1// SPDX-License-Identifier: GPL-2.0-or-later
2/******************************************************************************
3 *
4 *	(C)Copyright 1998,1999 SysKonnect,
5 *	a business unit of Schneider & Koch & Co. Datensysteme GmbH.
6 *
7 *	See the file "skfddi.c" for further information.
8 *
9 *	The information in this file is provided "AS IS" without warranty.
10 *
11 ******************************************************************************/
12
13/*
14	PCM
15	Physical Connection Management
16*/
17
18/*
19 * Hardware independent state machine implemantation
20 * The following external SMT functions are referenced :
21 *
22 * 		queue_event()
23 * 		smt_timer_start()
24 * 		smt_timer_stop()
25 *
26 * 	The following external HW dependent functions are referenced :
27 * 		sm_pm_control()
28 *		sm_ph_linestate()
29 *
30 * 	The following HW dependent events are required :
31 *		PC_QLS
32 *		PC_ILS
33 *		PC_HLS
34 *		PC_MLS
35 *		PC_NSE
36 *		PC_LEM
37 *
38 */
39
40
41#include "h/types.h"
42#include "h/fddi.h"
43#include "h/smc.h"
44#include "h/supern_2.h"
45#define KERNEL
46#include "h/smtstate.h"
47
48#ifdef	FDDI_MIB
49extern int snmp_fddi_trap(
50#ifdef	ANSIC
51struct s_smc	* smc, int  type, int  index
52#endif
53);
54#endif
55#ifdef	CONCENTRATOR
56extern int plc_is_installed(
57#ifdef	ANSIC
58struct s_smc *smc ,
59int p
60#endif
61) ;
62#endif
63/*
64 * FSM Macros
65 */
66#define AFLAG		(0x20)
67#define GO_STATE(x)	(mib->fddiPORTPCMState = (x)|AFLAG)
68#define ACTIONS_DONE()	(mib->fddiPORTPCMState &= ~AFLAG)
69#define ACTIONS(x)	(x|AFLAG)
70
71/*
72 * PCM states
73 */
74#define PC0_OFF			0
75#define PC1_BREAK		1
76#define PC2_TRACE		2
77#define PC3_CONNECT		3
78#define PC4_NEXT		4
79#define PC5_SIGNAL		5
80#define PC6_JOIN		6
81#define PC7_VERIFY		7
82#define PC8_ACTIVE		8
83#define PC9_MAINT		9
84
85/*
86 * symbolic state names
87 */
88static const char * const pcm_states[] =  {
89	"PC0_OFF","PC1_BREAK","PC2_TRACE","PC3_CONNECT","PC4_NEXT",
90	"PC5_SIGNAL","PC6_JOIN","PC7_VERIFY","PC8_ACTIVE","PC9_MAINT"
91} ;
92
93/*
94 * symbolic event names
95 */
96static const char * const pcm_events[] = {
97	"NONE","PC_START","PC_STOP","PC_LOOP","PC_JOIN","PC_SIGNAL",
98	"PC_REJECT","PC_MAINT","PC_TRACE","PC_PDR",
99	"PC_ENABLE","PC_DISABLE",
100	"PC_QLS","PC_ILS","PC_MLS","PC_HLS","PC_LS_PDR","PC_LS_NONE",
101	"PC_TIMEOUT_TB_MAX","PC_TIMEOUT_TB_MIN",
102	"PC_TIMEOUT_C_MIN","PC_TIMEOUT_T_OUT",
103	"PC_TIMEOUT_TL_MIN","PC_TIMEOUT_T_NEXT","PC_TIMEOUT_LCT",
104	"PC_NSE","PC_LEM"
105} ;
106
107#ifdef	MOT_ELM
108/*
109 * PCL-S control register
110 * this register in the PLC-S controls the scrambling parameters
111 */
112#define PLCS_CONTROL_C_U	0
113#define PLCS_CONTROL_C_S	(PL_C_SDOFF_ENABLE | PL_C_SDON_ENABLE | \
114				 PL_C_CIPHER_ENABLE)
115#define	PLCS_FASSERT_U		0
116#define	PLCS_FASSERT_S		0xFd76	/* 52.0 us */
117#define	PLCS_FDEASSERT_U	0
118#define	PLCS_FDEASSERT_S	0
119#else	/* nMOT_ELM */
120/*
121 * PCL-S control register
122 * this register in the PLC-S controls the scrambling parameters
123 * can be patched for ANSI compliance if standard changes
124 */
125static const u_char plcs_control_c_u[17] = "PLC_CNTRL_C_U=\0\0" ;
126static const u_char plcs_control_c_s[17] = "PLC_CNTRL_C_S=\01\02" ;
127
128#define PLCS_CONTROL_C_U (plcs_control_c_u[14] | (plcs_control_c_u[15]<<8))
129#define PLCS_CONTROL_C_S (plcs_control_c_s[14] | (plcs_control_c_s[15]<<8))
130#endif	/* nMOT_ELM */
131
132/*
133 * external vars
134 */
135/* struct definition see 'cmtdef.h' (also used by CFM) */
136
137#define PS_OFF		0
138#define PS_BIT3		1
139#define PS_BIT4		2
140#define PS_BIT7		3
141#define PS_LCT		4
142#define PS_BIT8		5
143#define PS_JOIN		6
144#define PS_ACTIVE	7
145
146#define LCT_LEM_MAX	255
147
148/*
149 * PLC timing parameter
150 */
151
152#define PLC_MS(m)	((int)((0x10000L-(m*100000L/2048))))
153#define SLOW_TL_MIN	PLC_MS(6)
154#define SLOW_C_MIN	PLC_MS(10)
155
156static	const struct plt {
157	int	timer ;			/* relative plc timer address */
158	int	para ;			/* default timing parameters */
159} pltm[] = {
160	{ PL_C_MIN, SLOW_C_MIN },	/* min t. to remain Connect State */
161	{ PL_TL_MIN, SLOW_TL_MIN },	/* min t. to transmit a Line State */
162	{ PL_TB_MIN, TP_TB_MIN },	/* min break time */
163	{ PL_T_OUT, TP_T_OUT },		/* Signaling timeout */
164	{ PL_LC_LENGTH, TP_LC_LENGTH },	/* Link Confidence Test Time */
165	{ PL_T_SCRUB, TP_T_SCRUB },	/* Scrub Time == MAC TVX time ! */
166	{ PL_NS_MAX, TP_NS_MAX },	/* max t. that noise is tolerated */
167	{ 0,0 }
168} ;
169
170/*
171 * interrupt mask
172 */
173#ifdef	SUPERNET_3
174/*
175 * Do we need the EBUF error during signaling, too, to detect SUPERNET_3
176 * PLL bug?
177 */
178static const int plc_imsk_na = PL_PCM_CODE | PL_TRACE_PROP | PL_PCM_BREAK |
179			PL_PCM_ENABLED | PL_SELF_TEST | PL_EBUF_ERR;
180#else	/* SUPERNET_3 */
181/*
182 * We do NOT need the elasticity buffer error during signaling.
183 */
184static int plc_imsk_na = PL_PCM_CODE | PL_TRACE_PROP | PL_PCM_BREAK |
185			PL_PCM_ENABLED | PL_SELF_TEST ;
186#endif	/* SUPERNET_3 */
187static const int plc_imsk_act = PL_PCM_CODE | PL_TRACE_PROP | PL_PCM_BREAK |
188			PL_PCM_ENABLED | PL_SELF_TEST | PL_EBUF_ERR;
189
190/* internal functions */
191static void pcm_fsm(struct s_smc *smc, struct s_phy *phy, int cmd);
192static void pc_rcode_actions(struct s_smc *smc, int bit, struct s_phy *phy);
193static void pc_tcode_actions(struct s_smc *smc, const int bit, struct s_phy *phy);
194static void reset_lem_struct(struct s_phy *phy);
195static void plc_init(struct s_smc *smc, int p);
196static void sm_ph_lem_start(struct s_smc *smc, int np, int threshold);
197static void sm_ph_lem_stop(struct s_smc *smc, int np);
198static void sm_ph_linestate(struct s_smc *smc, int phy, int ls);
199static void real_init_plc(struct s_smc *smc);
200
201/*
202 * SMT timer interface
203 *      start PCM timer 0
204 */
205static void start_pcm_timer0(struct s_smc *smc, u_long value, int event,
206			     struct s_phy *phy)
207{
208	phy->timer0_exp = FALSE ;       /* clear timer event flag */
209	smt_timer_start(smc,&phy->pcm_timer0,value,
210		EV_TOKEN(EVENT_PCM+phy->np,event)) ;
211}
212/*
213 * SMT timer interface
214 *      stop PCM timer 0
215 */
216static void stop_pcm_timer0(struct s_smc *smc, struct s_phy *phy)
217{
218	if (phy->pcm_timer0.tm_active)
219		smt_timer_stop(smc,&phy->pcm_timer0) ;
220}
221
222/*
223	init PCM state machine (called by driver)
224	clear all PCM vars and flags
225*/
226void pcm_init(struct s_smc *smc)
227{
228	int		i ;
229	int		np ;
230	struct s_phy	*phy ;
231	struct fddi_mib_p	*mib ;
232
233	for (np = 0,phy = smc->y ; np < NUMPHYS ; np++,phy++) {
234		/* Indicates the type of PHY being used */
235		mib = phy->mib ;
236		mib->fddiPORTPCMState = ACTIONS(PC0_OFF) ;
237		phy->np = np ;
238		switch (smc->s.sas) {
239#ifdef	CONCENTRATOR
240		case SMT_SAS :
241			mib->fddiPORTMy_Type = (np == PS) ? TS : TM ;
242			break ;
243		case SMT_DAS :
244			mib->fddiPORTMy_Type = (np == PA) ? TA :
245					(np == PB) ? TB : TM ;
246			break ;
247		case SMT_NAC :
248			mib->fddiPORTMy_Type = TM ;
249			break;
250#else
251		case SMT_SAS :
252			mib->fddiPORTMy_Type = (np == PS) ? TS : TNONE ;
253			mib->fddiPORTHardwarePresent = (np == PS) ? TRUE :
254					FALSE ;
255#ifndef	SUPERNET_3
256			smc->y[PA].mib->fddiPORTPCMState = PC0_OFF ;
257#else
258			smc->y[PB].mib->fddiPORTPCMState = PC0_OFF ;
259#endif
260			break ;
261		case SMT_DAS :
262			mib->fddiPORTMy_Type = (np == PB) ? TB : TA ;
263			break ;
264#endif
265		}
266		/*
267		 * set PMD-type
268		 */
269		phy->pmd_scramble = 0 ;
270		switch (phy->pmd_type[PMD_SK_PMD]) {
271		case 'P' :
272			mib->fddiPORTPMDClass = MIB_PMDCLASS_MULTI ;
273			break ;
274		case 'L' :
275			mib->fddiPORTPMDClass = MIB_PMDCLASS_LCF ;
276			break ;
277		case 'D' :
278			mib->fddiPORTPMDClass = MIB_PMDCLASS_TP ;
279			break ;
280		case 'S' :
281			mib->fddiPORTPMDClass = MIB_PMDCLASS_TP ;
282			phy->pmd_scramble = TRUE ;
283			break ;
284		case 'U' :
285			mib->fddiPORTPMDClass = MIB_PMDCLASS_TP ;
286			phy->pmd_scramble = TRUE ;
287			break ;
288		case '1' :
289			mib->fddiPORTPMDClass = MIB_PMDCLASS_SINGLE1 ;
290			break ;
291		case '2' :
292			mib->fddiPORTPMDClass = MIB_PMDCLASS_SINGLE2 ;
293			break ;
294		case '3' :
295			mib->fddiPORTPMDClass = MIB_PMDCLASS_SINGLE2 ;
296			break ;
297		case '4' :
298			mib->fddiPORTPMDClass = MIB_PMDCLASS_SINGLE1 ;
299			break ;
300		case 'H' :
301			mib->fddiPORTPMDClass = MIB_PMDCLASS_UNKNOWN ;
302			break ;
303		case 'I' :
304			mib->fddiPORTPMDClass = MIB_PMDCLASS_TP ;
305			break ;
306		case 'G' :
307			mib->fddiPORTPMDClass = MIB_PMDCLASS_TP ;
308			break ;
309		default:
310			mib->fddiPORTPMDClass = MIB_PMDCLASS_UNKNOWN ;
311			break ;
312		}
313		/*
314		 * A and B port can be on primary and secondary path
315		 */
316		switch (mib->fddiPORTMy_Type) {
317		case TA :
318			mib->fddiPORTAvailablePaths |= MIB_PATH_S ;
319			mib->fddiPORTRequestedPaths[1] = MIB_P_PATH_LOCAL ;
320			mib->fddiPORTRequestedPaths[2] =
321				MIB_P_PATH_LOCAL |
322				MIB_P_PATH_CON_ALTER |
323				MIB_P_PATH_SEC_PREFER ;
324			mib->fddiPORTRequestedPaths[3] =
325				MIB_P_PATH_LOCAL |
326				MIB_P_PATH_CON_ALTER |
327				MIB_P_PATH_SEC_PREFER |
328				MIB_P_PATH_THRU ;
329			break ;
330		case TB :
331			mib->fddiPORTAvailablePaths |= MIB_PATH_S ;
332			mib->fddiPORTRequestedPaths[1] = MIB_P_PATH_LOCAL ;
333			mib->fddiPORTRequestedPaths[2] =
334				MIB_P_PATH_LOCAL |
335				MIB_P_PATH_PRIM_PREFER ;
336			mib->fddiPORTRequestedPaths[3] =
337				MIB_P_PATH_LOCAL |
338				MIB_P_PATH_PRIM_PREFER |
339				MIB_P_PATH_CON_PREFER |
340				MIB_P_PATH_THRU ;
341			break ;
342		case TS :
343			mib->fddiPORTAvailablePaths |= MIB_PATH_S ;
344			mib->fddiPORTRequestedPaths[1] = MIB_P_PATH_LOCAL ;
345			mib->fddiPORTRequestedPaths[2] =
346				MIB_P_PATH_LOCAL |
347				MIB_P_PATH_CON_ALTER |
348				MIB_P_PATH_PRIM_PREFER ;
349			mib->fddiPORTRequestedPaths[3] =
350				MIB_P_PATH_LOCAL |
351				MIB_P_PATH_CON_ALTER |
352				MIB_P_PATH_PRIM_PREFER ;
353			break ;
354		case TM :
355			mib->fddiPORTRequestedPaths[1] = MIB_P_PATH_LOCAL ;
356			mib->fddiPORTRequestedPaths[2] =
357				MIB_P_PATH_LOCAL |
358				MIB_P_PATH_SEC_ALTER |
359				MIB_P_PATH_PRIM_ALTER ;
360			mib->fddiPORTRequestedPaths[3] = 0 ;
361			break ;
362		}
363
364		phy->pc_lem_fail = FALSE ;
365		mib->fddiPORTPCMStateX = mib->fddiPORTPCMState ;
366		mib->fddiPORTLCTFail_Ct = 0 ;
367		mib->fddiPORTBS_Flag = 0 ;
368		mib->fddiPORTCurrentPath = MIB_PATH_ISOLATED ;
369		mib->fddiPORTNeighborType = TNONE ;
370		phy->ls_flag = 0 ;
371		phy->rc_flag = 0 ;
372		phy->tc_flag = 0 ;
373		phy->td_flag = 0 ;
374		if (np >= PM)
375			phy->phy_name = '0' + np - PM ;
376		else
377			phy->phy_name = 'A' + np ;
378		phy->wc_flag = FALSE ;		/* set by SMT */
379		memset((char *)&phy->lem,0,sizeof(struct lem_counter)) ;
380		reset_lem_struct(phy) ;
381		memset((char *)&phy->plc,0,sizeof(struct s_plc)) ;
382		phy->plc.p_state = PS_OFF ;
383		for (i = 0 ; i < NUMBITS ; i++) {
384			phy->t_next[i] = 0 ;
385		}
386	}
387	real_init_plc(smc) ;
388}
389
390void init_plc(struct s_smc *smc)
391{
392	SK_UNUSED(smc) ;
393
394	/*
395	 * dummy
396	 * this is an obsolete public entry point that has to remain
397	 * for compat. It is used by various drivers.
398	 * the work is now done in real_init_plc()
399	 * which is called from pcm_init() ;
400	 */
401}
402
403static void real_init_plc(struct s_smc *smc)
404{
405	int	p ;
406
407	for (p = 0 ; p < NUMPHYS ; p++)
408		plc_init(smc,p) ;
409}
410
411static void plc_init(struct s_smc *smc, int p)
412{
413	int	i ;
414#ifndef	MOT_ELM
415	int	rev ;	/* Revision of PLC-x */
416#endif	/* MOT_ELM */
417
418	/* transit PCM state machine to MAINT state */
419	outpw(PLC(p,PL_CNTRL_B),0) ;
420	outpw(PLC(p,PL_CNTRL_B),PL_PCM_STOP) ;
421	outpw(PLC(p,PL_CNTRL_A),0) ;
422
423	/*
424	 * if PLC-S then set control register C
425	 */
426#ifndef	MOT_ELM
427	rev = inpw(PLC(p,PL_STATUS_A)) & PLC_REV_MASK ;
428	if (rev != PLC_REVISION_A)
429#endif	/* MOT_ELM */
430	{
431		if (smc->y[p].pmd_scramble) {
432			outpw(PLC(p,PL_CNTRL_C),PLCS_CONTROL_C_S) ;
433#ifdef	MOT_ELM
434			outpw(PLC(p,PL_T_FOT_ASS),PLCS_FASSERT_S) ;
435			outpw(PLC(p,PL_T_FOT_DEASS),PLCS_FDEASSERT_S) ;
436#endif	/* MOT_ELM */
437		}
438		else {
439			outpw(PLC(p,PL_CNTRL_C),PLCS_CONTROL_C_U) ;
440#ifdef	MOT_ELM
441			outpw(PLC(p,PL_T_FOT_ASS),PLCS_FASSERT_U) ;
442			outpw(PLC(p,PL_T_FOT_DEASS),PLCS_FDEASSERT_U) ;
443#endif	/* MOT_ELM */
444		}
445	}
446
447	/*
448	 * set timer register
449	 */
450	for ( i = 0 ; pltm[i].timer; i++)	/* set timer parameter reg */
451		outpw(PLC(p,pltm[i].timer),pltm[i].para) ;
452
453	(void)inpw(PLC(p,PL_INTR_EVENT)) ;	/* clear interrupt event reg */
454	plc_clear_irq(smc,p) ;
455	outpw(PLC(p,PL_INTR_MASK),plc_imsk_na); /* enable non active irq's */
456
457	/*
458	 * if PCM is configured for class s, it will NOT go to the
459	 * REMOVE state if offline (page 3-36;)
460	 * in the concentrator, all inactive PHYS always must be in
461	 * the remove state
462	 * there's no real need to use this feature at all ..
463	 */
464#ifndef	CONCENTRATOR
465	if ((smc->s.sas == SMT_SAS) && (p == PS)) {
466		outpw(PLC(p,PL_CNTRL_B),PL_CLASS_S) ;
467	}
468#endif
469}
470
471/*
472 * control PCM state machine
473 */
474static void plc_go_state(struct s_smc *smc, int p, int state)
475{
476	HW_PTR port ;
477	int val ;
478
479	SK_UNUSED(smc) ;
480
481	port = (HW_PTR) (PLC(p,PL_CNTRL_B)) ;
482	val = inpw(port) & ~(PL_PCM_CNTRL | PL_MAINT) ;
483	outpw(port,val) ;
484	outpw(port,val | state) ;
485}
486
487/*
488 * read current line state (called by ECM & PCM)
489 */
490int sm_pm_get_ls(struct s_smc *smc, int phy)
491{
492	int	state ;
493
494#ifdef	CONCENTRATOR
495	if (!plc_is_installed(smc,phy))
496		return PC_QLS;
497#endif
498
499	state = inpw(PLC(phy,PL_STATUS_A)) & PL_LINE_ST ;
500	switch(state) {
501	case PL_L_QLS:
502		state = PC_QLS ;
503		break ;
504	case PL_L_MLS:
505		state = PC_MLS ;
506		break ;
507	case PL_L_HLS:
508		state = PC_HLS ;
509		break ;
510	case PL_L_ILS4:
511	case PL_L_ILS16:
512		state = PC_ILS ;
513		break ;
514	case PL_L_ALS:
515		state = PC_LS_PDR ;
516		break ;
517	default :
518		state = PC_LS_NONE ;
519	}
520	return state;
521}
522
523static int plc_send_bits(struct s_smc *smc, struct s_phy *phy, int len)
524{
525	int np = phy->np ;		/* PHY index */
526	int	n ;
527	int	i ;
528
529	SK_UNUSED(smc) ;
530
531	/* create bit vector */
532	for (i = len-1,n = 0 ; i >= 0 ; i--) {
533		n = (n<<1) | phy->t_val[phy->bitn+i] ;
534	}
535	if (inpw(PLC(np,PL_STATUS_B)) & PL_PCM_SIGNAL) {
536#if	0
537		printf("PL_PCM_SIGNAL is set\n") ;
538#endif
539		return 1;
540	}
541	/* write bit[n] & length = 1 to regs */
542	outpw(PLC(np,PL_VECTOR_LEN),len-1) ;	/* len=nr-1 */
543	outpw(PLC(np,PL_XMIT_VECTOR),n) ;
544#ifdef	DEBUG
545#if 1
546#ifdef	DEBUG_BRD
547	if (smc->debug.d_plc & 0x80)
548#else
549	if (debug.d_plc & 0x80)
550#endif
551		printf("SIGNALING bit %d .. %d\n",phy->bitn,phy->bitn+len-1) ;
552#endif
553#endif
554	return 0;
555}
556
557/*
558 * config plc muxes
559 */
560void plc_config_mux(struct s_smc *smc, int mux)
561{
562	if (smc->s.sas != SMT_DAS)
563		return ;
564	if (mux == MUX_WRAPB) {
565		SETMASK(PLC(PA,PL_CNTRL_B),PL_CONFIG_CNTRL,PL_CONFIG_CNTRL) ;
566		SETMASK(PLC(PA,PL_CNTRL_A),PL_SC_REM_LOOP,PL_SC_REM_LOOP) ;
567	}
568	else {
569		CLEAR(PLC(PA,PL_CNTRL_B),PL_CONFIG_CNTRL) ;
570		CLEAR(PLC(PA,PL_CNTRL_A),PL_SC_REM_LOOP) ;
571	}
572	CLEAR(PLC(PB,PL_CNTRL_B),PL_CONFIG_CNTRL) ;
573	CLEAR(PLC(PB,PL_CNTRL_A),PL_SC_REM_LOOP) ;
574}
575
576/*
577	PCM state machine
578	called by dispatcher  & fddi_init() (driver)
579	do
580		display state change
581		process event
582	until SM is stable
583*/
584void pcm(struct s_smc *smc, const int np, int event)
585{
586	int	state ;
587	int	oldstate ;
588	struct s_phy	*phy ;
589	struct fddi_mib_p	*mib ;
590
591#ifndef	CONCENTRATOR
592	/*
593	 * ignore 2nd PHY if SAS
594	 */
595	if ((np != PS) && (smc->s.sas == SMT_SAS))
596		return ;
597#endif
598	phy = &smc->y[np] ;
599	mib = phy->mib ;
600	oldstate = mib->fddiPORTPCMState ;
601	do {
602		DB_PCM("PCM %c: state %s%s, event %s",
603		       phy->phy_name,
604		       mib->fddiPORTPCMState & AFLAG ? "ACTIONS " : "",
605		       pcm_states[mib->fddiPORTPCMState & ~AFLAG],
606		       pcm_events[event]);
607		state = mib->fddiPORTPCMState ;
608		pcm_fsm(smc,phy,event) ;
609		event = 0 ;
610	} while (state != mib->fddiPORTPCMState) ;
611	/*
612	 * because the PLC does the bit signaling for us,
613	 * we're always in SIGNAL state
614	 * the MIB want's to see CONNECT
615	 * we therefore fake an entry in the MIB
616	 */
617	if (state == PC5_SIGNAL)
618		mib->fddiPORTPCMStateX = PC3_CONNECT ;
619	else
620		mib->fddiPORTPCMStateX = state ;
621
622#ifndef	SLIM_SMT
623	/*
624	 * path change
625	 */
626	if (	mib->fddiPORTPCMState != oldstate &&
627		((oldstate == PC8_ACTIVE) || (mib->fddiPORTPCMState == PC8_ACTIVE))) {
628		smt_srf_event(smc,SMT_EVENT_PORT_PATH_CHANGE,
629			(int) (INDEX_PORT+ phy->np),0) ;
630	}
631#endif
632
633#ifdef FDDI_MIB
634	/* check whether a snmp-trap has to be sent */
635
636	if ( mib->fddiPORTPCMState != oldstate ) {
637		/* a real state change took place */
638		DB_SNMP ("PCM from %d to %d\n", oldstate, mib->fddiPORTPCMState);
639		if ( mib->fddiPORTPCMState == PC0_OFF ) {
640			/* send first trap */
641			snmp_fddi_trap (smc, 1, (int) mib->fddiPORTIndex );
642		} else if ( oldstate == PC0_OFF ) {
643			/* send second trap */
644			snmp_fddi_trap (smc, 2, (int) mib->fddiPORTIndex );
645		} else if ( mib->fddiPORTPCMState != PC2_TRACE &&
646			oldstate == PC8_ACTIVE ) {
647			/* send third trap */
648			snmp_fddi_trap (smc, 3, (int) mib->fddiPORTIndex );
649		} else if ( mib->fddiPORTPCMState == PC8_ACTIVE ) {
650			/* send fourth trap */
651			snmp_fddi_trap (smc, 4, (int) mib->fddiPORTIndex );
652		}
653	}
654#endif
655
656	pcm_state_change(smc,np,state) ;
657}
658
659/*
660 * PCM state machine
661 */
662static void pcm_fsm(struct s_smc *smc, struct s_phy *phy, int cmd)
663{
664	int	i ;
665	int	np = phy->np ;		/* PHY index */
666	struct s_plc	*plc ;
667	struct fddi_mib_p	*mib ;
668#ifndef	MOT_ELM
669	u_short	plc_rev ;		/* Revision of the plc */
670#endif	/* nMOT_ELM */
671
672	plc = &phy->plc ;
673	mib = phy->mib ;
674
675	/*
676	 * general transitions independent of state
677	 */
678	switch (cmd) {
679	case PC_STOP :
680		/*PC00-PC80*/
681		if (mib->fddiPORTPCMState != PC9_MAINT) {
682			GO_STATE(PC0_OFF) ;
683			AIX_EVENT(smc, (u_long) FDDI_RING_STATUS, (u_long)
684				FDDI_PORT_EVENT, (u_long) FDDI_PORT_STOP,
685				smt_get_port_event_word(smc));
686		}
687		return ;
688	case PC_START :
689		/*PC01-PC81*/
690		if (mib->fddiPORTPCMState != PC9_MAINT)
691			GO_STATE(PC1_BREAK) ;
692		return ;
693	case PC_DISABLE :
694		/* PC09-PC99 */
695		GO_STATE(PC9_MAINT) ;
696		AIX_EVENT(smc, (u_long) FDDI_RING_STATUS, (u_long)
697			FDDI_PORT_EVENT, (u_long) FDDI_PORT_DISABLED,
698			smt_get_port_event_word(smc));
699		return ;
700	case PC_TIMEOUT_LCT :
701		/* if long or extended LCT */
702		stop_pcm_timer0(smc,phy) ;
703		CLEAR(PLC(np,PL_CNTRL_B),PL_LONG) ;
704		/* end of LCT is indicate by PCM_CODE (initiate PCM event) */
705		return ;
706	}
707
708	switch(mib->fddiPORTPCMState) {
709	case ACTIONS(PC0_OFF) :
710		stop_pcm_timer0(smc,phy) ;
711		outpw(PLC(np,PL_CNTRL_A),0) ;
712		CLEAR(PLC(np,PL_CNTRL_B),PL_PC_JOIN) ;
713		CLEAR(PLC(np,PL_CNTRL_B),PL_LONG) ;
714		sm_ph_lem_stop(smc,np) ;		/* disable LEM */
715		phy->cf_loop = FALSE ;
716		phy->cf_join = FALSE ;
717		queue_event(smc,EVENT_CFM,CF_JOIN+np) ;
718		plc_go_state(smc,np,PL_PCM_STOP) ;
719		mib->fddiPORTConnectState = PCM_DISABLED ;
720		ACTIONS_DONE() ;
721		break ;
722	case PC0_OFF:
723		/*PC09*/
724		if (cmd == PC_MAINT) {
725			GO_STATE(PC9_MAINT) ;
726			break ;
727		}
728		break ;
729	case ACTIONS(PC1_BREAK) :
730		/* Stop the LCT timer if we came from Signal state */
731		stop_pcm_timer0(smc,phy) ;
732		ACTIONS_DONE() ;
733		plc_go_state(smc,np,0) ;
734		CLEAR(PLC(np,PL_CNTRL_B),PL_PC_JOIN) ;
735		CLEAR(PLC(np,PL_CNTRL_B),PL_LONG) ;
736		sm_ph_lem_stop(smc,np) ;		/* disable LEM */
737		/*
738		 * if vector is already loaded, go to OFF to clear PCM_SIGNAL
739		 */
740#if	0
741		if (inpw(PLC(np,PL_STATUS_B)) & PL_PCM_SIGNAL) {
742			plc_go_state(smc,np,PL_PCM_STOP) ;
743			/* TB_MIN ? */
744		}
745#endif
746		/*
747		 * Go to OFF state in any case.
748		 */
749		plc_go_state(smc,np,PL_PCM_STOP) ;
750
751		if (mib->fddiPORTPC_Withhold == PC_WH_NONE)
752			mib->fddiPORTConnectState = PCM_CONNECTING ;
753		phy->cf_loop = FALSE ;
754		phy->cf_join = FALSE ;
755		queue_event(smc,EVENT_CFM,CF_JOIN+np) ;
756		phy->ls_flag = FALSE ;
757		phy->pc_mode = PM_NONE ;	/* needed by CFM */
758		phy->bitn = 0 ;			/* bit signaling start bit */
759		for (i = 0 ; i < 3 ; i++)
760			pc_tcode_actions(smc,i,phy) ;
761
762		/* Set the non-active interrupt mask register */
763		outpw(PLC(np,PL_INTR_MASK),plc_imsk_na) ;
764
765		/*
766		 * If the LCT was stopped. There might be a
767		 * PCM_CODE interrupt event present.
768		 * This must be cleared.
769		 */
770		(void)inpw(PLC(np,PL_INTR_EVENT)) ;
771#ifndef	MOT_ELM
772		/* Get the plc revision for revision dependent code */
773		plc_rev = inpw(PLC(np,PL_STATUS_A)) & PLC_REV_MASK ;
774
775		if (plc_rev != PLC_REV_SN3)
776#endif	/* MOT_ELM */
777		{
778			/*
779			 * No supernet III PLC, so set Xmit verctor and
780			 * length BEFORE starting the state machine.
781			 */
782			if (plc_send_bits(smc,phy,3)) {
783				return ;
784			}
785		}
786
787		/*
788		 * Now give the Start command.
789		 * - The start command shall be done before setting the bits
790		 *   to be signaled. (In PLC-S description and PLCS in SN3.
791		 * - The start command shall be issued AFTER setting the
792		 *   XMIT vector and the XMIT length register.
793		 *
794		 * We do it exactly according this specs for the old PLC and
795		 * the new PLCS inside the SN3.
796		 * For the usual PLCS we try it the way it is done for the
797		 * old PLC and set the XMIT registers again, if the PLC is
798		 * not in SIGNAL state. This is done according to an PLCS
799		 * errata workaround.
800		 */
801
802		plc_go_state(smc,np,PL_PCM_START) ;
803
804		/*
805		 * workaround for PLC-S eng. sample errata
806		 */
807#ifdef	MOT_ELM
808		if (!(inpw(PLC(np,PL_STATUS_B)) & PL_PCM_SIGNAL))
809#else	/* nMOT_ELM */
810		if (((inpw(PLC(np,PL_STATUS_A)) & PLC_REV_MASK) !=
811			PLC_REVISION_A) &&
812			!(inpw(PLC(np,PL_STATUS_B)) & PL_PCM_SIGNAL))
813#endif	/* nMOT_ELM */
814		{
815			/*
816			 * Set register again (PLCS errata) or the first time
817			 * (new SN3 PLCS).
818			 */
819			(void) plc_send_bits(smc,phy,3) ;
820		}
821		/*
822		 * end of workaround
823		 */
824
825		GO_STATE(PC5_SIGNAL) ;
826		plc->p_state = PS_BIT3 ;
827		plc->p_bits = 3 ;
828		plc->p_start = 0 ;
829
830		break ;
831	case PC1_BREAK :
832		break ;
833	case ACTIONS(PC2_TRACE) :
834		plc_go_state(smc,np,PL_PCM_TRACE) ;
835		ACTIONS_DONE() ;
836		break ;
837	case PC2_TRACE :
838		break ;
839
840	case PC3_CONNECT :	/* these states are done by hardware */
841	case PC4_NEXT :
842		break ;
843
844	case ACTIONS(PC5_SIGNAL) :
845		ACTIONS_DONE() ;
846		fallthrough;
847	case PC5_SIGNAL :
848		if ((cmd != PC_SIGNAL) && (cmd != PC_TIMEOUT_LCT))
849			break ;
850		switch (plc->p_state) {
851		case PS_BIT3 :
852			for (i = 0 ; i <= 2 ; i++)
853				pc_rcode_actions(smc,i,phy) ;
854			pc_tcode_actions(smc,3,phy) ;
855			plc->p_state = PS_BIT4 ;
856			plc->p_bits = 1 ;
857			plc->p_start = 3 ;
858			phy->bitn = 3 ;
859			if (plc_send_bits(smc,phy,1)) {
860				return ;
861			}
862			break ;
863		case PS_BIT4 :
864			pc_rcode_actions(smc,3,phy) ;
865			for (i = 4 ; i <= 6 ; i++)
866				pc_tcode_actions(smc,i,phy) ;
867			plc->p_state = PS_BIT7 ;
868			plc->p_bits = 3 ;
869			plc->p_start = 4 ;
870			phy->bitn = 4 ;
871			if (plc_send_bits(smc,phy,3)) {
872				return ;
873			}
874			break ;
875		case PS_BIT7 :
876			for (i = 3 ; i <= 6 ; i++)
877				pc_rcode_actions(smc,i,phy) ;
878			plc->p_state = PS_LCT ;
879			plc->p_bits = 0 ;
880			plc->p_start = 7 ;
881			phy->bitn = 7 ;
882		sm_ph_lem_start(smc,np,(int)smc->s.lct_short) ; /* enable LEM */
883			/* start LCT */
884			i = inpw(PLC(np,PL_CNTRL_B)) & ~PL_PC_LOOP ;
885			outpw(PLC(np,PL_CNTRL_B),i) ;	/* must be cleared */
886			outpw(PLC(np,PL_CNTRL_B),i | PL_RLBP) ;
887			break ;
888		case PS_LCT :
889			/* check for local LCT failure */
890			pc_tcode_actions(smc,7,phy) ;
891			/*
892			 * set tval[7]
893			 */
894			plc->p_state = PS_BIT8 ;
895			plc->p_bits = 1 ;
896			plc->p_start = 7 ;
897			phy->bitn = 7 ;
898			if (plc_send_bits(smc,phy,1)) {
899				return ;
900			}
901			break ;
902		case PS_BIT8 :
903			/* check for remote LCT failure */
904			pc_rcode_actions(smc,7,phy) ;
905			if (phy->t_val[7] || phy->r_val[7]) {
906				plc_go_state(smc,np,PL_PCM_STOP) ;
907				GO_STATE(PC1_BREAK) ;
908				break ;
909			}
910			for (i = 8 ; i <= 9 ; i++)
911				pc_tcode_actions(smc,i,phy) ;
912			plc->p_state = PS_JOIN ;
913			plc->p_bits = 2 ;
914			plc->p_start = 8 ;
915			phy->bitn = 8 ;
916			if (plc_send_bits(smc,phy,2)) {
917				return ;
918			}
919			break ;
920		case PS_JOIN :
921			for (i = 8 ; i <= 9 ; i++)
922				pc_rcode_actions(smc,i,phy) ;
923			plc->p_state = PS_ACTIVE ;
924			GO_STATE(PC6_JOIN) ;
925			break ;
926		}
927		break ;
928
929	case ACTIONS(PC6_JOIN) :
930		/*
931		 * prevent mux error when going from WRAP_A to WRAP_B
932		 */
933		if (smc->s.sas == SMT_DAS && np == PB &&
934			(smc->y[PA].pc_mode == PM_TREE ||
935			 smc->y[PB].pc_mode == PM_TREE)) {
936			SETMASK(PLC(np,PL_CNTRL_A),
937				PL_SC_REM_LOOP,PL_SC_REM_LOOP) ;
938			SETMASK(PLC(np,PL_CNTRL_B),
939				PL_CONFIG_CNTRL,PL_CONFIG_CNTRL) ;
940		}
941		SETMASK(PLC(np,PL_CNTRL_B),PL_PC_JOIN,PL_PC_JOIN) ;
942		SETMASK(PLC(np,PL_CNTRL_B),PL_PC_JOIN,PL_PC_JOIN) ;
943		ACTIONS_DONE() ;
944		cmd = 0 ;
945		fallthrough;
946	case PC6_JOIN :
947		switch (plc->p_state) {
948		case PS_ACTIVE:
949			/*PC88b*/
950			if (!phy->cf_join) {
951				phy->cf_join = TRUE ;
952				queue_event(smc,EVENT_CFM,CF_JOIN+np) ;
953			}
954			if (cmd == PC_JOIN)
955				GO_STATE(PC8_ACTIVE) ;
956			/*PC82*/
957			if (cmd == PC_TRACE) {
958				GO_STATE(PC2_TRACE) ;
959				break ;
960			}
961			break ;
962		}
963		break ;
964
965	case PC7_VERIFY :
966		break ;
967
968	case ACTIONS(PC8_ACTIVE) :
969		/*
970		 * start LEM for SMT
971		 */
972		sm_ph_lem_start(smc,(int)phy->np,LCT_LEM_MAX) ;
973
974		phy->tr_flag = FALSE ;
975		mib->fddiPORTConnectState = PCM_ACTIVE ;
976
977		/* Set the active interrupt mask register */
978		outpw(PLC(np,PL_INTR_MASK),plc_imsk_act) ;
979
980		ACTIONS_DONE() ;
981		break ;
982	case PC8_ACTIVE :
983		/*PC81 is done by PL_TNE_EXPIRED irq */
984		/*PC82*/
985		if (cmd == PC_TRACE) {
986			GO_STATE(PC2_TRACE) ;
987			break ;
988		}
989		/*PC88c: is done by TRACE_PROP irq */
990
991		break ;
992	case ACTIONS(PC9_MAINT) :
993		stop_pcm_timer0(smc,phy) ;
994		CLEAR(PLC(np,PL_CNTRL_B),PL_PC_JOIN) ;
995		CLEAR(PLC(np,PL_CNTRL_B),PL_LONG) ;
996		CLEAR(PLC(np,PL_INTR_MASK),PL_LE_CTR) ;	/* disable LEM int. */
997		sm_ph_lem_stop(smc,np) ;		/* disable LEM */
998		phy->cf_loop = FALSE ;
999		phy->cf_join = FALSE ;
1000		queue_event(smc,EVENT_CFM,CF_JOIN+np) ;
1001		plc_go_state(smc,np,PL_PCM_STOP) ;
1002		mib->fddiPORTConnectState = PCM_DISABLED ;
1003		SETMASK(PLC(np,PL_CNTRL_B),PL_MAINT,PL_MAINT) ;
1004		sm_ph_linestate(smc,np,(int) MIB2LS(mib->fddiPORTMaint_LS)) ;
1005		outpw(PLC(np,PL_CNTRL_A),PL_SC_BYPASS) ;
1006		ACTIONS_DONE() ;
1007		break ;
1008	case PC9_MAINT :
1009		DB_PCMN(1, "PCM %c : MAINT", phy->phy_name);
1010		/*PC90*/
1011		if (cmd == PC_ENABLE) {
1012			GO_STATE(PC0_OFF) ;
1013			break ;
1014		}
1015		break ;
1016
1017	default:
1018		SMT_PANIC(smc,SMT_E0118, SMT_E0118_MSG) ;
1019		break ;
1020	}
1021}
1022
1023/*
1024 * force line state on a PHY output	(only in MAINT state)
1025 */
1026static void sm_ph_linestate(struct s_smc *smc, int phy, int ls)
1027{
1028	int	cntrl ;
1029
1030	SK_UNUSED(smc) ;
1031
1032	cntrl = (inpw(PLC(phy,PL_CNTRL_B)) & ~PL_MAINT_LS) |
1033						PL_PCM_STOP | PL_MAINT ;
1034	switch(ls) {
1035	case PC_QLS: 		/* Force Quiet */
1036		cntrl |= PL_M_QUI0 ;
1037		break ;
1038	case PC_MLS: 		/* Force Master */
1039		cntrl |= PL_M_MASTR ;
1040		break ;
1041	case PC_HLS: 		/* Force Halt */
1042		cntrl |= PL_M_HALT ;
1043		break ;
1044	default :
1045	case PC_ILS: 		/* Force Idle */
1046		cntrl |= PL_M_IDLE ;
1047		break ;
1048	case PC_LS_PDR: 	/* Enable repeat filter */
1049		cntrl |= PL_M_TPDR ;
1050		break ;
1051	}
1052	outpw(PLC(phy,PL_CNTRL_B),cntrl) ;
1053}
1054
1055static void reset_lem_struct(struct s_phy *phy)
1056{
1057	struct lem_counter *lem = &phy->lem ;
1058
1059	phy->mib->fddiPORTLer_Estimate = 15 ;
1060	lem->lem_float_ber = 15 * 100 ;
1061}
1062
1063/*
1064 * link error monitor
1065 */
1066static void lem_evaluate(struct s_smc *smc, struct s_phy *phy)
1067{
1068	int ber ;
1069	u_long errors ;
1070	struct lem_counter *lem = &phy->lem ;
1071	struct fddi_mib_p	*mib ;
1072	int			cond ;
1073
1074	mib = phy->mib ;
1075
1076	if (!lem->lem_on)
1077		return ;
1078
1079	errors = inpw(PLC(((int) phy->np),PL_LINK_ERR_CTR)) ;
1080	lem->lem_errors += errors ;
1081	mib->fddiPORTLem_Ct += errors ;
1082
1083	errors = lem->lem_errors ;
1084	/*
1085	 * calculation is called on a intervall of 8 seconds
1086	 *	-> this means, that one error in 8 sec. is one of 8*125*10E6
1087	 *	the same as BER = 10E-9
1088	 * Please note:
1089	 *	-> 9 errors in 8 seconds mean:
1090	 *	   BER = 9 * 10E-9  and this is
1091	 *	    < 10E-8, so the limit of 10E-8 is not reached!
1092	 */
1093
1094		if (!errors)		ber = 15 ;
1095	else	if (errors <= 9)	ber = 9 ;
1096	else	if (errors <= 99)	ber = 8 ;
1097	else	if (errors <= 999)	ber = 7 ;
1098	else	if (errors <= 9999)	ber = 6 ;
1099	else	if (errors <= 99999)	ber = 5 ;
1100	else	if (errors <= 999999)	ber = 4 ;
1101	else	if (errors <= 9999999)	ber = 3 ;
1102	else	if (errors <= 99999999)	ber = 2 ;
1103	else	if (errors <= 999999999) ber = 1 ;
1104	else				ber = 0 ;
1105
1106	/*
1107	 * weighted average
1108	 */
1109	ber *= 100 ;
1110	lem->lem_float_ber = lem->lem_float_ber * 7 + ber * 3 ;
1111	lem->lem_float_ber /= 10 ;
1112	mib->fddiPORTLer_Estimate = lem->lem_float_ber / 100 ;
1113	if (mib->fddiPORTLer_Estimate < 4) {
1114		mib->fddiPORTLer_Estimate = 4 ;
1115	}
1116
1117	if (lem->lem_errors) {
1118		DB_PCMN(1, "LEM %c :", phy->np == PB ? 'B' : 'A');
1119		DB_PCMN(1, "errors      : %ld", lem->lem_errors);
1120		DB_PCMN(1, "sum_errors  : %ld", mib->fddiPORTLem_Ct);
1121		DB_PCMN(1, "current BER : 10E-%d", ber / 100);
1122		DB_PCMN(1, "float BER   : 10E-(%d/100)", lem->lem_float_ber);
1123		DB_PCMN(1, "avg. BER    : 10E-%d", mib->fddiPORTLer_Estimate);
1124	}
1125
1126	lem->lem_errors = 0L ;
1127
1128#ifndef	SLIM_SMT
1129	cond = (mib->fddiPORTLer_Estimate <= mib->fddiPORTLer_Alarm) ?
1130		TRUE : FALSE ;
1131#ifdef	SMT_EXT_CUTOFF
1132	smt_ler_alarm_check(smc,phy,cond) ;
1133#endif	/* nSMT_EXT_CUTOFF */
1134	if (cond != mib->fddiPORTLerFlag) {
1135		smt_srf_event(smc,SMT_COND_PORT_LER,
1136			(int) (INDEX_PORT+ phy->np) ,cond) ;
1137	}
1138#endif
1139
1140	if (	mib->fddiPORTLer_Estimate <= mib->fddiPORTLer_Cutoff) {
1141		phy->pc_lem_fail = TRUE ;		/* flag */
1142		mib->fddiPORTLem_Reject_Ct++ ;
1143		/*
1144		 * "forgive 10e-2" if we cutoff so we can come
1145		 * up again ..
1146		 */
1147		lem->lem_float_ber += 2*100 ;
1148
1149		/*PC81b*/
1150#ifdef	CONCENTRATOR
1151		DB_PCMN(1, "PCM: LER cutoff on port %d cutoff %d",
1152			phy->np, mib->fddiPORTLer_Cutoff);
1153#endif
1154#ifdef	SMT_EXT_CUTOFF
1155		smt_port_off_event(smc,phy->np);
1156#else	/* nSMT_EXT_CUTOFF */
1157		queue_event(smc,(int)(EVENT_PCM+phy->np),PC_START) ;
1158#endif	/* nSMT_EXT_CUTOFF */
1159	}
1160}
1161
1162/*
1163 * called by SMT to calculate LEM bit error rate
1164 */
1165void sm_lem_evaluate(struct s_smc *smc)
1166{
1167	int np ;
1168
1169	for (np = 0 ; np < NUMPHYS ; np++)
1170		lem_evaluate(smc,&smc->y[np]) ;
1171}
1172
1173static void lem_check_lct(struct s_smc *smc, struct s_phy *phy)
1174{
1175	struct lem_counter	*lem = &phy->lem ;
1176	struct fddi_mib_p	*mib ;
1177	int errors ;
1178
1179	mib = phy->mib ;
1180
1181	phy->pc_lem_fail = FALSE ;		/* flag */
1182	errors = inpw(PLC(((int)phy->np),PL_LINK_ERR_CTR)) ;
1183	lem->lem_errors += errors ;
1184	mib->fddiPORTLem_Ct += errors ;
1185	if (lem->lem_errors) {
1186		switch(phy->lc_test) {
1187		case LC_SHORT:
1188			if (lem->lem_errors >= smc->s.lct_short)
1189				phy->pc_lem_fail = TRUE ;
1190			break ;
1191		case LC_MEDIUM:
1192			if (lem->lem_errors >= smc->s.lct_medium)
1193				phy->pc_lem_fail = TRUE ;
1194			break ;
1195		case LC_LONG:
1196			if (lem->lem_errors >= smc->s.lct_long)
1197				phy->pc_lem_fail = TRUE ;
1198			break ;
1199		case LC_EXTENDED:
1200			if (lem->lem_errors >= smc->s.lct_extended)
1201				phy->pc_lem_fail = TRUE ;
1202			break ;
1203		}
1204		DB_PCMN(1, " >>errors : %lu", lem->lem_errors);
1205	}
1206	if (phy->pc_lem_fail) {
1207		mib->fddiPORTLCTFail_Ct++ ;
1208		mib->fddiPORTLem_Reject_Ct++ ;
1209	}
1210	else
1211		mib->fddiPORTLCTFail_Ct = 0 ;
1212}
1213
1214/*
1215 * LEM functions
1216 */
1217static void sm_ph_lem_start(struct s_smc *smc, int np, int threshold)
1218{
1219	struct lem_counter *lem = &smc->y[np].lem ;
1220
1221	lem->lem_on = 1 ;
1222	lem->lem_errors = 0L ;
1223
1224	/* Do NOT reset mib->fddiPORTLer_Estimate here. It is called too
1225	 * often.
1226	 */
1227
1228	outpw(PLC(np,PL_LE_THRESHOLD),threshold) ;
1229	(void)inpw(PLC(np,PL_LINK_ERR_CTR)) ;	/* clear error counter */
1230
1231	/* enable LE INT */
1232	SETMASK(PLC(np,PL_INTR_MASK),PL_LE_CTR,PL_LE_CTR) ;
1233}
1234
1235static void sm_ph_lem_stop(struct s_smc *smc, int np)
1236{
1237	struct lem_counter *lem = &smc->y[np].lem ;
1238
1239	lem->lem_on = 0 ;
1240	CLEAR(PLC(np,PL_INTR_MASK),PL_LE_CTR) ;
1241}
1242
1243/*
1244 * PCM pseudo code
1245 * receive actions are called AFTER the bit n is received,
1246 * i.e. if pc_rcode_actions(5) is called, bit 6 is the next bit to be received
1247 */
1248
1249/*
1250 * PCM pseudo code 5.1 .. 6.1
1251 */
1252static void pc_rcode_actions(struct s_smc *smc, int bit, struct s_phy *phy)
1253{
1254	struct fddi_mib_p	*mib ;
1255
1256	mib = phy->mib ;
1257
1258	DB_PCMN(1, "SIG rec %x %x:", bit, phy->r_val[bit]);
1259	bit++ ;
1260
1261	switch(bit) {
1262	case 0:
1263	case 1:
1264	case 2:
1265		break ;
1266	case 3 :
1267		if (phy->r_val[1] == 0 && phy->r_val[2] == 0)
1268			mib->fddiPORTNeighborType = TA ;
1269		else if (phy->r_val[1] == 0 && phy->r_val[2] == 1)
1270			mib->fddiPORTNeighborType = TB ;
1271		else if (phy->r_val[1] == 1 && phy->r_val[2] == 0)
1272			mib->fddiPORTNeighborType = TS ;
1273		else if (phy->r_val[1] == 1 && phy->r_val[2] == 1)
1274			mib->fddiPORTNeighborType = TM ;
1275		break ;
1276	case 4:
1277		if (mib->fddiPORTMy_Type == TM &&
1278			mib->fddiPORTNeighborType == TM) {
1279			DB_PCMN(1, "PCM %c : E100 withhold M-M",
1280				phy->phy_name);
1281			mib->fddiPORTPC_Withhold = PC_WH_M_M ;
1282			RS_SET(smc,RS_EVENT) ;
1283		}
1284		else if (phy->t_val[3] || phy->r_val[3]) {
1285			mib->fddiPORTPC_Withhold = PC_WH_NONE ;
1286			if (mib->fddiPORTMy_Type == TM ||
1287			    mib->fddiPORTNeighborType == TM)
1288				phy->pc_mode = PM_TREE ;
1289			else
1290				phy->pc_mode = PM_PEER ;
1291
1292			/* reevaluate the selection criteria (wc_flag) */
1293			all_selection_criteria (smc);
1294
1295			if (phy->wc_flag) {
1296				mib->fddiPORTPC_Withhold = PC_WH_PATH ;
1297			}
1298		}
1299		else {
1300			mib->fddiPORTPC_Withhold = PC_WH_OTHER ;
1301			RS_SET(smc,RS_EVENT) ;
1302			DB_PCMN(1, "PCM %c : E101 withhold other",
1303				phy->phy_name);
1304		}
1305		phy->twisted = ((mib->fddiPORTMy_Type != TS) &&
1306				(mib->fddiPORTMy_Type != TM) &&
1307				(mib->fddiPORTNeighborType ==
1308				mib->fddiPORTMy_Type)) ;
1309		if (phy->twisted) {
1310			DB_PCMN(1, "PCM %c : E102 !!! TWISTED !!!",
1311				phy->phy_name);
1312		}
1313		break ;
1314	case 5 :
1315		break ;
1316	case 6:
1317		if (phy->t_val[4] || phy->r_val[4]) {
1318			if ((phy->t_val[4] && phy->t_val[5]) ||
1319			    (phy->r_val[4] && phy->r_val[5]) )
1320				phy->lc_test = LC_EXTENDED ;
1321			else
1322				phy->lc_test = LC_LONG ;
1323		}
1324		else if (phy->t_val[5] || phy->r_val[5])
1325			phy->lc_test = LC_MEDIUM ;
1326		else
1327			phy->lc_test = LC_SHORT ;
1328		switch (phy->lc_test) {
1329		case LC_SHORT :				/* 50ms */
1330			outpw(PLC((int)phy->np,PL_LC_LENGTH), TP_LC_LENGTH ) ;
1331			phy->t_next[7] = smc->s.pcm_lc_short ;
1332			break ;
1333		case LC_MEDIUM :			/* 500ms */
1334			outpw(PLC((int)phy->np,PL_LC_LENGTH), TP_LC_LONGLN ) ;
1335			phy->t_next[7] = smc->s.pcm_lc_medium ;
1336			break ;
1337		case LC_LONG :
1338			SETMASK(PLC((int)phy->np,PL_CNTRL_B),PL_LONG,PL_LONG) ;
1339			phy->t_next[7] = smc->s.pcm_lc_long ;
1340			break ;
1341		case LC_EXTENDED :
1342			SETMASK(PLC((int)phy->np,PL_CNTRL_B),PL_LONG,PL_LONG) ;
1343			phy->t_next[7] = smc->s.pcm_lc_extended ;
1344			break ;
1345		}
1346		if (phy->t_next[7] > smc->s.pcm_lc_medium) {
1347			start_pcm_timer0(smc,phy->t_next[7],PC_TIMEOUT_LCT,phy);
1348		}
1349		DB_PCMN(1, "LCT timer = %ld us", phy->t_next[7]);
1350		phy->t_next[9] = smc->s.pcm_t_next_9 ;
1351		break ;
1352	case 7:
1353		if (phy->t_val[6]) {
1354			phy->cf_loop = TRUE ;
1355		}
1356		phy->td_flag = TRUE ;
1357		break ;
1358	case 8:
1359		if (phy->t_val[7] || phy->r_val[7]) {
1360			DB_PCMN(1, "PCM %c : E103 LCT fail %s",
1361				phy->phy_name,
1362				phy->t_val[7] ? "local" : "remote");
1363			queue_event(smc,(int)(EVENT_PCM+phy->np),PC_START) ;
1364		}
1365		break ;
1366	case 9:
1367		if (phy->t_val[8] || phy->r_val[8]) {
1368			if (phy->t_val[8])
1369				phy->cf_loop = TRUE ;
1370			phy->td_flag = TRUE ;
1371		}
1372		break ;
1373	case 10:
1374		if (phy->r_val[9]) {
1375			/* neighbor intends to have MAC on output */ ;
1376			mib->fddiPORTMacIndicated.R_val = TRUE ;
1377		}
1378		else {
1379			/* neighbor does not intend to have MAC on output */ ;
1380			mib->fddiPORTMacIndicated.R_val = FALSE ;
1381		}
1382		break ;
1383	}
1384}
1385
1386/*
1387 * PCM pseudo code 5.1 .. 6.1
1388 */
1389static void pc_tcode_actions(struct s_smc *smc, const int bit, struct s_phy *phy)
1390{
1391	int	np = phy->np ;
1392	struct fddi_mib_p	*mib ;
1393
1394	mib = phy->mib ;
1395
1396	switch(bit) {
1397	case 0:
1398		phy->t_val[0] = 0 ;		/* no escape used */
1399		break ;
1400	case 1:
1401		if (mib->fddiPORTMy_Type == TS || mib->fddiPORTMy_Type == TM)
1402			phy->t_val[1] = 1 ;
1403		else
1404			phy->t_val[1] = 0 ;
1405		break ;
1406	case 2 :
1407		if (mib->fddiPORTMy_Type == TB || mib->fddiPORTMy_Type == TM)
1408			phy->t_val[2] = 1 ;
1409		else
1410			phy->t_val[2] = 0 ;
1411		break ;
1412	case 3:
1413		{
1414		int	type,ne ;
1415		int	policy ;
1416
1417		type = mib->fddiPORTMy_Type ;
1418		ne = mib->fddiPORTNeighborType ;
1419		policy = smc->mib.fddiSMTConnectionPolicy ;
1420
1421		phy->t_val[3] = 1 ;	/* Accept connection */
1422		switch (type) {
1423		case TA :
1424			if (
1425				((policy & POLICY_AA) && ne == TA) ||
1426				((policy & POLICY_AB) && ne == TB) ||
1427				((policy & POLICY_AS) && ne == TS) ||
1428				((policy & POLICY_AM) && ne == TM) )
1429				phy->t_val[3] = 0 ;	/* Reject */
1430			break ;
1431		case TB :
1432			if (
1433				((policy & POLICY_BA) && ne == TA) ||
1434				((policy & POLICY_BB) && ne == TB) ||
1435				((policy & POLICY_BS) && ne == TS) ||
1436				((policy & POLICY_BM) && ne == TM) )
1437				phy->t_val[3] = 0 ;	/* Reject */
1438			break ;
1439		case TS :
1440			if (
1441				((policy & POLICY_SA) && ne == TA) ||
1442				((policy & POLICY_SB) && ne == TB) ||
1443				((policy & POLICY_SS) && ne == TS) ||
1444				((policy & POLICY_SM) && ne == TM) )
1445				phy->t_val[3] = 0 ;	/* Reject */
1446			break ;
1447		case TM :
1448			if (	ne == TM ||
1449				((policy & POLICY_MA) && ne == TA) ||
1450				((policy & POLICY_MB) && ne == TB) ||
1451				((policy & POLICY_MS) && ne == TS) ||
1452				((policy & POLICY_MM) && ne == TM) )
1453				phy->t_val[3] = 0 ;	/* Reject */
1454			break ;
1455		}
1456#ifndef	SLIM_SMT
1457		/*
1458		 * detect undesirable connection attempt event
1459		 */
1460		if (	(type == TA && ne == TA ) ||
1461			(type == TA && ne == TS ) ||
1462			(type == TB && ne == TB ) ||
1463			(type == TB && ne == TS ) ||
1464			(type == TS && ne == TA ) ||
1465			(type == TS && ne == TB ) ) {
1466			smt_srf_event(smc,SMT_EVENT_PORT_CONNECTION,
1467				(int) (INDEX_PORT+ phy->np) ,0) ;
1468		}
1469#endif
1470		}
1471		break ;
1472	case 4:
1473		if (mib->fddiPORTPC_Withhold == PC_WH_NONE) {
1474			if (phy->pc_lem_fail) {
1475				phy->t_val[4] = 1 ;	/* long */
1476				phy->t_val[5] = 0 ;
1477			}
1478			else {
1479				phy->t_val[4] = 0 ;
1480				if (mib->fddiPORTLCTFail_Ct > 0)
1481					phy->t_val[5] = 1 ;	/* medium */
1482				else
1483					phy->t_val[5] = 0 ;	/* short */
1484
1485				/*
1486				 * Implementers choice: use medium
1487				 * instead of short when undesired
1488				 * connection attempt is made.
1489				 */
1490				if (phy->wc_flag)
1491					phy->t_val[5] = 1 ;	/* medium */
1492			}
1493			mib->fddiPORTConnectState = PCM_CONNECTING ;
1494		}
1495		else {
1496			mib->fddiPORTConnectState = PCM_STANDBY ;
1497			phy->t_val[4] = 1 ;	/* extended */
1498			phy->t_val[5] = 1 ;
1499		}
1500		break ;
1501	case 5:
1502		break ;
1503	case 6:
1504		/* we do NOT have a MAC for LCT */
1505		phy->t_val[6] = 0 ;
1506		break ;
1507	case 7:
1508		phy->cf_loop = FALSE ;
1509		lem_check_lct(smc,phy) ;
1510		if (phy->pc_lem_fail) {
1511			DB_PCMN(1, "PCM %c : E104 LCT failed", phy->phy_name);
1512			phy->t_val[7] = 1 ;
1513		}
1514		else
1515			phy->t_val[7] = 0 ;
1516		break ;
1517	case 8:
1518		phy->t_val[8] = 0 ;	/* Don't request MAC loopback */
1519		break ;
1520	case 9:
1521		phy->cf_loop = 0 ;
1522		if ((mib->fddiPORTPC_Withhold != PC_WH_NONE) ||
1523		     ((smc->s.sas == SMT_DAS) && (phy->wc_flag))) {
1524			queue_event(smc,EVENT_PCM+np,PC_START) ;
1525			break ;
1526		}
1527		phy->t_val[9] = FALSE ;
1528		switch (smc->s.sas) {
1529		case SMT_DAS :
1530			/*
1531			 * MAC intended on output
1532			 */
1533			if (phy->pc_mode == PM_TREE) {
1534				if ((np == PB) || ((np == PA) &&
1535				(smc->y[PB].mib->fddiPORTConnectState !=
1536					PCM_ACTIVE)))
1537					phy->t_val[9] = TRUE ;
1538			}
1539			else {
1540				if (np == PB)
1541					phy->t_val[9] = TRUE ;
1542			}
1543			break ;
1544		case SMT_SAS :
1545			if (np == PS)
1546				phy->t_val[9] = TRUE ;
1547			break ;
1548#ifdef	CONCENTRATOR
1549		case SMT_NAC :
1550			/*
1551			 * MAC intended on output
1552			 */
1553			if (np == PB)
1554				phy->t_val[9] = TRUE ;
1555			break ;
1556#endif
1557		}
1558		mib->fddiPORTMacIndicated.T_val = phy->t_val[9] ;
1559		break ;
1560	}
1561	DB_PCMN(1, "SIG snd %x %x:", bit, phy->t_val[bit]);
1562}
1563
1564/*
1565 * return status twisted (called by SMT)
1566 */
1567int pcm_status_twisted(struct s_smc *smc)
1568{
1569	int	twist = 0 ;
1570	if (smc->s.sas != SMT_DAS)
1571		return 0;
1572	if (smc->y[PA].twisted && (smc->y[PA].mib->fddiPORTPCMState == PC8_ACTIVE))
1573		twist |= 1 ;
1574	if (smc->y[PB].twisted && (smc->y[PB].mib->fddiPORTPCMState == PC8_ACTIVE))
1575		twist |= 2 ;
1576	return twist;
1577}
1578
1579/*
1580 * return status	(called by SMT)
1581 *	type
1582 *	state
1583 *	remote phy type
1584 *	remote mac yes/no
1585 */
1586void pcm_status_state(struct s_smc *smc, int np, int *type, int *state,
1587		      int *remote, int *mac)
1588{
1589	struct s_phy	*phy = &smc->y[np] ;
1590	struct fddi_mib_p	*mib ;
1591
1592	mib = phy->mib ;
1593
1594	/* remote PHY type and MAC - set only if active */
1595	*mac = 0 ;
1596	*type = mib->fddiPORTMy_Type ;		/* our PHY type */
1597	*state = mib->fddiPORTConnectState ;
1598	*remote = mib->fddiPORTNeighborType ;
1599
1600	switch(mib->fddiPORTPCMState) {
1601	case PC8_ACTIVE :
1602		*mac = mib->fddiPORTMacIndicated.R_val ;
1603		break ;
1604	}
1605}
1606
1607/*
1608 * return rooted station status (called by SMT)
1609 */
1610int pcm_rooted_station(struct s_smc *smc)
1611{
1612	int	n ;
1613
1614	for (n = 0 ; n < NUMPHYS ; n++) {
1615		if (smc->y[n].mib->fddiPORTPCMState == PC8_ACTIVE &&
1616		    smc->y[n].mib->fddiPORTNeighborType == TM)
1617			return 0;
1618	}
1619	return 1;
1620}
1621
1622/*
1623 * Interrupt actions for PLC & PCM events
1624 */
1625void plc_irq(struct s_smc *smc, int np, unsigned int cmd)
1626/* int np;	PHY index */
1627{
1628	struct s_phy *phy = &smc->y[np] ;
1629	struct s_plc *plc = &phy->plc ;
1630	int		n ;
1631#ifdef	SUPERNET_3
1632	int		corr_mask ;
1633#endif	/* SUPERNET_3 */
1634	int		i ;
1635
1636	if (np >= smc->s.numphys) {
1637		plc->soft_err++ ;
1638		return ;
1639	}
1640	if (cmd & PL_EBUF_ERR) {	/* elastic buff. det. over-|underflow*/
1641		/*
1642		 * Check whether the SRF Condition occurred.
1643		 */
1644		if (!plc->ebuf_cont && phy->mib->fddiPORTPCMState == PC8_ACTIVE){
1645			/*
1646			 * This is the real Elasticity Error.
1647			 * More than one in a row are treated as a
1648			 * single one.
1649			 * Only count this in the active state.
1650			 */
1651			phy->mib->fddiPORTEBError_Ct ++ ;
1652
1653		}
1654
1655		plc->ebuf_err++ ;
1656		if (plc->ebuf_cont <= 1000) {
1657			/*
1658			 * Prevent counter from being wrapped after
1659			 * hanging years in that interrupt.
1660			 */
1661			plc->ebuf_cont++ ;	/* Ebuf continuous error */
1662		}
1663
1664#ifdef	SUPERNET_3
1665		if (plc->ebuf_cont == 1000 &&
1666			((inpw(PLC(np,PL_STATUS_A)) & PLC_REV_MASK) ==
1667			PLC_REV_SN3)) {
1668			/*
1669			 * This interrupt remeained high for at least
1670			 * 1000 consecutive interrupt calls.
1671			 *
1672			 * This is caused by a hardware error of the
1673			 * ORION part of the Supernet III chipset.
1674			 *
1675			 * Disable this bit from the mask.
1676			 */
1677			corr_mask = (plc_imsk_na & ~PL_EBUF_ERR) ;
1678			outpw(PLC(np,PL_INTR_MASK),corr_mask);
1679
1680			/*
1681			 * Disconnect from the ring.
1682			 * Call the driver with the reset indication.
1683			 */
1684			queue_event(smc,EVENT_ECM,EC_DISCONNECT) ;
1685
1686			/*
1687			 * Make an error log entry.
1688			 */
1689			SMT_ERR_LOG(smc,SMT_E0136, SMT_E0136_MSG) ;
1690
1691			/*
1692			 * Indicate the Reset.
1693			 */
1694			drv_reset_indication(smc) ;
1695		}
1696#endif	/* SUPERNET_3 */
1697	} else {
1698		/* Reset the continuous error variable */
1699		plc->ebuf_cont = 0 ;	/* reset Ebuf continuous error */
1700	}
1701	if (cmd & PL_PHYINV) {		/* physical layer invalid signal */
1702		plc->phyinv++ ;
1703	}
1704	if (cmd & PL_VSYM_CTR) {	/* violation symbol counter has incr.*/
1705		plc->vsym_ctr++ ;
1706	}
1707	if (cmd & PL_MINI_CTR) {	/* dep. on PLC_CNTRL_A's MINI_CTR_INT*/
1708		plc->mini_ctr++ ;
1709	}
1710	if (cmd & PL_LE_CTR) {		/* link error event counter */
1711		int	j ;
1712
1713		/*
1714		 * note: PL_LINK_ERR_CTR MUST be read to clear it
1715		 */
1716		j = inpw(PLC(np,PL_LE_THRESHOLD)) ;
1717		i = inpw(PLC(np,PL_LINK_ERR_CTR)) ;
1718
1719		if (i < j) {
1720			/* wrapped around */
1721			i += 256 ;
1722		}
1723
1724		if (phy->lem.lem_on) {
1725			/* Note: Lem errors shall only be counted when
1726			 * link is ACTIVE or LCT is active.
1727			 */
1728			phy->lem.lem_errors += i ;
1729			phy->mib->fddiPORTLem_Ct += i ;
1730		}
1731	}
1732	if (cmd & PL_TPC_EXPIRED) {	/* TPC timer reached zero */
1733		if (plc->p_state == PS_LCT) {
1734			/*
1735			 * end of LCT
1736			 */
1737			;
1738		}
1739		plc->tpc_exp++ ;
1740	}
1741	if (cmd & PL_LS_MATCH) {	/* LS == LS in PLC_CNTRL_B's MATCH_LS*/
1742		switch (inpw(PLC(np,PL_CNTRL_B)) & PL_MATCH_LS) {
1743		case PL_I_IDLE :	phy->curr_ls = PC_ILS ;		break ;
1744		case PL_I_HALT :	phy->curr_ls = PC_HLS ;		break ;
1745		case PL_I_MASTR :	phy->curr_ls = PC_MLS ;		break ;
1746		case PL_I_QUIET :	phy->curr_ls = PC_QLS ;		break ;
1747		}
1748	}
1749	if (cmd & PL_PCM_BREAK) {	/* PCM has entered the BREAK state */
1750		int	reason;
1751
1752		reason = inpw(PLC(np,PL_STATUS_B)) & PL_BREAK_REASON ;
1753
1754		switch (reason) {
1755		case PL_B_PCS :		plc->b_pcs++ ;	break ;
1756		case PL_B_TPC :		plc->b_tpc++ ;	break ;
1757		case PL_B_TNE :		plc->b_tne++ ;	break ;
1758		case PL_B_QLS :		plc->b_qls++ ;	break ;
1759		case PL_B_ILS :		plc->b_ils++ ;	break ;
1760		case PL_B_HLS :		plc->b_hls++ ;	break ;
1761		}
1762
1763		/*jd 05-Aug-1999 changed: Bug #10419 */
1764		DB_PCMN(1, "PLC %d: MDcF = %x", np, smc->e.DisconnectFlag);
1765		if (smc->e.DisconnectFlag == FALSE) {
1766			DB_PCMN(1, "PLC %d: restart (reason %x)", np, reason);
1767			queue_event(smc,EVENT_PCM+np,PC_START) ;
1768		}
1769		else {
1770			DB_PCMN(1, "PLC %d: NO!! restart (reason %x)",
1771				np, reason);
1772		}
1773		return ;
1774	}
1775	/*
1776	 * If both CODE & ENABLE are set ignore enable
1777	 */
1778	if (cmd & PL_PCM_CODE) { /* receive last sign.-bit | LCT complete */
1779		queue_event(smc,EVENT_PCM+np,PC_SIGNAL) ;
1780		n = inpw(PLC(np,PL_RCV_VECTOR)) ;
1781		for (i = 0 ; i < plc->p_bits ; i++) {
1782			phy->r_val[plc->p_start+i] = n & 1 ;
1783			n >>= 1 ;
1784		}
1785	}
1786	else if (cmd & PL_PCM_ENABLED) { /* asserted SC_JOIN, scrub.completed*/
1787		queue_event(smc,EVENT_PCM+np,PC_JOIN) ;
1788	}
1789	if (cmd & PL_TRACE_PROP) {	/* MLS while PC8_ACTIV || PC2_TRACE */
1790		/*PC22b*/
1791		if (!phy->tr_flag) {
1792			DB_PCMN(1, "PCM : irq TRACE_PROP %d %d",
1793				np, smc->mib.fddiSMTECMState);
1794			phy->tr_flag = TRUE ;
1795			smc->e.trace_prop |= ENTITY_BIT(ENTITY_PHY(np)) ;
1796			queue_event(smc,EVENT_ECM,EC_TRACE_PROP) ;
1797		}
1798	}
1799	/*
1800	 * filter PLC glitch ???
1801	 * QLS || HLS only while in PC2_TRACE state
1802	 */
1803	if ((cmd & PL_SELF_TEST) && (phy->mib->fddiPORTPCMState == PC2_TRACE)) {
1804		/*PC22a*/
1805		if (smc->e.path_test == PT_PASSED) {
1806			DB_PCMN(1, "PCM : state = %s %d",
1807				get_pcmstate(smc, np),
1808				phy->mib->fddiPORTPCMState);
1809
1810			smc->e.path_test = PT_PENDING ;
1811			queue_event(smc,EVENT_ECM,EC_PATH_TEST) ;
1812		}
1813	}
1814	if (cmd & PL_TNE_EXPIRED) {	/* TNE: length of noise events */
1815		/* break_required (TNE > NS_Max) */
1816		if (phy->mib->fddiPORTPCMState == PC8_ACTIVE) {
1817			if (!phy->tr_flag) {
1818				DB_PCMN(1, "PCM %c : PC81 %s",
1819					phy->phy_name, "NSE");
1820				queue_event(smc, EVENT_PCM + np, PC_START);
1821				return;
1822			}
1823		}
1824	}
1825#if	0
1826	if (cmd & PL_NP_ERR) {		/* NP has requested to r/w an inv reg*/
1827		/*
1828		 * It's a bug by AMD
1829		 */
1830		plc->np_err++ ;
1831	}
1832	/* pin inactiv (GND) */
1833	if (cmd & PL_PARITY_ERR) {	/* p. error dedected on TX9-0 inp */
1834		plc->parity_err++ ;
1835	}
1836	if (cmd & PL_LSDO) {		/* carrier detected */
1837		;
1838	}
1839#endif
1840}
1841
1842#ifdef	DEBUG
1843/*
1844 * fill state struct
1845 */
1846void pcm_get_state(struct s_smc *smc, struct smt_state *state)
1847{
1848	struct s_phy	*phy ;
1849	struct pcm_state *pcs ;
1850	int	i ;
1851	int	ii ;
1852	short	rbits ;
1853	short	tbits ;
1854	struct fddi_mib_p	*mib ;
1855
1856	for (i = 0, phy = smc->y, pcs = state->pcm_state ; i < NUMPHYS ;
1857		i++ , phy++, pcs++ ) {
1858		mib = phy->mib ;
1859		pcs->pcm_type = (u_char) mib->fddiPORTMy_Type ;
1860		pcs->pcm_state = (u_char) mib->fddiPORTPCMState ;
1861		pcs->pcm_mode = phy->pc_mode ;
1862		pcs->pcm_neighbor = (u_char) mib->fddiPORTNeighborType ;
1863		pcs->pcm_bsf = mib->fddiPORTBS_Flag ;
1864		pcs->pcm_lsf = phy->ls_flag ;
1865		pcs->pcm_lct_fail = (u_char) mib->fddiPORTLCTFail_Ct ;
1866		pcs->pcm_ls_rx = LS2MIB(sm_pm_get_ls(smc,i)) ;
1867		for (ii = 0, rbits = tbits = 0 ; ii < NUMBITS ; ii++) {
1868			rbits <<= 1 ;
1869			tbits <<= 1 ;
1870			if (phy->r_val[NUMBITS-1-ii])
1871				rbits |= 1 ;
1872			if (phy->t_val[NUMBITS-1-ii])
1873				tbits |= 1 ;
1874		}
1875		pcs->pcm_r_val = rbits ;
1876		pcs->pcm_t_val = tbits ;
1877	}
1878}
1879
1880int get_pcm_state(struct s_smc *smc, int np)
1881{
1882	int pcs ;
1883
1884	SK_UNUSED(smc) ;
1885
1886	switch (inpw(PLC(np,PL_STATUS_B)) & PL_PCM_STATE) {
1887		case PL_PC0 :	pcs = PC_STOP ;		break ;
1888		case PL_PC1 :	pcs = PC_START ;	break ;
1889		case PL_PC2 :	pcs = PC_TRACE ;	break ;
1890		case PL_PC3 :	pcs = PC_SIGNAL ;	break ;
1891		case PL_PC4 :	pcs = PC_SIGNAL ;	break ;
1892		case PL_PC5 :	pcs = PC_SIGNAL ;	break ;
1893		case PL_PC6 :	pcs = PC_JOIN ;		break ;
1894		case PL_PC7 :	pcs = PC_JOIN ;		break ;
1895		case PL_PC8 :	pcs = PC_ENABLE ;	break ;
1896		case PL_PC9 :	pcs = PC_MAINT ;	break ;
1897		default :	pcs = PC_DISABLE ; 	break ;
1898	}
1899	return pcs;
1900}
1901
1902char *get_linestate(struct s_smc *smc, int np)
1903{
1904	char *ls = "" ;
1905
1906	SK_UNUSED(smc) ;
1907
1908	switch (inpw(PLC(np,PL_STATUS_A)) & PL_LINE_ST) {
1909		case PL_L_NLS :	ls = "NOISE" ;	break ;
1910		case PL_L_ALS :	ls = "ACTIV" ;	break ;
1911		case PL_L_UND :	ls = "UNDEF" ;	break ;
1912		case PL_L_ILS4:	ls = "ILS 4" ;	break ;
1913		case PL_L_QLS :	ls = "QLS" ;	break ;
1914		case PL_L_MLS :	ls = "MLS" ;	break ;
1915		case PL_L_HLS :	ls = "HLS" ;	break ;
1916		case PL_L_ILS16:ls = "ILS16" ;	break ;
1917#ifdef	lint
1918		default:	ls = "unknown" ; break ;
1919#endif
1920	}
1921	return ls;
1922}
1923
1924char *get_pcmstate(struct s_smc *smc, int np)
1925{
1926	char *pcs ;
1927
1928	SK_UNUSED(smc) ;
1929
1930	switch (inpw(PLC(np,PL_STATUS_B)) & PL_PCM_STATE) {
1931		case PL_PC0 :	pcs = "OFF" ;		break ;
1932		case PL_PC1 :	pcs = "BREAK" ;		break ;
1933		case PL_PC2 :	pcs = "TRACE" ;		break ;
1934		case PL_PC3 :	pcs = "CONNECT";	break ;
1935		case PL_PC4 :	pcs = "NEXT" ;		break ;
1936		case PL_PC5 :	pcs = "SIGNAL" ;	break ;
1937		case PL_PC6 :	pcs = "JOIN" ;		break ;
1938		case PL_PC7 :	pcs = "VERIFY" ;	break ;
1939		case PL_PC8 :	pcs = "ACTIV" ;		break ;
1940		case PL_PC9 :	pcs = "MAINT" ;		break ;
1941		default :	pcs = "UNKNOWN" ; 	break ;
1942	}
1943	return pcs;
1944}
1945
1946void list_phy(struct s_smc *smc)
1947{
1948	struct s_plc *plc ;
1949	int np ;
1950
1951	for (np = 0 ; np < NUMPHYS ; np++) {
1952		plc  = &smc->y[np].plc ;
1953		printf("PHY %d:\tERRORS\t\t\tBREAK_REASONS\t\tSTATES:\n",np) ;
1954		printf("\tsoft_error: %ld \t\tPC_Start : %ld\n",
1955						plc->soft_err,plc->b_pcs);
1956		printf("\tparity_err: %ld \t\tTPC exp. : %ld\t\tLine: %s\n",
1957			plc->parity_err,plc->b_tpc,get_linestate(smc,np)) ;
1958		printf("\tebuf_error: %ld \t\tTNE exp. : %ld\n",
1959						plc->ebuf_err,plc->b_tne) ;
1960		printf("\tphyinvalid: %ld \t\tQLS det. : %ld\t\tPCM : %s\n",
1961			plc->phyinv,plc->b_qls,get_pcmstate(smc,np)) ;
1962		printf("\tviosym_ctr: %ld \t\tILS det. : %ld\n",
1963						plc->vsym_ctr,plc->b_ils)  ;
1964		printf("\tmingap_ctr: %ld \t\tHLS det. : %ld\n",
1965						plc->mini_ctr,plc->b_hls) ;
1966		printf("\tnodepr_err: %ld\n",plc->np_err) ;
1967		printf("\tTPC_exp : %ld\n",plc->tpc_exp) ;
1968		printf("\tLEM_err : %ld\n",smc->y[np].lem.lem_errors) ;
1969	}
1970}
1971
1972
1973#ifdef	CONCENTRATOR
1974void pcm_lem_dump(struct s_smc *smc)
1975{
1976	int		i ;
1977	struct s_phy	*phy ;
1978	struct fddi_mib_p	*mib ;
1979
1980	char		*entostring() ;
1981
1982	printf("PHY	errors	BER\n") ;
1983	printf("----------------------\n") ;
1984	for (i = 0,phy = smc->y ; i < NUMPHYS ; i++,phy++) {
1985		if (!plc_is_installed(smc,i))
1986			continue ;
1987		mib = phy->mib ;
1988		printf("%s\t%ld\t10E-%d\n",
1989			entostring(smc,ENTITY_PHY(i)),
1990			mib->fddiPORTLem_Ct,
1991			mib->fddiPORTLer_Estimate) ;
1992	}
1993}
1994#endif
1995#endif
1996