LAN_RX];
195	ipa_endpoint_disable_one(exception_endpoint);
196	command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX];
197	ipa_endpoint_disable_one(command_endpoint);
198	ipa_endpoint_teardown(ipa);
199	ipa_power_teardown(ipa);
200	gsi_teardown(&ipa->gsi);
201}
202
203static void
204ipa_hardware_config_bcr(struct ipa *ipa, const struct ipa_data *data)
205{
206	const struct reg *reg;
207	u32 val;
208
209	/* IPA v4.5+ has no backward compatibility register */
210	if (ipa->version >= IPA_VERSION_4_5)
211		return;
212
213	reg = ipa_reg(ipa, IPA_BCR);
214	val = data->backward_compat;
215	iowrite32(val, ipa->reg_virt + reg_offset(reg));
216}
217
218static void ipa_hardware_config_tx(struct ipa *ipa)
219{
220	enum ipa_version version = ipa->version;
221	const struct reg *reg;
222	u32 offset;
223	u32 val;
224
225	if (version <= IPA_VERSION_4_0 || version >= IPA_VERSION_4_5)
226		return;
227
228	/* Disable PA mask to allow HOLB drop */
229	reg = ipa_reg(ipa, IPA_TX_CFG);
230	offset = reg_offset(reg);
231
232	val = ioread32(ipa->reg_virt + offset);
233
234	val &= ~reg_bit(reg, PA_MASK_EN);
235
236	iowrite32(val, ipa->reg_virt + offset);
237}
238
239static void ipa_hardware_config_clkon(struct ipa *ipa)
240{
241	enum ipa_version version = ipa->version;
242	const struct reg *reg;
243	u32 val;
244
245	if (version >= IPA_VERSION_4_5)
246		return;
247
248	if (version < IPA_VERSION_4_0 && version != IPA_VERSION_3_1)
249		return;
250
251	/* Implement some hardware workarounds */
252	reg = ipa_reg(ipa, CLKON_CFG);
253	if (version == IPA_VERSION_3_1) {
254		/* Disable MISC clock gating */
255		val = reg_bit(reg, CLKON_MISC);
256	} else {	/* IPA v4.0+ */
257		/* Enable open global clocks in the CLKON configuration */
258		val = reg_bit(reg, CLKON_GLOBAL);
259		val |= reg_bit(reg, GLOBAL_2X_CLK);
260	}
261
262	iowrite32(val, ipa->reg_virt + reg_offset(reg));
263}
264
265/* Configure bus access behavior for IPA components */
266static void ipa_hardware_config_comp(struct ipa *ipa)
267{
268	const struct reg *reg;
269	u32 offset;
270	u32 val;
271
272	/* Nothing to configure prior to IPA v4.0 */
273	if (ipa->version < IPA_VERSION_4_0)
274		return;
275
276	reg = ipa_reg(ipa, COMP_CFG);
277	offset = reg_offset(reg);
278
279	val = ioread32(ipa->reg_virt + offset);
280
281	if (ipa->version == IPA_VERSION_4_0) {
282		val &= ~reg_bit(reg, IPA_QMB_SELECT_CONS_EN);
283		val &= ~reg_bit(reg, IPA_QMB_SELECT_PROD_EN);
284		val &= ~reg_bit(reg, IPA_QMB_SELECT_GLOBAL_EN);
285	} else if (ipa->version < IPA_VERSION_4_5) {
286		val |= reg_bit(reg, GSI_MULTI_AXI_MASTERS_DIS);
287	} else {
288		/* For IPA v4.5+ FULL_FLUSH_WAIT_RS_CLOSURE_EN is 0 */
289	}
290
291	val |= reg_bit(reg, GSI_MULTI_INORDER_RD_DIS);
292	val |= reg_bit(reg, GSI_MULTI_INORDER_WR_DIS);
293
294	iowrite32(val, ipa->reg_virt + offset);
295}
296
297/* Configure DDR and (possibly) PCIe max read/write QSB values */
298static void
299ipa_hardware_config_qsb(struct ipa *ipa, const struct ipa_data *data)
300{
301	const struct ipa_qsb_data *data0;
302	const struct ipa_qsb_data *data1;
303	const struct reg *reg;
304	u32 val;
305
306	/* QMB 0 represents DDR; QMB 1 (if present) represents PCIe */
307	data0 = &data->qsb_data[IPA_QSB_MASTER_DDR];
308	if (data->qsb_count > 1)
309		data1 = &data->qsb_data[IPA_QSB_MASTER_PCIE];
310
311	/* Max outstanding write accesses for QSB masters */
312	reg = ipa_reg(ipa, QSB_MAX_WRITES);
313
314	val = reg_encode(reg, GEN_QMB_0_MAX_WRITES, data0->max_writes);
315	if (data->qsb_count > 1)
316		val |= reg_encode(reg, GEN_QMB_1_MAX_WRITES, data1->max_writes);
317
318	iowrite32(val, ipa->reg_virt + reg_offset(reg));
319
320	/* Max outstanding read accesses for QSB masters */
321	reg = ipa_reg(ipa, QSB_MAX_READS);
322
323	val = reg_encode(reg, GEN_QMB_0_MAX_READS, data0->max_reads);
324	if (ipa->version >= IPA_VERSION_4_0)
325		val |= reg_encode(reg, GEN_QMB_0_MAX_READS_BEATS,
326				  data0->max_reads_beats);
327	if (data->qsb_count > 1) {
328		val = reg_encode(reg, GEN_QMB_1_MAX_READS, data1->max_reads);
329		if (ipa->version >= IPA_VERSION_4_0)
330			val |= reg_encode(reg, GEN_QMB_1_MAX_READS_BEATS,
331					  data1->max_reads_beats);
332	}
333
334	iowrite32(val, ipa->reg_virt + reg_offset(reg));
335}
336
337/* The internal inactivity timer clock is used for the aggregation timer */
338#define TIMER_FREQUENCY	32000		/* 32 KHz inactivity timer clock */
339
340/* Compute the value to use in the COUNTER_CFG register AGGR_GRANULARITY
341 * field to represent the given number of microseconds.  The value is one
342 * less than the number of timer ticks in the requested period.  0 is not
343 * a valid granularity value (so for example @usec must be at least 16 for
344 * a TIMER_FREQUENCY of 32000).
345 */
346static __always_inline u32 ipa_aggr_granularity_val(u32 usec)
347{
348	return DIV_ROUND_CLOSEST(usec * TIMER_FREQUENCY, USEC_PER_SEC) - 1;
349}
350
351/* IPA uses unified Qtime starting at IPA v4.5, implementing various
352 * timestamps and timers independent of the IPA core clock rate.  The
353 * Qtimer is based on a 56-bit timestamp incremented at each tick of
354 * a 19.2 MHz SoC crystal oscillator (XO clock).
355 *
356 * For IPA timestamps (tag, NAT, data path logging) a lower resolution
357 * timestamp is achieved by shifting the Qtimer timestamp value right
358 * some number of bits to produce the low-order bits of the coarser
359 * granularity timestamp.
360 *
361 * For timers, a common timer clock is derived from the XO clock using
362 * a divider (we use 192, to produce a 100kHz timer clock).  From
363 * this common clock, three "pulse generators" are used to produce
364 * timer ticks at a configurable frequency.  IPA timers (such as
365 * those used for aggregation or head-of-line block handling) now
366 * define their period based on one of these pulse generators.
367 */
368static void ipa_qtime_config(struct ipa *ipa)
369{
370	const struct reg *reg;
371	u32 offset;
372	u32 val;
373
374	/* Timer clock divider must be disabled when we change the rate */
375	reg = ipa_reg(ipa, TIMERS_XO_CLK_DIV_CFG);
376	iowrite32(0, ipa->reg_virt + reg_offset(reg));
377
378	reg = ipa_reg(ipa, QTIME_TIMESTAMP_CFG);
379	/* Set DPL time stamp resolution to use Qtime (instead of 1 msec) */
380	val = reg_encode(reg, DPL_TIMESTAMP_LSB, DPL_TIMESTAMP_SHIFT);
381	val |= reg_bit(reg, DPL_TIMESTAMP_SEL);
382	/* Configure tag and NAT Qtime timestamp resolution as well */
383	val = reg_encode(reg, TAG_TIMESTAMP_LSB, TAG_TIMESTAMP_SHIFT);
384	val = reg_encode(reg, NAT_TIMESTAMP_LSB, NAT_TIMESTAMP_SHIFT);
385
386	iowrite32(val, ipa->reg_virt + reg_offset(reg));
387
388	/* Set granularity of pulse generators used for other timers */
389	reg = ipa_reg(ipa, TIMERS_PULSE_GRAN_CFG);
390	val = reg_encode(reg, PULSE_GRAN_0, IPA_GRAN_100_US);
391	val |= reg_encode(reg, PULSE_GRAN_1, IPA_GRAN_1_MS);
392	if (ipa->version >= IPA_VERSION_5_0) {
393		val |= reg_encode(reg, PULSE_GRAN_2, IPA_GRAN_10_MS);
394		val |= reg_encode(reg, PULSE_GRAN_3, IPA_GRAN_10_MS);
395	} else {
396		val |= reg_encode(reg, PULSE_GRAN_2, IPA_GRAN_1_MS);
397	}
398
399	iowrite32(val, ipa->reg_virt + reg_offset(reg));
400
401	/* Actual divider is 1 more than value supplied here */
402	reg = ipa_reg(ipa, TIMERS_XO_CLK_DIV_CFG);
403	offset = reg_offset(reg);
404
405	val = reg_encode(reg, DIV_VALUE, IPA_XO_CLOCK_DIVIDER - 1);
406
407	iowrite32(val, ipa->reg_virt + offset);
408
409	/* Divider value is set; re-enable the common timer clock divider */
410	val |= reg_bit(reg, DIV_ENABLE);
411
412	iowrite32(val, ipa->reg_virt + offset);
413}
414
415/* Before IPA v4.5 timing is controlled by a counter register */
416static void ipa_hardware_config_counter(struct ipa *ipa)
417{
418	u32 granularity = ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY);
419	const struct reg *reg;
420	u32 val;
421
422	reg = ipa_reg(ipa, COUNTER_CFG);
423	/* If defined, EOT_COAL_GRANULARITY is 0 */
424	val = reg_encode(reg, AGGR_GRANULARITY, granularity);
425	iowrite32(val, ipa->reg_virt + reg_offset(reg));
426}
427
428static void ipa_hardware_config_timing(struct ipa *ipa)
429{
430	if (ipa->version < IPA_VERSION_4_5)
431		ipa_hardware_config_counter(ipa);
432	else
433		ipa_qtime_config(ipa);
434}
435
436static void ipa_hardware_config_hashing(struct ipa *ipa)
437{
438	const struct reg *reg;
439
440	/* Other than IPA v4.2, all versions enable "hashing".  Starting
441	 * with IPA v5.0, the filter and router tables are implemented
442	 * differently, but the default configuration enables this feature
443	 * (now referred to as "cacheing"), so there's nothing to do here.
444	 */
445	if (ipa->version != IPA_VERSION_4_2)
446		return;
447
448	/* IPA v4.2 does not support hashed tables, so disable them */
449	reg = ipa_reg(ipa, FILT_ROUT_HASH_EN);
450
451	/* IPV6_ROUTER_HASH, IPV6_FILTER_HASH, IPV4_ROUTER_HASH,
452	 * IPV4_FILTER_HASH are all zero.
453	 */
454	iowrite32(0, ipa->reg_virt + reg_offset(reg));
455}
456
457static void ipa_idle_indication_cfg(struct ipa *ipa,
458				    u32 enter_idle_debounce_thresh,
459				    bool const_non_idle_enable)
460{
461	const struct reg *reg;
462	u32 val;
463
464	if (ipa->version < IPA_VERSION_3_5_1)
465		return;
466
467	reg = ipa_reg(ipa, IDLE_INDICATION_CFG);
468	val = reg_encode(reg, ENTER_IDLE_DEBOUNCE_THRESH,
469			 enter_idle_debounce_thresh);
470	if (const_non_idle_enable)
471		val |= reg_bit(reg, CONST_NON_IDLE_ENABLE);
472
473	iowrite32(val, ipa->reg_virt + reg_offset(reg));
474}
475
476/**
477 * ipa_hardware_dcd_config() - Enable dynamic clock division on IPA
478 * @ipa:	IPA pointer
479 *
480 * Configures when the IPA signals it is idle to the global clock
481 * controller, which can respond by scaling down the clock to save
482 * power.
483 */
484static void ipa_hardware_dcd_config(struct ipa *ipa)
485{
486	/* Recommended values for IPA 3.5 and later according to IPA HPG */
487	ipa_idle_indication_cfg(ipa, 256, false);
488}
489
490static void ipa_hardware_dcd_deconfig(struct ipa *ipa)
491{
492	/* Power-on reset values */
493	ipa_idle_indication_cfg(ipa, 0, true);
494}
495
496/**
497 * ipa_hardware_config() - Primitive hardware initialization
498 * @ipa:	IPA pointer
499 * @data:	IPA configuration data
500 */
501static void ipa_hardware_config(struct ipa *ipa, const struct ipa_data *data)
502{
503	ipa_hardware_config_bcr(ipa, data);
504	ipa_hardware_config_tx(ipa);
505	ipa_hardware_config_clkon(ipa);
506	ipa_hardware_config_comp(ipa);
507	ipa_hardware_config_qsb(ipa, data);
508	ipa_hardware_config_timing(ipa);
509	ipa_hardware_config_hashing(ipa);
510	ipa_hardware_dcd_config(ipa);
511}
512
513/**
514 * ipa_hardware_deconfig() - Inverse of ipa_hardware_config()
515 * @ipa:	IPA pointer
516 *
517 * This restores the power-on reset values (even if they aren't different)
518 */
519static void ipa_hardware_deconfig(struct ipa *ipa)
520{
521	/* Mostly we just leave things as we set them. */
522	ipa_hardware_dcd_deconfig(ipa);
523}
524
525/**
526 * ipa_config() - Configure IPA hardware
527 * @ipa:	IPA pointer
528 * @data:	IPA configuration data
529 *
530 * Perform initialization requiring IPA power to be enabled.
531 */
532static int ipa_config(struct ipa *ipa, const struct ipa_data *data)
533{
534	int ret;
535
536	ipa_hardware_config(ipa, data);
537
538	ret = ipa_mem_config(ipa);
539	if (ret)
540		goto err_hardware_deconfig;
541
542	ipa->interrupt = ipa_interrupt_config(ipa);
543	if (IS_ERR(ipa->interrupt)) {
544		ret = PTR_ERR(ipa->interrupt);
545		ipa->interrupt = NULL;
546		goto err_mem_deconfig;
547	}
548
549	ipa_uc_config(ipa);
550
551	ret = ipa_endpoint_config(ipa);
552	if (ret)
553		goto err_uc_deconfig;
554
555	ipa_table_config(ipa);		/* No deconfig required */
556
557	/* Assign resource limitation to each group; no deconfig required */
558	ret = ipa_resource_config(ipa, data->resource_data);
559	if (ret)
560		goto err_endpoint_deconfig;
561
562	ret = ipa_modem_config(ipa);
563	if (ret)
564		goto err_endpoint_deconfig;
565
566	return 0;
567
568err_endpoint_deconfig:
569	ipa_endpoint_deconfig(ipa);
570err_uc_deconfig:
571	ipa_uc_deconfig(ipa);
572	ipa_interrupt_deconfig(ipa->interrupt);
573	ipa->interrupt = NULL;
574err_mem_deconfig:
575	ipa_mem_deconfig(ipa);
576err_hardware_deconfig:
577	ipa_hardware_deconfig(ipa);
578
579	return ret;
580}
581
582/**
583 * ipa_deconfig() - Inverse of ipa_config()
584 * @ipa:	IPA pointer
585 */
586static void ipa_deconfig(struct ipa *ipa)
587{
588	ipa_modem_deconfig(ipa);
589	ipa_endpoint_deconfig(ipa);
590	ipa_uc_deconfig(ipa);
591	ipa_interrupt_deconfig(ipa->interrupt);
592	ipa->interrupt = NULL;
593	ipa_mem_deconfig(ipa);
594	ipa_hardware_deconfig(ipa);
595}
596
597static int ipa_firmware_load(struct device *dev)
598{
599	const struct firmware *fw;
600	struct device_node *node;
601	struct resource res;
602	phys_addr_t phys;
603	const char *path;
604	ssize_t size;
605	void *virt;
606	int ret;
607
608	node = of_parse_phandle(dev->of_node, "memory-region", 0);
609	if (!node) {
610		dev_err(dev, "DT error getting \"memory-region\" property\n");
611		return -EINVAL;
612	}
613
614	ret = of_address_to_resource(node, 0, &res);
615	of_node_put(node);
616	if (ret) {
617		dev_err(dev, "error %d getting \"memory-region\" resource\n",
618			ret);
619		return ret;
620	}
621
622	/* Use name from DTB if specified; use default for *any* error */
623	ret = of_property_read_string(dev->of_node, "firmware-name", &path);
624	if (ret) {
625		dev_dbg(dev, "error %d getting \"firmware-name\" resource\n",
626			ret);
627		path = IPA_FW_PATH_DEFAULT;
628	}
629
630	ret = request_firmware(&fw, path, dev);
631	if (ret) {
632		dev_err(dev, "error %d requesting \"%s\"\n", ret, path);
633		return ret;
634	}
635
636	phys = res.start;
637	size = (size_t)resource_size(&res);
638	virt = memremap(phys, size, MEMREMAP_WC);
639	if (!virt) {
640		dev_err(dev, "unable to remap firmware memory\n");
641		ret = -ENOMEM;
642		goto out_release_firmware;
643	}
644
645	ret = qcom_mdt_load(dev, fw, path, IPA_PAS_ID, virt, phys, size, NULL);
646	if (ret)
647		dev_err(dev, "error %d loading \"%s\"\n", ret, path);
648	else if ((ret = qcom_scm_pas_auth_and_reset(IPA_PAS_ID)))
649		dev_err(dev, "error %d authenticating \"%s\"\n", ret, path);
650
651	memunmap(virt);
652out_release_firmware:
653	release_firmware(fw);
654
655	return ret;
656}
657
658static const struct of_device_id ipa_match[] = {
659	{
660		.compatible	= "qcom,msm8998-ipa",
661		.data		= &ipa_data_v3_1,
662	},
663	{
664		.compatible	= "qcom,sdm845-ipa",
665		.data		= &ipa_data_v3_5_1,
666	},
667	{
668		.compatible	= "qcom,sc7180-ipa",
669		.data		= &ipa_data_v4_2,
670	},
671	{
672		.compatible	= "qcom,sdx55-ipa",
673		.data		= &ipa_data_v4_5,
674	},
675	{
676		.compatible	= "qcom,sm6350-ipa",
677		.data		= &ipa_data_v4_7,
678	},
679	{
680		.compatible	= "qcom,sm8350-ipa",
681		.data		= &ipa_data_v4_9,
682	},
683	{
684		.compatible	= "qcom,sc7280-ipa",
685		.data		= &ipa_data_v4_11,
686	},
687	{
688		.compatible	= "qcom,sdx65-ipa",
689		.data		= &ipa_data_v5_0,
690	},
691	{ },
692};
693MODULE_DEVICE_TABLE(of, ipa_match);
694
695/* Check things that can be validated at build time.  This just
696 * groups these things BUILD_BUG_ON() calls don't clutter the rest
697 * of the code.
698 * */
699static void ipa_validate_build(void)
700{
701	/* At one time we assumed a 64-bit build, allowing some do_div()
702	 * calls to be replaced by simple division or modulo operations.
703	 * We currently only perform divide and modulo operations on u32,
704	 * u16, or size_t objects, and of those only size_t has any chance
705	 * of being a 64-bit value.  (It should be guaranteed 32 bits wide
706	 * on a 32-bit build, but there is no harm in verifying that.)
707	 */
708	BUILD_BUG_ON(!IS_ENABLED(CONFIG_64BIT) && sizeof(size_t) != 4);
709
710	/* Code assumes the EE ID for the AP is 0 (zeroed structure field) */
711	BUILD_BUG_ON(GSI_EE_AP != 0);
712
713	/* There's no point if we have no channels or event rings */
714	BUILD_BUG_ON(!GSI_CHANNEL_COUNT_MAX);
715	BUILD_BUG_ON(!GSI_EVT_RING_COUNT_MAX);
716
717	/* GSI hardware design limits */
718	BUILD_BUG_ON(GSI_CHANNEL_COUNT_MAX > 32);
719	BUILD_BUG_ON(GSI_EVT_RING_COUNT_MAX > 31);
720
721	/* The number of TREs in a transaction is limited by the channel's
722	 * TLV FIFO size.  A transaction structure uses 8-bit fields
723	 * to represents the number of TREs it has allocated and used.
724	 */
725	BUILD_BUG_ON(GSI_TLV_MAX > U8_MAX);
726
727	/* This is used as a divisor */
728	BUILD_BUG_ON(!IPA_AGGR_GRANULARITY);
729
730	/* Aggregation granularity value can't be 0, and must fit */
731	BUILD_BUG_ON(!ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY));
732}
733
734static enum ipa_firmware_loader ipa_firmware_loader(struct device *dev)
735{
736	bool modem_init;
737	const char *str;
738	int ret;
739
740	/* Look up the old and new properties by name */
741	modem_init = of_property_read_bool(dev->of_node, "modem-init");
742	ret = of_property_read_string(dev->of_node, "qcom,gsi-loader", &str);
743
744	/* If the new property doesn't exist, it's legacy behavior */
745	if (ret == -EINVAL) {
746		if (modem_init)
747			return IPA_LOADER_MODEM;
748		goto out_self;
749	}
750
751	/* Any other error on the new property means it's poorly defined */
752	if (ret)
753		return IPA_LOADER_INVALID;
754
755	/* New property value exists; if old one does too, that's invalid */
756	if (modem_init)
757		return IPA_LOADER_INVALID;
758
759	/* Modem loads GSI firmware for "modem" */
760	if (!strcmp(str, "modem"))
761		return IPA_LOADER_MODEM;
762
763	/* No GSI firmware load is needed for "skip" */
764	if (!strcmp(str, "skip"))
765		return IPA_LOADER_SKIP;
766
767	/* Any value other than "self" is an error */
768	if (strcmp(str, "self"))
769		return IPA_LOADER_INVALID;
770out_self:
771	/* We need Trust Zone to load firmware; make sure it's available */
772	if (qcom_scm_is_available())
773		return IPA_LOADER_SELF;
774
775	return IPA_LOADER_DEFER;
776}
777
778/**
779 * ipa_probe() - IPA platform driver probe function
780 * @pdev:	Platform device pointer
781 *
782 * Return:	0 if successful, or a negative error code (possibly
783 *		EPROBE_DEFER)
784 *
785 * This is the main entry point for the IPA driver.  Initialization proceeds
786 * in several stages:
787 *   - The "init" stage involves activities that can be initialized without
788 *     access to the IPA hardware.
789 *   - The "config" stage requires IPA power to be active so IPA registers
790 *     can be accessed, but does not require the use of IPA immediate commands.
791 *   - The "setup" stage uses IPA immediate commands, and so requires the GSI
792 *     layer to be initialized.
793 *
794 * A Boolean Device Tree "modem-init" property determines whether GSI
795 * initialization will be performed by the AP (Trust Zone) or the modem.
796 * If the AP does GSI initialization, the setup phase is entered after
797 * this has completed successfully.  Otherwise the modem initializes
798 * the GSI layer and signals it has finished by sending an SMP2P interrupt
799 * to the AP; this triggers the start if IPA setup.
800 */
801static int ipa_probe(struct platform_device *pdev)
802{
803	struct device *dev = &pdev->dev;
804	enum ipa_firmware_loader loader;
805	const struct ipa_data *data;
806	struct ipa_power *power;
807	struct ipa *ipa;
808	int ret;
809
810	ipa_validate_build();
811
812	/* Get configuration data early; needed for power initialization */
813	data = of_device_get_match_data(dev);
814	if (!data) {
815		dev_err(dev, "matched hardware not supported\n");
816		return -ENODEV;
817	}
818
819	if (!ipa_version_supported(data->version)) {
820		dev_err(dev, "unsupported IPA version %u\n", data->version);
821		return -EINVAL;
822	}
823
824	if (!data->modem_route_count) {
825		dev_err(dev, "modem_route_count cannot be zero\n");
826		return -EINVAL;
827	}
828
829	loader = ipa_firmware_loader(dev);
830	if (loader == IPA_LOADER_INVALID)
831		return -EINVAL;
832	if (loader == IPA_LOADER_DEFER)
833		return -EPROBE_DEFER;
834
835	/* The clock and interconnects might not be ready when we're
836	 * probed, so might return -EPROBE_DEFER.
837	 */
838	power = ipa_power_init(dev, data->power_data);
839	if (IS_ERR(power))
840		return PTR_ERR(power);
841
842	/* No more EPROBE_DEFER.  Allocate and initialize the IPA structure */
843	ipa = kzalloc(sizeof(*ipa), GFP_KERNEL);
844	if (!ipa) {
845		ret = -ENOMEM;
846		goto err_power_exit;
847	}
848
849	ipa->pdev = pdev;
850	dev_set_drvdata(dev, ipa);
851	ipa->power = power;
852	ipa->version = data->version;
853	ipa->modem_route_count = data->modem_route_count;
854	init_completion(&ipa->completion);
855
856	ret = ipa_reg_init(ipa);
857	if (ret)
858		goto err_kfree_ipa;
859
860	ret = ipa_mem_init(ipa, data->mem_data);
861	if (ret)
862		goto err_reg_exit;
863
864	ret = gsi_init(&ipa->gsi, pdev, ipa->version, data->endpoint_count,
865		       data->endpoint_data);
866	if (ret)
867		goto err_mem_exit;
868
869	/* Result is a non-zero mask of endpoints that support filtering */
870	ret = ipa_endpoint_init(ipa, data->endpoint_count, data->endpoint_data);
871	if (ret)
872		goto err_gsi_exit;
873
874	ret = ipa_table_init(ipa);
875	if (ret)
876		goto err_endpoint_exit;
877
878	ret = ipa_smp2p_init(ipa, loader == IPA_LOADER_MODEM);
879	if (ret)
880		goto err_table_exit;
881
882	/* Power needs to be active for config and setup */
883	ret = pm_runtime_get_sync(dev);
884	if (WARN_ON(ret < 0))
885		goto err_power_put;
886
887	ret = ipa_config(ipa, data);
888	if (ret)
889		goto err_power_put;
890
891	dev_info(dev, "IPA driver initialized");
892
893	/* If the modem is loading GSI firmware, it will trigger a call to
894	 * ipa_setup() when it has finished.  In that case we're done here.
895	 */
896	if (loader == IPA_LOADER_MODEM)
897		goto done;
898
899	if (loader == IPA_LOADER_SELF) {
900		/* The AP is loading GSI firmware; do so now */
901		ret = ipa_firmware_load(dev);
902		if (ret)
903			goto err_deconfig;
904	} /* Otherwise loader == IPA_LOADER_SKIP */
905
906	/* GSI firmware is loaded; proceed to setup */
907	ret = ipa_setup(ipa);
908	if (ret)
909		goto err_deconfig;
910done:
911	pm_runtime_mark_last_busy(dev);
912	(void)pm_runtime_put_autosuspend(dev);
913
914	return 0;
915
916err_deconfig:
917	ipa_deconfig(ipa);
918err_power_put:
919	pm_runtime_put_noidle(dev);
920	ipa_smp2p_exit(ipa);
921err_table_exit:
922	ipa_table_exit(ipa);
923err_endpoint_exit:
924	ipa_endpoint_exit(ipa);
925err_gsi_exit:
926	gsi_exit(&ipa->gsi);
927err_mem_exit:
928	ipa_mem_exit(ipa);
929err_reg_exit:
930	ipa_reg_exit(ipa);
931err_kfree_ipa:
932	kfree(ipa);
933err_power_exit:
934	ipa_power_exit(power);
935
936	return ret;
937}
938
939static int ipa_remove(struct platform_device *pdev)
940{
941	struct ipa *ipa = dev_get_drvdata(&pdev->dev);
942	struct ipa_power *power = ipa->power;
943	struct device *dev = &pdev->dev;
944	int ret;
945
946	/* Prevent the modem from triggering a call to ipa_setup().  This
947	 * also ensures a modem-initiated setup that's underway completes.
948	 */
949	ipa_smp2p_irq_disable_setup(ipa);
950
951	ret = pm_runtime_get_sync(dev);
952	if (WARN_ON(ret < 0))
953		goto out_power_put;
954
955	if (ipa->setup_complete) {
956		ret = ipa_modem_stop(ipa);
957		/* If starting or stopping is in progress, try once more */
958		if (ret == -EBUSY) {
959			usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC);
960			ret = ipa_modem_stop(ipa);
961		}
962		if (ret)
963			return ret;
964
965		ipa_teardown(ipa);
966	}
967
968	ipa_deconfig(ipa);
969out_power_put:
970	pm_runtime_put_noidle(dev);
971	ipa_smp2p_exit(ipa);
972	ipa_table_exit(ipa);
973	ipa_endpoint_exit(ipa);
974	gsi_exit(&ipa->gsi);
975	ipa_mem_exit(ipa);
976	ipa_reg_exit(ipa);
977	kfree(ipa);
978	ipa_power_exit(power);
979
980	dev_info(dev, "IPA driver removed");
981
982	return 0;
983}
984
985static void ipa_shutdown(struct platform_device *pdev)
986{
987	int ret;
988
989	ret = ipa_remove(pdev);
990	if (ret)
991		dev_err(&pdev->dev, "shutdown: remove returned %d\n", ret);
992}
993
994static const struct attribute_group *ipa_attribute_groups[] = {
995	&ipa_attribute_group,
996	&ipa_feature_attribute_group,
997	&ipa_endpoint_id_attribute_group,
998	&ipa_modem_attribute_group,
999	NULL,
1000};
1001
1002static struct platform_driver ipa_driver = {
1003	.probe		= ipa_probe,
1004	.remove		= ipa_remove,
1005	.shutdown	= ipa_shutdown,
1006	.driver	= {
1007		.name		= "ipa",
1008		.pm		= &ipa_pm_ops,
1009		.of_match_table	= ipa_match,
1010		.dev_groups	= ipa_attribute_groups,
1011	},
1012};
1013
1014module_platform_driver(ipa_driver);
1015
1016MODULE_LICENSE("GPL v2");
1017MODULE_DESCRIPTION("Qualcomm IP Accelerator device driver");
1018