1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * AT86RF230/RF231 driver
4 *
5 * Copyright (C) 2009-2012 Siemens AG
6 *
7 * Written by:
8 * Dmitry Eremin-Solenikov <dbaryshkov@gmail.com>
9 * Alexander Smirnov <alex.bluesman.smirnov@gmail.com>
10 * Alexander Aring <aar@pengutronix.de>
11 */
12#include <linux/kernel.h>
13#include <linux/module.h>
14#include <linux/hrtimer.h>
15#include <linux/jiffies.h>
16#include <linux/interrupt.h>
17#include <linux/irq.h>
18#include <linux/gpio.h>
19#include <linux/delay.h>
20#include <linux/property.h>
21#include <linux/spi/spi.h>
22#include <linux/regmap.h>
23#include <linux/skbuff.h>
24#include <linux/of_gpio.h>
25#include <linux/ieee802154.h>
26
27#include <net/mac802154.h>
28#include <net/cfg802154.h>
29
30#include "at86rf230.h"
31
32struct at86rf230_local;
33/* at86rf2xx chip depend data.
34 * All timings are in us.
35 */
36struct at86rf2xx_chip_data {
37	u16 t_sleep_cycle;
38	u16 t_channel_switch;
39	u16 t_reset_to_off;
40	u16 t_off_to_aack;
41	u16 t_off_to_tx_on;
42	u16 t_off_to_sleep;
43	u16 t_sleep_to_off;
44	u16 t_frame;
45	u16 t_p_ack;
46	int rssi_base_val;
47
48	int (*set_channel)(struct at86rf230_local *, u8, u8);
49	int (*set_txpower)(struct at86rf230_local *, s32);
50};
51
52#define AT86RF2XX_MAX_BUF		(127 + 3)
53/* tx retries to access the TX_ON state
54 * if it's above then force change will be started.
55 *
56 * We assume the max_frame_retries (7) value of 802.15.4 here.
57 */
58#define AT86RF2XX_MAX_TX_RETRIES	7
59/* We use the recommended 5 minutes timeout to recalibrate */
60#define AT86RF2XX_CAL_LOOP_TIMEOUT	(5 * 60 * HZ)
61
62struct at86rf230_state_change {
63	struct at86rf230_local *lp;
64	int irq;
65
66	struct hrtimer timer;
67	struct spi_message msg;
68	struct spi_transfer trx;
69	u8 buf[AT86RF2XX_MAX_BUF];
70
71	void (*complete)(void *context);
72	u8 from_state;
73	u8 to_state;
74	int trac;
75
76	bool free;
77};
78
79struct at86rf230_local {
80	struct spi_device *spi;
81
82	struct ieee802154_hw *hw;
83	struct at86rf2xx_chip_data *data;
84	struct regmap *regmap;
85	struct gpio_desc *slp_tr;
86	bool sleep;
87
88	struct completion state_complete;
89	struct at86rf230_state_change state;
90
91	unsigned long cal_timeout;
92	bool is_tx;
93	bool is_tx_from_off;
94	bool was_tx;
95	u8 tx_retry;
96	struct sk_buff *tx_skb;
97	struct at86rf230_state_change tx;
98};
99
100#define AT86RF2XX_NUMREGS 0x3F
101
102static void
103at86rf230_async_state_change(struct at86rf230_local *lp,
104			     struct at86rf230_state_change *ctx,
105			     const u8 state, void (*complete)(void *context));
106
107static inline void
108at86rf230_sleep(struct at86rf230_local *lp)
109{
110	if (lp->slp_tr) {
111		gpiod_set_value(lp->slp_tr, 1);
112		usleep_range(lp->data->t_off_to_sleep,
113			     lp->data->t_off_to_sleep + 10);
114		lp->sleep = true;
115	}
116}
117
118static inline void
119at86rf230_awake(struct at86rf230_local *lp)
120{
121	if (lp->slp_tr) {
122		gpiod_set_value(lp->slp_tr, 0);
123		usleep_range(lp->data->t_sleep_to_off,
124			     lp->data->t_sleep_to_off + 100);
125		lp->sleep = false;
126	}
127}
128
129static inline int
130__at86rf230_write(struct at86rf230_local *lp,
131		  unsigned int addr, unsigned int data)
132{
133	bool sleep = lp->sleep;
134	int ret;
135
136	/* awake for register setting if sleep */
137	if (sleep)
138		at86rf230_awake(lp);
139
140	ret = regmap_write(lp->regmap, addr, data);
141
142	/* sleep again if was sleeping */
143	if (sleep)
144		at86rf230_sleep(lp);
145
146	return ret;
147}
148
149static inline int
150__at86rf230_read(struct at86rf230_local *lp,
151		 unsigned int addr, unsigned int *data)
152{
153	bool sleep = lp->sleep;
154	int ret;
155
156	/* awake for register setting if sleep */
157	if (sleep)
158		at86rf230_awake(lp);
159
160	ret = regmap_read(lp->regmap, addr, data);
161
162	/* sleep again if was sleeping */
163	if (sleep)
164		at86rf230_sleep(lp);
165
166	return ret;
167}
168
169static inline int
170at86rf230_read_subreg(struct at86rf230_local *lp,
171		      unsigned int addr, unsigned int mask,
172		      unsigned int shift, unsigned int *data)
173{
174	int rc;
175
176	rc = __at86rf230_read(lp, addr, data);
177	if (!rc)
178		*data = (*data & mask) >> shift;
179
180	return rc;
181}
182
183static inline int
184at86rf230_write_subreg(struct at86rf230_local *lp,
185		       unsigned int addr, unsigned int mask,
186		       unsigned int shift, unsigned int data)
187{
188	bool sleep = lp->sleep;
189	int ret;
190
191	/* awake for register setting if sleep */
192	if (sleep)
193		at86rf230_awake(lp);
194
195	ret = regmap_update_bits(lp->regmap, addr, mask, data << shift);
196
197	/* sleep again if was sleeping */
198	if (sleep)
199		at86rf230_sleep(lp);
200
201	return ret;
202}
203
204static inline void
205at86rf230_slp_tr_rising_edge(struct at86rf230_local *lp)
206{
207	gpiod_set_value(lp->slp_tr, 1);
208	udelay(1);
209	gpiod_set_value(lp->slp_tr, 0);
210}
211
212static bool
213at86rf230_reg_writeable(struct device *dev, unsigned int reg)
214{
215	switch (reg) {
216	case RG_TRX_STATE:
217	case RG_TRX_CTRL_0:
218	case RG_TRX_CTRL_1:
219	case RG_PHY_TX_PWR:
220	case RG_PHY_ED_LEVEL:
221	case RG_PHY_CC_CCA:
222	case RG_CCA_THRES:
223	case RG_RX_CTRL:
224	case RG_SFD_VALUE:
225	case RG_TRX_CTRL_2:
226	case RG_ANT_DIV:
227	case RG_IRQ_MASK:
228	case RG_VREG_CTRL:
229	case RG_BATMON:
230	case RG_XOSC_CTRL:
231	case RG_RX_SYN:
232	case RG_XAH_CTRL_1:
233	case RG_FTN_CTRL:
234	case RG_PLL_CF:
235	case RG_PLL_DCU:
236	case RG_SHORT_ADDR_0:
237	case RG_SHORT_ADDR_1:
238	case RG_PAN_ID_0:
239	case RG_PAN_ID_1:
240	case RG_IEEE_ADDR_0:
241	case RG_IEEE_ADDR_1:
242	case RG_IEEE_ADDR_2:
243	case RG_IEEE_ADDR_3:
244	case RG_IEEE_ADDR_4:
245	case RG_IEEE_ADDR_5:
246	case RG_IEEE_ADDR_6:
247	case RG_IEEE_ADDR_7:
248	case RG_XAH_CTRL_0:
249	case RG_CSMA_SEED_0:
250	case RG_CSMA_SEED_1:
251	case RG_CSMA_BE:
252		return true;
253	default:
254		return false;
255	}
256}
257
258static bool
259at86rf230_reg_readable(struct device *dev, unsigned int reg)
260{
261	bool rc;
262
263	/* all writeable are also readable */
264	rc = at86rf230_reg_writeable(dev, reg);
265	if (rc)
266		return rc;
267
268	/* readonly regs */
269	switch (reg) {
270	case RG_TRX_STATUS:
271	case RG_PHY_RSSI:
272	case RG_IRQ_STATUS:
273	case RG_PART_NUM:
274	case RG_VERSION_NUM:
275	case RG_MAN_ID_1:
276	case RG_MAN_ID_0:
277		return true;
278	default:
279		return false;
280	}
281}
282
283static bool
284at86rf230_reg_volatile(struct device *dev, unsigned int reg)
285{
286	/* can be changed during runtime */
287	switch (reg) {
288	case RG_TRX_STATUS:
289	case RG_TRX_STATE:
290	case RG_PHY_RSSI:
291	case RG_PHY_ED_LEVEL:
292	case RG_IRQ_STATUS:
293	case RG_VREG_CTRL:
294	case RG_PLL_CF:
295	case RG_PLL_DCU:
296		return true;
297	default:
298		return false;
299	}
300}
301
302static bool
303at86rf230_reg_precious(struct device *dev, unsigned int reg)
304{
305	/* don't clear irq line on read */
306	switch (reg) {
307	case RG_IRQ_STATUS:
308		return true;
309	default:
310		return false;
311	}
312}
313
314static const struct regmap_config at86rf230_regmap_spi_config = {
315	.reg_bits = 8,
316	.val_bits = 8,
317	.write_flag_mask = CMD_REG | CMD_WRITE,
318	.read_flag_mask = CMD_REG,
319	.cache_type = REGCACHE_RBTREE,
320	.max_register = AT86RF2XX_NUMREGS,
321	.writeable_reg = at86rf230_reg_writeable,
322	.readable_reg = at86rf230_reg_readable,
323	.volatile_reg = at86rf230_reg_volatile,
324	.precious_reg = at86rf230_reg_precious,
325};
326
327static void
328at86rf230_async_error_recover_complete(void *context)
329{
330	struct at86rf230_state_change *ctx = context;
331	struct at86rf230_local *lp = ctx->lp;
332
333	if (ctx->free)
334		kfree(ctx);
335
336	if (lp->was_tx) {
337		lp->was_tx = 0;
338		ieee802154_xmit_hw_error(lp->hw, lp->tx_skb);
339	}
340}
341
342static void
343at86rf230_async_error_recover(void *context)
344{
345	struct at86rf230_state_change *ctx = context;
346	struct at86rf230_local *lp = ctx->lp;
347
348	if (lp->is_tx) {
349		lp->was_tx = 1;
350		lp->is_tx = 0;
351	}
352
353	at86rf230_async_state_change(lp, ctx, STATE_RX_AACK_ON,
354				     at86rf230_async_error_recover_complete);
355}
356
357static inline void
358at86rf230_async_error(struct at86rf230_local *lp,
359		      struct at86rf230_state_change *ctx, int rc)
360{
361	dev_err(&lp->spi->dev, "spi_async error %d\n", rc);
362
363	at86rf230_async_state_change(lp, ctx, STATE_FORCE_TRX_OFF,
364				     at86rf230_async_error_recover);
365}
366
367/* Generic function to get some register value in async mode */
368static void
369at86rf230_async_read_reg(struct at86rf230_local *lp, u8 reg,
370			 struct at86rf230_state_change *ctx,
371			 void (*complete)(void *context))
372{
373	int rc;
374
375	u8 *tx_buf = ctx->buf;
376
377	tx_buf[0] = (reg & CMD_REG_MASK) | CMD_REG;
378	ctx->msg.complete = complete;
379	rc = spi_async(lp->spi, &ctx->msg);
380	if (rc)
381		at86rf230_async_error(lp, ctx, rc);
382}
383
384static void
385at86rf230_async_write_reg(struct at86rf230_local *lp, u8 reg, u8 val,
386			  struct at86rf230_state_change *ctx,
387			  void (*complete)(void *context))
388{
389	int rc;
390
391	ctx->buf[0] = (reg & CMD_REG_MASK) | CMD_REG | CMD_WRITE;
392	ctx->buf[1] = val;
393	ctx->msg.complete = complete;
394	rc = spi_async(lp->spi, &ctx->msg);
395	if (rc)
396		at86rf230_async_error(lp, ctx, rc);
397}
398
399static void
400at86rf230_async_state_assert(void *context)
401{
402	struct at86rf230_state_change *ctx = context;
403	struct at86rf230_local *lp = ctx->lp;
404	const u8 *buf = ctx->buf;
405	const u8 trx_state = buf[1] & TRX_STATE_MASK;
406
407	/* Assert state change */
408	if (trx_state != ctx->to_state) {
409		/* Special handling if transceiver state is in
410		 * STATE_BUSY_RX_AACK and a SHR was detected.
411		 */
412		if  (trx_state == STATE_BUSY_RX_AACK) {
413			/* Undocumented race condition. If we send a state
414			 * change to STATE_RX_AACK_ON the transceiver could
415			 * change his state automatically to STATE_BUSY_RX_AACK
416			 * if a SHR was detected. This is not an error, but we
417			 * can't assert this.
418			 */
419			if (ctx->to_state == STATE_RX_AACK_ON)
420				goto done;
421
422			/* If we change to STATE_TX_ON without forcing and
423			 * transceiver state is STATE_BUSY_RX_AACK, we wait
424			 * 'tFrame + tPAck' receiving time. In this time the
425			 * PDU should be received. If the transceiver is still
426			 * in STATE_BUSY_RX_AACK, we run a force state change
427			 * to STATE_TX_ON. This is a timeout handling, if the
428			 * transceiver stucks in STATE_BUSY_RX_AACK.
429			 *
430			 * Additional we do several retries to try to get into
431			 * TX_ON state without forcing. If the retries are
432			 * higher or equal than AT86RF2XX_MAX_TX_RETRIES we
433			 * will do a force change.
434			 */
435			if (ctx->to_state == STATE_TX_ON ||
436			    ctx->to_state == STATE_TRX_OFF) {
437				u8 state = ctx->to_state;
438
439				if (lp->tx_retry >= AT86RF2XX_MAX_TX_RETRIES)
440					state = STATE_FORCE_TRX_OFF;
441				lp->tx_retry++;
442
443				at86rf230_async_state_change(lp, ctx, state,
444							     ctx->complete);
445				return;
446			}
447		}
448
449		dev_warn(&lp->spi->dev, "unexcept state change from 0x%02x to 0x%02x. Actual state: 0x%02x\n",
450			 ctx->from_state, ctx->to_state, trx_state);
451	}
452
453done:
454	if (ctx->complete)
455		ctx->complete(context);
456}
457
458static enum hrtimer_restart at86rf230_async_state_timer(struct hrtimer *timer)
459{
460	struct at86rf230_state_change *ctx =
461		container_of(timer, struct at86rf230_state_change, timer);
462	struct at86rf230_local *lp = ctx->lp;
463
464	at86rf230_async_read_reg(lp, RG_TRX_STATUS, ctx,
465				 at86rf230_async_state_assert);
466
467	return HRTIMER_NORESTART;
468}
469
470/* Do state change timing delay. */
471static void
472at86rf230_async_state_delay(void *context)
473{
474	struct at86rf230_state_change *ctx = context;
475	struct at86rf230_local *lp = ctx->lp;
476	struct at86rf2xx_chip_data *c = lp->data;
477	bool force = false;
478	ktime_t tim;
479
480	/* The force state changes are will show as normal states in the
481	 * state status subregister. We change the to_state to the
482	 * corresponding one and remember if it was a force change, this
483	 * differs if we do a state change from STATE_BUSY_RX_AACK.
484	 */
485	switch (ctx->to_state) {
486	case STATE_FORCE_TX_ON:
487		ctx->to_state = STATE_TX_ON;
488		force = true;
489		break;
490	case STATE_FORCE_TRX_OFF:
491		ctx->to_state = STATE_TRX_OFF;
492		force = true;
493		break;
494	default:
495		break;
496	}
497
498	switch (ctx->from_state) {
499	case STATE_TRX_OFF:
500		switch (ctx->to_state) {
501		case STATE_RX_AACK_ON:
502			tim = c->t_off_to_aack * NSEC_PER_USEC;
503			/* state change from TRX_OFF to RX_AACK_ON to do a
504			 * calibration, we need to reset the timeout for the
505			 * next one.
506			 */
507			lp->cal_timeout = jiffies + AT86RF2XX_CAL_LOOP_TIMEOUT;
508			goto change;
509		case STATE_TX_ARET_ON:
510		case STATE_TX_ON:
511			tim = c->t_off_to_tx_on * NSEC_PER_USEC;
512			/* state change from TRX_OFF to TX_ON or ARET_ON to do
513			 * a calibration, we need to reset the timeout for the
514			 * next one.
515			 */
516			lp->cal_timeout = jiffies + AT86RF2XX_CAL_LOOP_TIMEOUT;
517			goto change;
518		default:
519			break;
520		}
521		break;
522	case STATE_BUSY_RX_AACK:
523		switch (ctx->to_state) {
524		case STATE_TRX_OFF:
525		case STATE_TX_ON:
526			/* Wait for worst case receiving time if we
527			 * didn't make a force change from BUSY_RX_AACK
528			 * to TX_ON or TRX_OFF.
529			 */
530			if (!force) {
531				tim = (c->t_frame + c->t_p_ack) * NSEC_PER_USEC;
532				goto change;
533			}
534			break;
535		default:
536			break;
537		}
538		break;
539	/* Default value, means RESET state */
540	case STATE_P_ON:
541		switch (ctx->to_state) {
542		case STATE_TRX_OFF:
543			tim = c->t_reset_to_off * NSEC_PER_USEC;
544			goto change;
545		default:
546			break;
547		}
548		break;
549	default:
550		break;
551	}
552
553	/* Default delay is 1us in the most cases */
554	udelay(1);
555	at86rf230_async_state_timer(&ctx->timer);
556	return;
557
558change:
559	hrtimer_start(&ctx->timer, tim, HRTIMER_MODE_REL);
560}
561
562static void
563at86rf230_async_state_change_start(void *context)
564{
565	struct at86rf230_state_change *ctx = context;
566	struct at86rf230_local *lp = ctx->lp;
567	u8 *buf = ctx->buf;
568	const u8 trx_state = buf[1] & TRX_STATE_MASK;
569
570	/* Check for "possible" STATE_TRANSITION_IN_PROGRESS */
571	if (trx_state == STATE_TRANSITION_IN_PROGRESS) {
572		udelay(1);
573		at86rf230_async_read_reg(lp, RG_TRX_STATUS, ctx,
574					 at86rf230_async_state_change_start);
575		return;
576	}
577
578	/* Check if we already are in the state which we change in */
579	if (trx_state == ctx->to_state) {
580		if (ctx->complete)
581			ctx->complete(context);
582		return;
583	}
584
585	/* Set current state to the context of state change */
586	ctx->from_state = trx_state;
587
588	/* Going into the next step for a state change which do a timing
589	 * relevant delay.
590	 */
591	at86rf230_async_write_reg(lp, RG_TRX_STATE, ctx->to_state, ctx,
592				  at86rf230_async_state_delay);
593}
594
595static void
596at86rf230_async_state_change(struct at86rf230_local *lp,
597			     struct at86rf230_state_change *ctx,
598			     const u8 state, void (*complete)(void *context))
599{
600	/* Initialization for the state change context */
601	ctx->to_state = state;
602	ctx->complete = complete;
603	at86rf230_async_read_reg(lp, RG_TRX_STATUS, ctx,
604				 at86rf230_async_state_change_start);
605}
606
607static void
608at86rf230_sync_state_change_complete(void *context)
609{
610	struct at86rf230_state_change *ctx = context;
611	struct at86rf230_local *lp = ctx->lp;
612
613	complete(&lp->state_complete);
614}
615
616/* This function do a sync framework above the async state change.
617 * Some callbacks of the IEEE 802.15.4 driver interface need to be
618 * handled synchronously.
619 */
620static int
621at86rf230_sync_state_change(struct at86rf230_local *lp, unsigned int state)
622{
623	unsigned long rc;
624
625	at86rf230_async_state_change(lp, &lp->state, state,
626				     at86rf230_sync_state_change_complete);
627
628	rc = wait_for_completion_timeout(&lp->state_complete,
629					 msecs_to_jiffies(100));
630	if (!rc) {
631		at86rf230_async_error(lp, &lp->state, -ETIMEDOUT);
632		return -ETIMEDOUT;
633	}
634
635	return 0;
636}
637
638static void
639at86rf230_tx_complete(void *context)
640{
641	struct at86rf230_state_change *ctx = context;
642	struct at86rf230_local *lp = ctx->lp;
643
644	if (ctx->trac == IEEE802154_SUCCESS)
645		ieee802154_xmit_complete(lp->hw, lp->tx_skb, false);
646	else
647		ieee802154_xmit_error(lp->hw, lp->tx_skb, ctx->trac);
648
649	kfree(ctx);
650}
651
652static void
653at86rf230_tx_on(void *context)
654{
655	struct at86rf230_state_change *ctx = context;
656	struct at86rf230_local *lp = ctx->lp;
657
658	at86rf230_async_state_change(lp, ctx, STATE_RX_AACK_ON,
659				     at86rf230_tx_complete);
660}
661
662static void
663at86rf230_tx_trac_check(void *context)
664{
665	struct at86rf230_state_change *ctx = context;
666	struct at86rf230_local *lp = ctx->lp;
667	u8 trac = TRAC_MASK(ctx->buf[1]);
668
669	switch (trac) {
670	case TRAC_SUCCESS:
671	case TRAC_SUCCESS_DATA_PENDING:
672		ctx->trac = IEEE802154_SUCCESS;
673		break;
674	case TRAC_CHANNEL_ACCESS_FAILURE:
675		ctx->trac = IEEE802154_CHANNEL_ACCESS_FAILURE;
676		break;
677	case TRAC_NO_ACK:
678		ctx->trac = IEEE802154_NO_ACK;
679		break;
680	default:
681		ctx->trac = IEEE802154_SYSTEM_ERROR;
682	}
683
684	at86rf230_async_state_change(lp, ctx, STATE_TX_ON, at86rf230_tx_on);
685}
686
687static void
688at86rf230_rx_read_frame_complete(void *context)
689{
690	struct at86rf230_state_change *ctx = context;
691	struct at86rf230_local *lp = ctx->lp;
692	const u8 *buf = ctx->buf;
693	struct sk_buff *skb;
694	u8 len, lqi;
695
696	len = buf[1];
697	if (!ieee802154_is_valid_psdu_len(len)) {
698		dev_vdbg(&lp->spi->dev, "corrupted frame received\n");
699		len = IEEE802154_MTU;
700	}
701	lqi = buf[2 + len];
702
703	skb = dev_alloc_skb(IEEE802154_MTU);
704	if (!skb) {
705		dev_vdbg(&lp->spi->dev, "failed to allocate sk_buff\n");
706		kfree(ctx);
707		return;
708	}
709
710	skb_put_data(skb, buf + 2, len);
711	ieee802154_rx_irqsafe(lp->hw, skb, lqi);
712	kfree(ctx);
713}
714
715static void
716at86rf230_rx_trac_check(void *context)
717{
718	struct at86rf230_state_change *ctx = context;
719	struct at86rf230_local *lp = ctx->lp;
720	u8 *buf = ctx->buf;
721	int rc;
722
723	buf[0] = CMD_FB;
724	ctx->trx.len = AT86RF2XX_MAX_BUF;
725	ctx->msg.complete = at86rf230_rx_read_frame_complete;
726	rc = spi_async(lp->spi, &ctx->msg);
727	if (rc) {
728		ctx->trx.len = 2;
729		at86rf230_async_error(lp, ctx, rc);
730	}
731}
732
733static void
734at86rf230_irq_trx_end(void *context)
735{
736	struct at86rf230_state_change *ctx = context;
737	struct at86rf230_local *lp = ctx->lp;
738
739	if (lp->is_tx) {
740		lp->is_tx = 0;
741		at86rf230_async_read_reg(lp, RG_TRX_STATE, ctx,
742					 at86rf230_tx_trac_check);
743	} else {
744		at86rf230_async_read_reg(lp, RG_TRX_STATE, ctx,
745					 at86rf230_rx_trac_check);
746	}
747}
748
749static void
750at86rf230_irq_status(void *context)
751{
752	struct at86rf230_state_change *ctx = context;
753	struct at86rf230_local *lp = ctx->lp;
754	const u8 *buf = ctx->buf;
755	u8 irq = buf[1];
756
757	enable_irq(lp->spi->irq);
758
759	if (irq & IRQ_TRX_END) {
760		at86rf230_irq_trx_end(ctx);
761	} else {
762		dev_err(&lp->spi->dev, "not supported irq %02x received\n",
763			irq);
764		kfree(ctx);
765	}
766}
767
768static void
769at86rf230_setup_spi_messages(struct at86rf230_local *lp,
770			     struct at86rf230_state_change *state)
771{
772	state->lp = lp;
773	state->irq = lp->spi->irq;
774	spi_message_init(&state->msg);
775	state->msg.context = state;
776	state->trx.len = 2;
777	state->trx.tx_buf = state->buf;
778	state->trx.rx_buf = state->buf;
779	spi_message_add_tail(&state->trx, &state->msg);
780	hrtimer_init(&state->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
781	state->timer.function = at86rf230_async_state_timer;
782}
783
784static irqreturn_t at86rf230_isr(int irq, void *data)
785{
786	struct at86rf230_local *lp = data;
787	struct at86rf230_state_change *ctx;
788	int rc;
789
790	disable_irq_nosync(irq);
791
792	ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC);
793	if (!ctx) {
794		enable_irq(irq);
795		return IRQ_NONE;
796	}
797
798	at86rf230_setup_spi_messages(lp, ctx);
799	/* tell on error handling to free ctx */
800	ctx->free = true;
801
802	ctx->buf[0] = (RG_IRQ_STATUS & CMD_REG_MASK) | CMD_REG;
803	ctx->msg.complete = at86rf230_irq_status;
804	rc = spi_async(lp->spi, &ctx->msg);
805	if (rc) {
806		at86rf230_async_error(lp, ctx, rc);
807		enable_irq(irq);
808		return IRQ_NONE;
809	}
810
811	return IRQ_HANDLED;
812}
813
814static void
815at86rf230_write_frame_complete(void *context)
816{
817	struct at86rf230_state_change *ctx = context;
818	struct at86rf230_local *lp = ctx->lp;
819
820	ctx->trx.len = 2;
821
822	if (lp->slp_tr)
823		at86rf230_slp_tr_rising_edge(lp);
824	else
825		at86rf230_async_write_reg(lp, RG_TRX_STATE, STATE_BUSY_TX, ctx,
826					  NULL);
827}
828
829static void
830at86rf230_write_frame(void *context)
831{
832	struct at86rf230_state_change *ctx = context;
833	struct at86rf230_local *lp = ctx->lp;
834	struct sk_buff *skb = lp->tx_skb;
835	u8 *buf = ctx->buf;
836	int rc;
837
838	lp->is_tx = 1;
839
840	buf[0] = CMD_FB | CMD_WRITE;
841	buf[1] = skb->len + 2;
842	memcpy(buf + 2, skb->data, skb->len);
843	ctx->trx.len = skb->len + 2;
844	ctx->msg.complete = at86rf230_write_frame_complete;
845	rc = spi_async(lp->spi, &ctx->msg);
846	if (rc) {
847		ctx->trx.len = 2;
848		at86rf230_async_error(lp, ctx, rc);
849	}
850}
851
852static void
853at86rf230_xmit_tx_on(void *context)
854{
855	struct at86rf230_state_change *ctx = context;
856	struct at86rf230_local *lp = ctx->lp;
857
858	at86rf230_async_state_change(lp, ctx, STATE_TX_ARET_ON,
859				     at86rf230_write_frame);
860}
861
862static void
863at86rf230_xmit_start(void *context)
864{
865	struct at86rf230_state_change *ctx = context;
866	struct at86rf230_local *lp = ctx->lp;
867
868	/* check if we change from off state */
869	if (lp->is_tx_from_off)
870		at86rf230_async_state_change(lp, ctx, STATE_TX_ARET_ON,
871					     at86rf230_write_frame);
872	else
873		at86rf230_async_state_change(lp, ctx, STATE_TX_ON,
874					     at86rf230_xmit_tx_on);
875}
876
877static int
878at86rf230_xmit(struct ieee802154_hw *hw, struct sk_buff *skb)
879{
880	struct at86rf230_local *lp = hw->priv;
881	struct at86rf230_state_change *ctx = &lp->tx;
882
883	lp->tx_skb = skb;
884	lp->tx_retry = 0;
885
886	/* After 5 minutes in PLL and the same frequency we run again the
887	 * calibration loops which is recommended by at86rf2xx datasheets.
888	 *
889	 * The calibration is initiate by a state change from TRX_OFF
890	 * to TX_ON, the lp->cal_timeout should be reinit by state_delay
891	 * function then to start in the next 5 minutes.
892	 */
893	if (time_is_before_jiffies(lp->cal_timeout)) {
894		lp->is_tx_from_off = true;
895		at86rf230_async_state_change(lp, ctx, STATE_TRX_OFF,
896					     at86rf230_xmit_start);
897	} else {
898		lp->is_tx_from_off = false;
899		at86rf230_xmit_start(ctx);
900	}
901
902	return 0;
903}
904
905static int
906at86rf230_ed(struct ieee802154_hw *hw, u8 *level)
907{
908	WARN_ON(!level);
909	*level = 0xbe;
910	return 0;
911}
912
913static int
914at86rf230_start(struct ieee802154_hw *hw)
915{
916	struct at86rf230_local *lp = hw->priv;
917
918	at86rf230_awake(lp);
919	enable_irq(lp->spi->irq);
920
921	return at86rf230_sync_state_change(lp, STATE_RX_AACK_ON);
922}
923
924static void
925at86rf230_stop(struct ieee802154_hw *hw)
926{
927	struct at86rf230_local *lp = hw->priv;
928	u8 csma_seed[2];
929
930	at86rf230_sync_state_change(lp, STATE_FORCE_TRX_OFF);
931
932	disable_irq(lp->spi->irq);
933
934	/* It's recommended to set random new csma_seeds before sleep state.
935	 * Makes only sense in the stop callback, not doing this inside of
936	 * at86rf230_sleep, this is also used when we don't transmit afterwards
937	 * when calling start callback again.
938	 */
939	get_random_bytes(csma_seed, ARRAY_SIZE(csma_seed));
940	at86rf230_write_subreg(lp, SR_CSMA_SEED_0, csma_seed[0]);
941	at86rf230_write_subreg(lp, SR_CSMA_SEED_1, csma_seed[1]);
942
943	at86rf230_sleep(lp);
944}
945
946static int
947at86rf23x_set_channel(struct at86rf230_local *lp, u8 page, u8 channel)
948{
949	return at86rf230_write_subreg(lp, SR_CHANNEL, channel);
950}
951
952#define AT86RF2XX_MAX_ED_LEVELS 0xF
953static const s32 at86rf233_ed_levels[AT86RF2XX_MAX_ED_LEVELS + 1] = {
954	-9400, -9200, -9000, -8800, -8600, -8400, -8200, -8000, -7800, -7600,
955	-7400, -7200, -7000, -6800, -6600, -6400,
956};
957
958static const s32 at86rf231_ed_levels[AT86RF2XX_MAX_ED_LEVELS + 1] = {
959	-9100, -8900, -8700, -8500, -8300, -8100, -7900, -7700, -7500, -7300,
960	-7100, -6900, -6700, -6500, -6300, -6100,
961};
962
963static const s32 at86rf212_ed_levels_100[AT86RF2XX_MAX_ED_LEVELS + 1] = {
964	-10000, -9800, -9600, -9400, -9200, -9000, -8800, -8600, -8400, -8200,
965	-8000, -7800, -7600, -7400, -7200, -7000,
966};
967
968static const s32 at86rf212_ed_levels_98[AT86RF2XX_MAX_ED_LEVELS + 1] = {
969	-9800, -9600, -9400, -9200, -9000, -8800, -8600, -8400, -8200, -8000,
970	-7800, -7600, -7400, -7200, -7000, -6800,
971};
972
973static inline int
974at86rf212_update_cca_ed_level(struct at86rf230_local *lp, int rssi_base_val)
975{
976	unsigned int cca_ed_thres;
977	int rc;
978
979	rc = at86rf230_read_subreg(lp, SR_CCA_ED_THRES, &cca_ed_thres);
980	if (rc < 0)
981		return rc;
982
983	switch (rssi_base_val) {
984	case -98:
985		lp->hw->phy->supported.cca_ed_levels = at86rf212_ed_levels_98;
986		lp->hw->phy->supported.cca_ed_levels_size = ARRAY_SIZE(at86rf212_ed_levels_98);
987		lp->hw->phy->cca_ed_level = at86rf212_ed_levels_98[cca_ed_thres];
988		break;
989	case -100:
990		lp->hw->phy->supported.cca_ed_levels = at86rf212_ed_levels_100;
991		lp->hw->phy->supported.cca_ed_levels_size = ARRAY_SIZE(at86rf212_ed_levels_100);
992		lp->hw->phy->cca_ed_level = at86rf212_ed_levels_100[cca_ed_thres];
993		break;
994	default:
995		WARN_ON(1);
996	}
997
998	return 0;
999}
1000
1001static int
1002at86rf212_set_channel(struct at86rf230_local *lp, u8 page, u8 channel)
1003{
1004	int rc;
1005
1006	if (channel == 0)
1007		rc = at86rf230_write_subreg(lp, SR_SUB_MODE, 0);
1008	else
1009		rc = at86rf230_write_subreg(lp, SR_SUB_MODE, 1);
1010	if (rc < 0)
1011		return rc;
1012
1013	if (page == 0) {
1014		rc = at86rf230_write_subreg(lp, SR_BPSK_QPSK, 0);
1015		lp->data->rssi_base_val = -100;
1016	} else {
1017		rc = at86rf230_write_subreg(lp, SR_BPSK_QPSK, 1);
1018		lp->data->rssi_base_val = -98;
1019	}
1020	if (rc < 0)
1021		return rc;
1022
1023	rc = at86rf212_update_cca_ed_level(lp, lp->data->rssi_base_val);
1024	if (rc < 0)
1025		return rc;
1026
1027	return at86rf230_write_subreg(lp, SR_CHANNEL, channel);
1028}
1029
1030static int
1031at86rf230_channel(struct ieee802154_hw *hw, u8 page, u8 channel)
1032{
1033	struct at86rf230_local *lp = hw->priv;
1034	int rc;
1035
1036	rc = lp->data->set_channel(lp, page, channel);
1037	/* Wait for PLL */
1038	usleep_range(lp->data->t_channel_switch,
1039		     lp->data->t_channel_switch + 10);
1040
1041	lp->cal_timeout = jiffies + AT86RF2XX_CAL_LOOP_TIMEOUT;
1042	return rc;
1043}
1044
1045static int
1046at86rf230_set_hw_addr_filt(struct ieee802154_hw *hw,
1047			   struct ieee802154_hw_addr_filt *filt,
1048			   unsigned long changed)
1049{
1050	struct at86rf230_local *lp = hw->priv;
1051
1052	if (changed & IEEE802154_AFILT_SADDR_CHANGED) {
1053		u16 addr = le16_to_cpu(filt->short_addr);
1054
1055		dev_vdbg(&lp->spi->dev, "%s called for saddr\n", __func__);
1056		__at86rf230_write(lp, RG_SHORT_ADDR_0, addr);
1057		__at86rf230_write(lp, RG_SHORT_ADDR_1, addr >> 8);
1058	}
1059
1060	if (changed & IEEE802154_AFILT_PANID_CHANGED) {
1061		u16 pan = le16_to_cpu(filt->pan_id);
1062
1063		dev_vdbg(&lp->spi->dev, "%s called for pan id\n", __func__);
1064		__at86rf230_write(lp, RG_PAN_ID_0, pan);
1065		__at86rf230_write(lp, RG_PAN_ID_1, pan >> 8);
1066	}
1067
1068	if (changed & IEEE802154_AFILT_IEEEADDR_CHANGED) {
1069		u8 i, addr[8];
1070
1071		memcpy(addr, &filt->ieee_addr, 8);
1072		dev_vdbg(&lp->spi->dev, "%s called for IEEE addr\n", __func__);
1073		for (i = 0; i < 8; i++)
1074			__at86rf230_write(lp, RG_IEEE_ADDR_0 + i, addr[i]);
1075	}
1076
1077	if (changed & IEEE802154_AFILT_PANC_CHANGED) {
1078		dev_vdbg(&lp->spi->dev, "%s called for panc change\n", __func__);
1079		if (filt->pan_coord)
1080			at86rf230_write_subreg(lp, SR_AACK_I_AM_COORD, 1);
1081		else
1082			at86rf230_write_subreg(lp, SR_AACK_I_AM_COORD, 0);
1083	}
1084
1085	return 0;
1086}
1087
1088#define AT86RF23X_MAX_TX_POWERS 0xF
1089static const s32 at86rf233_powers[AT86RF23X_MAX_TX_POWERS + 1] = {
1090	400, 370, 340, 300, 250, 200, 100, 0, -100, -200, -300, -400, -600,
1091	-800, -1200, -1700,
1092};
1093
1094static const s32 at86rf231_powers[AT86RF23X_MAX_TX_POWERS + 1] = {
1095	300, 280, 230, 180, 130, 70, 0, -100, -200, -300, -400, -500, -700,
1096	-900, -1200, -1700,
1097};
1098
1099#define AT86RF212_MAX_TX_POWERS 0x1F
1100static const s32 at86rf212_powers[AT86RF212_MAX_TX_POWERS + 1] = {
1101	500, 400, 300, 200, 100, 0, -100, -200, -300, -400, -500, -600, -700,
1102	-800, -900, -1000, -1100, -1200, -1300, -1400, -1500, -1600, -1700,
1103	-1800, -1900, -2000, -2100, -2200, -2300, -2400, -2500, -2600,
1104};
1105
1106static int
1107at86rf23x_set_txpower(struct at86rf230_local *lp, s32 mbm)
1108{
1109	u32 i;
1110
1111	for (i = 0; i < lp->hw->phy->supported.tx_powers_size; i++) {
1112		if (lp->hw->phy->supported.tx_powers[i] == mbm)
1113			return at86rf230_write_subreg(lp, SR_TX_PWR_23X, i);
1114	}
1115
1116	return -EINVAL;
1117}
1118
1119static int
1120at86rf212_set_txpower(struct at86rf230_local *lp, s32 mbm)
1121{
1122	u32 i;
1123
1124	for (i = 0; i < lp->hw->phy->supported.tx_powers_size; i++) {
1125		if (lp->hw->phy->supported.tx_powers[i] == mbm)
1126			return at86rf230_write_subreg(lp, SR_TX_PWR_212, i);
1127	}
1128
1129	return -EINVAL;
1130}
1131
1132static int
1133at86rf230_set_txpower(struct ieee802154_hw *hw, s32 mbm)
1134{
1135	struct at86rf230_local *lp = hw->priv;
1136
1137	return lp->data->set_txpower(lp, mbm);
1138}
1139
1140static int
1141at86rf230_set_lbt(struct ieee802154_hw *hw, bool on)
1142{
1143	struct at86rf230_local *lp = hw->priv;
1144
1145	return at86rf230_write_subreg(lp, SR_CSMA_LBT_MODE, on);
1146}
1147
1148static int
1149at86rf230_set_cca_mode(struct ieee802154_hw *hw,
1150		       const struct wpan_phy_cca *cca)
1151{
1152	struct at86rf230_local *lp = hw->priv;
1153	u8 val;
1154
1155	/* mapping 802.15.4 to driver spec */
1156	switch (cca->mode) {
1157	case NL802154_CCA_ENERGY:
1158		val = 1;
1159		break;
1160	case NL802154_CCA_CARRIER:
1161		val = 2;
1162		break;
1163	case NL802154_CCA_ENERGY_CARRIER:
1164		switch (cca->opt) {
1165		case NL802154_CCA_OPT_ENERGY_CARRIER_AND:
1166			val = 3;
1167			break;
1168		case NL802154_CCA_OPT_ENERGY_CARRIER_OR:
1169			val = 0;
1170			break;
1171		default:
1172			return -EINVAL;
1173		}
1174		break;
1175	default:
1176		return -EINVAL;
1177	}
1178
1179	return at86rf230_write_subreg(lp, SR_CCA_MODE, val);
1180}
1181
1182static int
1183at86rf230_set_cca_ed_level(struct ieee802154_hw *hw, s32 mbm)
1184{
1185	struct at86rf230_local *lp = hw->priv;
1186	u32 i;
1187
1188	for (i = 0; i < hw->phy->supported.cca_ed_levels_size; i++) {
1189		if (hw->phy->supported.cca_ed_levels[i] == mbm)
1190			return at86rf230_write_subreg(lp, SR_CCA_ED_THRES, i);
1191	}
1192
1193	return -EINVAL;
1194}
1195
1196static int
1197at86rf230_set_csma_params(struct ieee802154_hw *hw, u8 min_be, u8 max_be,
1198			  u8 retries)
1199{
1200	struct at86rf230_local *lp = hw->priv;
1201	int rc;
1202
1203	rc = at86rf230_write_subreg(lp, SR_MIN_BE, min_be);
1204	if (rc)
1205		return rc;
1206
1207	rc = at86rf230_write_subreg(lp, SR_MAX_BE, max_be);
1208	if (rc)
1209		return rc;
1210
1211	return at86rf230_write_subreg(lp, SR_MAX_CSMA_RETRIES, retries);
1212}
1213
1214static int
1215at86rf230_set_frame_retries(struct ieee802154_hw *hw, s8 retries)
1216{
1217	struct at86rf230_local *lp = hw->priv;
1218
1219	return at86rf230_write_subreg(lp, SR_MAX_FRAME_RETRIES, retries);
1220}
1221
1222static int
1223at86rf230_set_promiscuous_mode(struct ieee802154_hw *hw, const bool on)
1224{
1225	struct at86rf230_local *lp = hw->priv;
1226	int rc;
1227
1228	if (on) {
1229		rc = at86rf230_write_subreg(lp, SR_AACK_DIS_ACK, 1);
1230		if (rc < 0)
1231			return rc;
1232
1233		rc = at86rf230_write_subreg(lp, SR_AACK_PROM_MODE, 1);
1234		if (rc < 0)
1235			return rc;
1236	} else {
1237		rc = at86rf230_write_subreg(lp, SR_AACK_PROM_MODE, 0);
1238		if (rc < 0)
1239			return rc;
1240
1241		rc = at86rf230_write_subreg(lp, SR_AACK_DIS_ACK, 0);
1242		if (rc < 0)
1243			return rc;
1244	}
1245
1246	return 0;
1247}
1248
1249static const struct ieee802154_ops at86rf230_ops = {
1250	.owner = THIS_MODULE,
1251	.xmit_async = at86rf230_xmit,
1252	.ed = at86rf230_ed,
1253	.set_channel = at86rf230_channel,
1254	.start = at86rf230_start,
1255	.stop = at86rf230_stop,
1256	.set_hw_addr_filt = at86rf230_set_hw_addr_filt,
1257	.set_txpower = at86rf230_set_txpower,
1258	.set_lbt = at86rf230_set_lbt,
1259	.set_cca_mode = at86rf230_set_cca_mode,
1260	.set_cca_ed_level = at86rf230_set_cca_ed_level,
1261	.set_csma_params = at86rf230_set_csma_params,
1262	.set_frame_retries = at86rf230_set_frame_retries,
1263	.set_promiscuous_mode = at86rf230_set_promiscuous_mode,
1264};
1265
1266static struct at86rf2xx_chip_data at86rf233_data = {
1267	.t_sleep_cycle = 330,
1268	.t_channel_switch = 11,
1269	.t_reset_to_off = 26,
1270	.t_off_to_aack = 80,
1271	.t_off_to_tx_on = 80,
1272	.t_off_to_sleep = 35,
1273	.t_sleep_to_off = 1000,
1274	.t_frame = 4096,
1275	.t_p_ack = 545,
1276	.rssi_base_val = -94,
1277	.set_channel = at86rf23x_set_channel,
1278	.set_txpower = at86rf23x_set_txpower,
1279};
1280
1281static struct at86rf2xx_chip_data at86rf231_data = {
1282	.t_sleep_cycle = 330,
1283	.t_channel_switch = 24,
1284	.t_reset_to_off = 37,
1285	.t_off_to_aack = 110,
1286	.t_off_to_tx_on = 110,
1287	.t_off_to_sleep = 35,
1288	.t_sleep_to_off = 1000,
1289	.t_frame = 4096,
1290	.t_p_ack = 545,
1291	.rssi_base_val = -91,
1292	.set_channel = at86rf23x_set_channel,
1293	.set_txpower = at86rf23x_set_txpower,
1294};
1295
1296static struct at86rf2xx_chip_data at86rf212_data = {
1297	.t_sleep_cycle = 330,
1298	.t_channel_switch = 11,
1299	.t_reset_to_off = 26,
1300	.t_off_to_aack = 200,
1301	.t_off_to_tx_on = 200,
1302	.t_off_to_sleep = 35,
1303	.t_sleep_to_off = 1000,
1304	.t_frame = 4096,
1305	.t_p_ack = 545,
1306	.rssi_base_val = -100,
1307	.set_channel = at86rf212_set_channel,
1308	.set_txpower = at86rf212_set_txpower,
1309};
1310
1311static int at86rf230_hw_init(struct at86rf230_local *lp, u8 xtal_trim)
1312{
1313	int rc, irq_type, irq_pol = IRQ_ACTIVE_HIGH;
1314	unsigned int dvdd;
1315	u8 csma_seed[2];
1316
1317	rc = at86rf230_sync_state_change(lp, STATE_FORCE_TRX_OFF);
1318	if (rc)
1319		return rc;
1320
1321	irq_type = irq_get_trigger_type(lp->spi->irq);
1322	if (irq_type == IRQ_TYPE_EDGE_FALLING ||
1323	    irq_type == IRQ_TYPE_LEVEL_LOW)
1324		irq_pol = IRQ_ACTIVE_LOW;
1325
1326	rc = at86rf230_write_subreg(lp, SR_IRQ_POLARITY, irq_pol);
1327	if (rc)
1328		return rc;
1329
1330	rc = at86rf230_write_subreg(lp, SR_RX_SAFE_MODE, 1);
1331	if (rc)
1332		return rc;
1333
1334	rc = at86rf230_write_subreg(lp, SR_IRQ_MASK, IRQ_TRX_END);
1335	if (rc)
1336		return rc;
1337
1338	/* reset values differs in at86rf231 and at86rf233 */
1339	rc = at86rf230_write_subreg(lp, SR_IRQ_MASK_MODE, 0);
1340	if (rc)
1341		return rc;
1342
1343	get_random_bytes(csma_seed, ARRAY_SIZE(csma_seed));
1344	rc = at86rf230_write_subreg(lp, SR_CSMA_SEED_0, csma_seed[0]);
1345	if (rc)
1346		return rc;
1347	rc = at86rf230_write_subreg(lp, SR_CSMA_SEED_1, csma_seed[1]);
1348	if (rc)
1349		return rc;
1350
1351	/* CLKM changes are applied immediately */
1352	rc = at86rf230_write_subreg(lp, SR_CLKM_SHA_SEL, 0x00);
1353	if (rc)
1354		return rc;
1355
1356	/* Turn CLKM Off */
1357	rc = at86rf230_write_subreg(lp, SR_CLKM_CTRL, 0x00);
1358	if (rc)
1359		return rc;
1360	/* Wait the next SLEEP cycle */
1361	usleep_range(lp->data->t_sleep_cycle,
1362		     lp->data->t_sleep_cycle + 100);
1363
1364	/* xtal_trim value is calculated by:
1365	 * CL = 0.5 * (CX + CTRIM + CPAR)
1366	 *
1367	 * whereas:
1368	 * CL = capacitor of used crystal
1369	 * CX = connected capacitors at xtal pins
1370	 * CPAR = in all at86rf2xx datasheets this is a constant value 3 pF,
1371	 *	  but this is different on each board setup. You need to fine
1372	 *	  tuning this value via CTRIM.
1373	 * CTRIM = variable capacitor setting. Resolution is 0.3 pF range is
1374	 *	   0 pF upto 4.5 pF.
1375	 *
1376	 * Examples:
1377	 * atben transceiver:
1378	 *
1379	 * CL = 8 pF
1380	 * CX = 12 pF
1381	 * CPAR = 3 pF (We assume the magic constant from datasheet)
1382	 * CTRIM = 0.9 pF
1383	 *
1384	 * (12+0.9+3)/2 = 7.95 which is nearly at 8 pF
1385	 *
1386	 * xtal_trim = 0x3
1387	 *
1388	 * openlabs transceiver:
1389	 *
1390	 * CL = 16 pF
1391	 * CX = 22 pF
1392	 * CPAR = 3 pF (We assume the magic constant from datasheet)
1393	 * CTRIM = 4.5 pF
1394	 *
1395	 * (22+4.5+3)/2 = 14.75 which is the nearest value to 16 pF
1396	 *
1397	 * xtal_trim = 0xf
1398	 */
1399	rc = at86rf230_write_subreg(lp, SR_XTAL_TRIM, xtal_trim);
1400	if (rc)
1401		return rc;
1402
1403	rc = at86rf230_read_subreg(lp, SR_DVDD_OK, &dvdd);
1404	if (rc)
1405		return rc;
1406	if (!dvdd) {
1407		dev_err(&lp->spi->dev, "DVDD error\n");
1408		return -EINVAL;
1409	}
1410
1411	/* Force setting slotted operation bit to 0. Sometimes the atben
1412	 * sets this bit and I don't know why. We set this always force
1413	 * to zero while probing.
1414	 */
1415	return at86rf230_write_subreg(lp, SR_SLOTTED_OPERATION, 0);
1416}
1417
1418static int
1419at86rf230_detect_device(struct at86rf230_local *lp)
1420{
1421	unsigned int part, version, val;
1422	u16 man_id = 0;
1423	const char *chip;
1424	int rc;
1425
1426	rc = __at86rf230_read(lp, RG_MAN_ID_0, &val);
1427	if (rc)
1428		return rc;
1429	man_id |= val;
1430
1431	rc = __at86rf230_read(lp, RG_MAN_ID_1, &val);
1432	if (rc)
1433		return rc;
1434	man_id |= (val << 8);
1435
1436	rc = __at86rf230_read(lp, RG_PART_NUM, &part);
1437	if (rc)
1438		return rc;
1439
1440	rc = __at86rf230_read(lp, RG_VERSION_NUM, &version);
1441	if (rc)
1442		return rc;
1443
1444	if (man_id != 0x001f) {
1445		dev_err(&lp->spi->dev, "Non-Atmel dev found (MAN_ID %02x %02x)\n",
1446			man_id >> 8, man_id & 0xFF);
1447		return -EINVAL;
1448	}
1449
1450	lp->hw->flags = IEEE802154_HW_TX_OMIT_CKSUM |
1451			IEEE802154_HW_CSMA_PARAMS |
1452			IEEE802154_HW_FRAME_RETRIES | IEEE802154_HW_AFILT |
1453			IEEE802154_HW_PROMISCUOUS;
1454
1455	lp->hw->phy->flags = WPAN_PHY_FLAG_TXPOWER |
1456			     WPAN_PHY_FLAG_CCA_ED_LEVEL |
1457			     WPAN_PHY_FLAG_CCA_MODE;
1458
1459	lp->hw->phy->supported.cca_modes = BIT(NL802154_CCA_ENERGY) |
1460		BIT(NL802154_CCA_CARRIER) | BIT(NL802154_CCA_ENERGY_CARRIER);
1461	lp->hw->phy->supported.cca_opts = BIT(NL802154_CCA_OPT_ENERGY_CARRIER_AND) |
1462		BIT(NL802154_CCA_OPT_ENERGY_CARRIER_OR);
1463
1464	lp->hw->phy->cca.mode = NL802154_CCA_ENERGY;
1465
1466	switch (part) {
1467	case 2:
1468		chip = "at86rf230";
1469		rc = -ENOTSUPP;
1470		goto not_supp;
1471	case 3:
1472		chip = "at86rf231";
1473		lp->data = &at86rf231_data;
1474		lp->hw->phy->supported.channels[0] = 0x7FFF800;
1475		lp->hw->phy->current_channel = 11;
1476		lp->hw->phy->supported.tx_powers = at86rf231_powers;
1477		lp->hw->phy->supported.tx_powers_size = ARRAY_SIZE(at86rf231_powers);
1478		lp->hw->phy->supported.cca_ed_levels = at86rf231_ed_levels;
1479		lp->hw->phy->supported.cca_ed_levels_size = ARRAY_SIZE(at86rf231_ed_levels);
1480		break;
1481	case 7:
1482		chip = "at86rf212";
1483		lp->data = &at86rf212_data;
1484		lp->hw->flags |= IEEE802154_HW_LBT;
1485		lp->hw->phy->supported.channels[0] = 0x00007FF;
1486		lp->hw->phy->supported.channels[2] = 0x00007FF;
1487		lp->hw->phy->current_channel = 5;
1488		lp->hw->phy->supported.lbt = NL802154_SUPPORTED_BOOL_BOTH;
1489		lp->hw->phy->supported.tx_powers = at86rf212_powers;
1490		lp->hw->phy->supported.tx_powers_size = ARRAY_SIZE(at86rf212_powers);
1491		lp->hw->phy->supported.cca_ed_levels = at86rf212_ed_levels_100;
1492		lp->hw->phy->supported.cca_ed_levels_size = ARRAY_SIZE(at86rf212_ed_levels_100);
1493		break;
1494	case 11:
1495		chip = "at86rf233";
1496		lp->data = &at86rf233_data;
1497		lp->hw->phy->supported.channels[0] = 0x7FFF800;
1498		lp->hw->phy->current_channel = 13;
1499		lp->hw->phy->supported.tx_powers = at86rf233_powers;
1500		lp->hw->phy->supported.tx_powers_size = ARRAY_SIZE(at86rf233_powers);
1501		lp->hw->phy->supported.cca_ed_levels = at86rf233_ed_levels;
1502		lp->hw->phy->supported.cca_ed_levels_size = ARRAY_SIZE(at86rf233_ed_levels);
1503		break;
1504	default:
1505		chip = "unknown";
1506		rc = -ENOTSUPP;
1507		goto not_supp;
1508	}
1509
1510	lp->hw->phy->cca_ed_level = lp->hw->phy->supported.cca_ed_levels[7];
1511	lp->hw->phy->transmit_power = lp->hw->phy->supported.tx_powers[0];
1512
1513not_supp:
1514	dev_info(&lp->spi->dev, "Detected %s chip version %d\n", chip, version);
1515
1516	return rc;
1517}
1518
1519static int at86rf230_probe(struct spi_device *spi)
1520{
1521	struct ieee802154_hw *hw;
1522	struct at86rf230_local *lp;
1523	struct gpio_desc *slp_tr;
1524	struct gpio_desc *rstn;
1525	unsigned int status;
1526	int rc, irq_type;
1527	u8 xtal_trim;
1528
1529	if (!spi->irq) {
1530		dev_err(&spi->dev, "no IRQ specified\n");
1531		return -EINVAL;
1532	}
1533
1534	rc = device_property_read_u8(&spi->dev, "xtal-trim", &xtal_trim);
1535	if (rc < 0) {
1536		if (rc != -EINVAL) {
1537			dev_err(&spi->dev,
1538				"failed to parse xtal-trim: %d\n", rc);
1539			return rc;
1540		}
1541		xtal_trim = 0;
1542	}
1543
1544	rstn = devm_gpiod_get_optional(&spi->dev, "reset", GPIOD_OUT_LOW);
1545	rc = PTR_ERR_OR_ZERO(rstn);
1546	if (rc)
1547		return rc;
1548
1549	gpiod_set_consumer_name(rstn, "rstn");
1550
1551	slp_tr = devm_gpiod_get_optional(&spi->dev, "sleep", GPIOD_OUT_LOW);
1552	rc = PTR_ERR_OR_ZERO(slp_tr);
1553	if (rc)
1554		return rc;
1555
1556	gpiod_set_consumer_name(slp_tr, "slp_tr");
1557
1558	/* Reset */
1559	if (rstn) {
1560		udelay(1);
1561		gpiod_set_value_cansleep(rstn, 1);
1562		udelay(1);
1563		gpiod_set_value_cansleep(rstn, 0);
1564		usleep_range(120, 240);
1565	}
1566
1567	hw = ieee802154_alloc_hw(sizeof(*lp), &at86rf230_ops);
1568	if (!hw)
1569		return -ENOMEM;
1570
1571	lp = hw->priv;
1572	lp->hw = hw;
1573	lp->spi = spi;
1574	lp->slp_tr = slp_tr;
1575	hw->parent = &spi->dev;
1576	ieee802154_random_extended_addr(&hw->phy->perm_extended_addr);
1577
1578	lp->regmap = devm_regmap_init_spi(spi, &at86rf230_regmap_spi_config);
1579	if (IS_ERR(lp->regmap)) {
1580		rc = PTR_ERR(lp->regmap);
1581		dev_err(&spi->dev, "Failed to allocate register map: %d\n",
1582			rc);
1583		goto free_dev;
1584	}
1585
1586	at86rf230_setup_spi_messages(lp, &lp->state);
1587	at86rf230_setup_spi_messages(lp, &lp->tx);
1588
1589	rc = at86rf230_detect_device(lp);
1590	if (rc < 0)
1591		goto free_dev;
1592
1593	init_completion(&lp->state_complete);
1594
1595	spi_set_drvdata(spi, lp);
1596
1597	rc = at86rf230_hw_init(lp, xtal_trim);
1598	if (rc)
1599		goto free_dev;
1600
1601	/* Read irq status register to reset irq line */
1602	rc = at86rf230_read_subreg(lp, RG_IRQ_STATUS, 0xff, 0, &status);
1603	if (rc)
1604		goto free_dev;
1605
1606	irq_type = irq_get_trigger_type(spi->irq);
1607	if (!irq_type)
1608		irq_type = IRQF_TRIGGER_HIGH;
1609
1610	rc = devm_request_irq(&spi->dev, spi->irq, at86rf230_isr,
1611			      IRQF_SHARED | irq_type, dev_name(&spi->dev), lp);
1612	if (rc)
1613		goto free_dev;
1614
1615	/* disable_irq by default and wait for starting hardware */
1616	disable_irq(spi->irq);
1617
1618	/* going into sleep by default */
1619	at86rf230_sleep(lp);
1620
1621	rc = ieee802154_register_hw(lp->hw);
1622	if (rc)
1623		goto free_dev;
1624
1625	return rc;
1626
1627free_dev:
1628	ieee802154_free_hw(lp->hw);
1629
1630	return rc;
1631}
1632
1633static void at86rf230_remove(struct spi_device *spi)
1634{
1635	struct at86rf230_local *lp = spi_get_drvdata(spi);
1636
1637	/* mask all at86rf230 irq's */
1638	at86rf230_write_subreg(lp, SR_IRQ_MASK, 0);
1639	ieee802154_unregister_hw(lp->hw);
1640	ieee802154_free_hw(lp->hw);
1641	dev_dbg(&spi->dev, "unregistered at86rf230\n");
1642}
1643
1644static const struct of_device_id at86rf230_of_match[] = {
1645	{ .compatible = "atmel,at86rf230", },
1646	{ .compatible = "atmel,at86rf231", },
1647	{ .compatible = "atmel,at86rf233", },
1648	{ .compatible = "atmel,at86rf212", },
1649	{ },
1650};
1651MODULE_DEVICE_TABLE(of, at86rf230_of_match);
1652
1653static const struct spi_device_id at86rf230_device_id[] = {
1654	{ .name = "at86rf230", },
1655	{ .name = "at86rf231", },
1656	{ .name = "at86rf233", },
1657	{ .name = "at86rf212", },
1658	{ },
1659};
1660MODULE_DEVICE_TABLE(spi, at86rf230_device_id);
1661
1662static struct spi_driver at86rf230_driver = {
1663	.id_table = at86rf230_device_id,
1664	.driver = {
1665		.of_match_table = at86rf230_of_match,
1666		.name	= "at86rf230",
1667	},
1668	.probe      = at86rf230_probe,
1669	.remove     = at86rf230_remove,
1670};
1671
1672module_spi_driver(at86rf230_driver);
1673
1674MODULE_DESCRIPTION("AT86RF230 Transceiver Driver");
1675MODULE_LICENSE("GPL v2");
1676