1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Xilinx Axi Ethernet device driver
4 *
5 * Copyright (c) 2008 Nissin Systems Co., Ltd.,  Yoshio Kashiwagi
6 * Copyright (c) 2005-2008 DLA Systems,  David H. Lynch Jr. <dhlii@dlasys.net>
7 * Copyright (c) 2008-2009 Secret Lab Technologies Ltd.
8 * Copyright (c) 2010 - 2011 Michal Simek <monstr@monstr.eu>
9 * Copyright (c) 2010 - 2011 PetaLogix
10 * Copyright (c) 2019 - 2022 Calian Advanced Technologies
11 * Copyright (c) 2010 - 2012 Xilinx, Inc. All rights reserved.
12 *
13 * This is a driver for the Xilinx Axi Ethernet which is used in the Virtex6
14 * and Spartan6.
15 *
16 * TODO:
17 *  - Add Axi Fifo support.
18 *  - Factor out Axi DMA code into separate driver.
19 *  - Test and fix basic multicast filtering.
20 *  - Add support for extended multicast filtering.
21 *  - Test basic VLAN support.
22 *  - Add support for extended VLAN support.
23 */
24
25#include <linux/clk.h>
26#include <linux/delay.h>
27#include <linux/etherdevice.h>
28#include <linux/module.h>
29#include <linux/netdevice.h>
30#include <linux/of.h>
31#include <linux/of_mdio.h>
32#include <linux/of_net.h>
33#include <linux/of_irq.h>
34#include <linux/of_address.h>
35#include <linux/platform_device.h>
36#include <linux/skbuff.h>
37#include <linux/math64.h>
38#include <linux/phy.h>
39#include <linux/mii.h>
40#include <linux/ethtool.h>
41
42#include "xilinx_axienet.h"
43
44/* Descriptors defines for Tx and Rx DMA */
45#define TX_BD_NUM_DEFAULT		128
46#define RX_BD_NUM_DEFAULT		1024
47#define TX_BD_NUM_MIN			(MAX_SKB_FRAGS + 1)
48#define TX_BD_NUM_MAX			4096
49#define RX_BD_NUM_MAX			4096
50
51/* Must be shorter than length of ethtool_drvinfo.driver field to fit */
52#define DRIVER_NAME		"xaxienet"
53#define DRIVER_DESCRIPTION	"Xilinx Axi Ethernet driver"
54#define DRIVER_VERSION		"1.00a"
55
56#define AXIENET_REGS_N		40
57
58/* Match table for of_platform binding */
59static const struct of_device_id axienet_of_match[] = {
60	{ .compatible = "xlnx,axi-ethernet-1.00.a", },
61	{ .compatible = "xlnx,axi-ethernet-1.01.a", },
62	{ .compatible = "xlnx,axi-ethernet-2.01.a", },
63	{},
64};
65
66MODULE_DEVICE_TABLE(of, axienet_of_match);
67
68/* Option table for setting up Axi Ethernet hardware options */
69static struct axienet_option axienet_options[] = {
70	/* Turn on jumbo packet support for both Rx and Tx */
71	{
72		.opt = XAE_OPTION_JUMBO,
73		.reg = XAE_TC_OFFSET,
74		.m_or = XAE_TC_JUM_MASK,
75	}, {
76		.opt = XAE_OPTION_JUMBO,
77		.reg = XAE_RCW1_OFFSET,
78		.m_or = XAE_RCW1_JUM_MASK,
79	}, { /* Turn on VLAN packet support for both Rx and Tx */
80		.opt = XAE_OPTION_VLAN,
81		.reg = XAE_TC_OFFSET,
82		.m_or = XAE_TC_VLAN_MASK,
83	}, {
84		.opt = XAE_OPTION_VLAN,
85		.reg = XAE_RCW1_OFFSET,
86		.m_or = XAE_RCW1_VLAN_MASK,
87	}, { /* Turn on FCS stripping on receive packets */
88		.opt = XAE_OPTION_FCS_STRIP,
89		.reg = XAE_RCW1_OFFSET,
90		.m_or = XAE_RCW1_FCS_MASK,
91	}, { /* Turn on FCS insertion on transmit packets */
92		.opt = XAE_OPTION_FCS_INSERT,
93		.reg = XAE_TC_OFFSET,
94		.m_or = XAE_TC_FCS_MASK,
95	}, { /* Turn off length/type field checking on receive packets */
96		.opt = XAE_OPTION_LENTYPE_ERR,
97		.reg = XAE_RCW1_OFFSET,
98		.m_or = XAE_RCW1_LT_DIS_MASK,
99	}, { /* Turn on Rx flow control */
100		.opt = XAE_OPTION_FLOW_CONTROL,
101		.reg = XAE_FCC_OFFSET,
102		.m_or = XAE_FCC_FCRX_MASK,
103	}, { /* Turn on Tx flow control */
104		.opt = XAE_OPTION_FLOW_CONTROL,
105		.reg = XAE_FCC_OFFSET,
106		.m_or = XAE_FCC_FCTX_MASK,
107	}, { /* Turn on promiscuous frame filtering */
108		.opt = XAE_OPTION_PROMISC,
109		.reg = XAE_FMI_OFFSET,
110		.m_or = XAE_FMI_PM_MASK,
111	}, { /* Enable transmitter */
112		.opt = XAE_OPTION_TXEN,
113		.reg = XAE_TC_OFFSET,
114		.m_or = XAE_TC_TX_MASK,
115	}, { /* Enable receiver */
116		.opt = XAE_OPTION_RXEN,
117		.reg = XAE_RCW1_OFFSET,
118		.m_or = XAE_RCW1_RX_MASK,
119	},
120	{}
121};
122
123/**
124 * axienet_dma_in32 - Memory mapped Axi DMA register read
125 * @lp:		Pointer to axienet local structure
126 * @reg:	Address offset from the base address of the Axi DMA core
127 *
128 * Return: The contents of the Axi DMA register
129 *
130 * This function returns the contents of the corresponding Axi DMA register.
131 */
132static inline u32 axienet_dma_in32(struct axienet_local *lp, off_t reg)
133{
134	return ioread32(lp->dma_regs + reg);
135}
136
137static void desc_set_phys_addr(struct axienet_local *lp, dma_addr_t addr,
138			       struct axidma_bd *desc)
139{
140	desc->phys = lower_32_bits(addr);
141	if (lp->features & XAE_FEATURE_DMA_64BIT)
142		desc->phys_msb = upper_32_bits(addr);
143}
144
145static dma_addr_t desc_get_phys_addr(struct axienet_local *lp,
146				     struct axidma_bd *desc)
147{
148	dma_addr_t ret = desc->phys;
149
150	if (lp->features & XAE_FEATURE_DMA_64BIT)
151		ret |= ((dma_addr_t)desc->phys_msb << 16) << 16;
152
153	return ret;
154}
155
156/**
157 * axienet_dma_bd_release - Release buffer descriptor rings
158 * @ndev:	Pointer to the net_device structure
159 *
160 * This function is used to release the descriptors allocated in
161 * axienet_dma_bd_init. axienet_dma_bd_release is called when Axi Ethernet
162 * driver stop api is called.
163 */
164static void axienet_dma_bd_release(struct net_device *ndev)
165{
166	int i;
167	struct axienet_local *lp = netdev_priv(ndev);
168
169	/* If we end up here, tx_bd_v must have been DMA allocated. */
170	dma_free_coherent(lp->dev,
171			  sizeof(*lp->tx_bd_v) * lp->tx_bd_num,
172			  lp->tx_bd_v,
173			  lp->tx_bd_p);
174
175	if (!lp->rx_bd_v)
176		return;
177
178	for (i = 0; i < lp->rx_bd_num; i++) {
179		dma_addr_t phys;
180
181		/* A NULL skb means this descriptor has not been initialised
182		 * at all.
183		 */
184		if (!lp->rx_bd_v[i].skb)
185			break;
186
187		dev_kfree_skb(lp->rx_bd_v[i].skb);
188
189		/* For each descriptor, we programmed cntrl with the (non-zero)
190		 * descriptor size, after it had been successfully allocated.
191		 * So a non-zero value in there means we need to unmap it.
192		 */
193		if (lp->rx_bd_v[i].cntrl) {
194			phys = desc_get_phys_addr(lp, &lp->rx_bd_v[i]);
195			dma_unmap_single(lp->dev, phys,
196					 lp->max_frm_size, DMA_FROM_DEVICE);
197		}
198	}
199
200	dma_free_coherent(lp->dev,
201			  sizeof(*lp->rx_bd_v) * lp->rx_bd_num,
202			  lp->rx_bd_v,
203			  lp->rx_bd_p);
204}
205
206/**
207 * axienet_usec_to_timer - Calculate IRQ delay timer value
208 * @lp:		Pointer to the axienet_local structure
209 * @coalesce_usec: Microseconds to convert into timer value
210 */
211static u32 axienet_usec_to_timer(struct axienet_local *lp, u32 coalesce_usec)
212{
213	u32 result;
214	u64 clk_rate = 125000000; /* arbitrary guess if no clock rate set */
215
216	if (lp->axi_clk)
217		clk_rate = clk_get_rate(lp->axi_clk);
218
219	/* 1 Timeout Interval = 125 * (clock period of SG clock) */
220	result = DIV64_U64_ROUND_CLOSEST((u64)coalesce_usec * clk_rate,
221					 (u64)125000000);
222	if (result > 255)
223		result = 255;
224
225	return result;
226}
227
228/**
229 * axienet_dma_start - Set up DMA registers and start DMA operation
230 * @lp:		Pointer to the axienet_local structure
231 */
232static void axienet_dma_start(struct axienet_local *lp)
233{
234	/* Start updating the Rx channel control register */
235	lp->rx_dma_cr = (lp->coalesce_count_rx << XAXIDMA_COALESCE_SHIFT) |
236			XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_ERROR_MASK;
237	/* Only set interrupt delay timer if not generating an interrupt on
238	 * the first RX packet. Otherwise leave at 0 to disable delay interrupt.
239	 */
240	if (lp->coalesce_count_rx > 1)
241		lp->rx_dma_cr |= (axienet_usec_to_timer(lp, lp->coalesce_usec_rx)
242					<< XAXIDMA_DELAY_SHIFT) |
243				 XAXIDMA_IRQ_DELAY_MASK;
244	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, lp->rx_dma_cr);
245
246	/* Start updating the Tx channel control register */
247	lp->tx_dma_cr = (lp->coalesce_count_tx << XAXIDMA_COALESCE_SHIFT) |
248			XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_ERROR_MASK;
249	/* Only set interrupt delay timer if not generating an interrupt on
250	 * the first TX packet. Otherwise leave at 0 to disable delay interrupt.
251	 */
252	if (lp->coalesce_count_tx > 1)
253		lp->tx_dma_cr |= (axienet_usec_to_timer(lp, lp->coalesce_usec_tx)
254					<< XAXIDMA_DELAY_SHIFT) |
255				 XAXIDMA_IRQ_DELAY_MASK;
256	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, lp->tx_dma_cr);
257
258	/* Populate the tail pointer and bring the Rx Axi DMA engine out of
259	 * halted state. This will make the Rx side ready for reception.
260	 */
261	axienet_dma_out_addr(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p);
262	lp->rx_dma_cr |= XAXIDMA_CR_RUNSTOP_MASK;
263	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, lp->rx_dma_cr);
264	axienet_dma_out_addr(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p +
265			     (sizeof(*lp->rx_bd_v) * (lp->rx_bd_num - 1)));
266
267	/* Write to the RS (Run-stop) bit in the Tx channel control register.
268	 * Tx channel is now ready to run. But only after we write to the
269	 * tail pointer register that the Tx channel will start transmitting.
270	 */
271	axienet_dma_out_addr(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p);
272	lp->tx_dma_cr |= XAXIDMA_CR_RUNSTOP_MASK;
273	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, lp->tx_dma_cr);
274}
275
276/**
277 * axienet_dma_bd_init - Setup buffer descriptor rings for Axi DMA
278 * @ndev:	Pointer to the net_device structure
279 *
280 * Return: 0, on success -ENOMEM, on failure
281 *
282 * This function is called to initialize the Rx and Tx DMA descriptor
283 * rings. This initializes the descriptors with required default values
284 * and is called when Axi Ethernet driver reset is called.
285 */
286static int axienet_dma_bd_init(struct net_device *ndev)
287{
288	int i;
289	struct sk_buff *skb;
290	struct axienet_local *lp = netdev_priv(ndev);
291
292	/* Reset the indexes which are used for accessing the BDs */
293	lp->tx_bd_ci = 0;
294	lp->tx_bd_tail = 0;
295	lp->rx_bd_ci = 0;
296
297	/* Allocate the Tx and Rx buffer descriptors. */
298	lp->tx_bd_v = dma_alloc_coherent(lp->dev,
299					 sizeof(*lp->tx_bd_v) * lp->tx_bd_num,
300					 &lp->tx_bd_p, GFP_KERNEL);
301	if (!lp->tx_bd_v)
302		return -ENOMEM;
303
304	lp->rx_bd_v = dma_alloc_coherent(lp->dev,
305					 sizeof(*lp->rx_bd_v) * lp->rx_bd_num,
306					 &lp->rx_bd_p, GFP_KERNEL);
307	if (!lp->rx_bd_v)
308		goto out;
309
310	for (i = 0; i < lp->tx_bd_num; i++) {
311		dma_addr_t addr = lp->tx_bd_p +
312				  sizeof(*lp->tx_bd_v) *
313				  ((i + 1) % lp->tx_bd_num);
314
315		lp->tx_bd_v[i].next = lower_32_bits(addr);
316		if (lp->features & XAE_FEATURE_DMA_64BIT)
317			lp->tx_bd_v[i].next_msb = upper_32_bits(addr);
318	}
319
320	for (i = 0; i < lp->rx_bd_num; i++) {
321		dma_addr_t addr;
322
323		addr = lp->rx_bd_p + sizeof(*lp->rx_bd_v) *
324			((i + 1) % lp->rx_bd_num);
325		lp->rx_bd_v[i].next = lower_32_bits(addr);
326		if (lp->features & XAE_FEATURE_DMA_64BIT)
327			lp->rx_bd_v[i].next_msb = upper_32_bits(addr);
328
329		skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size);
330		if (!skb)
331			goto out;
332
333		lp->rx_bd_v[i].skb = skb;
334		addr = dma_map_single(lp->dev, skb->data,
335				      lp->max_frm_size, DMA_FROM_DEVICE);
336		if (dma_mapping_error(lp->dev, addr)) {
337			netdev_err(ndev, "DMA mapping error\n");
338			goto out;
339		}
340		desc_set_phys_addr(lp, addr, &lp->rx_bd_v[i]);
341
342		lp->rx_bd_v[i].cntrl = lp->max_frm_size;
343	}
344
345	axienet_dma_start(lp);
346
347	return 0;
348out:
349	axienet_dma_bd_release(ndev);
350	return -ENOMEM;
351}
352
353/**
354 * axienet_set_mac_address - Write the MAC address
355 * @ndev:	Pointer to the net_device structure
356 * @address:	6 byte Address to be written as MAC address
357 *
358 * This function is called to initialize the MAC address of the Axi Ethernet
359 * core. It writes to the UAW0 and UAW1 registers of the core.
360 */
361static void axienet_set_mac_address(struct net_device *ndev,
362				    const void *address)
363{
364	struct axienet_local *lp = netdev_priv(ndev);
365
366	if (address)
367		eth_hw_addr_set(ndev, address);
368	if (!is_valid_ether_addr(ndev->dev_addr))
369		eth_hw_addr_random(ndev);
370
371	/* Set up unicast MAC address filter set its mac address */
372	axienet_iow(lp, XAE_UAW0_OFFSET,
373		    (ndev->dev_addr[0]) |
374		    (ndev->dev_addr[1] << 8) |
375		    (ndev->dev_addr[2] << 16) |
376		    (ndev->dev_addr[3] << 24));
377	axienet_iow(lp, XAE_UAW1_OFFSET,
378		    (((axienet_ior(lp, XAE_UAW1_OFFSET)) &
379		      ~XAE_UAW1_UNICASTADDR_MASK) |
380		     (ndev->dev_addr[4] |
381		     (ndev->dev_addr[5] << 8))));
382}
383
384/**
385 * netdev_set_mac_address - Write the MAC address (from outside the driver)
386 * @ndev:	Pointer to the net_device structure
387 * @p:		6 byte Address to be written as MAC address
388 *
389 * Return: 0 for all conditions. Presently, there is no failure case.
390 *
391 * This function is called to initialize the MAC address of the Axi Ethernet
392 * core. It calls the core specific axienet_set_mac_address. This is the
393 * function that goes into net_device_ops structure entry ndo_set_mac_address.
394 */
395static int netdev_set_mac_address(struct net_device *ndev, void *p)
396{
397	struct sockaddr *addr = p;
398	axienet_set_mac_address(ndev, addr->sa_data);
399	return 0;
400}
401
402/**
403 * axienet_set_multicast_list - Prepare the multicast table
404 * @ndev:	Pointer to the net_device structure
405 *
406 * This function is called to initialize the multicast table during
407 * initialization. The Axi Ethernet basic multicast support has a four-entry
408 * multicast table which is initialized here. Additionally this function
409 * goes into the net_device_ops structure entry ndo_set_multicast_list. This
410 * means whenever the multicast table entries need to be updated this
411 * function gets called.
412 */
413static void axienet_set_multicast_list(struct net_device *ndev)
414{
415	int i;
416	u32 reg, af0reg, af1reg;
417	struct axienet_local *lp = netdev_priv(ndev);
418
419	if (ndev->flags & (IFF_ALLMULTI | IFF_PROMISC) ||
420	    netdev_mc_count(ndev) > XAE_MULTICAST_CAM_TABLE_NUM) {
421		/* We must make the kernel realize we had to move into
422		 * promiscuous mode. If it was a promiscuous mode request
423		 * the flag is already set. If not we set it.
424		 */
425		ndev->flags |= IFF_PROMISC;
426		reg = axienet_ior(lp, XAE_FMI_OFFSET);
427		reg |= XAE_FMI_PM_MASK;
428		axienet_iow(lp, XAE_FMI_OFFSET, reg);
429		dev_info(&ndev->dev, "Promiscuous mode enabled.\n");
430	} else if (!netdev_mc_empty(ndev)) {
431		struct netdev_hw_addr *ha;
432
433		i = 0;
434		netdev_for_each_mc_addr(ha, ndev) {
435			if (i >= XAE_MULTICAST_CAM_TABLE_NUM)
436				break;
437
438			af0reg = (ha->addr[0]);
439			af0reg |= (ha->addr[1] << 8);
440			af0reg |= (ha->addr[2] << 16);
441			af0reg |= (ha->addr[3] << 24);
442
443			af1reg = (ha->addr[4]);
444			af1reg |= (ha->addr[5] << 8);
445
446			reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
447			reg |= i;
448
449			axienet_iow(lp, XAE_FMI_OFFSET, reg);
450			axienet_iow(lp, XAE_AF0_OFFSET, af0reg);
451			axienet_iow(lp, XAE_AF1_OFFSET, af1reg);
452			i++;
453		}
454	} else {
455		reg = axienet_ior(lp, XAE_FMI_OFFSET);
456		reg &= ~XAE_FMI_PM_MASK;
457
458		axienet_iow(lp, XAE_FMI_OFFSET, reg);
459
460		for (i = 0; i < XAE_MULTICAST_CAM_TABLE_NUM; i++) {
461			reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
462			reg |= i;
463
464			axienet_iow(lp, XAE_FMI_OFFSET, reg);
465			axienet_iow(lp, XAE_AF0_OFFSET, 0);
466			axienet_iow(lp, XAE_AF1_OFFSET, 0);
467		}
468
469		dev_info(&ndev->dev, "Promiscuous mode disabled.\n");
470	}
471}
472
473/**
474 * axienet_setoptions - Set an Axi Ethernet option
475 * @ndev:	Pointer to the net_device structure
476 * @options:	Option to be enabled/disabled
477 *
478 * The Axi Ethernet core has multiple features which can be selectively turned
479 * on or off. The typical options could be jumbo frame option, basic VLAN
480 * option, promiscuous mode option etc. This function is used to set or clear
481 * these options in the Axi Ethernet hardware. This is done through
482 * axienet_option structure .
483 */
484static void axienet_setoptions(struct net_device *ndev, u32 options)
485{
486	int reg;
487	struct axienet_local *lp = netdev_priv(ndev);
488	struct axienet_option *tp = &axienet_options[0];
489
490	while (tp->opt) {
491		reg = ((axienet_ior(lp, tp->reg)) & ~(tp->m_or));
492		if (options & tp->opt)
493			reg |= tp->m_or;
494		axienet_iow(lp, tp->reg, reg);
495		tp++;
496	}
497
498	lp->options |= options;
499}
500
501static int __axienet_device_reset(struct axienet_local *lp)
502{
503	u32 value;
504	int ret;
505
506	/* Reset Axi DMA. This would reset Axi Ethernet core as well. The reset
507	 * process of Axi DMA takes a while to complete as all pending
508	 * commands/transfers will be flushed or completed during this
509	 * reset process.
510	 * Note that even though both TX and RX have their own reset register,
511	 * they both reset the entire DMA core, so only one needs to be used.
512	 */
513	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, XAXIDMA_CR_RESET_MASK);
514	ret = read_poll_timeout(axienet_dma_in32, value,
515				!(value & XAXIDMA_CR_RESET_MASK),
516				DELAY_OF_ONE_MILLISEC, 50000, false, lp,
517				XAXIDMA_TX_CR_OFFSET);
518	if (ret) {
519		dev_err(lp->dev, "%s: DMA reset timeout!\n", __func__);
520		return ret;
521	}
522
523	/* Wait for PhyRstCmplt bit to be set, indicating the PHY reset has finished */
524	ret = read_poll_timeout(axienet_ior, value,
525				value & XAE_INT_PHYRSTCMPLT_MASK,
526				DELAY_OF_ONE_MILLISEC, 50000, false, lp,
527				XAE_IS_OFFSET);
528	if (ret) {
529		dev_err(lp->dev, "%s: timeout waiting for PhyRstCmplt\n", __func__);
530		return ret;
531	}
532
533	return 0;
534}
535
536/**
537 * axienet_dma_stop - Stop DMA operation
538 * @lp:		Pointer to the axienet_local structure
539 */
540static void axienet_dma_stop(struct axienet_local *lp)
541{
542	int count;
543	u32 cr, sr;
544
545	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
546	cr &= ~(XAXIDMA_CR_RUNSTOP_MASK | XAXIDMA_IRQ_ALL_MASK);
547	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
548	synchronize_irq(lp->rx_irq);
549
550	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
551	cr &= ~(XAXIDMA_CR_RUNSTOP_MASK | XAXIDMA_IRQ_ALL_MASK);
552	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
553	synchronize_irq(lp->tx_irq);
554
555	/* Give DMAs a chance to halt gracefully */
556	sr = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
557	for (count = 0; !(sr & XAXIDMA_SR_HALT_MASK) && count < 5; ++count) {
558		msleep(20);
559		sr = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
560	}
561
562	sr = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
563	for (count = 0; !(sr & XAXIDMA_SR_HALT_MASK) && count < 5; ++count) {
564		msleep(20);
565		sr = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
566	}
567
568	/* Do a reset to ensure DMA is really stopped */
569	axienet_lock_mii(lp);
570	__axienet_device_reset(lp);
571	axienet_unlock_mii(lp);
572}
573
574/**
575 * axienet_device_reset - Reset and initialize the Axi Ethernet hardware.
576 * @ndev:	Pointer to the net_device structure
577 *
578 * This function is called to reset and initialize the Axi Ethernet core. This
579 * is typically called during initialization. It does a reset of the Axi DMA
580 * Rx/Tx channels and initializes the Axi DMA BDs. Since Axi DMA reset lines
581 * are connected to Axi Ethernet reset lines, this in turn resets the Axi
582 * Ethernet core. No separate hardware reset is done for the Axi Ethernet
583 * core.
584 * Returns 0 on success or a negative error number otherwise.
585 */
586static int axienet_device_reset(struct net_device *ndev)
587{
588	u32 axienet_status;
589	struct axienet_local *lp = netdev_priv(ndev);
590	int ret;
591
592	ret = __axienet_device_reset(lp);
593	if (ret)
594		return ret;
595
596	lp->max_frm_size = XAE_MAX_VLAN_FRAME_SIZE;
597	lp->options |= XAE_OPTION_VLAN;
598	lp->options &= (~XAE_OPTION_JUMBO);
599
600	if ((ndev->mtu > XAE_MTU) &&
601	    (ndev->mtu <= XAE_JUMBO_MTU)) {
602		lp->max_frm_size = ndev->mtu + VLAN_ETH_HLEN +
603					XAE_TRL_SIZE;
604
605		if (lp->max_frm_size <= lp->rxmem)
606			lp->options |= XAE_OPTION_JUMBO;
607	}
608
609	ret = axienet_dma_bd_init(ndev);
610	if (ret) {
611		netdev_err(ndev, "%s: descriptor allocation failed\n",
612			   __func__);
613		return ret;
614	}
615
616	axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
617	axienet_status &= ~XAE_RCW1_RX_MASK;
618	axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
619
620	axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
621	if (axienet_status & XAE_INT_RXRJECT_MASK)
622		axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
623	axienet_iow(lp, XAE_IE_OFFSET, lp->eth_irq > 0 ?
624		    XAE_INT_RECV_ERROR_MASK : 0);
625
626	axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
627
628	/* Sync default options with HW but leave receiver and
629	 * transmitter disabled.
630	 */
631	axienet_setoptions(ndev, lp->options &
632			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
633	axienet_set_mac_address(ndev, NULL);
634	axienet_set_multicast_list(ndev);
635	axienet_setoptions(ndev, lp->options);
636
637	netif_trans_update(ndev);
638
639	return 0;
640}
641
642/**
643 * axienet_free_tx_chain - Clean up a series of linked TX descriptors.
644 * @lp:		Pointer to the axienet_local structure
645 * @first_bd:	Index of first descriptor to clean up
646 * @nr_bds:	Max number of descriptors to clean up
647 * @force:	Whether to clean descriptors even if not complete
648 * @sizep:	Pointer to a u32 filled with the total sum of all bytes
649 *		in all cleaned-up descriptors. Ignored if NULL.
650 * @budget:	NAPI budget (use 0 when not called from NAPI poll)
651 *
652 * Would either be called after a successful transmit operation, or after
653 * there was an error when setting up the chain.
654 * Returns the number of descriptors handled.
655 */
656static int axienet_free_tx_chain(struct axienet_local *lp, u32 first_bd,
657				 int nr_bds, bool force, u32 *sizep, int budget)
658{
659	struct axidma_bd *cur_p;
660	unsigned int status;
661	dma_addr_t phys;
662	int i;
663
664	for (i = 0; i < nr_bds; i++) {
665		cur_p = &lp->tx_bd_v[(first_bd + i) % lp->tx_bd_num];
666		status = cur_p->status;
667
668		/* If force is not specified, clean up only descriptors
669		 * that have been completed by the MAC.
670		 */
671		if (!force && !(status & XAXIDMA_BD_STS_COMPLETE_MASK))
672			break;
673
674		/* Ensure we see complete descriptor update */
675		dma_rmb();
676		phys = desc_get_phys_addr(lp, cur_p);
677		dma_unmap_single(lp->dev, phys,
678				 (cur_p->cntrl & XAXIDMA_BD_CTRL_LENGTH_MASK),
679				 DMA_TO_DEVICE);
680
681		if (cur_p->skb && (status & XAXIDMA_BD_STS_COMPLETE_MASK))
682			napi_consume_skb(cur_p->skb, budget);
683
684		cur_p->app0 = 0;
685		cur_p->app1 = 0;
686		cur_p->app2 = 0;
687		cur_p->app4 = 0;
688		cur_p->skb = NULL;
689		/* ensure our transmit path and device don't prematurely see status cleared */
690		wmb();
691		cur_p->cntrl = 0;
692		cur_p->status = 0;
693
694		if (sizep)
695			*sizep += status & XAXIDMA_BD_STS_ACTUAL_LEN_MASK;
696	}
697
698	return i;
699}
700
701/**
702 * axienet_check_tx_bd_space - Checks if a BD/group of BDs are currently busy
703 * @lp:		Pointer to the axienet_local structure
704 * @num_frag:	The number of BDs to check for
705 *
706 * Return: 0, on success
707 *	    NETDEV_TX_BUSY, if any of the descriptors are not free
708 *
709 * This function is invoked before BDs are allocated and transmission starts.
710 * This function returns 0 if a BD or group of BDs can be allocated for
711 * transmission. If the BD or any of the BDs are not free the function
712 * returns a busy status.
713 */
714static inline int axienet_check_tx_bd_space(struct axienet_local *lp,
715					    int num_frag)
716{
717	struct axidma_bd *cur_p;
718
719	/* Ensure we see all descriptor updates from device or TX polling */
720	rmb();
721	cur_p = &lp->tx_bd_v[(READ_ONCE(lp->tx_bd_tail) + num_frag) %
722			     lp->tx_bd_num];
723	if (cur_p->cntrl)
724		return NETDEV_TX_BUSY;
725	return 0;
726}
727
728/**
729 * axienet_tx_poll - Invoked once a transmit is completed by the
730 * Axi DMA Tx channel.
731 * @napi:	Pointer to NAPI structure.
732 * @budget:	Max number of TX packets to process.
733 *
734 * Return: Number of TX packets processed.
735 *
736 * This function is invoked from the NAPI processing to notify the completion
737 * of transmit operation. It clears fields in the corresponding Tx BDs and
738 * unmaps the corresponding buffer so that CPU can regain ownership of the
739 * buffer. It finally invokes "netif_wake_queue" to restart transmission if
740 * required.
741 */
742static int axienet_tx_poll(struct napi_struct *napi, int budget)
743{
744	struct axienet_local *lp = container_of(napi, struct axienet_local, napi_tx);
745	struct net_device *ndev = lp->ndev;
746	u32 size = 0;
747	int packets;
748
749	packets = axienet_free_tx_chain(lp, lp->tx_bd_ci, budget, false, &size, budget);
750
751	if (packets) {
752		lp->tx_bd_ci += packets;
753		if (lp->tx_bd_ci >= lp->tx_bd_num)
754			lp->tx_bd_ci %= lp->tx_bd_num;
755
756		u64_stats_update_begin(&lp->tx_stat_sync);
757		u64_stats_add(&lp->tx_packets, packets);
758		u64_stats_add(&lp->tx_bytes, size);
759		u64_stats_update_end(&lp->tx_stat_sync);
760
761		/* Matches barrier in axienet_start_xmit */
762		smp_mb();
763
764		if (!axienet_check_tx_bd_space(lp, MAX_SKB_FRAGS + 1))
765			netif_wake_queue(ndev);
766	}
767
768	if (packets < budget && napi_complete_done(napi, packets)) {
769		/* Re-enable TX completion interrupts. This should
770		 * cause an immediate interrupt if any TX packets are
771		 * already pending.
772		 */
773		axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, lp->tx_dma_cr);
774	}
775	return packets;
776}
777
778/**
779 * axienet_start_xmit - Starts the transmission.
780 * @skb:	sk_buff pointer that contains data to be Txed.
781 * @ndev:	Pointer to net_device structure.
782 *
783 * Return: NETDEV_TX_OK, on success
784 *	    NETDEV_TX_BUSY, if any of the descriptors are not free
785 *
786 * This function is invoked from upper layers to initiate transmission. The
787 * function uses the next available free BDs and populates their fields to
788 * start the transmission. Additionally if checksum offloading is supported,
789 * it populates AXI Stream Control fields with appropriate values.
790 */
791static netdev_tx_t
792axienet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
793{
794	u32 ii;
795	u32 num_frag;
796	u32 csum_start_off;
797	u32 csum_index_off;
798	skb_frag_t *frag;
799	dma_addr_t tail_p, phys;
800	u32 orig_tail_ptr, new_tail_ptr;
801	struct axienet_local *lp = netdev_priv(ndev);
802	struct axidma_bd *cur_p;
803
804	orig_tail_ptr = lp->tx_bd_tail;
805	new_tail_ptr = orig_tail_ptr;
806
807	num_frag = skb_shinfo(skb)->nr_frags;
808	cur_p = &lp->tx_bd_v[orig_tail_ptr];
809
810	if (axienet_check_tx_bd_space(lp, num_frag + 1)) {
811		/* Should not happen as last start_xmit call should have
812		 * checked for sufficient space and queue should only be
813		 * woken when sufficient space is available.
814		 */
815		netif_stop_queue(ndev);
816		if (net_ratelimit())
817			netdev_warn(ndev, "TX ring unexpectedly full\n");
818		return NETDEV_TX_BUSY;
819	}
820
821	if (skb->ip_summed == CHECKSUM_PARTIAL) {
822		if (lp->features & XAE_FEATURE_FULL_TX_CSUM) {
823			/* Tx Full Checksum Offload Enabled */
824			cur_p->app0 |= 2;
825		} else if (lp->features & XAE_FEATURE_PARTIAL_TX_CSUM) {
826			csum_start_off = skb_transport_offset(skb);
827			csum_index_off = csum_start_off + skb->csum_offset;
828			/* Tx Partial Checksum Offload Enabled */
829			cur_p->app0 |= 1;
830			cur_p->app1 = (csum_start_off << 16) | csum_index_off;
831		}
832	} else if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
833		cur_p->app0 |= 2; /* Tx Full Checksum Offload Enabled */
834	}
835
836	phys = dma_map_single(lp->dev, skb->data,
837			      skb_headlen(skb), DMA_TO_DEVICE);
838	if (unlikely(dma_mapping_error(lp->dev, phys))) {
839		if (net_ratelimit())
840			netdev_err(ndev, "TX DMA mapping error\n");
841		ndev->stats.tx_dropped++;
842		return NETDEV_TX_OK;
843	}
844	desc_set_phys_addr(lp, phys, cur_p);
845	cur_p->cntrl = skb_headlen(skb) | XAXIDMA_BD_CTRL_TXSOF_MASK;
846
847	for (ii = 0; ii < num_frag; ii++) {
848		if (++new_tail_ptr >= lp->tx_bd_num)
849			new_tail_ptr = 0;
850		cur_p = &lp->tx_bd_v[new_tail_ptr];
851		frag = &skb_shinfo(skb)->frags[ii];
852		phys = dma_map_single(lp->dev,
853				      skb_frag_address(frag),
854				      skb_frag_size(frag),
855				      DMA_TO_DEVICE);
856		if (unlikely(dma_mapping_error(lp->dev, phys))) {
857			if (net_ratelimit())
858				netdev_err(ndev, "TX DMA mapping error\n");
859			ndev->stats.tx_dropped++;
860			axienet_free_tx_chain(lp, orig_tail_ptr, ii + 1,
861					      true, NULL, 0);
862			return NETDEV_TX_OK;
863		}
864		desc_set_phys_addr(lp, phys, cur_p);
865		cur_p->cntrl = skb_frag_size(frag);
866	}
867
868	cur_p->cntrl |= XAXIDMA_BD_CTRL_TXEOF_MASK;
869	cur_p->skb = skb;
870
871	tail_p = lp->tx_bd_p + sizeof(*lp->tx_bd_v) * new_tail_ptr;
872	if (++new_tail_ptr >= lp->tx_bd_num)
873		new_tail_ptr = 0;
874	WRITE_ONCE(lp->tx_bd_tail, new_tail_ptr);
875
876	/* Start the transfer */
877	axienet_dma_out_addr(lp, XAXIDMA_TX_TDESC_OFFSET, tail_p);
878
879	/* Stop queue if next transmit may not have space */
880	if (axienet_check_tx_bd_space(lp, MAX_SKB_FRAGS + 1)) {
881		netif_stop_queue(ndev);
882
883		/* Matches barrier in axienet_tx_poll */
884		smp_mb();
885
886		/* Space might have just been freed - check again */
887		if (!axienet_check_tx_bd_space(lp, MAX_SKB_FRAGS + 1))
888			netif_wake_queue(ndev);
889	}
890
891	return NETDEV_TX_OK;
892}
893
894/**
895 * axienet_rx_poll - Triggered by RX ISR to complete the BD processing.
896 * @napi:	Pointer to NAPI structure.
897 * @budget:	Max number of RX packets to process.
898 *
899 * Return: Number of RX packets processed.
900 */
901static int axienet_rx_poll(struct napi_struct *napi, int budget)
902{
903	u32 length;
904	u32 csumstatus;
905	u32 size = 0;
906	int packets = 0;
907	dma_addr_t tail_p = 0;
908	struct axidma_bd *cur_p;
909	struct sk_buff *skb, *new_skb;
910	struct axienet_local *lp = container_of(napi, struct axienet_local, napi_rx);
911
912	cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
913
914	while (packets < budget && (cur_p->status & XAXIDMA_BD_STS_COMPLETE_MASK)) {
915		dma_addr_t phys;
916
917		/* Ensure we see complete descriptor update */
918		dma_rmb();
919
920		skb = cur_p->skb;
921		cur_p->skb = NULL;
922
923		/* skb could be NULL if a previous pass already received the
924		 * packet for this slot in the ring, but failed to refill it
925		 * with a newly allocated buffer. In this case, don't try to
926		 * receive it again.
927		 */
928		if (likely(skb)) {
929			length = cur_p->app4 & 0x0000FFFF;
930
931			phys = desc_get_phys_addr(lp, cur_p);
932			dma_unmap_single(lp->dev, phys, lp->max_frm_size,
933					 DMA_FROM_DEVICE);
934
935			skb_put(skb, length);
936			skb->protocol = eth_type_trans(skb, lp->ndev);
937			/*skb_checksum_none_assert(skb);*/
938			skb->ip_summed = CHECKSUM_NONE;
939
940			/* if we're doing Rx csum offload, set it up */
941			if (lp->features & XAE_FEATURE_FULL_RX_CSUM) {
942				csumstatus = (cur_p->app2 &
943					      XAE_FULL_CSUM_STATUS_MASK) >> 3;
944				if (csumstatus == XAE_IP_TCP_CSUM_VALIDATED ||
945				    csumstatus == XAE_IP_UDP_CSUM_VALIDATED) {
946					skb->ip_summed = CHECKSUM_UNNECESSARY;
947				}
948			} else if ((lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) != 0 &&
949				   skb->protocol == htons(ETH_P_IP) &&
950				   skb->len > 64) {
951				skb->csum = be32_to_cpu(cur_p->app3 & 0xFFFF);
952				skb->ip_summed = CHECKSUM_COMPLETE;
953			}
954
955			napi_gro_receive(napi, skb);
956
957			size += length;
958			packets++;
959		}
960
961		new_skb = napi_alloc_skb(napi, lp->max_frm_size);
962		if (!new_skb)
963			break;
964
965		phys = dma_map_single(lp->dev, new_skb->data,
966				      lp->max_frm_size,
967				      DMA_FROM_DEVICE);
968		if (unlikely(dma_mapping_error(lp->dev, phys))) {
969			if (net_ratelimit())
970				netdev_err(lp->ndev, "RX DMA mapping error\n");
971			dev_kfree_skb(new_skb);
972			break;
973		}
974		desc_set_phys_addr(lp, phys, cur_p);
975
976		cur_p->cntrl = lp->max_frm_size;
977		cur_p->status = 0;
978		cur_p->skb = new_skb;
979
980		/* Only update tail_p to mark this slot as usable after it has
981		 * been successfully refilled.
982		 */
983		tail_p = lp->rx_bd_p + sizeof(*lp->rx_bd_v) * lp->rx_bd_ci;
984
985		if (++lp->rx_bd_ci >= lp->rx_bd_num)
986			lp->rx_bd_ci = 0;
987		cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
988	}
989
990	u64_stats_update_begin(&lp->rx_stat_sync);
991	u64_stats_add(&lp->rx_packets, packets);
992	u64_stats_add(&lp->rx_bytes, size);
993	u64_stats_update_end(&lp->rx_stat_sync);
994
995	if (tail_p)
996		axienet_dma_out_addr(lp, XAXIDMA_RX_TDESC_OFFSET, tail_p);
997
998	if (packets < budget && napi_complete_done(napi, packets)) {
999		/* Re-enable RX completion interrupts. This should
1000		 * cause an immediate interrupt if any RX packets are
1001		 * already pending.
1002		 */
1003		axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, lp->rx_dma_cr);
1004	}
1005	return packets;
1006}
1007
1008/**
1009 * axienet_tx_irq - Tx Done Isr.
1010 * @irq:	irq number
1011 * @_ndev:	net_device pointer
1012 *
1013 * Return: IRQ_HANDLED if device generated a TX interrupt, IRQ_NONE otherwise.
1014 *
1015 * This is the Axi DMA Tx done Isr. It invokes NAPI polling to complete the
1016 * TX BD processing.
1017 */
1018static irqreturn_t axienet_tx_irq(int irq, void *_ndev)
1019{
1020	unsigned int status;
1021	struct net_device *ndev = _ndev;
1022	struct axienet_local *lp = netdev_priv(ndev);
1023
1024	status = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
1025
1026	if (!(status & XAXIDMA_IRQ_ALL_MASK))
1027		return IRQ_NONE;
1028
1029	axienet_dma_out32(lp, XAXIDMA_TX_SR_OFFSET, status);
1030
1031	if (unlikely(status & XAXIDMA_IRQ_ERROR_MASK)) {
1032		netdev_err(ndev, "DMA Tx error 0x%x\n", status);
1033		netdev_err(ndev, "Current BD is at: 0x%x%08x\n",
1034			   (lp->tx_bd_v[lp->tx_bd_ci]).phys_msb,
1035			   (lp->tx_bd_v[lp->tx_bd_ci]).phys);
1036		schedule_work(&lp->dma_err_task);
1037	} else {
1038		/* Disable further TX completion interrupts and schedule
1039		 * NAPI to handle the completions.
1040		 */
1041		u32 cr = lp->tx_dma_cr;
1042
1043		cr &= ~(XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK);
1044		axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
1045
1046		napi_schedule(&lp->napi_tx);
1047	}
1048
1049	return IRQ_HANDLED;
1050}
1051
1052/**
1053 * axienet_rx_irq - Rx Isr.
1054 * @irq:	irq number
1055 * @_ndev:	net_device pointer
1056 *
1057 * Return: IRQ_HANDLED if device generated a RX interrupt, IRQ_NONE otherwise.
1058 *
1059 * This is the Axi DMA Rx Isr. It invokes NAPI polling to complete the RX BD
1060 * processing.
1061 */
1062static irqreturn_t axienet_rx_irq(int irq, void *_ndev)
1063{
1064	unsigned int status;
1065	struct net_device *ndev = _ndev;
1066	struct axienet_local *lp = netdev_priv(ndev);
1067
1068	status = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
1069
1070	if (!(status & XAXIDMA_IRQ_ALL_MASK))
1071		return IRQ_NONE;
1072
1073	axienet_dma_out32(lp, XAXIDMA_RX_SR_OFFSET, status);
1074
1075	if (unlikely(status & XAXIDMA_IRQ_ERROR_MASK)) {
1076		netdev_err(ndev, "DMA Rx error 0x%x\n", status);
1077		netdev_err(ndev, "Current BD is at: 0x%x%08x\n",
1078			   (lp->rx_bd_v[lp->rx_bd_ci]).phys_msb,
1079			   (lp->rx_bd_v[lp->rx_bd_ci]).phys);
1080		schedule_work(&lp->dma_err_task);
1081	} else {
1082		/* Disable further RX completion interrupts and schedule
1083		 * NAPI receive.
1084		 */
1085		u32 cr = lp->rx_dma_cr;
1086
1087		cr &= ~(XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK);
1088		axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
1089
1090		napi_schedule(&lp->napi_rx);
1091	}
1092
1093	return IRQ_HANDLED;
1094}
1095
1096/**
1097 * axienet_eth_irq - Ethernet core Isr.
1098 * @irq:	irq number
1099 * @_ndev:	net_device pointer
1100 *
1101 * Return: IRQ_HANDLED if device generated a core interrupt, IRQ_NONE otherwise.
1102 *
1103 * Handle miscellaneous conditions indicated by Ethernet core IRQ.
1104 */
1105static irqreturn_t axienet_eth_irq(int irq, void *_ndev)
1106{
1107	struct net_device *ndev = _ndev;
1108	struct axienet_local *lp = netdev_priv(ndev);
1109	unsigned int pending;
1110
1111	pending = axienet_ior(lp, XAE_IP_OFFSET);
1112	if (!pending)
1113		return IRQ_NONE;
1114
1115	if (pending & XAE_INT_RXFIFOOVR_MASK)
1116		ndev->stats.rx_missed_errors++;
1117
1118	if (pending & XAE_INT_RXRJECT_MASK)
1119		ndev->stats.rx_frame_errors++;
1120
1121	axienet_iow(lp, XAE_IS_OFFSET, pending);
1122	return IRQ_HANDLED;
1123}
1124
1125static void axienet_dma_err_handler(struct work_struct *work);
1126
1127/**
1128 * axienet_open - Driver open routine.
1129 * @ndev:	Pointer to net_device structure
1130 *
1131 * Return: 0, on success.
1132 *	    non-zero error value on failure
1133 *
1134 * This is the driver open routine. It calls phylink_start to start the
1135 * PHY device.
1136 * It also allocates interrupt service routines, enables the interrupt lines
1137 * and ISR handling. Axi Ethernet core is reset through Axi DMA core. Buffer
1138 * descriptors are initialized.
1139 */
1140static int axienet_open(struct net_device *ndev)
1141{
1142	int ret;
1143	struct axienet_local *lp = netdev_priv(ndev);
1144
1145	dev_dbg(&ndev->dev, "axienet_open()\n");
1146
1147	/* When we do an Axi Ethernet reset, it resets the complete core
1148	 * including the MDIO. MDIO must be disabled before resetting.
1149	 * Hold MDIO bus lock to avoid MDIO accesses during the reset.
1150	 */
1151	axienet_lock_mii(lp);
1152	ret = axienet_device_reset(ndev);
1153	axienet_unlock_mii(lp);
1154
1155	ret = phylink_of_phy_connect(lp->phylink, lp->dev->of_node, 0);
1156	if (ret) {
1157		dev_err(lp->dev, "phylink_of_phy_connect() failed: %d\n", ret);
1158		return ret;
1159	}
1160
1161	phylink_start(lp->phylink);
1162
1163	/* Enable worker thread for Axi DMA error handling */
1164	INIT_WORK(&lp->dma_err_task, axienet_dma_err_handler);
1165
1166	napi_enable(&lp->napi_rx);
1167	napi_enable(&lp->napi_tx);
1168
1169	/* Enable interrupts for Axi DMA Tx */
1170	ret = request_irq(lp->tx_irq, axienet_tx_irq, IRQF_SHARED,
1171			  ndev->name, ndev);
1172	if (ret)
1173		goto err_tx_irq;
1174	/* Enable interrupts for Axi DMA Rx */
1175	ret = request_irq(lp->rx_irq, axienet_rx_irq, IRQF_SHARED,
1176			  ndev->name, ndev);
1177	if (ret)
1178		goto err_rx_irq;
1179	/* Enable interrupts for Axi Ethernet core (if defined) */
1180	if (lp->eth_irq > 0) {
1181		ret = request_irq(lp->eth_irq, axienet_eth_irq, IRQF_SHARED,
1182				  ndev->name, ndev);
1183		if (ret)
1184			goto err_eth_irq;
1185	}
1186
1187	return 0;
1188
1189err_eth_irq:
1190	free_irq(lp->rx_irq, ndev);
1191err_rx_irq:
1192	free_irq(lp->tx_irq, ndev);
1193err_tx_irq:
1194	napi_disable(&lp->napi_tx);
1195	napi_disable(&lp->napi_rx);
1196	phylink_stop(lp->phylink);
1197	phylink_disconnect_phy(lp->phylink);
1198	cancel_work_sync(&lp->dma_err_task);
1199	dev_err(lp->dev, "request_irq() failed\n");
1200	return ret;
1201}
1202
1203/**
1204 * axienet_stop - Driver stop routine.
1205 * @ndev:	Pointer to net_device structure
1206 *
1207 * Return: 0, on success.
1208 *
1209 * This is the driver stop routine. It calls phylink_disconnect to stop the PHY
1210 * device. It also removes the interrupt handlers and disables the interrupts.
1211 * The Axi DMA Tx/Rx BDs are released.
1212 */
1213static int axienet_stop(struct net_device *ndev)
1214{
1215	struct axienet_local *lp = netdev_priv(ndev);
1216
1217	dev_dbg(&ndev->dev, "axienet_close()\n");
1218
1219	napi_disable(&lp->napi_tx);
1220	napi_disable(&lp->napi_rx);
1221
1222	phylink_stop(lp->phylink);
1223	phylink_disconnect_phy(lp->phylink);
1224
1225	axienet_setoptions(ndev, lp->options &
1226			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1227
1228	axienet_dma_stop(lp);
1229
1230	axienet_iow(lp, XAE_IE_OFFSET, 0);
1231
1232	cancel_work_sync(&lp->dma_err_task);
1233
1234	if (lp->eth_irq > 0)
1235		free_irq(lp->eth_irq, ndev);
1236	free_irq(lp->tx_irq, ndev);
1237	free_irq(lp->rx_irq, ndev);
1238
1239	axienet_dma_bd_release(ndev);
1240	return 0;
1241}
1242
1243/**
1244 * axienet_change_mtu - Driver change mtu routine.
1245 * @ndev:	Pointer to net_device structure
1246 * @new_mtu:	New mtu value to be applied
1247 *
1248 * Return: Always returns 0 (success).
1249 *
1250 * This is the change mtu driver routine. It checks if the Axi Ethernet
1251 * hardware supports jumbo frames before changing the mtu. This can be
1252 * called only when the device is not up.
1253 */
1254static int axienet_change_mtu(struct net_device *ndev, int new_mtu)
1255{
1256	struct axienet_local *lp = netdev_priv(ndev);
1257
1258	if (netif_running(ndev))
1259		return -EBUSY;
1260
1261	if ((new_mtu + VLAN_ETH_HLEN +
1262		XAE_TRL_SIZE) > lp->rxmem)
1263		return -EINVAL;
1264
1265	ndev->mtu = new_mtu;
1266
1267	return 0;
1268}
1269
1270#ifdef CONFIG_NET_POLL_CONTROLLER
1271/**
1272 * axienet_poll_controller - Axi Ethernet poll mechanism.
1273 * @ndev:	Pointer to net_device structure
1274 *
1275 * This implements Rx/Tx ISR poll mechanisms. The interrupts are disabled prior
1276 * to polling the ISRs and are enabled back after the polling is done.
1277 */
1278static void axienet_poll_controller(struct net_device *ndev)
1279{
1280	struct axienet_local *lp = netdev_priv(ndev);
1281	disable_irq(lp->tx_irq);
1282	disable_irq(lp->rx_irq);
1283	axienet_rx_irq(lp->tx_irq, ndev);
1284	axienet_tx_irq(lp->rx_irq, ndev);
1285	enable_irq(lp->tx_irq);
1286	enable_irq(lp->rx_irq);
1287}
1288#endif
1289
1290static int axienet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1291{
1292	struct axienet_local *lp = netdev_priv(dev);
1293
1294	if (!netif_running(dev))
1295		return -EINVAL;
1296
1297	return phylink_mii_ioctl(lp->phylink, rq, cmd);
1298}
1299
1300static void
1301axienet_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
1302{
1303	struct axienet_local *lp = netdev_priv(dev);
1304	unsigned int start;
1305
1306	netdev_stats_to_stats64(stats, &dev->stats);
1307
1308	do {
1309		start = u64_stats_fetch_begin(&lp->rx_stat_sync);
1310		stats->rx_packets = u64_stats_read(&lp->rx_packets);
1311		stats->rx_bytes = u64_stats_read(&lp->rx_bytes);
1312	} while (u64_stats_fetch_retry(&lp->rx_stat_sync, start));
1313
1314	do {
1315		start = u64_stats_fetch_begin(&lp->tx_stat_sync);
1316		stats->tx_packets = u64_stats_read(&lp->tx_packets);
1317		stats->tx_bytes = u64_stats_read(&lp->tx_bytes);
1318	} while (u64_stats_fetch_retry(&lp->tx_stat_sync, start));
1319}
1320
1321static const struct net_device_ops axienet_netdev_ops = {
1322	.ndo_open = axienet_open,
1323	.ndo_stop = axienet_stop,
1324	.ndo_start_xmit = axienet_start_xmit,
1325	.ndo_get_stats64 = axienet_get_stats64,
1326	.ndo_change_mtu	= axienet_change_mtu,
1327	.ndo_set_mac_address = netdev_set_mac_address,
1328	.ndo_validate_addr = eth_validate_addr,
1329	.ndo_eth_ioctl = axienet_ioctl,
1330	.ndo_set_rx_mode = axienet_set_multicast_list,
1331#ifdef CONFIG_NET_POLL_CONTROLLER
1332	.ndo_poll_controller = axienet_poll_controller,
1333#endif
1334};
1335
1336/**
1337 * axienet_ethtools_get_drvinfo - Get various Axi Ethernet driver information.
1338 * @ndev:	Pointer to net_device structure
1339 * @ed:		Pointer to ethtool_drvinfo structure
1340 *
1341 * This implements ethtool command for getting the driver information.
1342 * Issue "ethtool -i ethX" under linux prompt to execute this function.
1343 */
1344static void axienet_ethtools_get_drvinfo(struct net_device *ndev,
1345					 struct ethtool_drvinfo *ed)
1346{
1347	strscpy(ed->driver, DRIVER_NAME, sizeof(ed->driver));
1348	strscpy(ed->version, DRIVER_VERSION, sizeof(ed->version));
1349}
1350
1351/**
1352 * axienet_ethtools_get_regs_len - Get the total regs length present in the
1353 *				   AxiEthernet core.
1354 * @ndev:	Pointer to net_device structure
1355 *
1356 * This implements ethtool command for getting the total register length
1357 * information.
1358 *
1359 * Return: the total regs length
1360 */
1361static int axienet_ethtools_get_regs_len(struct net_device *ndev)
1362{
1363	return sizeof(u32) * AXIENET_REGS_N;
1364}
1365
1366/**
1367 * axienet_ethtools_get_regs - Dump the contents of all registers present
1368 *			       in AxiEthernet core.
1369 * @ndev:	Pointer to net_device structure
1370 * @regs:	Pointer to ethtool_regs structure
1371 * @ret:	Void pointer used to return the contents of the registers.
1372 *
1373 * This implements ethtool command for getting the Axi Ethernet register dump.
1374 * Issue "ethtool -d ethX" to execute this function.
1375 */
1376static void axienet_ethtools_get_regs(struct net_device *ndev,
1377				      struct ethtool_regs *regs, void *ret)
1378{
1379	u32 *data = (u32 *)ret;
1380	size_t len = sizeof(u32) * AXIENET_REGS_N;
1381	struct axienet_local *lp = netdev_priv(ndev);
1382
1383	regs->version = 0;
1384	regs->len = len;
1385
1386	memset(data, 0, len);
1387	data[0] = axienet_ior(lp, XAE_RAF_OFFSET);
1388	data[1] = axienet_ior(lp, XAE_TPF_OFFSET);
1389	data[2] = axienet_ior(lp, XAE_IFGP_OFFSET);
1390	data[3] = axienet_ior(lp, XAE_IS_OFFSET);
1391	data[4] = axienet_ior(lp, XAE_IP_OFFSET);
1392	data[5] = axienet_ior(lp, XAE_IE_OFFSET);
1393	data[6] = axienet_ior(lp, XAE_TTAG_OFFSET);
1394	data[7] = axienet_ior(lp, XAE_RTAG_OFFSET);
1395	data[8] = axienet_ior(lp, XAE_UAWL_OFFSET);
1396	data[9] = axienet_ior(lp, XAE_UAWU_OFFSET);
1397	data[10] = axienet_ior(lp, XAE_TPID0_OFFSET);
1398	data[11] = axienet_ior(lp, XAE_TPID1_OFFSET);
1399	data[12] = axienet_ior(lp, XAE_PPST_OFFSET);
1400	data[13] = axienet_ior(lp, XAE_RCW0_OFFSET);
1401	data[14] = axienet_ior(lp, XAE_RCW1_OFFSET);
1402	data[15] = axienet_ior(lp, XAE_TC_OFFSET);
1403	data[16] = axienet_ior(lp, XAE_FCC_OFFSET);
1404	data[17] = axienet_ior(lp, XAE_EMMC_OFFSET);
1405	data[18] = axienet_ior(lp, XAE_PHYC_OFFSET);
1406	data[19] = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
1407	data[20] = axienet_ior(lp, XAE_MDIO_MCR_OFFSET);
1408	data[21] = axienet_ior(lp, XAE_MDIO_MWD_OFFSET);
1409	data[22] = axienet_ior(lp, XAE_MDIO_MRD_OFFSET);
1410	data[27] = axienet_ior(lp, XAE_UAW0_OFFSET);
1411	data[28] = axienet_ior(lp, XAE_UAW1_OFFSET);
1412	data[29] = axienet_ior(lp, XAE_FMI_OFFSET);
1413	data[30] = axienet_ior(lp, XAE_AF0_OFFSET);
1414	data[31] = axienet_ior(lp, XAE_AF1_OFFSET);
1415	data[32] = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1416	data[33] = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
1417	data[34] = axienet_dma_in32(lp, XAXIDMA_TX_CDESC_OFFSET);
1418	data[35] = axienet_dma_in32(lp, XAXIDMA_TX_TDESC_OFFSET);
1419	data[36] = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1420	data[37] = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
1421	data[38] = axienet_dma_in32(lp, XAXIDMA_RX_CDESC_OFFSET);
1422	data[39] = axienet_dma_in32(lp, XAXIDMA_RX_TDESC_OFFSET);
1423}
1424
1425static void
1426axienet_ethtools_get_ringparam(struct net_device *ndev,
1427			       struct ethtool_ringparam *ering,
1428			       struct kernel_ethtool_ringparam *kernel_ering,
1429			       struct netlink_ext_ack *extack)
1430{
1431	struct axienet_local *lp = netdev_priv(ndev);
1432
1433	ering->rx_max_pending = RX_BD_NUM_MAX;
1434	ering->rx_mini_max_pending = 0;
1435	ering->rx_jumbo_max_pending = 0;
1436	ering->tx_max_pending = TX_BD_NUM_MAX;
1437	ering->rx_pending = lp->rx_bd_num;
1438	ering->rx_mini_pending = 0;
1439	ering->rx_jumbo_pending = 0;
1440	ering->tx_pending = lp->tx_bd_num;
1441}
1442
1443static int
1444axienet_ethtools_set_ringparam(struct net_device *ndev,
1445			       struct ethtool_ringparam *ering,
1446			       struct kernel_ethtool_ringparam *kernel_ering,
1447			       struct netlink_ext_ack *extack)
1448{
1449	struct axienet_local *lp = netdev_priv(ndev);
1450
1451	if (ering->rx_pending > RX_BD_NUM_MAX ||
1452	    ering->rx_mini_pending ||
1453	    ering->rx_jumbo_pending ||
1454	    ering->tx_pending < TX_BD_NUM_MIN ||
1455	    ering->tx_pending > TX_BD_NUM_MAX)
1456		return -EINVAL;
1457
1458	if (netif_running(ndev))
1459		return -EBUSY;
1460
1461	lp->rx_bd_num = ering->rx_pending;
1462	lp->tx_bd_num = ering->tx_pending;
1463	return 0;
1464}
1465
1466/**
1467 * axienet_ethtools_get_pauseparam - Get the pause parameter setting for
1468 *				     Tx and Rx paths.
1469 * @ndev:	Pointer to net_device structure
1470 * @epauseparm:	Pointer to ethtool_pauseparam structure.
1471 *
1472 * This implements ethtool command for getting axi ethernet pause frame
1473 * setting. Issue "ethtool -a ethX" to execute this function.
1474 */
1475static void
1476axienet_ethtools_get_pauseparam(struct net_device *ndev,
1477				struct ethtool_pauseparam *epauseparm)
1478{
1479	struct axienet_local *lp = netdev_priv(ndev);
1480
1481	phylink_ethtool_get_pauseparam(lp->phylink, epauseparm);
1482}
1483
1484/**
1485 * axienet_ethtools_set_pauseparam - Set device pause parameter(flow control)
1486 *				     settings.
1487 * @ndev:	Pointer to net_device structure
1488 * @epauseparm:Pointer to ethtool_pauseparam structure
1489 *
1490 * This implements ethtool command for enabling flow control on Rx and Tx
1491 * paths. Issue "ethtool -A ethX tx on|off" under linux prompt to execute this
1492 * function.
1493 *
1494 * Return: 0 on success, -EFAULT if device is running
1495 */
1496static int
1497axienet_ethtools_set_pauseparam(struct net_device *ndev,
1498				struct ethtool_pauseparam *epauseparm)
1499{
1500	struct axienet_local *lp = netdev_priv(ndev);
1501
1502	return phylink_ethtool_set_pauseparam(lp->phylink, epauseparm);
1503}
1504
1505/**
1506 * axienet_ethtools_get_coalesce - Get DMA interrupt coalescing count.
1507 * @ndev:	Pointer to net_device structure
1508 * @ecoalesce:	Pointer to ethtool_coalesce structure
1509 * @kernel_coal: ethtool CQE mode setting structure
1510 * @extack:	extack for reporting error messages
1511 *
1512 * This implements ethtool command for getting the DMA interrupt coalescing
1513 * count on Tx and Rx paths. Issue "ethtool -c ethX" under linux prompt to
1514 * execute this function.
1515 *
1516 * Return: 0 always
1517 */
1518static int
1519axienet_ethtools_get_coalesce(struct net_device *ndev,
1520			      struct ethtool_coalesce *ecoalesce,
1521			      struct kernel_ethtool_coalesce *kernel_coal,
1522			      struct netlink_ext_ack *extack)
1523{
1524	struct axienet_local *lp = netdev_priv(ndev);
1525
1526	ecoalesce->rx_max_coalesced_frames = lp->coalesce_count_rx;
1527	ecoalesce->rx_coalesce_usecs = lp->coalesce_usec_rx;
1528	ecoalesce->tx_max_coalesced_frames = lp->coalesce_count_tx;
1529	ecoalesce->tx_coalesce_usecs = lp->coalesce_usec_tx;
1530	return 0;
1531}
1532
1533/**
1534 * axienet_ethtools_set_coalesce - Set DMA interrupt coalescing count.
1535 * @ndev:	Pointer to net_device structure
1536 * @ecoalesce:	Pointer to ethtool_coalesce structure
1537 * @kernel_coal: ethtool CQE mode setting structure
1538 * @extack:	extack for reporting error messages
1539 *
1540 * This implements ethtool command for setting the DMA interrupt coalescing
1541 * count on Tx and Rx paths. Issue "ethtool -C ethX rx-frames 5" under linux
1542 * prompt to execute this function.
1543 *
1544 * Return: 0, on success, Non-zero error value on failure.
1545 */
1546static int
1547axienet_ethtools_set_coalesce(struct net_device *ndev,
1548			      struct ethtool_coalesce *ecoalesce,
1549			      struct kernel_ethtool_coalesce *kernel_coal,
1550			      struct netlink_ext_ack *extack)
1551{
1552	struct axienet_local *lp = netdev_priv(ndev);
1553
1554	if (netif_running(ndev)) {
1555		netdev_err(ndev,
1556			   "Please stop netif before applying configuration\n");
1557		return -EFAULT;
1558	}
1559
1560	if (ecoalesce->rx_max_coalesced_frames)
1561		lp->coalesce_count_rx = ecoalesce->rx_max_coalesced_frames;
1562	if (ecoalesce->rx_coalesce_usecs)
1563		lp->coalesce_usec_rx = ecoalesce->rx_coalesce_usecs;
1564	if (ecoalesce->tx_max_coalesced_frames)
1565		lp->coalesce_count_tx = ecoalesce->tx_max_coalesced_frames;
1566	if (ecoalesce->tx_coalesce_usecs)
1567		lp->coalesce_usec_tx = ecoalesce->tx_coalesce_usecs;
1568
1569	return 0;
1570}
1571
1572static int
1573axienet_ethtools_get_link_ksettings(struct net_device *ndev,
1574				    struct ethtool_link_ksettings *cmd)
1575{
1576	struct axienet_local *lp = netdev_priv(ndev);
1577
1578	return phylink_ethtool_ksettings_get(lp->phylink, cmd);
1579}
1580
1581static int
1582axienet_ethtools_set_link_ksettings(struct net_device *ndev,
1583				    const struct ethtool_link_ksettings *cmd)
1584{
1585	struct axienet_local *lp = netdev_priv(ndev);
1586
1587	return phylink_ethtool_ksettings_set(lp->phylink, cmd);
1588}
1589
1590static int axienet_ethtools_nway_reset(struct net_device *dev)
1591{
1592	struct axienet_local *lp = netdev_priv(dev);
1593
1594	return phylink_ethtool_nway_reset(lp->phylink);
1595}
1596
1597static const struct ethtool_ops axienet_ethtool_ops = {
1598	.supported_coalesce_params = ETHTOOL_COALESCE_MAX_FRAMES |
1599				     ETHTOOL_COALESCE_USECS,
1600	.get_drvinfo    = axienet_ethtools_get_drvinfo,
1601	.get_regs_len   = axienet_ethtools_get_regs_len,
1602	.get_regs       = axienet_ethtools_get_regs,
1603	.get_link       = ethtool_op_get_link,
1604	.get_ringparam	= axienet_ethtools_get_ringparam,
1605	.set_ringparam	= axienet_ethtools_set_ringparam,
1606	.get_pauseparam = axienet_ethtools_get_pauseparam,
1607	.set_pauseparam = axienet_ethtools_set_pauseparam,
1608	.get_coalesce   = axienet_ethtools_get_coalesce,
1609	.set_coalesce   = axienet_ethtools_set_coalesce,
1610	.get_link_ksettings = axienet_ethtools_get_link_ksettings,
1611	.set_link_ksettings = axienet_ethtools_set_link_ksettings,
1612	.nway_reset	= axienet_ethtools_nway_reset,
1613};
1614
1615static struct axienet_local *pcs_to_axienet_local(struct phylink_pcs *pcs)
1616{
1617	return container_of(pcs, struct axienet_local, pcs);
1618}
1619
1620static void axienet_pcs_get_state(struct phylink_pcs *pcs,
1621				  struct phylink_link_state *state)
1622{
1623	struct mdio_device *pcs_phy = pcs_to_axienet_local(pcs)->pcs_phy;
1624
1625	phylink_mii_c22_pcs_get_state(pcs_phy, state);
1626}
1627
1628static void axienet_pcs_an_restart(struct phylink_pcs *pcs)
1629{
1630	struct mdio_device *pcs_phy = pcs_to_axienet_local(pcs)->pcs_phy;
1631
1632	phylink_mii_c22_pcs_an_restart(pcs_phy);
1633}
1634
1635static int axienet_pcs_config(struct phylink_pcs *pcs, unsigned int neg_mode,
1636			      phy_interface_t interface,
1637			      const unsigned long *advertising,
1638			      bool permit_pause_to_mac)
1639{
1640	struct mdio_device *pcs_phy = pcs_to_axienet_local(pcs)->pcs_phy;
1641	struct net_device *ndev = pcs_to_axienet_local(pcs)->ndev;
1642	struct axienet_local *lp = netdev_priv(ndev);
1643	int ret;
1644
1645	if (lp->switch_x_sgmii) {
1646		ret = mdiodev_write(pcs_phy, XLNX_MII_STD_SELECT_REG,
1647				    interface == PHY_INTERFACE_MODE_SGMII ?
1648					XLNX_MII_STD_SELECT_SGMII : 0);
1649		if (ret < 0) {
1650			netdev_warn(ndev,
1651				    "Failed to switch PHY interface: %d\n",
1652				    ret);
1653			return ret;
1654		}
1655	}
1656
1657	ret = phylink_mii_c22_pcs_config(pcs_phy, interface, advertising,
1658					 neg_mode);
1659	if (ret < 0)
1660		netdev_warn(ndev, "Failed to configure PCS: %d\n", ret);
1661
1662	return ret;
1663}
1664
1665static const struct phylink_pcs_ops axienet_pcs_ops = {
1666	.pcs_get_state = axienet_pcs_get_state,
1667	.pcs_config = axienet_pcs_config,
1668	.pcs_an_restart = axienet_pcs_an_restart,
1669};
1670
1671static struct phylink_pcs *axienet_mac_select_pcs(struct phylink_config *config,
1672						  phy_interface_t interface)
1673{
1674	struct net_device *ndev = to_net_dev(config->dev);
1675	struct axienet_local *lp = netdev_priv(ndev);
1676
1677	if (interface == PHY_INTERFACE_MODE_1000BASEX ||
1678	    interface ==  PHY_INTERFACE_MODE_SGMII)
1679		return &lp->pcs;
1680
1681	return NULL;
1682}
1683
1684static void axienet_mac_config(struct phylink_config *config, unsigned int mode,
1685			       const struct phylink_link_state *state)
1686{
1687	/* nothing meaningful to do */
1688}
1689
1690static void axienet_mac_link_down(struct phylink_config *config,
1691				  unsigned int mode,
1692				  phy_interface_t interface)
1693{
1694	/* nothing meaningful to do */
1695}
1696
1697static void axienet_mac_link_up(struct phylink_config *config,
1698				struct phy_device *phy,
1699				unsigned int mode, phy_interface_t interface,
1700				int speed, int duplex,
1701				bool tx_pause, bool rx_pause)
1702{
1703	struct net_device *ndev = to_net_dev(config->dev);
1704	struct axienet_local *lp = netdev_priv(ndev);
1705	u32 emmc_reg, fcc_reg;
1706
1707	emmc_reg = axienet_ior(lp, XAE_EMMC_OFFSET);
1708	emmc_reg &= ~XAE_EMMC_LINKSPEED_MASK;
1709
1710	switch (speed) {
1711	case SPEED_1000:
1712		emmc_reg |= XAE_EMMC_LINKSPD_1000;
1713		break;
1714	case SPEED_100:
1715		emmc_reg |= XAE_EMMC_LINKSPD_100;
1716		break;
1717	case SPEED_10:
1718		emmc_reg |= XAE_EMMC_LINKSPD_10;
1719		break;
1720	default:
1721		dev_err(&ndev->dev,
1722			"Speed other than 10, 100 or 1Gbps is not supported\n");
1723		break;
1724	}
1725
1726	axienet_iow(lp, XAE_EMMC_OFFSET, emmc_reg);
1727
1728	fcc_reg = axienet_ior(lp, XAE_FCC_OFFSET);
1729	if (tx_pause)
1730		fcc_reg |= XAE_FCC_FCTX_MASK;
1731	else
1732		fcc_reg &= ~XAE_FCC_FCTX_MASK;
1733	if (rx_pause)
1734		fcc_reg |= XAE_FCC_FCRX_MASK;
1735	else
1736		fcc_reg &= ~XAE_FCC_FCRX_MASK;
1737	axienet_iow(lp, XAE_FCC_OFFSET, fcc_reg);
1738}
1739
1740static const struct phylink_mac_ops axienet_phylink_ops = {
1741	.mac_select_pcs = axienet_mac_select_pcs,
1742	.mac_config = axienet_mac_config,
1743	.mac_link_down = axienet_mac_link_down,
1744	.mac_link_up = axienet_mac_link_up,
1745};
1746
1747/**
1748 * axienet_dma_err_handler - Work queue task for Axi DMA Error
1749 * @work:	pointer to work_struct
1750 *
1751 * Resets the Axi DMA and Axi Ethernet devices, and reconfigures the
1752 * Tx/Rx BDs.
1753 */
1754static void axienet_dma_err_handler(struct work_struct *work)
1755{
1756	u32 i;
1757	u32 axienet_status;
1758	struct axidma_bd *cur_p;
1759	struct axienet_local *lp = container_of(work, struct axienet_local,
1760						dma_err_task);
1761	struct net_device *ndev = lp->ndev;
1762
1763	napi_disable(&lp->napi_tx);
1764	napi_disable(&lp->napi_rx);
1765
1766	axienet_setoptions(ndev, lp->options &
1767			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1768
1769	axienet_dma_stop(lp);
1770
1771	for (i = 0; i < lp->tx_bd_num; i++) {
1772		cur_p = &lp->tx_bd_v[i];
1773		if (cur_p->cntrl) {
1774			dma_addr_t addr = desc_get_phys_addr(lp, cur_p);
1775
1776			dma_unmap_single(lp->dev, addr,
1777					 (cur_p->cntrl &
1778					  XAXIDMA_BD_CTRL_LENGTH_MASK),
1779					 DMA_TO_DEVICE);
1780		}
1781		if (cur_p->skb)
1782			dev_kfree_skb_irq(cur_p->skb);
1783		cur_p->phys = 0;
1784		cur_p->phys_msb = 0;
1785		cur_p->cntrl = 0;
1786		cur_p->status = 0;
1787		cur_p->app0 = 0;
1788		cur_p->app1 = 0;
1789		cur_p->app2 = 0;
1790		cur_p->app3 = 0;
1791		cur_p->app4 = 0;
1792		cur_p->skb = NULL;
1793	}
1794
1795	for (i = 0; i < lp->rx_bd_num; i++) {
1796		cur_p = &lp->rx_bd_v[i];
1797		cur_p->status = 0;
1798		cur_p->app0 = 0;
1799		cur_p->app1 = 0;
1800		cur_p->app2 = 0;
1801		cur_p->app3 = 0;
1802		cur_p->app4 = 0;
1803	}
1804
1805	lp->tx_bd_ci = 0;
1806	lp->tx_bd_tail = 0;
1807	lp->rx_bd_ci = 0;
1808
1809	axienet_dma_start(lp);
1810
1811	axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
1812	axienet_status &= ~XAE_RCW1_RX_MASK;
1813	axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
1814
1815	axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
1816	if (axienet_status & XAE_INT_RXRJECT_MASK)
1817		axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
1818	axienet_iow(lp, XAE_IE_OFFSET, lp->eth_irq > 0 ?
1819		    XAE_INT_RECV_ERROR_MASK : 0);
1820	axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
1821
1822	/* Sync default options with HW but leave receiver and
1823	 * transmitter disabled.
1824	 */
1825	axienet_setoptions(ndev, lp->options &
1826			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1827	axienet_set_mac_address(ndev, NULL);
1828	axienet_set_multicast_list(ndev);
1829	axienet_setoptions(ndev, lp->options);
1830	napi_enable(&lp->napi_rx);
1831	napi_enable(&lp->napi_tx);
1832}
1833
1834/**
1835 * axienet_probe - Axi Ethernet probe function.
1836 * @pdev:	Pointer to platform device structure.
1837 *
1838 * Return: 0, on success
1839 *	    Non-zero error value on failure.
1840 *
1841 * This is the probe routine for Axi Ethernet driver. This is called before
1842 * any other driver routines are invoked. It allocates and sets up the Ethernet
1843 * device. Parses through device tree and populates fields of
1844 * axienet_local. It registers the Ethernet device.
1845 */
1846static int axienet_probe(struct platform_device *pdev)
1847{
1848	int ret;
1849	struct device_node *np;
1850	struct axienet_local *lp;
1851	struct net_device *ndev;
1852	struct resource *ethres;
1853	u8 mac_addr[ETH_ALEN];
1854	int addr_width = 32;
1855	u32 value;
1856
1857	ndev = alloc_etherdev(sizeof(*lp));
1858	if (!ndev)
1859		return -ENOMEM;
1860
1861	platform_set_drvdata(pdev, ndev);
1862
1863	SET_NETDEV_DEV(ndev, &pdev->dev);
1864	ndev->flags &= ~IFF_MULTICAST;  /* clear multicast */
1865	ndev->features = NETIF_F_SG;
1866	ndev->netdev_ops = &axienet_netdev_ops;
1867	ndev->ethtool_ops = &axienet_ethtool_ops;
1868
1869	/* MTU range: 64 - 9000 */
1870	ndev->min_mtu = 64;
1871	ndev->max_mtu = XAE_JUMBO_MTU;
1872
1873	lp = netdev_priv(ndev);
1874	lp->ndev = ndev;
1875	lp->dev = &pdev->dev;
1876	lp->options = XAE_OPTION_DEFAULTS;
1877	lp->rx_bd_num = RX_BD_NUM_DEFAULT;
1878	lp->tx_bd_num = TX_BD_NUM_DEFAULT;
1879
1880	u64_stats_init(&lp->rx_stat_sync);
1881	u64_stats_init(&lp->tx_stat_sync);
1882
1883	netif_napi_add(ndev, &lp->napi_rx, axienet_rx_poll);
1884	netif_napi_add(ndev, &lp->napi_tx, axienet_tx_poll);
1885
1886	lp->axi_clk = devm_clk_get_optional(&pdev->dev, "s_axi_lite_clk");
1887	if (!lp->axi_clk) {
1888		/* For backward compatibility, if named AXI clock is not present,
1889		 * treat the first clock specified as the AXI clock.
1890		 */
1891		lp->axi_clk = devm_clk_get_optional(&pdev->dev, NULL);
1892	}
1893	if (IS_ERR(lp->axi_clk)) {
1894		ret = PTR_ERR(lp->axi_clk);
1895		goto free_netdev;
1896	}
1897	ret = clk_prepare_enable(lp->axi_clk);
1898	if (ret) {
1899		dev_err(&pdev->dev, "Unable to enable AXI clock: %d\n", ret);
1900		goto free_netdev;
1901	}
1902
1903	lp->misc_clks[0].id = "axis_clk";
1904	lp->misc_clks[1].id = "ref_clk";
1905	lp->misc_clks[2].id = "mgt_clk";
1906
1907	ret = devm_clk_bulk_get_optional(&pdev->dev, XAE_NUM_MISC_CLOCKS, lp->misc_clks);
1908	if (ret)
1909		goto cleanup_clk;
1910
1911	ret = clk_bulk_prepare_enable(XAE_NUM_MISC_CLOCKS, lp->misc_clks);
1912	if (ret)
1913		goto cleanup_clk;
1914
1915	/* Map device registers */
1916	lp->regs = devm_platform_get_and_ioremap_resource(pdev, 0, &ethres);
1917	if (IS_ERR(lp->regs)) {
1918		ret = PTR_ERR(lp->regs);
1919		goto cleanup_clk;
1920	}
1921	lp->regs_start = ethres->start;
1922
1923	/* Setup checksum offload, but default to off if not specified */
1924	lp->features = 0;
1925
1926	ret = of_property_read_u32(pdev->dev.of_node, "xlnx,txcsum", &value);
1927	if (!ret) {
1928		switch (value) {
1929		case 1:
1930			lp->csum_offload_on_tx_path =
1931				XAE_FEATURE_PARTIAL_TX_CSUM;
1932			lp->features |= XAE_FEATURE_PARTIAL_TX_CSUM;
1933			/* Can checksum TCP/UDP over IPv4. */
1934			ndev->features |= NETIF_F_IP_CSUM;
1935			break;
1936		case 2:
1937			lp->csum_offload_on_tx_path =
1938				XAE_FEATURE_FULL_TX_CSUM;
1939			lp->features |= XAE_FEATURE_FULL_TX_CSUM;
1940			/* Can checksum TCP/UDP over IPv4. */
1941			ndev->features |= NETIF_F_IP_CSUM;
1942			break;
1943		default:
1944			lp->csum_offload_on_tx_path = XAE_NO_CSUM_OFFLOAD;
1945		}
1946	}
1947	ret = of_property_read_u32(pdev->dev.of_node, "xlnx,rxcsum", &value);
1948	if (!ret) {
1949		switch (value) {
1950		case 1:
1951			lp->csum_offload_on_rx_path =
1952				XAE_FEATURE_PARTIAL_RX_CSUM;
1953			lp->features |= XAE_FEATURE_PARTIAL_RX_CSUM;
1954			break;
1955		case 2:
1956			lp->csum_offload_on_rx_path =
1957				XAE_FEATURE_FULL_RX_CSUM;
1958			lp->features |= XAE_FEATURE_FULL_RX_CSUM;
1959			break;
1960		default:
1961			lp->csum_offload_on_rx_path = XAE_NO_CSUM_OFFLOAD;
1962		}
1963	}
1964	/* For supporting jumbo frames, the Axi Ethernet hardware must have
1965	 * a larger Rx/Tx Memory. Typically, the size must be large so that
1966	 * we can enable jumbo option and start supporting jumbo frames.
1967	 * Here we check for memory allocated for Rx/Tx in the hardware from
1968	 * the device-tree and accordingly set flags.
1969	 */
1970	of_property_read_u32(pdev->dev.of_node, "xlnx,rxmem", &lp->rxmem);
1971
1972	lp->switch_x_sgmii = of_property_read_bool(pdev->dev.of_node,
1973						   "xlnx,switch-x-sgmii");
1974
1975	/* Start with the proprietary, and broken phy_type */
1976	ret = of_property_read_u32(pdev->dev.of_node, "xlnx,phy-type", &value);
1977	if (!ret) {
1978		netdev_warn(ndev, "Please upgrade your device tree binary blob to use phy-mode");
1979		switch (value) {
1980		case XAE_PHY_TYPE_MII:
1981			lp->phy_mode = PHY_INTERFACE_MODE_MII;
1982			break;
1983		case XAE_PHY_TYPE_GMII:
1984			lp->phy_mode = PHY_INTERFACE_MODE_GMII;
1985			break;
1986		case XAE_PHY_TYPE_RGMII_2_0:
1987			lp->phy_mode = PHY_INTERFACE_MODE_RGMII_ID;
1988			break;
1989		case XAE_PHY_TYPE_SGMII:
1990			lp->phy_mode = PHY_INTERFACE_MODE_SGMII;
1991			break;
1992		case XAE_PHY_TYPE_1000BASE_X:
1993			lp->phy_mode = PHY_INTERFACE_MODE_1000BASEX;
1994			break;
1995		default:
1996			ret = -EINVAL;
1997			goto cleanup_clk;
1998		}
1999	} else {
2000		ret = of_get_phy_mode(pdev->dev.of_node, &lp->phy_mode);
2001		if (ret)
2002			goto cleanup_clk;
2003	}
2004	if (lp->switch_x_sgmii && lp->phy_mode != PHY_INTERFACE_MODE_SGMII &&
2005	    lp->phy_mode != PHY_INTERFACE_MODE_1000BASEX) {
2006		dev_err(&pdev->dev, "xlnx,switch-x-sgmii only supported with SGMII or 1000BaseX\n");
2007		ret = -EINVAL;
2008		goto cleanup_clk;
2009	}
2010
2011	/* Find the DMA node, map the DMA registers, and decode the DMA IRQs */
2012	np = of_parse_phandle(pdev->dev.of_node, "axistream-connected", 0);
2013	if (np) {
2014		struct resource dmares;
2015
2016		ret = of_address_to_resource(np, 0, &dmares);
2017		if (ret) {
2018			dev_err(&pdev->dev,
2019				"unable to get DMA resource\n");
2020			of_node_put(np);
2021			goto cleanup_clk;
2022		}
2023		lp->dma_regs = devm_ioremap_resource(&pdev->dev,
2024						     &dmares);
2025		lp->rx_irq = irq_of_parse_and_map(np, 1);
2026		lp->tx_irq = irq_of_parse_and_map(np, 0);
2027		of_node_put(np);
2028		lp->eth_irq = platform_get_irq_optional(pdev, 0);
2029	} else {
2030		/* Check for these resources directly on the Ethernet node. */
2031		lp->dma_regs = devm_platform_get_and_ioremap_resource(pdev, 1, NULL);
2032		lp->rx_irq = platform_get_irq(pdev, 1);
2033		lp->tx_irq = platform_get_irq(pdev, 0);
2034		lp->eth_irq = platform_get_irq_optional(pdev, 2);
2035	}
2036	if (IS_ERR(lp->dma_regs)) {
2037		dev_err(&pdev->dev, "could not map DMA regs\n");
2038		ret = PTR_ERR(lp->dma_regs);
2039		goto cleanup_clk;
2040	}
2041	if ((lp->rx_irq <= 0) || (lp->tx_irq <= 0)) {
2042		dev_err(&pdev->dev, "could not determine irqs\n");
2043		ret = -ENOMEM;
2044		goto cleanup_clk;
2045	}
2046
2047	/* Reset core now that clocks are enabled, prior to accessing MDIO */
2048	ret = __axienet_device_reset(lp);
2049	if (ret)
2050		goto cleanup_clk;
2051
2052	/* Autodetect the need for 64-bit DMA pointers.
2053	 * When the IP is configured for a bus width bigger than 32 bits,
2054	 * writing the MSB registers is mandatory, even if they are all 0.
2055	 * We can detect this case by writing all 1's to one such register
2056	 * and see if that sticks: when the IP is configured for 32 bits
2057	 * only, those registers are RES0.
2058	 * Those MSB registers were introduced in IP v7.1, which we check first.
2059	 */
2060	if ((axienet_ior(lp, XAE_ID_OFFSET) >> 24) >= 0x9) {
2061		void __iomem *desc = lp->dma_regs + XAXIDMA_TX_CDESC_OFFSET + 4;
2062
2063		iowrite32(0x0, desc);
2064		if (ioread32(desc) == 0) {	/* sanity check */
2065			iowrite32(0xffffffff, desc);
2066			if (ioread32(desc) > 0) {
2067				lp->features |= XAE_FEATURE_DMA_64BIT;
2068				addr_width = 64;
2069				dev_info(&pdev->dev,
2070					 "autodetected 64-bit DMA range\n");
2071			}
2072			iowrite32(0x0, desc);
2073		}
2074	}
2075	if (!IS_ENABLED(CONFIG_64BIT) && lp->features & XAE_FEATURE_DMA_64BIT) {
2076		dev_err(&pdev->dev, "64-bit addressable DMA is not compatible with 32-bit archecture\n");
2077		ret = -EINVAL;
2078		goto cleanup_clk;
2079	}
2080
2081	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(addr_width));
2082	if (ret) {
2083		dev_err(&pdev->dev, "No suitable DMA available\n");
2084		goto cleanup_clk;
2085	}
2086
2087	/* Check for Ethernet core IRQ (optional) */
2088	if (lp->eth_irq <= 0)
2089		dev_info(&pdev->dev, "Ethernet core IRQ not defined\n");
2090
2091	/* Retrieve the MAC address */
2092	ret = of_get_mac_address(pdev->dev.of_node, mac_addr);
2093	if (!ret) {
2094		axienet_set_mac_address(ndev, mac_addr);
2095	} else {
2096		dev_warn(&pdev->dev, "could not find MAC address property: %d\n",
2097			 ret);
2098		axienet_set_mac_address(ndev, NULL);
2099	}
2100
2101	lp->coalesce_count_rx = XAXIDMA_DFT_RX_THRESHOLD;
2102	lp->coalesce_usec_rx = XAXIDMA_DFT_RX_USEC;
2103	lp->coalesce_count_tx = XAXIDMA_DFT_TX_THRESHOLD;
2104	lp->coalesce_usec_tx = XAXIDMA_DFT_TX_USEC;
2105
2106	ret = axienet_mdio_setup(lp);
2107	if (ret)
2108		dev_warn(&pdev->dev,
2109			 "error registering MDIO bus: %d\n", ret);
2110
2111	if (lp->phy_mode == PHY_INTERFACE_MODE_SGMII ||
2112	    lp->phy_mode == PHY_INTERFACE_MODE_1000BASEX) {
2113		np = of_parse_phandle(pdev->dev.of_node, "pcs-handle", 0);
2114		if (!np) {
2115			/* Deprecated: Always use "pcs-handle" for pcs_phy.
2116			 * Falling back to "phy-handle" here is only for
2117			 * backward compatibility with old device trees.
2118			 */
2119			np = of_parse_phandle(pdev->dev.of_node, "phy-handle", 0);
2120		}
2121		if (!np) {
2122			dev_err(&pdev->dev, "pcs-handle (preferred) or phy-handle required for 1000BaseX/SGMII\n");
2123			ret = -EINVAL;
2124			goto cleanup_mdio;
2125		}
2126		lp->pcs_phy = of_mdio_find_device(np);
2127		if (!lp->pcs_phy) {
2128			ret = -EPROBE_DEFER;
2129			of_node_put(np);
2130			goto cleanup_mdio;
2131		}
2132		of_node_put(np);
2133		lp->pcs.ops = &axienet_pcs_ops;
2134		lp->pcs.neg_mode = true;
2135		lp->pcs.poll = true;
2136	}
2137
2138	lp->phylink_config.dev = &ndev->dev;
2139	lp->phylink_config.type = PHYLINK_NETDEV;
2140	lp->phylink_config.mac_capabilities = MAC_SYM_PAUSE | MAC_ASYM_PAUSE |
2141		MAC_10FD | MAC_100FD | MAC_1000FD;
2142
2143	__set_bit(lp->phy_mode, lp->phylink_config.supported_interfaces);
2144	if (lp->switch_x_sgmii) {
2145		__set_bit(PHY_INTERFACE_MODE_1000BASEX,
2146			  lp->phylink_config.supported_interfaces);
2147		__set_bit(PHY_INTERFACE_MODE_SGMII,
2148			  lp->phylink_config.supported_interfaces);
2149	}
2150
2151	lp->phylink = phylink_create(&lp->phylink_config, pdev->dev.fwnode,
2152				     lp->phy_mode,
2153				     &axienet_phylink_ops);
2154	if (IS_ERR(lp->phylink)) {
2155		ret = PTR_ERR(lp->phylink);
2156		dev_err(&pdev->dev, "phylink_create error (%i)\n", ret);
2157		goto cleanup_mdio;
2158	}
2159
2160	ret = register_netdev(lp->ndev);
2161	if (ret) {
2162		dev_err(lp->dev, "register_netdev() error (%i)\n", ret);
2163		goto cleanup_phylink;
2164	}
2165
2166	return 0;
2167
2168cleanup_phylink:
2169	phylink_destroy(lp->phylink);
2170
2171cleanup_mdio:
2172	if (lp->pcs_phy)
2173		put_device(&lp->pcs_phy->dev);
2174	if (lp->mii_bus)
2175		axienet_mdio_teardown(lp);
2176cleanup_clk:
2177	clk_bulk_disable_unprepare(XAE_NUM_MISC_CLOCKS, lp->misc_clks);
2178	clk_disable_unprepare(lp->axi_clk);
2179
2180free_netdev:
2181	free_netdev(ndev);
2182
2183	return ret;
2184}
2185
2186static int axienet_remove(struct platform_device *pdev)
2187{
2188	struct net_device *ndev = platform_get_drvdata(pdev);
2189	struct axienet_local *lp = netdev_priv(ndev);
2190
2191	unregister_netdev(ndev);
2192
2193	if (lp->phylink)
2194		phylink_destroy(lp->phylink);
2195
2196	if (lp->pcs_phy)
2197		put_device(&lp->pcs_phy->dev);
2198
2199	axienet_mdio_teardown(lp);
2200
2201	clk_bulk_disable_unprepare(XAE_NUM_MISC_CLOCKS, lp->misc_clks);
2202	clk_disable_unprepare(lp->axi_clk);
2203
2204	free_netdev(ndev);
2205
2206	return 0;
2207}
2208
2209static void axienet_shutdown(struct platform_device *pdev)
2210{
2211	struct net_device *ndev = platform_get_drvdata(pdev);
2212
2213	rtnl_lock();
2214	netif_device_detach(ndev);
2215
2216	if (netif_running(ndev))
2217		dev_close(ndev);
2218
2219	rtnl_unlock();
2220}
2221
2222static int axienet_suspend(struct device *dev)
2223{
2224	struct net_device *ndev = dev_get_drvdata(dev);
2225
2226	if (!netif_running(ndev))
2227		return 0;
2228
2229	netif_device_detach(ndev);
2230
2231	rtnl_lock();
2232	axienet_stop(ndev);
2233	rtnl_unlock();
2234
2235	return 0;
2236}
2237
2238static int axienet_resume(struct device *dev)
2239{
2240	struct net_device *ndev = dev_get_drvdata(dev);
2241
2242	if (!netif_running(ndev))
2243		return 0;
2244
2245	rtnl_lock();
2246	axienet_open(ndev);
2247	rtnl_unlock();
2248
2249	netif_device_attach(ndev);
2250
2251	return 0;
2252}
2253
2254static DEFINE_SIMPLE_DEV_PM_OPS(axienet_pm_ops,
2255				axienet_suspend, axienet_resume);
2256
2257static struct platform_driver axienet_driver = {
2258	.probe = axienet_probe,
2259	.remove = axienet_remove,
2260	.shutdown = axienet_shutdown,
2261	.driver = {
2262		 .name = "xilinx_axienet",
2263		 .pm = &axienet_pm_ops,
2264		 .of_match_table = axienet_of_match,
2265	},
2266};
2267
2268module_platform_driver(axienet_driver);
2269
2270MODULE_DESCRIPTION("Xilinx Axi Ethernet driver");
2271MODULE_AUTHOR("Xilinx");
2272MODULE_LICENSE("GPL");
2273