1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c) 2019 - 2022 Beijing WangXun Technology Co., Ltd. */
3
4#include <linux/etherdevice.h>
5#include <net/ip6_checksum.h>
6#include <net/page_pool/helpers.h>
7#include <net/inet_ecn.h>
8#include <linux/iopoll.h>
9#include <linux/sctp.h>
10#include <linux/pci.h>
11#include <net/tcp.h>
12#include <net/ip.h>
13
14#include "wx_type.h"
15#include "wx_lib.h"
16#include "wx_hw.h"
17
18/* Lookup table mapping the HW PTYPE to the bit field for decoding */
19static struct wx_dec_ptype wx_ptype_lookup[256] = {
20	/* L2: mac */
21	[0x11] = WX_PTT(L2, NONE, NONE, NONE, NONE, PAY2),
22	[0x12] = WX_PTT(L2, NONE, NONE, NONE, TS,   PAY2),
23	[0x13] = WX_PTT(L2, NONE, NONE, NONE, NONE, PAY2),
24	[0x14] = WX_PTT(L2, NONE, NONE, NONE, NONE, PAY2),
25	[0x15] = WX_PTT(L2, NONE, NONE, NONE, NONE, NONE),
26	[0x16] = WX_PTT(L2, NONE, NONE, NONE, NONE, PAY2),
27	[0x17] = WX_PTT(L2, NONE, NONE, NONE, NONE, NONE),
28
29	/* L2: ethertype filter */
30	[0x18 ... 0x1F] = WX_PTT(L2, NONE, NONE, NONE, NONE, NONE),
31
32	/* L3: ip non-tunnel */
33	[0x21] = WX_PTT(IP, FGV4, NONE, NONE, NONE, PAY3),
34	[0x22] = WX_PTT(IP, IPV4, NONE, NONE, NONE, PAY3),
35	[0x23] = WX_PTT(IP, IPV4, NONE, NONE, UDP,  PAY4),
36	[0x24] = WX_PTT(IP, IPV4, NONE, NONE, TCP,  PAY4),
37	[0x25] = WX_PTT(IP, IPV4, NONE, NONE, SCTP, PAY4),
38	[0x29] = WX_PTT(IP, FGV6, NONE, NONE, NONE, PAY3),
39	[0x2A] = WX_PTT(IP, IPV6, NONE, NONE, NONE, PAY3),
40	[0x2B] = WX_PTT(IP, IPV6, NONE, NONE, UDP,  PAY3),
41	[0x2C] = WX_PTT(IP, IPV6, NONE, NONE, TCP,  PAY4),
42	[0x2D] = WX_PTT(IP, IPV6, NONE, NONE, SCTP, PAY4),
43
44	/* L2: fcoe */
45	[0x30 ... 0x34] = WX_PTT(FCOE, NONE, NONE, NONE, NONE, PAY3),
46	[0x38 ... 0x3C] = WX_PTT(FCOE, NONE, NONE, NONE, NONE, PAY3),
47
48	/* IPv4 --> IPv4/IPv6 */
49	[0x81] = WX_PTT(IP, IPV4, IPIP, FGV4, NONE, PAY3),
50	[0x82] = WX_PTT(IP, IPV4, IPIP, IPV4, NONE, PAY3),
51	[0x83] = WX_PTT(IP, IPV4, IPIP, IPV4, UDP,  PAY4),
52	[0x84] = WX_PTT(IP, IPV4, IPIP, IPV4, TCP,  PAY4),
53	[0x85] = WX_PTT(IP, IPV4, IPIP, IPV4, SCTP, PAY4),
54	[0x89] = WX_PTT(IP, IPV4, IPIP, FGV6, NONE, PAY3),
55	[0x8A] = WX_PTT(IP, IPV4, IPIP, IPV6, NONE, PAY3),
56	[0x8B] = WX_PTT(IP, IPV4, IPIP, IPV6, UDP,  PAY4),
57	[0x8C] = WX_PTT(IP, IPV4, IPIP, IPV6, TCP,  PAY4),
58	[0x8D] = WX_PTT(IP, IPV4, IPIP, IPV6, SCTP, PAY4),
59
60	/* IPv4 --> GRE/NAT --> NONE/IPv4/IPv6 */
61	[0x90] = WX_PTT(IP, IPV4, IG, NONE, NONE, PAY3),
62	[0x91] = WX_PTT(IP, IPV4, IG, FGV4, NONE, PAY3),
63	[0x92] = WX_PTT(IP, IPV4, IG, IPV4, NONE, PAY3),
64	[0x93] = WX_PTT(IP, IPV4, IG, IPV4, UDP,  PAY4),
65	[0x94] = WX_PTT(IP, IPV4, IG, IPV4, TCP,  PAY4),
66	[0x95] = WX_PTT(IP, IPV4, IG, IPV4, SCTP, PAY4),
67	[0x99] = WX_PTT(IP, IPV4, IG, FGV6, NONE, PAY3),
68	[0x9A] = WX_PTT(IP, IPV4, IG, IPV6, NONE, PAY3),
69	[0x9B] = WX_PTT(IP, IPV4, IG, IPV6, UDP,  PAY4),
70	[0x9C] = WX_PTT(IP, IPV4, IG, IPV6, TCP,  PAY4),
71	[0x9D] = WX_PTT(IP, IPV4, IG, IPV6, SCTP, PAY4),
72
73	/* IPv4 --> GRE/NAT --> MAC --> NONE/IPv4/IPv6 */
74	[0xA0] = WX_PTT(IP, IPV4, IGM, NONE, NONE, PAY3),
75	[0xA1] = WX_PTT(IP, IPV4, IGM, FGV4, NONE, PAY3),
76	[0xA2] = WX_PTT(IP, IPV4, IGM, IPV4, NONE, PAY3),
77	[0xA3] = WX_PTT(IP, IPV4, IGM, IPV4, UDP,  PAY4),
78	[0xA4] = WX_PTT(IP, IPV4, IGM, IPV4, TCP,  PAY4),
79	[0xA5] = WX_PTT(IP, IPV4, IGM, IPV4, SCTP, PAY4),
80	[0xA9] = WX_PTT(IP, IPV4, IGM, FGV6, NONE, PAY3),
81	[0xAA] = WX_PTT(IP, IPV4, IGM, IPV6, NONE, PAY3),
82	[0xAB] = WX_PTT(IP, IPV4, IGM, IPV6, UDP,  PAY4),
83	[0xAC] = WX_PTT(IP, IPV4, IGM, IPV6, TCP,  PAY4),
84	[0xAD] = WX_PTT(IP, IPV4, IGM, IPV6, SCTP, PAY4),
85
86	/* IPv4 --> GRE/NAT --> MAC+VLAN --> NONE/IPv4/IPv6 */
87	[0xB0] = WX_PTT(IP, IPV4, IGMV, NONE, NONE, PAY3),
88	[0xB1] = WX_PTT(IP, IPV4, IGMV, FGV4, NONE, PAY3),
89	[0xB2] = WX_PTT(IP, IPV4, IGMV, IPV4, NONE, PAY3),
90	[0xB3] = WX_PTT(IP, IPV4, IGMV, IPV4, UDP,  PAY4),
91	[0xB4] = WX_PTT(IP, IPV4, IGMV, IPV4, TCP,  PAY4),
92	[0xB5] = WX_PTT(IP, IPV4, IGMV, IPV4, SCTP, PAY4),
93	[0xB9] = WX_PTT(IP, IPV4, IGMV, FGV6, NONE, PAY3),
94	[0xBA] = WX_PTT(IP, IPV4, IGMV, IPV6, NONE, PAY3),
95	[0xBB] = WX_PTT(IP, IPV4, IGMV, IPV6, UDP,  PAY4),
96	[0xBC] = WX_PTT(IP, IPV4, IGMV, IPV6, TCP,  PAY4),
97	[0xBD] = WX_PTT(IP, IPV4, IGMV, IPV6, SCTP, PAY4),
98
99	/* IPv6 --> IPv4/IPv6 */
100	[0xC1] = WX_PTT(IP, IPV6, IPIP, FGV4, NONE, PAY3),
101	[0xC2] = WX_PTT(IP, IPV6, IPIP, IPV4, NONE, PAY3),
102	[0xC3] = WX_PTT(IP, IPV6, IPIP, IPV4, UDP,  PAY4),
103	[0xC4] = WX_PTT(IP, IPV6, IPIP, IPV4, TCP,  PAY4),
104	[0xC5] = WX_PTT(IP, IPV6, IPIP, IPV4, SCTP, PAY4),
105	[0xC9] = WX_PTT(IP, IPV6, IPIP, FGV6, NONE, PAY3),
106	[0xCA] = WX_PTT(IP, IPV6, IPIP, IPV6, NONE, PAY3),
107	[0xCB] = WX_PTT(IP, IPV6, IPIP, IPV6, UDP,  PAY4),
108	[0xCC] = WX_PTT(IP, IPV6, IPIP, IPV6, TCP,  PAY4),
109	[0xCD] = WX_PTT(IP, IPV6, IPIP, IPV6, SCTP, PAY4),
110
111	/* IPv6 --> GRE/NAT -> NONE/IPv4/IPv6 */
112	[0xD0] = WX_PTT(IP, IPV6, IG, NONE, NONE, PAY3),
113	[0xD1] = WX_PTT(IP, IPV6, IG, FGV4, NONE, PAY3),
114	[0xD2] = WX_PTT(IP, IPV6, IG, IPV4, NONE, PAY3),
115	[0xD3] = WX_PTT(IP, IPV6, IG, IPV4, UDP,  PAY4),
116	[0xD4] = WX_PTT(IP, IPV6, IG, IPV4, TCP,  PAY4),
117	[0xD5] = WX_PTT(IP, IPV6, IG, IPV4, SCTP, PAY4),
118	[0xD9] = WX_PTT(IP, IPV6, IG, FGV6, NONE, PAY3),
119	[0xDA] = WX_PTT(IP, IPV6, IG, IPV6, NONE, PAY3),
120	[0xDB] = WX_PTT(IP, IPV6, IG, IPV6, UDP,  PAY4),
121	[0xDC] = WX_PTT(IP, IPV6, IG, IPV6, TCP,  PAY4),
122	[0xDD] = WX_PTT(IP, IPV6, IG, IPV6, SCTP, PAY4),
123
124	/* IPv6 --> GRE/NAT -> MAC -> NONE/IPv4/IPv6 */
125	[0xE0] = WX_PTT(IP, IPV6, IGM, NONE, NONE, PAY3),
126	[0xE1] = WX_PTT(IP, IPV6, IGM, FGV4, NONE, PAY3),
127	[0xE2] = WX_PTT(IP, IPV6, IGM, IPV4, NONE, PAY3),
128	[0xE3] = WX_PTT(IP, IPV6, IGM, IPV4, UDP,  PAY4),
129	[0xE4] = WX_PTT(IP, IPV6, IGM, IPV4, TCP,  PAY4),
130	[0xE5] = WX_PTT(IP, IPV6, IGM, IPV4, SCTP, PAY4),
131	[0xE9] = WX_PTT(IP, IPV6, IGM, FGV6, NONE, PAY3),
132	[0xEA] = WX_PTT(IP, IPV6, IGM, IPV6, NONE, PAY3),
133	[0xEB] = WX_PTT(IP, IPV6, IGM, IPV6, UDP,  PAY4),
134	[0xEC] = WX_PTT(IP, IPV6, IGM, IPV6, TCP,  PAY4),
135	[0xED] = WX_PTT(IP, IPV6, IGM, IPV6, SCTP, PAY4),
136
137	/* IPv6 --> GRE/NAT -> MAC--> NONE/IPv */
138	[0xF0] = WX_PTT(IP, IPV6, IGMV, NONE, NONE, PAY3),
139	[0xF1] = WX_PTT(IP, IPV6, IGMV, FGV4, NONE, PAY3),
140	[0xF2] = WX_PTT(IP, IPV6, IGMV, IPV4, NONE, PAY3),
141	[0xF3] = WX_PTT(IP, IPV6, IGMV, IPV4, UDP,  PAY4),
142	[0xF4] = WX_PTT(IP, IPV6, IGMV, IPV4, TCP,  PAY4),
143	[0xF5] = WX_PTT(IP, IPV6, IGMV, IPV4, SCTP, PAY4),
144	[0xF9] = WX_PTT(IP, IPV6, IGMV, FGV6, NONE, PAY3),
145	[0xFA] = WX_PTT(IP, IPV6, IGMV, IPV6, NONE, PAY3),
146	[0xFB] = WX_PTT(IP, IPV6, IGMV, IPV6, UDP,  PAY4),
147	[0xFC] = WX_PTT(IP, IPV6, IGMV, IPV6, TCP,  PAY4),
148	[0xFD] = WX_PTT(IP, IPV6, IGMV, IPV6, SCTP, PAY4),
149};
150
151static struct wx_dec_ptype wx_decode_ptype(const u8 ptype)
152{
153	return wx_ptype_lookup[ptype];
154}
155
156/* wx_test_staterr - tests bits in Rx descriptor status and error fields */
157static __le32 wx_test_staterr(union wx_rx_desc *rx_desc,
158			      const u32 stat_err_bits)
159{
160	return rx_desc->wb.upper.status_error & cpu_to_le32(stat_err_bits);
161}
162
163static void wx_dma_sync_frag(struct wx_ring *rx_ring,
164			     struct wx_rx_buffer *rx_buffer)
165{
166	struct sk_buff *skb = rx_buffer->skb;
167	skb_frag_t *frag = &skb_shinfo(skb)->frags[0];
168
169	dma_sync_single_range_for_cpu(rx_ring->dev,
170				      WX_CB(skb)->dma,
171				      skb_frag_off(frag),
172				      skb_frag_size(frag),
173				      DMA_FROM_DEVICE);
174
175	/* If the page was released, just unmap it. */
176	if (unlikely(WX_CB(skb)->page_released))
177		page_pool_put_full_page(rx_ring->page_pool, rx_buffer->page, false);
178}
179
180static struct wx_rx_buffer *wx_get_rx_buffer(struct wx_ring *rx_ring,
181					     union wx_rx_desc *rx_desc,
182					     struct sk_buff **skb,
183					     int *rx_buffer_pgcnt)
184{
185	struct wx_rx_buffer *rx_buffer;
186	unsigned int size;
187
188	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
189	size = le16_to_cpu(rx_desc->wb.upper.length);
190
191#if (PAGE_SIZE < 8192)
192	*rx_buffer_pgcnt = page_count(rx_buffer->page);
193#else
194	*rx_buffer_pgcnt = 0;
195#endif
196
197	prefetchw(rx_buffer->page);
198	*skb = rx_buffer->skb;
199
200	/* Delay unmapping of the first packet. It carries the header
201	 * information, HW may still access the header after the writeback.
202	 * Only unmap it when EOP is reached
203	 */
204	if (!wx_test_staterr(rx_desc, WX_RXD_STAT_EOP)) {
205		if (!*skb)
206			goto skip_sync;
207	} else {
208		if (*skb)
209			wx_dma_sync_frag(rx_ring, rx_buffer);
210	}
211
212	/* we are reusing so sync this buffer for CPU use */
213	dma_sync_single_range_for_cpu(rx_ring->dev,
214				      rx_buffer->dma,
215				      rx_buffer->page_offset,
216				      size,
217				      DMA_FROM_DEVICE);
218skip_sync:
219	return rx_buffer;
220}
221
222static void wx_put_rx_buffer(struct wx_ring *rx_ring,
223			     struct wx_rx_buffer *rx_buffer,
224			     struct sk_buff *skb,
225			     int rx_buffer_pgcnt)
226{
227	if (!IS_ERR(skb) && WX_CB(skb)->dma == rx_buffer->dma)
228		/* the page has been released from the ring */
229		WX_CB(skb)->page_released = true;
230
231	/* clear contents of rx_buffer */
232	rx_buffer->page = NULL;
233	rx_buffer->skb = NULL;
234}
235
236static struct sk_buff *wx_build_skb(struct wx_ring *rx_ring,
237				    struct wx_rx_buffer *rx_buffer,
238				    union wx_rx_desc *rx_desc)
239{
240	unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
241#if (PAGE_SIZE < 8192)
242	unsigned int truesize = WX_RX_BUFSZ;
243#else
244	unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
245#endif
246	struct sk_buff *skb = rx_buffer->skb;
247
248	if (!skb) {
249		void *page_addr = page_address(rx_buffer->page) +
250				  rx_buffer->page_offset;
251
252		/* prefetch first cache line of first page */
253		prefetch(page_addr);
254#if L1_CACHE_BYTES < 128
255		prefetch(page_addr + L1_CACHE_BYTES);
256#endif
257
258		/* allocate a skb to store the frags */
259		skb = napi_alloc_skb(&rx_ring->q_vector->napi, WX_RXBUFFER_256);
260		if (unlikely(!skb))
261			return NULL;
262
263		/* we will be copying header into skb->data in
264		 * pskb_may_pull so it is in our interest to prefetch
265		 * it now to avoid a possible cache miss
266		 */
267		prefetchw(skb->data);
268
269		if (size <= WX_RXBUFFER_256) {
270			memcpy(__skb_put(skb, size), page_addr,
271			       ALIGN(size, sizeof(long)));
272			page_pool_put_full_page(rx_ring->page_pool, rx_buffer->page, true);
273			return skb;
274		}
275
276		skb_mark_for_recycle(skb);
277
278		if (!wx_test_staterr(rx_desc, WX_RXD_STAT_EOP))
279			WX_CB(skb)->dma = rx_buffer->dma;
280
281		skb_add_rx_frag(skb, 0, rx_buffer->page,
282				rx_buffer->page_offset,
283				size, truesize);
284		goto out;
285
286	} else {
287		skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
288				rx_buffer->page_offset, size, truesize);
289	}
290
291out:
292#if (PAGE_SIZE < 8192)
293	/* flip page offset to other buffer */
294	rx_buffer->page_offset ^= truesize;
295#else
296	/* move offset up to the next cache line */
297	rx_buffer->page_offset += truesize;
298#endif
299
300	return skb;
301}
302
303static bool wx_alloc_mapped_page(struct wx_ring *rx_ring,
304				 struct wx_rx_buffer *bi)
305{
306	struct page *page = bi->page;
307	dma_addr_t dma;
308
309	/* since we are recycling buffers we should seldom need to alloc */
310	if (likely(page))
311		return true;
312
313	page = page_pool_dev_alloc_pages(rx_ring->page_pool);
314	WARN_ON(!page);
315	dma = page_pool_get_dma_addr(page);
316
317	bi->page_dma = dma;
318	bi->page = page;
319	bi->page_offset = 0;
320
321	return true;
322}
323
324/**
325 * wx_alloc_rx_buffers - Replace used receive buffers
326 * @rx_ring: ring to place buffers on
327 * @cleaned_count: number of buffers to replace
328 **/
329void wx_alloc_rx_buffers(struct wx_ring *rx_ring, u16 cleaned_count)
330{
331	u16 i = rx_ring->next_to_use;
332	union wx_rx_desc *rx_desc;
333	struct wx_rx_buffer *bi;
334
335	/* nothing to do */
336	if (!cleaned_count)
337		return;
338
339	rx_desc = WX_RX_DESC(rx_ring, i);
340	bi = &rx_ring->rx_buffer_info[i];
341	i -= rx_ring->count;
342
343	do {
344		if (!wx_alloc_mapped_page(rx_ring, bi))
345			break;
346
347		/* sync the buffer for use by the device */
348		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
349						 bi->page_offset,
350						 WX_RX_BUFSZ,
351						 DMA_FROM_DEVICE);
352
353		rx_desc->read.pkt_addr =
354			cpu_to_le64(bi->page_dma + bi->page_offset);
355
356		rx_desc++;
357		bi++;
358		i++;
359		if (unlikely(!i)) {
360			rx_desc = WX_RX_DESC(rx_ring, 0);
361			bi = rx_ring->rx_buffer_info;
362			i -= rx_ring->count;
363		}
364
365		/* clear the status bits for the next_to_use descriptor */
366		rx_desc->wb.upper.status_error = 0;
367
368		cleaned_count--;
369	} while (cleaned_count);
370
371	i += rx_ring->count;
372
373	if (rx_ring->next_to_use != i) {
374		rx_ring->next_to_use = i;
375		/* update next to alloc since we have filled the ring */
376		rx_ring->next_to_alloc = i;
377
378		/* Force memory writes to complete before letting h/w
379		 * know there are new descriptors to fetch.  (Only
380		 * applicable for weak-ordered memory model archs,
381		 * such as IA-64).
382		 */
383		wmb();
384		writel(i, rx_ring->tail);
385	}
386}
387
388u16 wx_desc_unused(struct wx_ring *ring)
389{
390	u16 ntc = ring->next_to_clean;
391	u16 ntu = ring->next_to_use;
392
393	return ((ntc > ntu) ? 0 : ring->count) + ntc - ntu - 1;
394}
395
396/**
397 * wx_is_non_eop - process handling of non-EOP buffers
398 * @rx_ring: Rx ring being processed
399 * @rx_desc: Rx descriptor for current buffer
400 * @skb: Current socket buffer containing buffer in progress
401 *
402 * This function updates next to clean. If the buffer is an EOP buffer
403 * this function exits returning false, otherwise it will place the
404 * sk_buff in the next buffer to be chained and return true indicating
405 * that this is in fact a non-EOP buffer.
406 **/
407static bool wx_is_non_eop(struct wx_ring *rx_ring,
408			  union wx_rx_desc *rx_desc,
409			  struct sk_buff *skb)
410{
411	u32 ntc = rx_ring->next_to_clean + 1;
412
413	/* fetch, update, and store next to clean */
414	ntc = (ntc < rx_ring->count) ? ntc : 0;
415	rx_ring->next_to_clean = ntc;
416
417	prefetch(WX_RX_DESC(rx_ring, ntc));
418
419	/* if we are the last buffer then there is nothing else to do */
420	if (likely(wx_test_staterr(rx_desc, WX_RXD_STAT_EOP)))
421		return false;
422
423	rx_ring->rx_buffer_info[ntc].skb = skb;
424
425	return true;
426}
427
428static void wx_pull_tail(struct sk_buff *skb)
429{
430	skb_frag_t *frag = &skb_shinfo(skb)->frags[0];
431	unsigned int pull_len;
432	unsigned char *va;
433
434	/* it is valid to use page_address instead of kmap since we are
435	 * working with pages allocated out of the lomem pool per
436	 * alloc_page(GFP_ATOMIC)
437	 */
438	va = skb_frag_address(frag);
439
440	/* we need the header to contain the greater of either ETH_HLEN or
441	 * 60 bytes if the skb->len is less than 60 for skb_pad.
442	 */
443	pull_len = eth_get_headlen(skb->dev, va, WX_RXBUFFER_256);
444
445	/* align pull length to size of long to optimize memcpy performance */
446	skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
447
448	/* update all of the pointers */
449	skb_frag_size_sub(frag, pull_len);
450	skb_frag_off_add(frag, pull_len);
451	skb->data_len -= pull_len;
452	skb->tail += pull_len;
453}
454
455/**
456 * wx_cleanup_headers - Correct corrupted or empty headers
457 * @rx_ring: rx descriptor ring packet is being transacted on
458 * @rx_desc: pointer to the EOP Rx descriptor
459 * @skb: pointer to current skb being fixed
460 *
461 * Check for corrupted packet headers caused by senders on the local L2
462 * embedded NIC switch not setting up their Tx Descriptors right.  These
463 * should be very rare.
464 *
465 * Also address the case where we are pulling data in on pages only
466 * and as such no data is present in the skb header.
467 *
468 * In addition if skb is not at least 60 bytes we need to pad it so that
469 * it is large enough to qualify as a valid Ethernet frame.
470 *
471 * Returns true if an error was encountered and skb was freed.
472 **/
473static bool wx_cleanup_headers(struct wx_ring *rx_ring,
474			       union wx_rx_desc *rx_desc,
475			       struct sk_buff *skb)
476{
477	struct net_device *netdev = rx_ring->netdev;
478
479	/* verify that the packet does not have any known errors */
480	if (!netdev ||
481	    unlikely(wx_test_staterr(rx_desc, WX_RXD_ERR_RXE) &&
482		     !(netdev->features & NETIF_F_RXALL))) {
483		dev_kfree_skb_any(skb);
484		return true;
485	}
486
487	/* place header in linear portion of buffer */
488	if (!skb_headlen(skb))
489		wx_pull_tail(skb);
490
491	/* if eth_skb_pad returns an error the skb was freed */
492	if (eth_skb_pad(skb))
493		return true;
494
495	return false;
496}
497
498static void wx_rx_hash(struct wx_ring *ring,
499		       union wx_rx_desc *rx_desc,
500		       struct sk_buff *skb)
501{
502	u16 rss_type;
503
504	if (!(ring->netdev->features & NETIF_F_RXHASH))
505		return;
506
507	rss_type = le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.pkt_info) &
508			       WX_RXD_RSSTYPE_MASK;
509
510	if (!rss_type)
511		return;
512
513	skb_set_hash(skb, le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
514		     (WX_RSS_L4_TYPES_MASK & (1ul << rss_type)) ?
515		     PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3);
516}
517
518/**
519 * wx_rx_checksum - indicate in skb if hw indicated a good cksum
520 * @ring: structure containing ring specific data
521 * @rx_desc: current Rx descriptor being processed
522 * @skb: skb currently being received and modified
523 **/
524static void wx_rx_checksum(struct wx_ring *ring,
525			   union wx_rx_desc *rx_desc,
526			   struct sk_buff *skb)
527{
528	struct wx_dec_ptype dptype = wx_decode_ptype(WX_RXD_PKTTYPE(rx_desc));
529
530	skb_checksum_none_assert(skb);
531	/* Rx csum disabled */
532	if (!(ring->netdev->features & NETIF_F_RXCSUM))
533		return;
534
535	/* if IPv4 header checksum error */
536	if ((wx_test_staterr(rx_desc, WX_RXD_STAT_IPCS) &&
537	     wx_test_staterr(rx_desc, WX_RXD_ERR_IPE)) ||
538	    (wx_test_staterr(rx_desc, WX_RXD_STAT_OUTERIPCS) &&
539	     wx_test_staterr(rx_desc, WX_RXD_ERR_OUTERIPER))) {
540		ring->rx_stats.csum_err++;
541		return;
542	}
543
544	/* L4 checksum offload flag must set for the below code to work */
545	if (!wx_test_staterr(rx_desc, WX_RXD_STAT_L4CS))
546		return;
547
548	/* Hardware can't guarantee csum if IPv6 Dest Header found */
549	if (dptype.prot != WX_DEC_PTYPE_PROT_SCTP && WX_RXD_IPV6EX(rx_desc))
550		return;
551
552	/* if L4 checksum error */
553	if (wx_test_staterr(rx_desc, WX_RXD_ERR_TCPE)) {
554		ring->rx_stats.csum_err++;
555		return;
556	}
557
558	/* It must be a TCP or UDP or SCTP packet with a valid checksum */
559	skb->ip_summed = CHECKSUM_UNNECESSARY;
560
561	/* If there is an outer header present that might contain a checksum
562	 * we need to bump the checksum level by 1 to reflect the fact that
563	 * we are indicating we validated the inner checksum.
564	 */
565	if (dptype.etype >= WX_DEC_PTYPE_ETYPE_IG)
566		__skb_incr_checksum_unnecessary(skb);
567	ring->rx_stats.csum_good_cnt++;
568}
569
570static void wx_rx_vlan(struct wx_ring *ring, union wx_rx_desc *rx_desc,
571		       struct sk_buff *skb)
572{
573	u16 ethertype;
574	u8 idx = 0;
575
576	if ((ring->netdev->features &
577	     (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) &&
578	    wx_test_staterr(rx_desc, WX_RXD_STAT_VP)) {
579		idx = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.pkt_info) &
580		       0x1c0) >> 6;
581		ethertype = ring->q_vector->wx->tpid[idx];
582		__vlan_hwaccel_put_tag(skb, htons(ethertype),
583				       le16_to_cpu(rx_desc->wb.upper.vlan));
584	}
585}
586
587/**
588 * wx_process_skb_fields - Populate skb header fields from Rx descriptor
589 * @rx_ring: rx descriptor ring packet is being transacted on
590 * @rx_desc: pointer to the EOP Rx descriptor
591 * @skb: pointer to current skb being populated
592 *
593 * This function checks the ring, descriptor, and packet information in
594 * order to populate the hash, checksum, protocol, and
595 * other fields within the skb.
596 **/
597static void wx_process_skb_fields(struct wx_ring *rx_ring,
598				  union wx_rx_desc *rx_desc,
599				  struct sk_buff *skb)
600{
601	wx_rx_hash(rx_ring, rx_desc, skb);
602	wx_rx_checksum(rx_ring, rx_desc, skb);
603	wx_rx_vlan(rx_ring, rx_desc, skb);
604	skb_record_rx_queue(skb, rx_ring->queue_index);
605	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
606}
607
608/**
609 * wx_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
610 * @q_vector: structure containing interrupt and ring information
611 * @rx_ring: rx descriptor ring to transact packets on
612 * @budget: Total limit on number of packets to process
613 *
614 * This function provides a "bounce buffer" approach to Rx interrupt
615 * processing.  The advantage to this is that on systems that have
616 * expensive overhead for IOMMU access this provides a means of avoiding
617 * it by maintaining the mapping of the page to the system.
618 *
619 * Returns amount of work completed.
620 **/
621static int wx_clean_rx_irq(struct wx_q_vector *q_vector,
622			   struct wx_ring *rx_ring,
623			   int budget)
624{
625	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
626	u16 cleaned_count = wx_desc_unused(rx_ring);
627
628	do {
629		struct wx_rx_buffer *rx_buffer;
630		union wx_rx_desc *rx_desc;
631		struct sk_buff *skb;
632		int rx_buffer_pgcnt;
633
634		/* return some buffers to hardware, one at a time is too slow */
635		if (cleaned_count >= WX_RX_BUFFER_WRITE) {
636			wx_alloc_rx_buffers(rx_ring, cleaned_count);
637			cleaned_count = 0;
638		}
639
640		rx_desc = WX_RX_DESC(rx_ring, rx_ring->next_to_clean);
641		if (!wx_test_staterr(rx_desc, WX_RXD_STAT_DD))
642			break;
643
644		/* This memory barrier is needed to keep us from reading
645		 * any other fields out of the rx_desc until we know the
646		 * descriptor has been written back
647		 */
648		dma_rmb();
649
650		rx_buffer = wx_get_rx_buffer(rx_ring, rx_desc, &skb, &rx_buffer_pgcnt);
651
652		/* retrieve a buffer from the ring */
653		skb = wx_build_skb(rx_ring, rx_buffer, rx_desc);
654
655		/* exit if we failed to retrieve a buffer */
656		if (!skb) {
657			break;
658		}
659
660		wx_put_rx_buffer(rx_ring, rx_buffer, skb, rx_buffer_pgcnt);
661		cleaned_count++;
662
663		/* place incomplete frames back on ring for completion */
664		if (wx_is_non_eop(rx_ring, rx_desc, skb))
665			continue;
666
667		/* verify the packet layout is correct */
668		if (wx_cleanup_headers(rx_ring, rx_desc, skb))
669			continue;
670
671		/* probably a little skewed due to removing CRC */
672		total_rx_bytes += skb->len;
673
674		/* populate checksum, timestamp, VLAN, and protocol */
675		wx_process_skb_fields(rx_ring, rx_desc, skb);
676		napi_gro_receive(&q_vector->napi, skb);
677
678		/* update budget accounting */
679		total_rx_packets++;
680	} while (likely(total_rx_packets < budget));
681
682	u64_stats_update_begin(&rx_ring->syncp);
683	rx_ring->stats.packets += total_rx_packets;
684	rx_ring->stats.bytes += total_rx_bytes;
685	u64_stats_update_end(&rx_ring->syncp);
686	q_vector->rx.total_packets += total_rx_packets;
687	q_vector->rx.total_bytes += total_rx_bytes;
688
689	return total_rx_packets;
690}
691
692static struct netdev_queue *wx_txring_txq(const struct wx_ring *ring)
693{
694	return netdev_get_tx_queue(ring->netdev, ring->queue_index);
695}
696
697/**
698 * wx_clean_tx_irq - Reclaim resources after transmit completes
699 * @q_vector: structure containing interrupt and ring information
700 * @tx_ring: tx ring to clean
701 * @napi_budget: Used to determine if we are in netpoll
702 **/
703static bool wx_clean_tx_irq(struct wx_q_vector *q_vector,
704			    struct wx_ring *tx_ring, int napi_budget)
705{
706	unsigned int budget = q_vector->wx->tx_work_limit;
707	unsigned int total_bytes = 0, total_packets = 0;
708	unsigned int i = tx_ring->next_to_clean;
709	struct wx_tx_buffer *tx_buffer;
710	union wx_tx_desc *tx_desc;
711
712	if (!netif_carrier_ok(tx_ring->netdev))
713		return true;
714
715	tx_buffer = &tx_ring->tx_buffer_info[i];
716	tx_desc = WX_TX_DESC(tx_ring, i);
717	i -= tx_ring->count;
718
719	do {
720		union wx_tx_desc *eop_desc = tx_buffer->next_to_watch;
721
722		/* if next_to_watch is not set then there is no work pending */
723		if (!eop_desc)
724			break;
725
726		/* prevent any other reads prior to eop_desc */
727		smp_rmb();
728
729		/* if DD is not set pending work has not been completed */
730		if (!(eop_desc->wb.status & cpu_to_le32(WX_TXD_STAT_DD)))
731			break;
732
733		/* clear next_to_watch to prevent false hangs */
734		tx_buffer->next_to_watch = NULL;
735
736		/* update the statistics for this packet */
737		total_bytes += tx_buffer->bytecount;
738		total_packets += tx_buffer->gso_segs;
739
740		/* free the skb */
741		napi_consume_skb(tx_buffer->skb, napi_budget);
742
743		/* unmap skb header data */
744		dma_unmap_single(tx_ring->dev,
745				 dma_unmap_addr(tx_buffer, dma),
746				 dma_unmap_len(tx_buffer, len),
747				 DMA_TO_DEVICE);
748
749		/* clear tx_buffer data */
750		dma_unmap_len_set(tx_buffer, len, 0);
751
752		/* unmap remaining buffers */
753		while (tx_desc != eop_desc) {
754			tx_buffer++;
755			tx_desc++;
756			i++;
757			if (unlikely(!i)) {
758				i -= tx_ring->count;
759				tx_buffer = tx_ring->tx_buffer_info;
760				tx_desc = WX_TX_DESC(tx_ring, 0);
761			}
762
763			/* unmap any remaining paged data */
764			if (dma_unmap_len(tx_buffer, len)) {
765				dma_unmap_page(tx_ring->dev,
766					       dma_unmap_addr(tx_buffer, dma),
767					       dma_unmap_len(tx_buffer, len),
768					       DMA_TO_DEVICE);
769				dma_unmap_len_set(tx_buffer, len, 0);
770			}
771		}
772
773		/* move us one more past the eop_desc for start of next pkt */
774		tx_buffer++;
775		tx_desc++;
776		i++;
777		if (unlikely(!i)) {
778			i -= tx_ring->count;
779			tx_buffer = tx_ring->tx_buffer_info;
780			tx_desc = WX_TX_DESC(tx_ring, 0);
781		}
782
783		/* issue prefetch for next Tx descriptor */
784		prefetch(tx_desc);
785
786		/* update budget accounting */
787		budget--;
788	} while (likely(budget));
789
790	i += tx_ring->count;
791	tx_ring->next_to_clean = i;
792	u64_stats_update_begin(&tx_ring->syncp);
793	tx_ring->stats.bytes += total_bytes;
794	tx_ring->stats.packets += total_packets;
795	u64_stats_update_end(&tx_ring->syncp);
796	q_vector->tx.total_bytes += total_bytes;
797	q_vector->tx.total_packets += total_packets;
798
799	netdev_tx_completed_queue(wx_txring_txq(tx_ring),
800				  total_packets, total_bytes);
801
802#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
803	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
804		     (wx_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
805		/* Make sure that anybody stopping the queue after this
806		 * sees the new next_to_clean.
807		 */
808		smp_mb();
809
810		if (__netif_subqueue_stopped(tx_ring->netdev,
811					     tx_ring->queue_index) &&
812		    netif_running(tx_ring->netdev))
813			netif_wake_subqueue(tx_ring->netdev,
814					    tx_ring->queue_index);
815	}
816
817	return !!budget;
818}
819
820/**
821 * wx_poll - NAPI polling RX/TX cleanup routine
822 * @napi: napi struct with our devices info in it
823 * @budget: amount of work driver is allowed to do this pass, in packets
824 *
825 * This function will clean all queues associated with a q_vector.
826 **/
827static int wx_poll(struct napi_struct *napi, int budget)
828{
829	struct wx_q_vector *q_vector = container_of(napi, struct wx_q_vector, napi);
830	int per_ring_budget, work_done = 0;
831	struct wx *wx = q_vector->wx;
832	bool clean_complete = true;
833	struct wx_ring *ring;
834
835	wx_for_each_ring(ring, q_vector->tx) {
836		if (!wx_clean_tx_irq(q_vector, ring, budget))
837			clean_complete = false;
838	}
839
840	/* Exit if we are called by netpoll */
841	if (budget <= 0)
842		return budget;
843
844	/* attempt to distribute budget to each queue fairly, but don't allow
845	 * the budget to go below 1 because we'll exit polling
846	 */
847	if (q_vector->rx.count > 1)
848		per_ring_budget = max(budget / q_vector->rx.count, 1);
849	else
850		per_ring_budget = budget;
851
852	wx_for_each_ring(ring, q_vector->rx) {
853		int cleaned = wx_clean_rx_irq(q_vector, ring, per_ring_budget);
854
855		work_done += cleaned;
856		if (cleaned >= per_ring_budget)
857			clean_complete = false;
858	}
859
860	/* If all work not completed, return budget and keep polling */
861	if (!clean_complete)
862		return budget;
863
864	/* all work done, exit the polling mode */
865	if (likely(napi_complete_done(napi, work_done))) {
866		if (netif_running(wx->netdev))
867			wx_intr_enable(wx, WX_INTR_Q(q_vector->v_idx));
868	}
869
870	return min(work_done, budget - 1);
871}
872
873static int wx_maybe_stop_tx(struct wx_ring *tx_ring, u16 size)
874{
875	if (likely(wx_desc_unused(tx_ring) >= size))
876		return 0;
877
878	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
879
880	/* For the next check */
881	smp_mb();
882
883	/* We need to check again in a case another CPU has just
884	 * made room available.
885	 */
886	if (likely(wx_desc_unused(tx_ring) < size))
887		return -EBUSY;
888
889	/* A reprieve! - use start_queue because it doesn't call schedule */
890	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
891
892	return 0;
893}
894
895static u32 wx_tx_cmd_type(u32 tx_flags)
896{
897	/* set type for advanced descriptor with frame checksum insertion */
898	u32 cmd_type = WX_TXD_DTYP_DATA | WX_TXD_IFCS;
899
900	/* set HW vlan bit if vlan is present */
901	cmd_type |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_HW_VLAN, WX_TXD_VLE);
902	/* set segmentation enable bits for TSO/FSO */
903	cmd_type |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_TSO, WX_TXD_TSE);
904	/* set timestamp bit if present */
905	cmd_type |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_TSTAMP, WX_TXD_MAC_TSTAMP);
906	cmd_type |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_LINKSEC, WX_TXD_LINKSEC);
907
908	return cmd_type;
909}
910
911static void wx_tx_olinfo_status(union wx_tx_desc *tx_desc,
912				u32 tx_flags, unsigned int paylen)
913{
914	u32 olinfo_status = paylen << WX_TXD_PAYLEN_SHIFT;
915
916	/* enable L4 checksum for TSO and TX checksum offload */
917	olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_CSUM, WX_TXD_L4CS);
918	/* enable IPv4 checksum for TSO */
919	olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_IPV4, WX_TXD_IIPCS);
920	/* enable outer IPv4 checksum for TSO */
921	olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_OUTER_IPV4,
922				     WX_TXD_EIPCS);
923	/* Check Context must be set if Tx switch is enabled, which it
924	 * always is for case where virtual functions are running
925	 */
926	olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_CC, WX_TXD_CC);
927	olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_IPSEC,
928				     WX_TXD_IPSEC);
929	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
930}
931
932static void wx_tx_map(struct wx_ring *tx_ring,
933		      struct wx_tx_buffer *first,
934		      const u8 hdr_len)
935{
936	struct sk_buff *skb = first->skb;
937	struct wx_tx_buffer *tx_buffer;
938	u32 tx_flags = first->tx_flags;
939	u16 i = tx_ring->next_to_use;
940	unsigned int data_len, size;
941	union wx_tx_desc *tx_desc;
942	skb_frag_t *frag;
943	dma_addr_t dma;
944	u32 cmd_type;
945
946	cmd_type = wx_tx_cmd_type(tx_flags);
947	tx_desc = WX_TX_DESC(tx_ring, i);
948	wx_tx_olinfo_status(tx_desc, tx_flags, skb->len - hdr_len);
949
950	size = skb_headlen(skb);
951	data_len = skb->data_len;
952	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
953
954	tx_buffer = first;
955
956	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
957		if (dma_mapping_error(tx_ring->dev, dma))
958			goto dma_error;
959
960		/* record length, and DMA address */
961		dma_unmap_len_set(tx_buffer, len, size);
962		dma_unmap_addr_set(tx_buffer, dma, dma);
963
964		tx_desc->read.buffer_addr = cpu_to_le64(dma);
965
966		while (unlikely(size > WX_MAX_DATA_PER_TXD)) {
967			tx_desc->read.cmd_type_len =
968				cpu_to_le32(cmd_type ^ WX_MAX_DATA_PER_TXD);
969
970			i++;
971			tx_desc++;
972			if (i == tx_ring->count) {
973				tx_desc = WX_TX_DESC(tx_ring, 0);
974				i = 0;
975			}
976			tx_desc->read.olinfo_status = 0;
977
978			dma += WX_MAX_DATA_PER_TXD;
979			size -= WX_MAX_DATA_PER_TXD;
980
981			tx_desc->read.buffer_addr = cpu_to_le64(dma);
982		}
983
984		if (likely(!data_len))
985			break;
986
987		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
988
989		i++;
990		tx_desc++;
991		if (i == tx_ring->count) {
992			tx_desc = WX_TX_DESC(tx_ring, 0);
993			i = 0;
994		}
995		tx_desc->read.olinfo_status = 0;
996
997		size = skb_frag_size(frag);
998
999		data_len -= size;
1000
1001		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1002				       DMA_TO_DEVICE);
1003
1004		tx_buffer = &tx_ring->tx_buffer_info[i];
1005	}
1006
1007	/* write last descriptor with RS and EOP bits */
1008	cmd_type |= size | WX_TXD_EOP | WX_TXD_RS;
1009	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1010
1011	netdev_tx_sent_queue(wx_txring_txq(tx_ring), first->bytecount);
1012
1013	skb_tx_timestamp(skb);
1014
1015	/* Force memory writes to complete before letting h/w know there
1016	 * are new descriptors to fetch.  (Only applicable for weak-ordered
1017	 * memory model archs, such as IA-64).
1018	 *
1019	 * We also need this memory barrier to make certain all of the
1020	 * status bits have been updated before next_to_watch is written.
1021	 */
1022	wmb();
1023
1024	/* set next_to_watch value indicating a packet is present */
1025	first->next_to_watch = tx_desc;
1026
1027	i++;
1028	if (i == tx_ring->count)
1029		i = 0;
1030
1031	tx_ring->next_to_use = i;
1032
1033	wx_maybe_stop_tx(tx_ring, DESC_NEEDED);
1034
1035	if (netif_xmit_stopped(wx_txring_txq(tx_ring)) || !netdev_xmit_more())
1036		writel(i, tx_ring->tail);
1037
1038	return;
1039dma_error:
1040	dev_err(tx_ring->dev, "TX DMA map failed\n");
1041
1042	/* clear dma mappings for failed tx_buffer_info map */
1043	for (;;) {
1044		tx_buffer = &tx_ring->tx_buffer_info[i];
1045		if (dma_unmap_len(tx_buffer, len))
1046			dma_unmap_page(tx_ring->dev,
1047				       dma_unmap_addr(tx_buffer, dma),
1048				       dma_unmap_len(tx_buffer, len),
1049				       DMA_TO_DEVICE);
1050		dma_unmap_len_set(tx_buffer, len, 0);
1051		if (tx_buffer == first)
1052			break;
1053		if (i == 0)
1054			i += tx_ring->count;
1055		i--;
1056	}
1057
1058	dev_kfree_skb_any(first->skb);
1059	first->skb = NULL;
1060
1061	tx_ring->next_to_use = i;
1062}
1063
1064static void wx_tx_ctxtdesc(struct wx_ring *tx_ring, u32 vlan_macip_lens,
1065			   u32 fcoe_sof_eof, u32 type_tucmd, u32 mss_l4len_idx)
1066{
1067	struct wx_tx_context_desc *context_desc;
1068	u16 i = tx_ring->next_to_use;
1069
1070	context_desc = WX_TX_CTXTDESC(tx_ring, i);
1071	i++;
1072	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1073
1074	/* set bits to identify this as an advanced context descriptor */
1075	type_tucmd |= WX_TXD_DTYP_CTXT;
1076	context_desc->vlan_macip_lens   = cpu_to_le32(vlan_macip_lens);
1077	context_desc->seqnum_seed       = cpu_to_le32(fcoe_sof_eof);
1078	context_desc->type_tucmd_mlhl   = cpu_to_le32(type_tucmd);
1079	context_desc->mss_l4len_idx     = cpu_to_le32(mss_l4len_idx);
1080}
1081
1082static void wx_get_ipv6_proto(struct sk_buff *skb, int offset, u8 *nexthdr)
1083{
1084	struct ipv6hdr *hdr = (struct ipv6hdr *)(skb->data + offset);
1085
1086	*nexthdr = hdr->nexthdr;
1087	offset += sizeof(struct ipv6hdr);
1088	while (ipv6_ext_hdr(*nexthdr)) {
1089		struct ipv6_opt_hdr _hdr, *hp;
1090
1091		if (*nexthdr == NEXTHDR_NONE)
1092			return;
1093		hp = skb_header_pointer(skb, offset, sizeof(_hdr), &_hdr);
1094		if (!hp)
1095			return;
1096		if (*nexthdr == NEXTHDR_FRAGMENT)
1097			break;
1098		*nexthdr = hp->nexthdr;
1099	}
1100}
1101
1102union network_header {
1103	struct iphdr *ipv4;
1104	struct ipv6hdr *ipv6;
1105	void *raw;
1106};
1107
1108static u8 wx_encode_tx_desc_ptype(const struct wx_tx_buffer *first)
1109{
1110	u8 tun_prot = 0, l4_prot = 0, ptype = 0;
1111	struct sk_buff *skb = first->skb;
1112
1113	if (skb->encapsulation) {
1114		union network_header hdr;
1115
1116		switch (first->protocol) {
1117		case htons(ETH_P_IP):
1118			tun_prot = ip_hdr(skb)->protocol;
1119			ptype = WX_PTYPE_TUN_IPV4;
1120			break;
1121		case htons(ETH_P_IPV6):
1122			wx_get_ipv6_proto(skb, skb_network_offset(skb), &tun_prot);
1123			ptype = WX_PTYPE_TUN_IPV6;
1124			break;
1125		default:
1126			return ptype;
1127		}
1128
1129		if (tun_prot == IPPROTO_IPIP) {
1130			hdr.raw = (void *)inner_ip_hdr(skb);
1131			ptype |= WX_PTYPE_PKT_IPIP;
1132		} else if (tun_prot == IPPROTO_UDP) {
1133			hdr.raw = (void *)inner_ip_hdr(skb);
1134			if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
1135			    skb->inner_protocol != htons(ETH_P_TEB)) {
1136				ptype |= WX_PTYPE_PKT_IG;
1137			} else {
1138				if (((struct ethhdr *)skb_inner_mac_header(skb))->h_proto
1139				     == htons(ETH_P_8021Q))
1140					ptype |= WX_PTYPE_PKT_IGMV;
1141				else
1142					ptype |= WX_PTYPE_PKT_IGM;
1143			}
1144
1145		} else if (tun_prot == IPPROTO_GRE) {
1146			hdr.raw = (void *)inner_ip_hdr(skb);
1147			if (skb->inner_protocol ==  htons(ETH_P_IP) ||
1148			    skb->inner_protocol ==  htons(ETH_P_IPV6)) {
1149				ptype |= WX_PTYPE_PKT_IG;
1150			} else {
1151				if (((struct ethhdr *)skb_inner_mac_header(skb))->h_proto
1152				    == htons(ETH_P_8021Q))
1153					ptype |= WX_PTYPE_PKT_IGMV;
1154				else
1155					ptype |= WX_PTYPE_PKT_IGM;
1156			}
1157		} else {
1158			return ptype;
1159		}
1160
1161		switch (hdr.ipv4->version) {
1162		case IPVERSION:
1163			l4_prot = hdr.ipv4->protocol;
1164			break;
1165		case 6:
1166			wx_get_ipv6_proto(skb, skb_inner_network_offset(skb), &l4_prot);
1167			ptype |= WX_PTYPE_PKT_IPV6;
1168			break;
1169		default:
1170			return ptype;
1171		}
1172	} else {
1173		switch (first->protocol) {
1174		case htons(ETH_P_IP):
1175			l4_prot = ip_hdr(skb)->protocol;
1176			ptype = WX_PTYPE_PKT_IP;
1177			break;
1178		case htons(ETH_P_IPV6):
1179			wx_get_ipv6_proto(skb, skb_network_offset(skb), &l4_prot);
1180			ptype = WX_PTYPE_PKT_IP | WX_PTYPE_PKT_IPV6;
1181			break;
1182		default:
1183			return WX_PTYPE_PKT_MAC | WX_PTYPE_TYP_MAC;
1184		}
1185	}
1186	switch (l4_prot) {
1187	case IPPROTO_TCP:
1188		ptype |= WX_PTYPE_TYP_TCP;
1189		break;
1190	case IPPROTO_UDP:
1191		ptype |= WX_PTYPE_TYP_UDP;
1192		break;
1193	case IPPROTO_SCTP:
1194		ptype |= WX_PTYPE_TYP_SCTP;
1195		break;
1196	default:
1197		ptype |= WX_PTYPE_TYP_IP;
1198		break;
1199	}
1200
1201	return ptype;
1202}
1203
1204static int wx_tso(struct wx_ring *tx_ring, struct wx_tx_buffer *first,
1205		  u8 *hdr_len, u8 ptype)
1206{
1207	u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
1208	struct net_device *netdev = tx_ring->netdev;
1209	u32 l4len, tunhdr_eiplen_tunlen = 0;
1210	struct sk_buff *skb = first->skb;
1211	bool enc = skb->encapsulation;
1212	struct ipv6hdr *ipv6h;
1213	struct tcphdr *tcph;
1214	struct iphdr *iph;
1215	u8 tun_prot = 0;
1216	int err;
1217
1218	if (skb->ip_summed != CHECKSUM_PARTIAL)
1219		return 0;
1220
1221	if (!skb_is_gso(skb))
1222		return 0;
1223
1224	err = skb_cow_head(skb, 0);
1225	if (err < 0)
1226		return err;
1227
1228	/* indicates the inner headers in the skbuff are valid. */
1229	iph = enc ? inner_ip_hdr(skb) : ip_hdr(skb);
1230	if (iph->version == 4) {
1231		tcph = enc ? inner_tcp_hdr(skb) : tcp_hdr(skb);
1232		iph->tot_len = 0;
1233		iph->check = 0;
1234		tcph->check = ~csum_tcpudp_magic(iph->saddr,
1235						 iph->daddr, 0,
1236						 IPPROTO_TCP, 0);
1237		first->tx_flags |= WX_TX_FLAGS_TSO |
1238				   WX_TX_FLAGS_CSUM |
1239				   WX_TX_FLAGS_IPV4 |
1240				   WX_TX_FLAGS_CC;
1241	} else if (iph->version == 6 && skb_is_gso_v6(skb)) {
1242		ipv6h = enc ? inner_ipv6_hdr(skb) : ipv6_hdr(skb);
1243		tcph = enc ? inner_tcp_hdr(skb) : tcp_hdr(skb);
1244		ipv6h->payload_len = 0;
1245		tcph->check = ~csum_ipv6_magic(&ipv6h->saddr,
1246					       &ipv6h->daddr, 0,
1247					       IPPROTO_TCP, 0);
1248		first->tx_flags |= WX_TX_FLAGS_TSO |
1249				   WX_TX_FLAGS_CSUM |
1250				   WX_TX_FLAGS_CC;
1251	}
1252
1253	/* compute header lengths */
1254	l4len = enc ? inner_tcp_hdrlen(skb) : tcp_hdrlen(skb);
1255	*hdr_len = enc ? (skb_inner_transport_header(skb) - skb->data) :
1256			 skb_transport_offset(skb);
1257	*hdr_len += l4len;
1258
1259	/* update gso size and bytecount with header size */
1260	first->gso_segs = skb_shinfo(skb)->gso_segs;
1261	first->bytecount += (first->gso_segs - 1) * *hdr_len;
1262
1263	/* mss_l4len_id: use 0 as index for TSO */
1264	mss_l4len_idx = l4len << WX_TXD_L4LEN_SHIFT;
1265	mss_l4len_idx |= skb_shinfo(skb)->gso_size << WX_TXD_MSS_SHIFT;
1266
1267	/* vlan_macip_lens: HEADLEN, MACLEN, VLAN tag */
1268	if (enc) {
1269		switch (first->protocol) {
1270		case htons(ETH_P_IP):
1271			tun_prot = ip_hdr(skb)->protocol;
1272			first->tx_flags |= WX_TX_FLAGS_OUTER_IPV4;
1273			break;
1274		case htons(ETH_P_IPV6):
1275			tun_prot = ipv6_hdr(skb)->nexthdr;
1276			break;
1277		default:
1278			break;
1279		}
1280		switch (tun_prot) {
1281		case IPPROTO_UDP:
1282			tunhdr_eiplen_tunlen = WX_TXD_TUNNEL_UDP;
1283			tunhdr_eiplen_tunlen |= ((skb_network_header_len(skb) >> 2) <<
1284						 WX_TXD_OUTER_IPLEN_SHIFT) |
1285						(((skb_inner_mac_header(skb) -
1286						skb_transport_header(skb)) >> 1) <<
1287						WX_TXD_TUNNEL_LEN_SHIFT);
1288			break;
1289		case IPPROTO_GRE:
1290			tunhdr_eiplen_tunlen = WX_TXD_TUNNEL_GRE;
1291			tunhdr_eiplen_tunlen |= ((skb_network_header_len(skb) >> 2) <<
1292						 WX_TXD_OUTER_IPLEN_SHIFT) |
1293						(((skb_inner_mac_header(skb) -
1294						skb_transport_header(skb)) >> 1) <<
1295						WX_TXD_TUNNEL_LEN_SHIFT);
1296			break;
1297		case IPPROTO_IPIP:
1298			tunhdr_eiplen_tunlen = (((char *)inner_ip_hdr(skb) -
1299						(char *)ip_hdr(skb)) >> 2) <<
1300						WX_TXD_OUTER_IPLEN_SHIFT;
1301			break;
1302		default:
1303			break;
1304		}
1305		vlan_macip_lens = skb_inner_network_header_len(skb) >> 1;
1306	} else {
1307		vlan_macip_lens = skb_network_header_len(skb) >> 1;
1308	}
1309
1310	vlan_macip_lens |= skb_network_offset(skb) << WX_TXD_MACLEN_SHIFT;
1311	vlan_macip_lens |= first->tx_flags & WX_TX_FLAGS_VLAN_MASK;
1312
1313	type_tucmd = ptype << 24;
1314	if (skb->vlan_proto == htons(ETH_P_8021AD) &&
1315	    netdev->features & NETIF_F_HW_VLAN_STAG_TX)
1316		type_tucmd |= WX_SET_FLAG(first->tx_flags,
1317					  WX_TX_FLAGS_HW_VLAN,
1318					  0x1 << WX_TXD_TAG_TPID_SEL_SHIFT);
1319	wx_tx_ctxtdesc(tx_ring, vlan_macip_lens, tunhdr_eiplen_tunlen,
1320		       type_tucmd, mss_l4len_idx);
1321
1322	return 1;
1323}
1324
1325static void wx_tx_csum(struct wx_ring *tx_ring, struct wx_tx_buffer *first,
1326		       u8 ptype)
1327{
1328	u32 tunhdr_eiplen_tunlen = 0, vlan_macip_lens = 0;
1329	struct net_device *netdev = tx_ring->netdev;
1330	u32 mss_l4len_idx = 0, type_tucmd;
1331	struct sk_buff *skb = first->skb;
1332	u8 tun_prot = 0;
1333
1334	if (skb->ip_summed != CHECKSUM_PARTIAL) {
1335		if (!(first->tx_flags & WX_TX_FLAGS_HW_VLAN) &&
1336		    !(first->tx_flags & WX_TX_FLAGS_CC))
1337			return;
1338		vlan_macip_lens = skb_network_offset(skb) <<
1339				  WX_TXD_MACLEN_SHIFT;
1340	} else {
1341		u8 l4_prot = 0;
1342		union {
1343			struct iphdr *ipv4;
1344			struct ipv6hdr *ipv6;
1345			u8 *raw;
1346		} network_hdr;
1347		union {
1348			struct tcphdr *tcphdr;
1349			u8 *raw;
1350		} transport_hdr;
1351
1352		if (skb->encapsulation) {
1353			network_hdr.raw = skb_inner_network_header(skb);
1354			transport_hdr.raw = skb_inner_transport_header(skb);
1355			vlan_macip_lens = skb_network_offset(skb) <<
1356					  WX_TXD_MACLEN_SHIFT;
1357			switch (first->protocol) {
1358			case htons(ETH_P_IP):
1359				tun_prot = ip_hdr(skb)->protocol;
1360				break;
1361			case htons(ETH_P_IPV6):
1362				tun_prot = ipv6_hdr(skb)->nexthdr;
1363				break;
1364			default:
1365				return;
1366			}
1367			switch (tun_prot) {
1368			case IPPROTO_UDP:
1369				tunhdr_eiplen_tunlen = WX_TXD_TUNNEL_UDP;
1370				tunhdr_eiplen_tunlen |=
1371					((skb_network_header_len(skb) >> 2) <<
1372					WX_TXD_OUTER_IPLEN_SHIFT) |
1373					(((skb_inner_mac_header(skb) -
1374					skb_transport_header(skb)) >> 1) <<
1375					WX_TXD_TUNNEL_LEN_SHIFT);
1376				break;
1377			case IPPROTO_GRE:
1378				tunhdr_eiplen_tunlen = WX_TXD_TUNNEL_GRE;
1379				tunhdr_eiplen_tunlen |= ((skb_network_header_len(skb) >> 2) <<
1380							 WX_TXD_OUTER_IPLEN_SHIFT) |
1381							 (((skb_inner_mac_header(skb) -
1382							    skb_transport_header(skb)) >> 1) <<
1383							  WX_TXD_TUNNEL_LEN_SHIFT);
1384				break;
1385			case IPPROTO_IPIP:
1386				tunhdr_eiplen_tunlen = (((char *)inner_ip_hdr(skb) -
1387							(char *)ip_hdr(skb)) >> 2) <<
1388							WX_TXD_OUTER_IPLEN_SHIFT;
1389				break;
1390			default:
1391				break;
1392			}
1393
1394		} else {
1395			network_hdr.raw = skb_network_header(skb);
1396			transport_hdr.raw = skb_transport_header(skb);
1397			vlan_macip_lens = skb_network_offset(skb) <<
1398					  WX_TXD_MACLEN_SHIFT;
1399		}
1400
1401		switch (network_hdr.ipv4->version) {
1402		case IPVERSION:
1403			vlan_macip_lens |= (transport_hdr.raw - network_hdr.raw) >> 1;
1404			l4_prot = network_hdr.ipv4->protocol;
1405			break;
1406		case 6:
1407			vlan_macip_lens |= (transport_hdr.raw - network_hdr.raw) >> 1;
1408			l4_prot = network_hdr.ipv6->nexthdr;
1409			break;
1410		default:
1411			break;
1412		}
1413
1414		switch (l4_prot) {
1415		case IPPROTO_TCP:
1416		mss_l4len_idx = (transport_hdr.tcphdr->doff * 4) <<
1417				WX_TXD_L4LEN_SHIFT;
1418			break;
1419		case IPPROTO_SCTP:
1420			mss_l4len_idx = sizeof(struct sctphdr) <<
1421					WX_TXD_L4LEN_SHIFT;
1422			break;
1423		case IPPROTO_UDP:
1424			mss_l4len_idx = sizeof(struct udphdr) <<
1425					WX_TXD_L4LEN_SHIFT;
1426			break;
1427		default:
1428			break;
1429		}
1430
1431		/* update TX checksum flag */
1432		first->tx_flags |= WX_TX_FLAGS_CSUM;
1433	}
1434	first->tx_flags |= WX_TX_FLAGS_CC;
1435	/* vlan_macip_lens: MACLEN, VLAN tag */
1436	vlan_macip_lens |= first->tx_flags & WX_TX_FLAGS_VLAN_MASK;
1437
1438	type_tucmd = ptype << 24;
1439	if (skb->vlan_proto == htons(ETH_P_8021AD) &&
1440	    netdev->features & NETIF_F_HW_VLAN_STAG_TX)
1441		type_tucmd |= WX_SET_FLAG(first->tx_flags,
1442					  WX_TX_FLAGS_HW_VLAN,
1443					  0x1 << WX_TXD_TAG_TPID_SEL_SHIFT);
1444	wx_tx_ctxtdesc(tx_ring, vlan_macip_lens, tunhdr_eiplen_tunlen,
1445		       type_tucmd, mss_l4len_idx);
1446}
1447
1448static netdev_tx_t wx_xmit_frame_ring(struct sk_buff *skb,
1449				      struct wx_ring *tx_ring)
1450{
1451	u16 count = TXD_USE_COUNT(skb_headlen(skb));
1452	struct wx_tx_buffer *first;
1453	u8 hdr_len = 0, ptype;
1454	unsigned short f;
1455	u32 tx_flags = 0;
1456	int tso;
1457
1458	/* need: 1 descriptor per page * PAGE_SIZE/WX_MAX_DATA_PER_TXD,
1459	 *       + 1 desc for skb_headlen/WX_MAX_DATA_PER_TXD,
1460	 *       + 2 desc gap to keep tail from touching head,
1461	 *       + 1 desc for context descriptor,
1462	 * otherwise try next time
1463	 */
1464	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1465		count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->
1466						     frags[f]));
1467
1468	if (wx_maybe_stop_tx(tx_ring, count + 3))
1469		return NETDEV_TX_BUSY;
1470
1471	/* record the location of the first descriptor for this packet */
1472	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1473	first->skb = skb;
1474	first->bytecount = skb->len;
1475	first->gso_segs = 1;
1476
1477	/* if we have a HW VLAN tag being added default to the HW one */
1478	if (skb_vlan_tag_present(skb)) {
1479		tx_flags |= skb_vlan_tag_get(skb) << WX_TX_FLAGS_VLAN_SHIFT;
1480		tx_flags |= WX_TX_FLAGS_HW_VLAN;
1481	}
1482
1483	/* record initial flags and protocol */
1484	first->tx_flags = tx_flags;
1485	first->protocol = vlan_get_protocol(skb);
1486
1487	ptype = wx_encode_tx_desc_ptype(first);
1488
1489	tso = wx_tso(tx_ring, first, &hdr_len, ptype);
1490	if (tso < 0)
1491		goto out_drop;
1492	else if (!tso)
1493		wx_tx_csum(tx_ring, first, ptype);
1494	wx_tx_map(tx_ring, first, hdr_len);
1495
1496	return NETDEV_TX_OK;
1497out_drop:
1498	dev_kfree_skb_any(first->skb);
1499	first->skb = NULL;
1500
1501	return NETDEV_TX_OK;
1502}
1503
1504netdev_tx_t wx_xmit_frame(struct sk_buff *skb,
1505			  struct net_device *netdev)
1506{
1507	unsigned int r_idx = skb->queue_mapping;
1508	struct wx *wx = netdev_priv(netdev);
1509	struct wx_ring *tx_ring;
1510
1511	if (!netif_carrier_ok(netdev)) {
1512		dev_kfree_skb_any(skb);
1513		return NETDEV_TX_OK;
1514	}
1515
1516	/* The minimum packet size for olinfo paylen is 17 so pad the skb
1517	 * in order to meet this minimum size requirement.
1518	 */
1519	if (skb_put_padto(skb, 17))
1520		return NETDEV_TX_OK;
1521
1522	if (r_idx >= wx->num_tx_queues)
1523		r_idx = r_idx % wx->num_tx_queues;
1524	tx_ring = wx->tx_ring[r_idx];
1525
1526	return wx_xmit_frame_ring(skb, tx_ring);
1527}
1528EXPORT_SYMBOL(wx_xmit_frame);
1529
1530void wx_napi_enable_all(struct wx *wx)
1531{
1532	struct wx_q_vector *q_vector;
1533	int q_idx;
1534
1535	for (q_idx = 0; q_idx < wx->num_q_vectors; q_idx++) {
1536		q_vector = wx->q_vector[q_idx];
1537		napi_enable(&q_vector->napi);
1538	}
1539}
1540EXPORT_SYMBOL(wx_napi_enable_all);
1541
1542void wx_napi_disable_all(struct wx *wx)
1543{
1544	struct wx_q_vector *q_vector;
1545	int q_idx;
1546
1547	for (q_idx = 0; q_idx < wx->num_q_vectors; q_idx++) {
1548		q_vector = wx->q_vector[q_idx];
1549		napi_disable(&q_vector->napi);
1550	}
1551}
1552EXPORT_SYMBOL(wx_napi_disable_all);
1553
1554/**
1555 * wx_set_rss_queues: Allocate queues for RSS
1556 * @wx: board private structure to initialize
1557 *
1558 * This is our "base" multiqueue mode.  RSS (Receive Side Scaling) will try
1559 * to allocate one Rx queue per CPU, and if available, one Tx queue per CPU.
1560 *
1561 **/
1562static void wx_set_rss_queues(struct wx *wx)
1563{
1564	wx->num_rx_queues = wx->mac.max_rx_queues;
1565	wx->num_tx_queues = wx->mac.max_tx_queues;
1566}
1567
1568static void wx_set_num_queues(struct wx *wx)
1569{
1570	/* Start with base case */
1571	wx->num_rx_queues = 1;
1572	wx->num_tx_queues = 1;
1573	wx->queues_per_pool = 1;
1574
1575	wx_set_rss_queues(wx);
1576}
1577
1578/**
1579 * wx_acquire_msix_vectors - acquire MSI-X vectors
1580 * @wx: board private structure
1581 *
1582 * Attempts to acquire a suitable range of MSI-X vector interrupts. Will
1583 * return a negative error code if unable to acquire MSI-X vectors for any
1584 * reason.
1585 */
1586static int wx_acquire_msix_vectors(struct wx *wx)
1587{
1588	struct irq_affinity affd = {0, };
1589	int nvecs, i;
1590
1591	nvecs = min_t(int, num_online_cpus(), wx->mac.max_msix_vectors);
1592
1593	wx->msix_entries = kcalloc(nvecs,
1594				   sizeof(struct msix_entry),
1595				   GFP_KERNEL);
1596	if (!wx->msix_entries)
1597		return -ENOMEM;
1598
1599	nvecs = pci_alloc_irq_vectors_affinity(wx->pdev, nvecs,
1600					       nvecs,
1601					       PCI_IRQ_MSIX | PCI_IRQ_AFFINITY,
1602					       &affd);
1603	if (nvecs < 0) {
1604		wx_err(wx, "Failed to allocate MSI-X interrupts. Err: %d\n", nvecs);
1605		kfree(wx->msix_entries);
1606		wx->msix_entries = NULL;
1607		return nvecs;
1608	}
1609
1610	for (i = 0; i < nvecs; i++) {
1611		wx->msix_entries[i].entry = i;
1612		wx->msix_entries[i].vector = pci_irq_vector(wx->pdev, i);
1613	}
1614
1615	/* one for msix_other */
1616	nvecs -= 1;
1617	wx->num_q_vectors = nvecs;
1618	wx->num_rx_queues = nvecs;
1619	wx->num_tx_queues = nvecs;
1620
1621	return 0;
1622}
1623
1624/**
1625 * wx_set_interrupt_capability - set MSI-X or MSI if supported
1626 * @wx: board private structure to initialize
1627 *
1628 * Attempt to configure the interrupts using the best available
1629 * capabilities of the hardware and the kernel.
1630 **/
1631static int wx_set_interrupt_capability(struct wx *wx)
1632{
1633	struct pci_dev *pdev = wx->pdev;
1634	int nvecs, ret;
1635
1636	/* We will try to get MSI-X interrupts first */
1637	ret = wx_acquire_msix_vectors(wx);
1638	if (ret == 0 || (ret == -ENOMEM))
1639		return ret;
1640
1641	wx->num_rx_queues = 1;
1642	wx->num_tx_queues = 1;
1643	wx->num_q_vectors = 1;
1644
1645	/* minmum one for queue, one for misc*/
1646	nvecs = 1;
1647	nvecs = pci_alloc_irq_vectors(pdev, nvecs,
1648				      nvecs, PCI_IRQ_MSI | PCI_IRQ_LEGACY);
1649	if (nvecs == 1) {
1650		if (pdev->msi_enabled)
1651			wx_err(wx, "Fallback to MSI.\n");
1652		else
1653			wx_err(wx, "Fallback to LEGACY.\n");
1654	} else {
1655		wx_err(wx, "Failed to allocate MSI/LEGACY interrupts. Error: %d\n", nvecs);
1656		return nvecs;
1657	}
1658
1659	pdev->irq = pci_irq_vector(pdev, 0);
1660
1661	return 0;
1662}
1663
1664/**
1665 * wx_cache_ring_rss - Descriptor ring to register mapping for RSS
1666 * @wx: board private structure to initialize
1667 *
1668 * Cache the descriptor ring offsets for RSS, ATR, FCoE, and SR-IOV.
1669 *
1670 **/
1671static void wx_cache_ring_rss(struct wx *wx)
1672{
1673	u16 i;
1674
1675	for (i = 0; i < wx->num_rx_queues; i++)
1676		wx->rx_ring[i]->reg_idx = i;
1677
1678	for (i = 0; i < wx->num_tx_queues; i++)
1679		wx->tx_ring[i]->reg_idx = i;
1680}
1681
1682static void wx_add_ring(struct wx_ring *ring, struct wx_ring_container *head)
1683{
1684	ring->next = head->ring;
1685	head->ring = ring;
1686	head->count++;
1687}
1688
1689/**
1690 * wx_alloc_q_vector - Allocate memory for a single interrupt vector
1691 * @wx: board private structure to initialize
1692 * @v_count: q_vectors allocated on wx, used for ring interleaving
1693 * @v_idx: index of vector in wx struct
1694 * @txr_count: total number of Tx rings to allocate
1695 * @txr_idx: index of first Tx ring to allocate
1696 * @rxr_count: total number of Rx rings to allocate
1697 * @rxr_idx: index of first Rx ring to allocate
1698 *
1699 * We allocate one q_vector.  If allocation fails we return -ENOMEM.
1700 **/
1701static int wx_alloc_q_vector(struct wx *wx,
1702			     unsigned int v_count, unsigned int v_idx,
1703			     unsigned int txr_count, unsigned int txr_idx,
1704			     unsigned int rxr_count, unsigned int rxr_idx)
1705{
1706	struct wx_q_vector *q_vector;
1707	int ring_count, default_itr;
1708	struct wx_ring *ring;
1709
1710	/* note this will allocate space for the ring structure as well! */
1711	ring_count = txr_count + rxr_count;
1712
1713	q_vector = kzalloc(struct_size(q_vector, ring, ring_count),
1714			   GFP_KERNEL);
1715	if (!q_vector)
1716		return -ENOMEM;
1717
1718	/* initialize NAPI */
1719	netif_napi_add(wx->netdev, &q_vector->napi,
1720		       wx_poll);
1721
1722	/* tie q_vector and wx together */
1723	wx->q_vector[v_idx] = q_vector;
1724	q_vector->wx = wx;
1725	q_vector->v_idx = v_idx;
1726	if (cpu_online(v_idx))
1727		q_vector->numa_node = cpu_to_node(v_idx);
1728
1729	/* initialize pointer to rings */
1730	ring = q_vector->ring;
1731
1732	if (wx->mac.type == wx_mac_sp)
1733		default_itr = WX_12K_ITR;
1734	else
1735		default_itr = WX_7K_ITR;
1736	/* initialize ITR */
1737	if (txr_count && !rxr_count)
1738		/* tx only vector */
1739		q_vector->itr = wx->tx_itr_setting ?
1740				default_itr : wx->tx_itr_setting;
1741	else
1742		/* rx or rx/tx vector */
1743		q_vector->itr = wx->rx_itr_setting ?
1744				default_itr : wx->rx_itr_setting;
1745
1746	while (txr_count) {
1747		/* assign generic ring traits */
1748		ring->dev = &wx->pdev->dev;
1749		ring->netdev = wx->netdev;
1750
1751		/* configure backlink on ring */
1752		ring->q_vector = q_vector;
1753
1754		/* update q_vector Tx values */
1755		wx_add_ring(ring, &q_vector->tx);
1756
1757		/* apply Tx specific ring traits */
1758		ring->count = wx->tx_ring_count;
1759
1760		ring->queue_index = txr_idx;
1761
1762		/* assign ring to wx */
1763		wx->tx_ring[txr_idx] = ring;
1764
1765		/* update count and index */
1766		txr_count--;
1767		txr_idx += v_count;
1768
1769		/* push pointer to next ring */
1770		ring++;
1771	}
1772
1773	while (rxr_count) {
1774		/* assign generic ring traits */
1775		ring->dev = &wx->pdev->dev;
1776		ring->netdev = wx->netdev;
1777
1778		/* configure backlink on ring */
1779		ring->q_vector = q_vector;
1780
1781		/* update q_vector Rx values */
1782		wx_add_ring(ring, &q_vector->rx);
1783
1784		/* apply Rx specific ring traits */
1785		ring->count = wx->rx_ring_count;
1786		ring->queue_index = rxr_idx;
1787
1788		/* assign ring to wx */
1789		wx->rx_ring[rxr_idx] = ring;
1790
1791		/* update count and index */
1792		rxr_count--;
1793		rxr_idx += v_count;
1794
1795		/* push pointer to next ring */
1796		ring++;
1797	}
1798
1799	return 0;
1800}
1801
1802/**
1803 * wx_free_q_vector - Free memory allocated for specific interrupt vector
1804 * @wx: board private structure to initialize
1805 * @v_idx: Index of vector to be freed
1806 *
1807 * This function frees the memory allocated to the q_vector.  In addition if
1808 * NAPI is enabled it will delete any references to the NAPI struct prior
1809 * to freeing the q_vector.
1810 **/
1811static void wx_free_q_vector(struct wx *wx, int v_idx)
1812{
1813	struct wx_q_vector *q_vector = wx->q_vector[v_idx];
1814	struct wx_ring *ring;
1815
1816	wx_for_each_ring(ring, q_vector->tx)
1817		wx->tx_ring[ring->queue_index] = NULL;
1818
1819	wx_for_each_ring(ring, q_vector->rx)
1820		wx->rx_ring[ring->queue_index] = NULL;
1821
1822	wx->q_vector[v_idx] = NULL;
1823	netif_napi_del(&q_vector->napi);
1824	kfree_rcu(q_vector, rcu);
1825}
1826
1827/**
1828 * wx_alloc_q_vectors - Allocate memory for interrupt vectors
1829 * @wx: board private structure to initialize
1830 *
1831 * We allocate one q_vector per queue interrupt.  If allocation fails we
1832 * return -ENOMEM.
1833 **/
1834static int wx_alloc_q_vectors(struct wx *wx)
1835{
1836	unsigned int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1837	unsigned int rxr_remaining = wx->num_rx_queues;
1838	unsigned int txr_remaining = wx->num_tx_queues;
1839	unsigned int q_vectors = wx->num_q_vectors;
1840	int rqpv, tqpv;
1841	int err;
1842
1843	for (; v_idx < q_vectors; v_idx++) {
1844		rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1845		tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1846		err = wx_alloc_q_vector(wx, q_vectors, v_idx,
1847					tqpv, txr_idx,
1848					rqpv, rxr_idx);
1849
1850		if (err)
1851			goto err_out;
1852
1853		/* update counts and index */
1854		rxr_remaining -= rqpv;
1855		txr_remaining -= tqpv;
1856		rxr_idx++;
1857		txr_idx++;
1858	}
1859
1860	return 0;
1861
1862err_out:
1863	wx->num_tx_queues = 0;
1864	wx->num_rx_queues = 0;
1865	wx->num_q_vectors = 0;
1866
1867	while (v_idx--)
1868		wx_free_q_vector(wx, v_idx);
1869
1870	return -ENOMEM;
1871}
1872
1873/**
1874 * wx_free_q_vectors - Free memory allocated for interrupt vectors
1875 * @wx: board private structure to initialize
1876 *
1877 * This function frees the memory allocated to the q_vectors.  In addition if
1878 * NAPI is enabled it will delete any references to the NAPI struct prior
1879 * to freeing the q_vector.
1880 **/
1881static void wx_free_q_vectors(struct wx *wx)
1882{
1883	int v_idx = wx->num_q_vectors;
1884
1885	wx->num_tx_queues = 0;
1886	wx->num_rx_queues = 0;
1887	wx->num_q_vectors = 0;
1888
1889	while (v_idx--)
1890		wx_free_q_vector(wx, v_idx);
1891}
1892
1893void wx_reset_interrupt_capability(struct wx *wx)
1894{
1895	struct pci_dev *pdev = wx->pdev;
1896
1897	if (!pdev->msi_enabled && !pdev->msix_enabled)
1898		return;
1899
1900	if (pdev->msix_enabled) {
1901		kfree(wx->msix_entries);
1902		wx->msix_entries = NULL;
1903	}
1904	pci_free_irq_vectors(wx->pdev);
1905}
1906EXPORT_SYMBOL(wx_reset_interrupt_capability);
1907
1908/**
1909 * wx_clear_interrupt_scheme - Clear the current interrupt scheme settings
1910 * @wx: board private structure to clear interrupt scheme on
1911 *
1912 * We go through and clear interrupt specific resources and reset the structure
1913 * to pre-load conditions
1914 **/
1915void wx_clear_interrupt_scheme(struct wx *wx)
1916{
1917	wx_free_q_vectors(wx);
1918	wx_reset_interrupt_capability(wx);
1919}
1920EXPORT_SYMBOL(wx_clear_interrupt_scheme);
1921
1922int wx_init_interrupt_scheme(struct wx *wx)
1923{
1924	int ret;
1925
1926	/* Number of supported queues */
1927	wx_set_num_queues(wx);
1928
1929	/* Set interrupt mode */
1930	ret = wx_set_interrupt_capability(wx);
1931	if (ret) {
1932		wx_err(wx, "Allocate irq vectors for failed.\n");
1933		return ret;
1934	}
1935
1936	/* Allocate memory for queues */
1937	ret = wx_alloc_q_vectors(wx);
1938	if (ret) {
1939		wx_err(wx, "Unable to allocate memory for queue vectors.\n");
1940		wx_reset_interrupt_capability(wx);
1941		return ret;
1942	}
1943
1944	wx_cache_ring_rss(wx);
1945
1946	return 0;
1947}
1948EXPORT_SYMBOL(wx_init_interrupt_scheme);
1949
1950irqreturn_t wx_msix_clean_rings(int __always_unused irq, void *data)
1951{
1952	struct wx_q_vector *q_vector = data;
1953
1954	/* EIAM disabled interrupts (on this vector) for us */
1955	if (q_vector->rx.ring || q_vector->tx.ring)
1956		napi_schedule_irqoff(&q_vector->napi);
1957
1958	return IRQ_HANDLED;
1959}
1960EXPORT_SYMBOL(wx_msix_clean_rings);
1961
1962void wx_free_irq(struct wx *wx)
1963{
1964	struct pci_dev *pdev = wx->pdev;
1965	int vector;
1966
1967	if (!(pdev->msix_enabled)) {
1968		free_irq(pdev->irq, wx);
1969		return;
1970	}
1971
1972	for (vector = 0; vector < wx->num_q_vectors; vector++) {
1973		struct wx_q_vector *q_vector = wx->q_vector[vector];
1974		struct msix_entry *entry = &wx->msix_entries[vector];
1975
1976		/* free only the irqs that were actually requested */
1977		if (!q_vector->rx.ring && !q_vector->tx.ring)
1978			continue;
1979
1980		free_irq(entry->vector, q_vector);
1981	}
1982
1983	if (wx->mac.type == wx_mac_em)
1984		free_irq(wx->msix_entries[vector].vector, wx);
1985}
1986EXPORT_SYMBOL(wx_free_irq);
1987
1988/**
1989 * wx_setup_isb_resources - allocate interrupt status resources
1990 * @wx: board private structure
1991 *
1992 * Return 0 on success, negative on failure
1993 **/
1994int wx_setup_isb_resources(struct wx *wx)
1995{
1996	struct pci_dev *pdev = wx->pdev;
1997
1998	wx->isb_mem = dma_alloc_coherent(&pdev->dev,
1999					 sizeof(u32) * 4,
2000					 &wx->isb_dma,
2001					 GFP_KERNEL);
2002	if (!wx->isb_mem) {
2003		wx_err(wx, "Alloc isb_mem failed\n");
2004		return -ENOMEM;
2005	}
2006
2007	return 0;
2008}
2009EXPORT_SYMBOL(wx_setup_isb_resources);
2010
2011/**
2012 * wx_free_isb_resources - allocate all queues Rx resources
2013 * @wx: board private structure
2014 *
2015 * Return 0 on success, negative on failure
2016 **/
2017void wx_free_isb_resources(struct wx *wx)
2018{
2019	struct pci_dev *pdev = wx->pdev;
2020
2021	dma_free_coherent(&pdev->dev, sizeof(u32) * 4,
2022			  wx->isb_mem, wx->isb_dma);
2023	wx->isb_mem = NULL;
2024}
2025EXPORT_SYMBOL(wx_free_isb_resources);
2026
2027u32 wx_misc_isb(struct wx *wx, enum wx_isb_idx idx)
2028{
2029	u32 cur_tag = 0;
2030
2031	cur_tag = wx->isb_mem[WX_ISB_HEADER];
2032	wx->isb_tag[idx] = cur_tag;
2033
2034	return (__force u32)cpu_to_le32(wx->isb_mem[idx]);
2035}
2036EXPORT_SYMBOL(wx_misc_isb);
2037
2038/**
2039 * wx_set_ivar - set the IVAR registers, mapping interrupt causes to vectors
2040 * @wx: pointer to wx struct
2041 * @direction: 0 for Rx, 1 for Tx, -1 for other causes
2042 * @queue: queue to map the corresponding interrupt to
2043 * @msix_vector: the vector to map to the corresponding queue
2044 *
2045 **/
2046static void wx_set_ivar(struct wx *wx, s8 direction,
2047			u16 queue, u16 msix_vector)
2048{
2049	u32 ivar, index;
2050
2051	if (direction == -1) {
2052		/* other causes */
2053		msix_vector |= WX_PX_IVAR_ALLOC_VAL;
2054		index = 0;
2055		ivar = rd32(wx, WX_PX_MISC_IVAR);
2056		ivar &= ~(0xFF << index);
2057		ivar |= (msix_vector << index);
2058		wr32(wx, WX_PX_MISC_IVAR, ivar);
2059	} else {
2060		/* tx or rx causes */
2061		msix_vector |= WX_PX_IVAR_ALLOC_VAL;
2062		index = ((16 * (queue & 1)) + (8 * direction));
2063		ivar = rd32(wx, WX_PX_IVAR(queue >> 1));
2064		ivar &= ~(0xFF << index);
2065		ivar |= (msix_vector << index);
2066		wr32(wx, WX_PX_IVAR(queue >> 1), ivar);
2067	}
2068}
2069
2070/**
2071 * wx_write_eitr - write EITR register in hardware specific way
2072 * @q_vector: structure containing interrupt and ring information
2073 *
2074 * This function is made to be called by ethtool and by the driver
2075 * when it needs to update EITR registers at runtime.  Hardware
2076 * specific quirks/differences are taken care of here.
2077 */
2078static void wx_write_eitr(struct wx_q_vector *q_vector)
2079{
2080	struct wx *wx = q_vector->wx;
2081	int v_idx = q_vector->v_idx;
2082	u32 itr_reg;
2083
2084	if (wx->mac.type == wx_mac_sp)
2085		itr_reg = q_vector->itr & WX_SP_MAX_EITR;
2086	else
2087		itr_reg = q_vector->itr & WX_EM_MAX_EITR;
2088
2089	itr_reg |= WX_PX_ITR_CNT_WDIS;
2090
2091	wr32(wx, WX_PX_ITR(v_idx), itr_reg);
2092}
2093
2094/**
2095 * wx_configure_vectors - Configure vectors for hardware
2096 * @wx: board private structure
2097 *
2098 * wx_configure_vectors sets up the hardware to properly generate MSI-X/MSI/LEGACY
2099 * interrupts.
2100 **/
2101void wx_configure_vectors(struct wx *wx)
2102{
2103	struct pci_dev *pdev = wx->pdev;
2104	u32 eitrsel = 0;
2105	u16 v_idx;
2106
2107	if (pdev->msix_enabled) {
2108		/* Populate MSIX to EITR Select */
2109		wr32(wx, WX_PX_ITRSEL, eitrsel);
2110		/* use EIAM to auto-mask when MSI-X interrupt is asserted
2111		 * this saves a register write for every interrupt
2112		 */
2113		wr32(wx, WX_PX_GPIE, WX_PX_GPIE_MODEL);
2114	} else {
2115		/* legacy interrupts, use EIAM to auto-mask when reading EICR,
2116		 * specifically only auto mask tx and rx interrupts.
2117		 */
2118		wr32(wx, WX_PX_GPIE, 0);
2119	}
2120
2121	/* Populate the IVAR table and set the ITR values to the
2122	 * corresponding register.
2123	 */
2124	for (v_idx = 0; v_idx < wx->num_q_vectors; v_idx++) {
2125		struct wx_q_vector *q_vector = wx->q_vector[v_idx];
2126		struct wx_ring *ring;
2127
2128		wx_for_each_ring(ring, q_vector->rx)
2129			wx_set_ivar(wx, 0, ring->reg_idx, v_idx);
2130
2131		wx_for_each_ring(ring, q_vector->tx)
2132			wx_set_ivar(wx, 1, ring->reg_idx, v_idx);
2133
2134		wx_write_eitr(q_vector);
2135	}
2136
2137	wx_set_ivar(wx, -1, 0, v_idx);
2138	if (pdev->msix_enabled)
2139		wr32(wx, WX_PX_ITR(v_idx), 1950);
2140}
2141EXPORT_SYMBOL(wx_configure_vectors);
2142
2143/**
2144 * wx_clean_rx_ring - Free Rx Buffers per Queue
2145 * @rx_ring: ring to free buffers from
2146 **/
2147static void wx_clean_rx_ring(struct wx_ring *rx_ring)
2148{
2149	struct wx_rx_buffer *rx_buffer;
2150	u16 i = rx_ring->next_to_clean;
2151
2152	rx_buffer = &rx_ring->rx_buffer_info[i];
2153
2154	/* Free all the Rx ring sk_buffs */
2155	while (i != rx_ring->next_to_alloc) {
2156		if (rx_buffer->skb) {
2157			struct sk_buff *skb = rx_buffer->skb;
2158
2159			if (WX_CB(skb)->page_released)
2160				page_pool_put_full_page(rx_ring->page_pool, rx_buffer->page, false);
2161
2162			dev_kfree_skb(skb);
2163		}
2164
2165		/* Invalidate cache lines that may have been written to by
2166		 * device so that we avoid corrupting memory.
2167		 */
2168		dma_sync_single_range_for_cpu(rx_ring->dev,
2169					      rx_buffer->dma,
2170					      rx_buffer->page_offset,
2171					      WX_RX_BUFSZ,
2172					      DMA_FROM_DEVICE);
2173
2174		/* free resources associated with mapping */
2175		page_pool_put_full_page(rx_ring->page_pool, rx_buffer->page, false);
2176
2177		i++;
2178		rx_buffer++;
2179		if (i == rx_ring->count) {
2180			i = 0;
2181			rx_buffer = rx_ring->rx_buffer_info;
2182		}
2183	}
2184
2185	rx_ring->next_to_alloc = 0;
2186	rx_ring->next_to_clean = 0;
2187	rx_ring->next_to_use = 0;
2188}
2189
2190/**
2191 * wx_clean_all_rx_rings - Free Rx Buffers for all queues
2192 * @wx: board private structure
2193 **/
2194void wx_clean_all_rx_rings(struct wx *wx)
2195{
2196	int i;
2197
2198	for (i = 0; i < wx->num_rx_queues; i++)
2199		wx_clean_rx_ring(wx->rx_ring[i]);
2200}
2201EXPORT_SYMBOL(wx_clean_all_rx_rings);
2202
2203/**
2204 * wx_free_rx_resources - Free Rx Resources
2205 * @rx_ring: ring to clean the resources from
2206 *
2207 * Free all receive software resources
2208 **/
2209static void wx_free_rx_resources(struct wx_ring *rx_ring)
2210{
2211	wx_clean_rx_ring(rx_ring);
2212	kvfree(rx_ring->rx_buffer_info);
2213	rx_ring->rx_buffer_info = NULL;
2214
2215	/* if not set, then don't free */
2216	if (!rx_ring->desc)
2217		return;
2218
2219	dma_free_coherent(rx_ring->dev, rx_ring->size,
2220			  rx_ring->desc, rx_ring->dma);
2221
2222	rx_ring->desc = NULL;
2223
2224	if (rx_ring->page_pool) {
2225		page_pool_destroy(rx_ring->page_pool);
2226		rx_ring->page_pool = NULL;
2227	}
2228}
2229
2230/**
2231 * wx_free_all_rx_resources - Free Rx Resources for All Queues
2232 * @wx: pointer to hardware structure
2233 *
2234 * Free all receive software resources
2235 **/
2236static void wx_free_all_rx_resources(struct wx *wx)
2237{
2238	int i;
2239
2240	for (i = 0; i < wx->num_rx_queues; i++)
2241		wx_free_rx_resources(wx->rx_ring[i]);
2242}
2243
2244/**
2245 * wx_clean_tx_ring - Free Tx Buffers
2246 * @tx_ring: ring to be cleaned
2247 **/
2248static void wx_clean_tx_ring(struct wx_ring *tx_ring)
2249{
2250	struct wx_tx_buffer *tx_buffer;
2251	u16 i = tx_ring->next_to_clean;
2252
2253	tx_buffer = &tx_ring->tx_buffer_info[i];
2254
2255	while (i != tx_ring->next_to_use) {
2256		union wx_tx_desc *eop_desc, *tx_desc;
2257
2258		/* Free all the Tx ring sk_buffs */
2259		dev_kfree_skb_any(tx_buffer->skb);
2260
2261		/* unmap skb header data */
2262		dma_unmap_single(tx_ring->dev,
2263				 dma_unmap_addr(tx_buffer, dma),
2264				 dma_unmap_len(tx_buffer, len),
2265				 DMA_TO_DEVICE);
2266
2267		/* check for eop_desc to determine the end of the packet */
2268		eop_desc = tx_buffer->next_to_watch;
2269		tx_desc = WX_TX_DESC(tx_ring, i);
2270
2271		/* unmap remaining buffers */
2272		while (tx_desc != eop_desc) {
2273			tx_buffer++;
2274			tx_desc++;
2275			i++;
2276			if (unlikely(i == tx_ring->count)) {
2277				i = 0;
2278				tx_buffer = tx_ring->tx_buffer_info;
2279				tx_desc = WX_TX_DESC(tx_ring, 0);
2280			}
2281
2282			/* unmap any remaining paged data */
2283			if (dma_unmap_len(tx_buffer, len))
2284				dma_unmap_page(tx_ring->dev,
2285					       dma_unmap_addr(tx_buffer, dma),
2286					       dma_unmap_len(tx_buffer, len),
2287					       DMA_TO_DEVICE);
2288		}
2289
2290		/* move us one more past the eop_desc for start of next pkt */
2291		tx_buffer++;
2292		i++;
2293		if (unlikely(i == tx_ring->count)) {
2294			i = 0;
2295			tx_buffer = tx_ring->tx_buffer_info;
2296		}
2297	}
2298
2299	netdev_tx_reset_queue(wx_txring_txq(tx_ring));
2300
2301	/* reset next_to_use and next_to_clean */
2302	tx_ring->next_to_use = 0;
2303	tx_ring->next_to_clean = 0;
2304}
2305
2306/**
2307 * wx_clean_all_tx_rings - Free Tx Buffers for all queues
2308 * @wx: board private structure
2309 **/
2310void wx_clean_all_tx_rings(struct wx *wx)
2311{
2312	int i;
2313
2314	for (i = 0; i < wx->num_tx_queues; i++)
2315		wx_clean_tx_ring(wx->tx_ring[i]);
2316}
2317EXPORT_SYMBOL(wx_clean_all_tx_rings);
2318
2319/**
2320 * wx_free_tx_resources - Free Tx Resources per Queue
2321 * @tx_ring: Tx descriptor ring for a specific queue
2322 *
2323 * Free all transmit software resources
2324 **/
2325static void wx_free_tx_resources(struct wx_ring *tx_ring)
2326{
2327	wx_clean_tx_ring(tx_ring);
2328	kvfree(tx_ring->tx_buffer_info);
2329	tx_ring->tx_buffer_info = NULL;
2330
2331	/* if not set, then don't free */
2332	if (!tx_ring->desc)
2333		return;
2334
2335	dma_free_coherent(tx_ring->dev, tx_ring->size,
2336			  tx_ring->desc, tx_ring->dma);
2337	tx_ring->desc = NULL;
2338}
2339
2340/**
2341 * wx_free_all_tx_resources - Free Tx Resources for All Queues
2342 * @wx: pointer to hardware structure
2343 *
2344 * Free all transmit software resources
2345 **/
2346static void wx_free_all_tx_resources(struct wx *wx)
2347{
2348	int i;
2349
2350	for (i = 0; i < wx->num_tx_queues; i++)
2351		wx_free_tx_resources(wx->tx_ring[i]);
2352}
2353
2354void wx_free_resources(struct wx *wx)
2355{
2356	wx_free_isb_resources(wx);
2357	wx_free_all_rx_resources(wx);
2358	wx_free_all_tx_resources(wx);
2359}
2360EXPORT_SYMBOL(wx_free_resources);
2361
2362static int wx_alloc_page_pool(struct wx_ring *rx_ring)
2363{
2364	int ret = 0;
2365
2366	struct page_pool_params pp_params = {
2367		.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV,
2368		.order = 0,
2369		.pool_size = rx_ring->size,
2370		.nid = dev_to_node(rx_ring->dev),
2371		.dev = rx_ring->dev,
2372		.dma_dir = DMA_FROM_DEVICE,
2373		.offset = 0,
2374		.max_len = PAGE_SIZE,
2375	};
2376
2377	rx_ring->page_pool = page_pool_create(&pp_params);
2378	if (IS_ERR(rx_ring->page_pool)) {
2379		ret = PTR_ERR(rx_ring->page_pool);
2380		rx_ring->page_pool = NULL;
2381	}
2382
2383	return ret;
2384}
2385
2386/**
2387 * wx_setup_rx_resources - allocate Rx resources (Descriptors)
2388 * @rx_ring: rx descriptor ring (for a specific queue) to setup
2389 *
2390 * Returns 0 on success, negative on failure
2391 **/
2392static int wx_setup_rx_resources(struct wx_ring *rx_ring)
2393{
2394	struct device *dev = rx_ring->dev;
2395	int orig_node = dev_to_node(dev);
2396	int numa_node = NUMA_NO_NODE;
2397	int size, ret;
2398
2399	size = sizeof(struct wx_rx_buffer) * rx_ring->count;
2400
2401	if (rx_ring->q_vector)
2402		numa_node = rx_ring->q_vector->numa_node;
2403
2404	rx_ring->rx_buffer_info = kvmalloc_node(size, GFP_KERNEL, numa_node);
2405	if (!rx_ring->rx_buffer_info)
2406		rx_ring->rx_buffer_info = kvmalloc(size, GFP_KERNEL);
2407	if (!rx_ring->rx_buffer_info)
2408		goto err;
2409
2410	/* Round up to nearest 4K */
2411	rx_ring->size = rx_ring->count * sizeof(union wx_rx_desc);
2412	rx_ring->size = ALIGN(rx_ring->size, 4096);
2413
2414	set_dev_node(dev, numa_node);
2415	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
2416					   &rx_ring->dma, GFP_KERNEL);
2417	if (!rx_ring->desc) {
2418		set_dev_node(dev, orig_node);
2419		rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
2420						   &rx_ring->dma, GFP_KERNEL);
2421	}
2422
2423	if (!rx_ring->desc)
2424		goto err;
2425
2426	rx_ring->next_to_clean = 0;
2427	rx_ring->next_to_use = 0;
2428
2429	ret = wx_alloc_page_pool(rx_ring);
2430	if (ret < 0) {
2431		dev_err(rx_ring->dev, "Page pool creation failed: %d\n", ret);
2432		goto err_desc;
2433	}
2434
2435	return 0;
2436
2437err_desc:
2438	dma_free_coherent(dev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2439err:
2440	kvfree(rx_ring->rx_buffer_info);
2441	rx_ring->rx_buffer_info = NULL;
2442	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
2443	return -ENOMEM;
2444}
2445
2446/**
2447 * wx_setup_all_rx_resources - allocate all queues Rx resources
2448 * @wx: pointer to hardware structure
2449 *
2450 * If this function returns with an error, then it's possible one or
2451 * more of the rings is populated (while the rest are not).  It is the
2452 * callers duty to clean those orphaned rings.
2453 *
2454 * Return 0 on success, negative on failure
2455 **/
2456static int wx_setup_all_rx_resources(struct wx *wx)
2457{
2458	int i, err = 0;
2459
2460	for (i = 0; i < wx->num_rx_queues; i++) {
2461		err = wx_setup_rx_resources(wx->rx_ring[i]);
2462		if (!err)
2463			continue;
2464
2465		wx_err(wx, "Allocation for Rx Queue %u failed\n", i);
2466		goto err_setup_rx;
2467	}
2468
2469	return 0;
2470err_setup_rx:
2471	/* rewind the index freeing the rings as we go */
2472	while (i--)
2473		wx_free_rx_resources(wx->rx_ring[i]);
2474	return err;
2475}
2476
2477/**
2478 * wx_setup_tx_resources - allocate Tx resources (Descriptors)
2479 * @tx_ring: tx descriptor ring (for a specific queue) to setup
2480 *
2481 * Return 0 on success, negative on failure
2482 **/
2483static int wx_setup_tx_resources(struct wx_ring *tx_ring)
2484{
2485	struct device *dev = tx_ring->dev;
2486	int orig_node = dev_to_node(dev);
2487	int numa_node = NUMA_NO_NODE;
2488	int size;
2489
2490	size = sizeof(struct wx_tx_buffer) * tx_ring->count;
2491
2492	if (tx_ring->q_vector)
2493		numa_node = tx_ring->q_vector->numa_node;
2494
2495	tx_ring->tx_buffer_info = kvmalloc_node(size, GFP_KERNEL, numa_node);
2496	if (!tx_ring->tx_buffer_info)
2497		tx_ring->tx_buffer_info = kvmalloc(size, GFP_KERNEL);
2498	if (!tx_ring->tx_buffer_info)
2499		goto err;
2500
2501	/* round up to nearest 4K */
2502	tx_ring->size = tx_ring->count * sizeof(union wx_tx_desc);
2503	tx_ring->size = ALIGN(tx_ring->size, 4096);
2504
2505	set_dev_node(dev, numa_node);
2506	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
2507					   &tx_ring->dma, GFP_KERNEL);
2508	if (!tx_ring->desc) {
2509		set_dev_node(dev, orig_node);
2510		tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
2511						   &tx_ring->dma, GFP_KERNEL);
2512	}
2513
2514	if (!tx_ring->desc)
2515		goto err;
2516
2517	tx_ring->next_to_use = 0;
2518	tx_ring->next_to_clean = 0;
2519
2520	return 0;
2521
2522err:
2523	kvfree(tx_ring->tx_buffer_info);
2524	tx_ring->tx_buffer_info = NULL;
2525	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
2526	return -ENOMEM;
2527}
2528
2529/**
2530 * wx_setup_all_tx_resources - allocate all queues Tx resources
2531 * @wx: pointer to private structure
2532 *
2533 * If this function returns with an error, then it's possible one or
2534 * more of the rings is populated (while the rest are not).  It is the
2535 * callers duty to clean those orphaned rings.
2536 *
2537 * Return 0 on success, negative on failure
2538 **/
2539static int wx_setup_all_tx_resources(struct wx *wx)
2540{
2541	int i, err = 0;
2542
2543	for (i = 0; i < wx->num_tx_queues; i++) {
2544		err = wx_setup_tx_resources(wx->tx_ring[i]);
2545		if (!err)
2546			continue;
2547
2548		wx_err(wx, "Allocation for Tx Queue %u failed\n", i);
2549		goto err_setup_tx;
2550	}
2551
2552	return 0;
2553err_setup_tx:
2554	/* rewind the index freeing the rings as we go */
2555	while (i--)
2556		wx_free_tx_resources(wx->tx_ring[i]);
2557	return err;
2558}
2559
2560int wx_setup_resources(struct wx *wx)
2561{
2562	int err;
2563
2564	/* allocate transmit descriptors */
2565	err = wx_setup_all_tx_resources(wx);
2566	if (err)
2567		return err;
2568
2569	/* allocate receive descriptors */
2570	err = wx_setup_all_rx_resources(wx);
2571	if (err)
2572		goto err_free_tx;
2573
2574	err = wx_setup_isb_resources(wx);
2575	if (err)
2576		goto err_free_rx;
2577
2578	return 0;
2579
2580err_free_rx:
2581	wx_free_all_rx_resources(wx);
2582err_free_tx:
2583	wx_free_all_tx_resources(wx);
2584
2585	return err;
2586}
2587EXPORT_SYMBOL(wx_setup_resources);
2588
2589/**
2590 * wx_get_stats64 - Get System Network Statistics
2591 * @netdev: network interface device structure
2592 * @stats: storage space for 64bit statistics
2593 */
2594void wx_get_stats64(struct net_device *netdev,
2595		    struct rtnl_link_stats64 *stats)
2596{
2597	struct wx *wx = netdev_priv(netdev);
2598	int i;
2599
2600	rcu_read_lock();
2601	for (i = 0; i < wx->num_rx_queues; i++) {
2602		struct wx_ring *ring = READ_ONCE(wx->rx_ring[i]);
2603		u64 bytes, packets;
2604		unsigned int start;
2605
2606		if (ring) {
2607			do {
2608				start = u64_stats_fetch_begin(&ring->syncp);
2609				packets = ring->stats.packets;
2610				bytes   = ring->stats.bytes;
2611			} while (u64_stats_fetch_retry(&ring->syncp, start));
2612			stats->rx_packets += packets;
2613			stats->rx_bytes   += bytes;
2614		}
2615	}
2616
2617	for (i = 0; i < wx->num_tx_queues; i++) {
2618		struct wx_ring *ring = READ_ONCE(wx->tx_ring[i]);
2619		u64 bytes, packets;
2620		unsigned int start;
2621
2622		if (ring) {
2623			do {
2624				start = u64_stats_fetch_begin(&ring->syncp);
2625				packets = ring->stats.packets;
2626				bytes   = ring->stats.bytes;
2627			} while (u64_stats_fetch_retry(&ring->syncp,
2628							   start));
2629			stats->tx_packets += packets;
2630			stats->tx_bytes   += bytes;
2631		}
2632	}
2633
2634	rcu_read_unlock();
2635}
2636EXPORT_SYMBOL(wx_get_stats64);
2637
2638int wx_set_features(struct net_device *netdev, netdev_features_t features)
2639{
2640	netdev_features_t changed = netdev->features ^ features;
2641	struct wx *wx = netdev_priv(netdev);
2642
2643	if (changed & NETIF_F_RXHASH)
2644		wr32m(wx, WX_RDB_RA_CTL, WX_RDB_RA_CTL_RSS_EN,
2645		      WX_RDB_RA_CTL_RSS_EN);
2646	else
2647		wr32m(wx, WX_RDB_RA_CTL, WX_RDB_RA_CTL_RSS_EN, 0);
2648
2649	if (changed &
2650	    (NETIF_F_HW_VLAN_CTAG_RX |
2651	     NETIF_F_HW_VLAN_STAG_RX))
2652		wx_set_rx_mode(netdev);
2653
2654	return 1;
2655}
2656EXPORT_SYMBOL(wx_set_features);
2657
2658MODULE_LICENSE("GPL");
2659