1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c) 2015 - 2022 Beijing WangXun Technology Co., Ltd. */
3
4#include <linux/etherdevice.h>
5#include <linux/netdevice.h>
6#include <linux/if_ether.h>
7#include <linux/if_vlan.h>
8#include <linux/iopoll.h>
9#include <linux/pci.h>
10
11#include "wx_type.h"
12#include "wx_lib.h"
13#include "wx_hw.h"
14
15static void wx_intr_disable(struct wx *wx, u64 qmask)
16{
17	u32 mask;
18
19	mask = (qmask & U32_MAX);
20	if (mask)
21		wr32(wx, WX_PX_IMS(0), mask);
22
23	if (wx->mac.type == wx_mac_sp) {
24		mask = (qmask >> 32);
25		if (mask)
26			wr32(wx, WX_PX_IMS(1), mask);
27	}
28}
29
30void wx_intr_enable(struct wx *wx, u64 qmask)
31{
32	u32 mask;
33
34	mask = (qmask & U32_MAX);
35	if (mask)
36		wr32(wx, WX_PX_IMC(0), mask);
37	if (wx->mac.type == wx_mac_sp) {
38		mask = (qmask >> 32);
39		if (mask)
40			wr32(wx, WX_PX_IMC(1), mask);
41	}
42}
43EXPORT_SYMBOL(wx_intr_enable);
44
45/**
46 * wx_irq_disable - Mask off interrupt generation on the NIC
47 * @wx: board private structure
48 **/
49void wx_irq_disable(struct wx *wx)
50{
51	struct pci_dev *pdev = wx->pdev;
52
53	wr32(wx, WX_PX_MISC_IEN, 0);
54	wx_intr_disable(wx, WX_INTR_ALL);
55
56	if (pdev->msix_enabled) {
57		int vector;
58
59		for (vector = 0; vector < wx->num_q_vectors; vector++)
60			synchronize_irq(wx->msix_entries[vector].vector);
61
62		synchronize_irq(wx->msix_entries[vector].vector);
63	} else {
64		synchronize_irq(pdev->irq);
65	}
66}
67EXPORT_SYMBOL(wx_irq_disable);
68
69/* cmd_addr is used for some special command:
70 * 1. to be sector address, when implemented erase sector command
71 * 2. to be flash address when implemented read, write flash address
72 */
73static int wx_fmgr_cmd_op(struct wx *wx, u32 cmd, u32 cmd_addr)
74{
75	u32 cmd_val = 0, val = 0;
76
77	cmd_val = WX_SPI_CMD_CMD(cmd) |
78		  WX_SPI_CMD_CLK(WX_SPI_CLK_DIV) |
79		  cmd_addr;
80	wr32(wx, WX_SPI_CMD, cmd_val);
81
82	return read_poll_timeout(rd32, val, (val & 0x1), 10, 100000,
83				 false, wx, WX_SPI_STATUS);
84}
85
86static int wx_flash_read_dword(struct wx *wx, u32 addr, u32 *data)
87{
88	int ret = 0;
89
90	ret = wx_fmgr_cmd_op(wx, WX_SPI_CMD_READ_DWORD, addr);
91	if (ret < 0)
92		return ret;
93
94	*data = rd32(wx, WX_SPI_DATA);
95
96	return ret;
97}
98
99int wx_check_flash_load(struct wx *hw, u32 check_bit)
100{
101	u32 reg = 0;
102	int err = 0;
103
104	/* if there's flash existing */
105	if (!(rd32(hw, WX_SPI_STATUS) &
106	      WX_SPI_STATUS_FLASH_BYPASS)) {
107		/* wait hw load flash done */
108		err = read_poll_timeout(rd32, reg, !(reg & check_bit), 20000, 2000000,
109					false, hw, WX_SPI_ILDR_STATUS);
110		if (err < 0)
111			wx_err(hw, "Check flash load timeout.\n");
112	}
113
114	return err;
115}
116EXPORT_SYMBOL(wx_check_flash_load);
117
118void wx_control_hw(struct wx *wx, bool drv)
119{
120	/* True : Let firmware know the driver has taken over
121	 * False : Let firmware take over control of hw
122	 */
123	wr32m(wx, WX_CFG_PORT_CTL, WX_CFG_PORT_CTL_DRV_LOAD,
124	      drv ? WX_CFG_PORT_CTL_DRV_LOAD : 0);
125}
126EXPORT_SYMBOL(wx_control_hw);
127
128/**
129 * wx_mng_present - returns 0 when management capability is present
130 * @wx: pointer to hardware structure
131 */
132int wx_mng_present(struct wx *wx)
133{
134	u32 fwsm;
135
136	fwsm = rd32(wx, WX_MIS_ST);
137	if (fwsm & WX_MIS_ST_MNG_INIT_DN)
138		return 0;
139	else
140		return -EACCES;
141}
142EXPORT_SYMBOL(wx_mng_present);
143
144/* Software lock to be held while software semaphore is being accessed. */
145static DEFINE_MUTEX(wx_sw_sync_lock);
146
147/**
148 *  wx_release_sw_sync - Release SW semaphore
149 *  @wx: pointer to hardware structure
150 *  @mask: Mask to specify which semaphore to release
151 *
152 *  Releases the SW semaphore for the specified
153 *  function (CSR, PHY0, PHY1, EEPROM, Flash)
154 **/
155static void wx_release_sw_sync(struct wx *wx, u32 mask)
156{
157	mutex_lock(&wx_sw_sync_lock);
158	wr32m(wx, WX_MNG_SWFW_SYNC, mask, 0);
159	mutex_unlock(&wx_sw_sync_lock);
160}
161
162/**
163 *  wx_acquire_sw_sync - Acquire SW semaphore
164 *  @wx: pointer to hardware structure
165 *  @mask: Mask to specify which semaphore to acquire
166 *
167 *  Acquires the SW semaphore for the specified
168 *  function (CSR, PHY0, PHY1, EEPROM, Flash)
169 **/
170static int wx_acquire_sw_sync(struct wx *wx, u32 mask)
171{
172	u32 sem = 0;
173	int ret = 0;
174
175	mutex_lock(&wx_sw_sync_lock);
176	ret = read_poll_timeout(rd32, sem, !(sem & mask),
177				5000, 2000000, false, wx, WX_MNG_SWFW_SYNC);
178	if (!ret) {
179		sem |= mask;
180		wr32(wx, WX_MNG_SWFW_SYNC, sem);
181	} else {
182		wx_err(wx, "SW Semaphore not granted: 0x%x.\n", sem);
183	}
184	mutex_unlock(&wx_sw_sync_lock);
185
186	return ret;
187}
188
189/**
190 *  wx_host_interface_command - Issue command to manageability block
191 *  @wx: pointer to the HW structure
192 *  @buffer: contains the command to write and where the return status will
193 *   be placed
194 *  @length: length of buffer, must be multiple of 4 bytes
195 *  @timeout: time in ms to wait for command completion
196 *  @return_data: read and return data from the buffer (true) or not (false)
197 *   Needed because FW structures are big endian and decoding of
198 *   these fields can be 8 bit or 16 bit based on command. Decoding
199 *   is not easily understood without making a table of commands.
200 *   So we will leave this up to the caller to read back the data
201 *   in these cases.
202 **/
203int wx_host_interface_command(struct wx *wx, u32 *buffer,
204			      u32 length, u32 timeout, bool return_data)
205{
206	u32 hdr_size = sizeof(struct wx_hic_hdr);
207	u32 hicr, i, bi, buf[64] = {};
208	int status = 0;
209	u32 dword_len;
210	u16 buf_len;
211
212	if (length == 0 || length > WX_HI_MAX_BLOCK_BYTE_LENGTH) {
213		wx_err(wx, "Buffer length failure buffersize=%d.\n", length);
214		return -EINVAL;
215	}
216
217	status = wx_acquire_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_MB);
218	if (status != 0)
219		return status;
220
221	/* Calculate length in DWORDs. We must be DWORD aligned */
222	if ((length % (sizeof(u32))) != 0) {
223		wx_err(wx, "Buffer length failure, not aligned to dword");
224		status = -EINVAL;
225		goto rel_out;
226	}
227
228	dword_len = length >> 2;
229
230	/* The device driver writes the relevant command block
231	 * into the ram area.
232	 */
233	for (i = 0; i < dword_len; i++) {
234		wr32a(wx, WX_MNG_MBOX, i, (__force u32)cpu_to_le32(buffer[i]));
235		/* write flush */
236		buf[i] = rd32a(wx, WX_MNG_MBOX, i);
237	}
238	/* Setting this bit tells the ARC that a new command is pending. */
239	wr32m(wx, WX_MNG_MBOX_CTL,
240	      WX_MNG_MBOX_CTL_SWRDY, WX_MNG_MBOX_CTL_SWRDY);
241
242	status = read_poll_timeout(rd32, hicr, hicr & WX_MNG_MBOX_CTL_FWRDY, 1000,
243				   timeout * 1000, false, wx, WX_MNG_MBOX_CTL);
244
245	/* Check command completion */
246	if (status) {
247		wx_dbg(wx, "Command has failed with no status valid.\n");
248
249		buf[0] = rd32(wx, WX_MNG_MBOX);
250		if ((buffer[0] & 0xff) != (~buf[0] >> 24)) {
251			status = -EINVAL;
252			goto rel_out;
253		}
254		if ((buf[0] & 0xff0000) >> 16 == 0x80) {
255			wx_dbg(wx, "It's unknown cmd.\n");
256			status = -EINVAL;
257			goto rel_out;
258		}
259
260		wx_dbg(wx, "write value:\n");
261		for (i = 0; i < dword_len; i++)
262			wx_dbg(wx, "%x ", buffer[i]);
263		wx_dbg(wx, "read value:\n");
264		for (i = 0; i < dword_len; i++)
265			wx_dbg(wx, "%x ", buf[i]);
266	}
267
268	if (!return_data)
269		goto rel_out;
270
271	/* Calculate length in DWORDs */
272	dword_len = hdr_size >> 2;
273
274	/* first pull in the header so we know the buffer length */
275	for (bi = 0; bi < dword_len; bi++) {
276		buffer[bi] = rd32a(wx, WX_MNG_MBOX, bi);
277		le32_to_cpus(&buffer[bi]);
278	}
279
280	/* If there is any thing in data position pull it in */
281	buf_len = ((struct wx_hic_hdr *)buffer)->buf_len;
282	if (buf_len == 0)
283		goto rel_out;
284
285	if (length < buf_len + hdr_size) {
286		wx_err(wx, "Buffer not large enough for reply message.\n");
287		status = -EFAULT;
288		goto rel_out;
289	}
290
291	/* Calculate length in DWORDs, add 3 for odd lengths */
292	dword_len = (buf_len + 3) >> 2;
293
294	/* Pull in the rest of the buffer (bi is where we left off) */
295	for (; bi <= dword_len; bi++) {
296		buffer[bi] = rd32a(wx, WX_MNG_MBOX, bi);
297		le32_to_cpus(&buffer[bi]);
298	}
299
300rel_out:
301	wx_release_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_MB);
302	return status;
303}
304EXPORT_SYMBOL(wx_host_interface_command);
305
306/**
307 *  wx_read_ee_hostif_data - Read EEPROM word using a host interface cmd
308 *  assuming that the semaphore is already obtained.
309 *  @wx: pointer to hardware structure
310 *  @offset: offset of  word in the EEPROM to read
311 *  @data: word read from the EEPROM
312 *
313 *  Reads a 16 bit word from the EEPROM using the hostif.
314 **/
315static int wx_read_ee_hostif_data(struct wx *wx, u16 offset, u16 *data)
316{
317	struct wx_hic_read_shadow_ram buffer;
318	int status;
319
320	buffer.hdr.req.cmd = FW_READ_SHADOW_RAM_CMD;
321	buffer.hdr.req.buf_lenh = 0;
322	buffer.hdr.req.buf_lenl = FW_READ_SHADOW_RAM_LEN;
323	buffer.hdr.req.checksum = FW_DEFAULT_CHECKSUM;
324
325	/* convert offset from words to bytes */
326	buffer.address = (__force u32)cpu_to_be32(offset * 2);
327	/* one word */
328	buffer.length = (__force u16)cpu_to_be16(sizeof(u16));
329
330	status = wx_host_interface_command(wx, (u32 *)&buffer, sizeof(buffer),
331					   WX_HI_COMMAND_TIMEOUT, false);
332
333	if (status != 0)
334		return status;
335
336	*data = (u16)rd32a(wx, WX_MNG_MBOX, FW_NVM_DATA_OFFSET);
337
338	return status;
339}
340
341/**
342 *  wx_read_ee_hostif - Read EEPROM word using a host interface cmd
343 *  @wx: pointer to hardware structure
344 *  @offset: offset of  word in the EEPROM to read
345 *  @data: word read from the EEPROM
346 *
347 *  Reads a 16 bit word from the EEPROM using the hostif.
348 **/
349int wx_read_ee_hostif(struct wx *wx, u16 offset, u16 *data)
350{
351	int status = 0;
352
353	status = wx_acquire_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_FLASH);
354	if (status == 0) {
355		status = wx_read_ee_hostif_data(wx, offset, data);
356		wx_release_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_FLASH);
357	}
358
359	return status;
360}
361EXPORT_SYMBOL(wx_read_ee_hostif);
362
363/**
364 *  wx_read_ee_hostif_buffer- Read EEPROM word(s) using hostif
365 *  @wx: pointer to hardware structure
366 *  @offset: offset of  word in the EEPROM to read
367 *  @words: number of words
368 *  @data: word(s) read from the EEPROM
369 *
370 *  Reads a 16 bit word(s) from the EEPROM using the hostif.
371 **/
372int wx_read_ee_hostif_buffer(struct wx *wx,
373			     u16 offset, u16 words, u16 *data)
374{
375	struct wx_hic_read_shadow_ram buffer;
376	u32 current_word = 0;
377	u16 words_to_read;
378	u32 value = 0;
379	int status;
380	u32 i;
381
382	/* Take semaphore for the entire operation. */
383	status = wx_acquire_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_FLASH);
384	if (status != 0)
385		return status;
386
387	while (words) {
388		if (words > FW_MAX_READ_BUFFER_SIZE / 2)
389			words_to_read = FW_MAX_READ_BUFFER_SIZE / 2;
390		else
391			words_to_read = words;
392
393		buffer.hdr.req.cmd = FW_READ_SHADOW_RAM_CMD;
394		buffer.hdr.req.buf_lenh = 0;
395		buffer.hdr.req.buf_lenl = FW_READ_SHADOW_RAM_LEN;
396		buffer.hdr.req.checksum = FW_DEFAULT_CHECKSUM;
397
398		/* convert offset from words to bytes */
399		buffer.address = (__force u32)cpu_to_be32((offset + current_word) * 2);
400		buffer.length = (__force u16)cpu_to_be16(words_to_read * 2);
401
402		status = wx_host_interface_command(wx, (u32 *)&buffer,
403						   sizeof(buffer),
404						   WX_HI_COMMAND_TIMEOUT,
405						   false);
406
407		if (status != 0) {
408			wx_err(wx, "Host interface command failed\n");
409			goto out;
410		}
411
412		for (i = 0; i < words_to_read; i++) {
413			u32 reg = WX_MNG_MBOX + (FW_NVM_DATA_OFFSET << 2) + 2 * i;
414
415			value = rd32(wx, reg);
416			data[current_word] = (u16)(value & 0xffff);
417			current_word++;
418			i++;
419			if (i < words_to_read) {
420				value >>= 16;
421				data[current_word] = (u16)(value & 0xffff);
422				current_word++;
423			}
424		}
425		words -= words_to_read;
426	}
427
428out:
429	wx_release_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_FLASH);
430	return status;
431}
432EXPORT_SYMBOL(wx_read_ee_hostif_buffer);
433
434/**
435 *  wx_init_eeprom_params - Initialize EEPROM params
436 *  @wx: pointer to hardware structure
437 *
438 *  Initializes the EEPROM parameters wx_eeprom_info within the
439 *  wx_hw struct in order to set up EEPROM access.
440 **/
441void wx_init_eeprom_params(struct wx *wx)
442{
443	struct wx_eeprom_info *eeprom = &wx->eeprom;
444	u16 eeprom_size;
445	u16 data = 0x80;
446
447	if (eeprom->type == wx_eeprom_uninitialized) {
448		eeprom->semaphore_delay = 10;
449		eeprom->type = wx_eeprom_none;
450
451		if (!(rd32(wx, WX_SPI_STATUS) &
452		      WX_SPI_STATUS_FLASH_BYPASS)) {
453			eeprom->type = wx_flash;
454
455			eeprom_size = 4096;
456			eeprom->word_size = eeprom_size >> 1;
457
458			wx_dbg(wx, "Eeprom params: type = %d, size = %d\n",
459			       eeprom->type, eeprom->word_size);
460		}
461	}
462
463	if (wx->mac.type == wx_mac_sp) {
464		if (wx_read_ee_hostif(wx, WX_SW_REGION_PTR, &data)) {
465			wx_err(wx, "NVM Read Error\n");
466			return;
467		}
468		data = data >> 1;
469	}
470
471	eeprom->sw_region_offset = data;
472}
473EXPORT_SYMBOL(wx_init_eeprom_params);
474
475/**
476 *  wx_get_mac_addr - Generic get MAC address
477 *  @wx: pointer to hardware structure
478 *  @mac_addr: Adapter MAC address
479 *
480 *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
481 *  A reset of the adapter must be performed prior to calling this function
482 *  in order for the MAC address to have been loaded from the EEPROM into RAR0
483 **/
484void wx_get_mac_addr(struct wx *wx, u8 *mac_addr)
485{
486	u32 rar_high;
487	u32 rar_low;
488	u16 i;
489
490	wr32(wx, WX_PSR_MAC_SWC_IDX, 0);
491	rar_high = rd32(wx, WX_PSR_MAC_SWC_AD_H);
492	rar_low = rd32(wx, WX_PSR_MAC_SWC_AD_L);
493
494	for (i = 0; i < 2; i++)
495		mac_addr[i] = (u8)(rar_high >> (1 - i) * 8);
496
497	for (i = 0; i < 4; i++)
498		mac_addr[i + 2] = (u8)(rar_low >> (3 - i) * 8);
499}
500EXPORT_SYMBOL(wx_get_mac_addr);
501
502/**
503 *  wx_set_rar - Set Rx address register
504 *  @wx: pointer to hardware structure
505 *  @index: Receive address register to write
506 *  @addr: Address to put into receive address register
507 *  @pools: VMDq "set" or "pool" index
508 *  @enable_addr: set flag that address is active
509 *
510 *  Puts an ethernet address into a receive address register.
511 **/
512static int wx_set_rar(struct wx *wx, u32 index, u8 *addr, u64 pools,
513		      u32 enable_addr)
514{
515	u32 rar_entries = wx->mac.num_rar_entries;
516	u32 rar_low, rar_high;
517
518	/* Make sure we are using a valid rar index range */
519	if (index >= rar_entries) {
520		wx_err(wx, "RAR index %d is out of range.\n", index);
521		return -EINVAL;
522	}
523
524	/* select the MAC address */
525	wr32(wx, WX_PSR_MAC_SWC_IDX, index);
526
527	/* setup VMDq pool mapping */
528	wr32(wx, WX_PSR_MAC_SWC_VM_L, pools & 0xFFFFFFFF);
529	if (wx->mac.type == wx_mac_sp)
530		wr32(wx, WX_PSR_MAC_SWC_VM_H, pools >> 32);
531
532	/* HW expects these in little endian so we reverse the byte
533	 * order from network order (big endian) to little endian
534	 *
535	 * Some parts put the VMDq setting in the extra RAH bits,
536	 * so save everything except the lower 16 bits that hold part
537	 * of the address and the address valid bit.
538	 */
539	rar_low = ((u32)addr[5] |
540		  ((u32)addr[4] << 8) |
541		  ((u32)addr[3] << 16) |
542		  ((u32)addr[2] << 24));
543	rar_high = ((u32)addr[1] |
544		   ((u32)addr[0] << 8));
545	if (enable_addr != 0)
546		rar_high |= WX_PSR_MAC_SWC_AD_H_AV;
547
548	wr32(wx, WX_PSR_MAC_SWC_AD_L, rar_low);
549	wr32m(wx, WX_PSR_MAC_SWC_AD_H,
550	      (WX_PSR_MAC_SWC_AD_H_AD(U16_MAX) |
551	       WX_PSR_MAC_SWC_AD_H_ADTYPE(1) |
552	       WX_PSR_MAC_SWC_AD_H_AV),
553	      rar_high);
554
555	return 0;
556}
557
558/**
559 *  wx_clear_rar - Remove Rx address register
560 *  @wx: pointer to hardware structure
561 *  @index: Receive address register to write
562 *
563 *  Clears an ethernet address from a receive address register.
564 **/
565static int wx_clear_rar(struct wx *wx, u32 index)
566{
567	u32 rar_entries = wx->mac.num_rar_entries;
568
569	/* Make sure we are using a valid rar index range */
570	if (index >= rar_entries) {
571		wx_err(wx, "RAR index %d is out of range.\n", index);
572		return -EINVAL;
573	}
574
575	/* Some parts put the VMDq setting in the extra RAH bits,
576	 * so save everything except the lower 16 bits that hold part
577	 * of the address and the address valid bit.
578	 */
579	wr32(wx, WX_PSR_MAC_SWC_IDX, index);
580
581	wr32(wx, WX_PSR_MAC_SWC_VM_L, 0);
582	wr32(wx, WX_PSR_MAC_SWC_VM_H, 0);
583
584	wr32(wx, WX_PSR_MAC_SWC_AD_L, 0);
585	wr32m(wx, WX_PSR_MAC_SWC_AD_H,
586	      (WX_PSR_MAC_SWC_AD_H_AD(U16_MAX) |
587	       WX_PSR_MAC_SWC_AD_H_ADTYPE(1) |
588	       WX_PSR_MAC_SWC_AD_H_AV),
589	      0);
590
591	return 0;
592}
593
594/**
595 *  wx_clear_vmdq - Disassociate a VMDq pool index from a rx address
596 *  @wx: pointer to hardware struct
597 *  @rar: receive address register index to disassociate
598 *  @vmdq: VMDq pool index to remove from the rar
599 **/
600static int wx_clear_vmdq(struct wx *wx, u32 rar, u32 __maybe_unused vmdq)
601{
602	u32 rar_entries = wx->mac.num_rar_entries;
603	u32 mpsar_lo, mpsar_hi;
604
605	/* Make sure we are using a valid rar index range */
606	if (rar >= rar_entries) {
607		wx_err(wx, "RAR index %d is out of range.\n", rar);
608		return -EINVAL;
609	}
610
611	wr32(wx, WX_PSR_MAC_SWC_IDX, rar);
612	mpsar_lo = rd32(wx, WX_PSR_MAC_SWC_VM_L);
613	mpsar_hi = rd32(wx, WX_PSR_MAC_SWC_VM_H);
614
615	if (!mpsar_lo && !mpsar_hi)
616		return 0;
617
618	/* was that the last pool using this rar? */
619	if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
620		wx_clear_rar(wx, rar);
621
622	return 0;
623}
624
625/**
626 *  wx_init_uta_tables - Initialize the Unicast Table Array
627 *  @wx: pointer to hardware structure
628 **/
629static void wx_init_uta_tables(struct wx *wx)
630{
631	int i;
632
633	wx_dbg(wx, " Clearing UTA\n");
634
635	for (i = 0; i < 128; i++)
636		wr32(wx, WX_PSR_UC_TBL(i), 0);
637}
638
639/**
640 *  wx_init_rx_addrs - Initializes receive address filters.
641 *  @wx: pointer to hardware structure
642 *
643 *  Places the MAC address in receive address register 0 and clears the rest
644 *  of the receive address registers. Clears the multicast table. Assumes
645 *  the receiver is in reset when the routine is called.
646 **/
647void wx_init_rx_addrs(struct wx *wx)
648{
649	u32 rar_entries = wx->mac.num_rar_entries;
650	u32 psrctl;
651	int i;
652
653	/* If the current mac address is valid, assume it is a software override
654	 * to the permanent address.
655	 * Otherwise, use the permanent address from the eeprom.
656	 */
657	if (!is_valid_ether_addr(wx->mac.addr)) {
658		/* Get the MAC address from the RAR0 for later reference */
659		wx_get_mac_addr(wx, wx->mac.addr);
660		wx_dbg(wx, "Keeping Current RAR0 Addr = %pM\n", wx->mac.addr);
661	} else {
662		/* Setup the receive address. */
663		wx_dbg(wx, "Overriding MAC Address in RAR[0]\n");
664		wx_dbg(wx, "New MAC Addr = %pM\n", wx->mac.addr);
665
666		wx_set_rar(wx, 0, wx->mac.addr, 0, WX_PSR_MAC_SWC_AD_H_AV);
667
668		if (wx->mac.type == wx_mac_sp) {
669			/* clear VMDq pool/queue selection for RAR 0 */
670			wx_clear_vmdq(wx, 0, WX_CLEAR_VMDQ_ALL);
671		}
672	}
673
674	/* Zero out the other receive addresses. */
675	wx_dbg(wx, "Clearing RAR[1-%d]\n", rar_entries - 1);
676	for (i = 1; i < rar_entries; i++) {
677		wr32(wx, WX_PSR_MAC_SWC_IDX, i);
678		wr32(wx, WX_PSR_MAC_SWC_AD_L, 0);
679		wr32(wx, WX_PSR_MAC_SWC_AD_H, 0);
680	}
681
682	/* Clear the MTA */
683	wx->addr_ctrl.mta_in_use = 0;
684	psrctl = rd32(wx, WX_PSR_CTL);
685	psrctl &= ~(WX_PSR_CTL_MO | WX_PSR_CTL_MFE);
686	psrctl |= wx->mac.mc_filter_type << WX_PSR_CTL_MO_SHIFT;
687	wr32(wx, WX_PSR_CTL, psrctl);
688	wx_dbg(wx, " Clearing MTA\n");
689	for (i = 0; i < wx->mac.mcft_size; i++)
690		wr32(wx, WX_PSR_MC_TBL(i), 0);
691
692	wx_init_uta_tables(wx);
693}
694EXPORT_SYMBOL(wx_init_rx_addrs);
695
696static void wx_sync_mac_table(struct wx *wx)
697{
698	int i;
699
700	for (i = 0; i < wx->mac.num_rar_entries; i++) {
701		if (wx->mac_table[i].state & WX_MAC_STATE_MODIFIED) {
702			if (wx->mac_table[i].state & WX_MAC_STATE_IN_USE) {
703				wx_set_rar(wx, i,
704					   wx->mac_table[i].addr,
705					   wx->mac_table[i].pools,
706					   WX_PSR_MAC_SWC_AD_H_AV);
707			} else {
708				wx_clear_rar(wx, i);
709			}
710			wx->mac_table[i].state &= ~(WX_MAC_STATE_MODIFIED);
711		}
712	}
713}
714
715/* this function destroys the first RAR entry */
716void wx_mac_set_default_filter(struct wx *wx, u8 *addr)
717{
718	memcpy(&wx->mac_table[0].addr, addr, ETH_ALEN);
719	wx->mac_table[0].pools = 1ULL;
720	wx->mac_table[0].state = (WX_MAC_STATE_DEFAULT | WX_MAC_STATE_IN_USE);
721	wx_set_rar(wx, 0, wx->mac_table[0].addr,
722		   wx->mac_table[0].pools,
723		   WX_PSR_MAC_SWC_AD_H_AV);
724}
725EXPORT_SYMBOL(wx_mac_set_default_filter);
726
727void wx_flush_sw_mac_table(struct wx *wx)
728{
729	u32 i;
730
731	for (i = 0; i < wx->mac.num_rar_entries; i++) {
732		if (!(wx->mac_table[i].state & WX_MAC_STATE_IN_USE))
733			continue;
734
735		wx->mac_table[i].state |= WX_MAC_STATE_MODIFIED;
736		wx->mac_table[i].state &= ~WX_MAC_STATE_IN_USE;
737		memset(wx->mac_table[i].addr, 0, ETH_ALEN);
738		wx->mac_table[i].pools = 0;
739	}
740	wx_sync_mac_table(wx);
741}
742EXPORT_SYMBOL(wx_flush_sw_mac_table);
743
744static int wx_add_mac_filter(struct wx *wx, u8 *addr, u16 pool)
745{
746	u32 i;
747
748	if (is_zero_ether_addr(addr))
749		return -EINVAL;
750
751	for (i = 0; i < wx->mac.num_rar_entries; i++) {
752		if (wx->mac_table[i].state & WX_MAC_STATE_IN_USE) {
753			if (ether_addr_equal(addr, wx->mac_table[i].addr)) {
754				if (wx->mac_table[i].pools != (1ULL << pool)) {
755					memcpy(wx->mac_table[i].addr, addr, ETH_ALEN);
756					wx->mac_table[i].pools |= (1ULL << pool);
757					wx_sync_mac_table(wx);
758					return i;
759				}
760			}
761		}
762
763		if (wx->mac_table[i].state & WX_MAC_STATE_IN_USE)
764			continue;
765		wx->mac_table[i].state |= (WX_MAC_STATE_MODIFIED |
766					   WX_MAC_STATE_IN_USE);
767		memcpy(wx->mac_table[i].addr, addr, ETH_ALEN);
768		wx->mac_table[i].pools |= (1ULL << pool);
769		wx_sync_mac_table(wx);
770		return i;
771	}
772	return -ENOMEM;
773}
774
775static int wx_del_mac_filter(struct wx *wx, u8 *addr, u16 pool)
776{
777	u32 i;
778
779	if (is_zero_ether_addr(addr))
780		return -EINVAL;
781
782	/* search table for addr, if found, set to 0 and sync */
783	for (i = 0; i < wx->mac.num_rar_entries; i++) {
784		if (!ether_addr_equal(addr, wx->mac_table[i].addr))
785			continue;
786
787		wx->mac_table[i].state |= WX_MAC_STATE_MODIFIED;
788		wx->mac_table[i].pools &= ~(1ULL << pool);
789		if (!wx->mac_table[i].pools) {
790			wx->mac_table[i].state &= ~WX_MAC_STATE_IN_USE;
791			memset(wx->mac_table[i].addr, 0, ETH_ALEN);
792		}
793		wx_sync_mac_table(wx);
794		return 0;
795	}
796	return -ENOMEM;
797}
798
799static int wx_available_rars(struct wx *wx)
800{
801	u32 i, count = 0;
802
803	for (i = 0; i < wx->mac.num_rar_entries; i++) {
804		if (wx->mac_table[i].state == 0)
805			count++;
806	}
807
808	return count;
809}
810
811/**
812 * wx_write_uc_addr_list - write unicast addresses to RAR table
813 * @netdev: network interface device structure
814 * @pool: index for mac table
815 *
816 * Writes unicast address list to the RAR table.
817 * Returns: -ENOMEM on failure/insufficient address space
818 *                0 on no addresses written
819 *                X on writing X addresses to the RAR table
820 **/
821static int wx_write_uc_addr_list(struct net_device *netdev, int pool)
822{
823	struct wx *wx = netdev_priv(netdev);
824	int count = 0;
825
826	/* return ENOMEM indicating insufficient memory for addresses */
827	if (netdev_uc_count(netdev) > wx_available_rars(wx))
828		return -ENOMEM;
829
830	if (!netdev_uc_empty(netdev)) {
831		struct netdev_hw_addr *ha;
832
833		netdev_for_each_uc_addr(ha, netdev) {
834			wx_del_mac_filter(wx, ha->addr, pool);
835			wx_add_mac_filter(wx, ha->addr, pool);
836			count++;
837		}
838	}
839	return count;
840}
841
842/**
843 *  wx_mta_vector - Determines bit-vector in multicast table to set
844 *  @wx: pointer to private structure
845 *  @mc_addr: the multicast address
846 *
847 *  Extracts the 12 bits, from a multicast address, to determine which
848 *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
849 *  incoming rx multicast addresses, to determine the bit-vector to check in
850 *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
851 *  by the MO field of the MCSTCTRL. The MO field is set during initialization
852 *  to mc_filter_type.
853 **/
854static u32 wx_mta_vector(struct wx *wx, u8 *mc_addr)
855{
856	u32 vector = 0;
857
858	switch (wx->mac.mc_filter_type) {
859	case 0:   /* use bits [47:36] of the address */
860		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
861		break;
862	case 1:   /* use bits [46:35] of the address */
863		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
864		break;
865	case 2:   /* use bits [45:34] of the address */
866		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
867		break;
868	case 3:   /* use bits [43:32] of the address */
869		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
870		break;
871	default:  /* Invalid mc_filter_type */
872		wx_err(wx, "MC filter type param set incorrectly\n");
873		break;
874	}
875
876	/* vector can only be 12-bits or boundary will be exceeded */
877	vector &= 0xFFF;
878	return vector;
879}
880
881/**
882 *  wx_set_mta - Set bit-vector in multicast table
883 *  @wx: pointer to private structure
884 *  @mc_addr: Multicast address
885 *
886 *  Sets the bit-vector in the multicast table.
887 **/
888static void wx_set_mta(struct wx *wx, u8 *mc_addr)
889{
890	u32 vector, vector_bit, vector_reg;
891
892	wx->addr_ctrl.mta_in_use++;
893
894	vector = wx_mta_vector(wx, mc_addr);
895	wx_dbg(wx, " bit-vector = 0x%03X\n", vector);
896
897	/* The MTA is a register array of 128 32-bit registers. It is treated
898	 * like an array of 4096 bits.  We want to set bit
899	 * BitArray[vector_value]. So we figure out what register the bit is
900	 * in, read it, OR in the new bit, then write back the new value.  The
901	 * register is determined by the upper 7 bits of the vector value and
902	 * the bit within that register are determined by the lower 5 bits of
903	 * the value.
904	 */
905	vector_reg = (vector >> 5) & 0x7F;
906	vector_bit = vector & 0x1F;
907	wx->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
908}
909
910/**
911 *  wx_update_mc_addr_list - Updates MAC list of multicast addresses
912 *  @wx: pointer to private structure
913 *  @netdev: pointer to net device structure
914 *
915 *  The given list replaces any existing list. Clears the MC addrs from receive
916 *  address registers and the multicast table. Uses unused receive address
917 *  registers for the first multicast addresses, and hashes the rest into the
918 *  multicast table.
919 **/
920static void wx_update_mc_addr_list(struct wx *wx, struct net_device *netdev)
921{
922	struct netdev_hw_addr *ha;
923	u32 i, psrctl;
924
925	/* Set the new number of MC addresses that we are being requested to
926	 * use.
927	 */
928	wx->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
929	wx->addr_ctrl.mta_in_use = 0;
930
931	/* Clear mta_shadow */
932	wx_dbg(wx, " Clearing MTA\n");
933	memset(&wx->mac.mta_shadow, 0, sizeof(wx->mac.mta_shadow));
934
935	/* Update mta_shadow */
936	netdev_for_each_mc_addr(ha, netdev) {
937		wx_dbg(wx, " Adding the multicast addresses:\n");
938		wx_set_mta(wx, ha->addr);
939	}
940
941	/* Enable mta */
942	for (i = 0; i < wx->mac.mcft_size; i++)
943		wr32a(wx, WX_PSR_MC_TBL(0), i,
944		      wx->mac.mta_shadow[i]);
945
946	if (wx->addr_ctrl.mta_in_use > 0) {
947		psrctl = rd32(wx, WX_PSR_CTL);
948		psrctl &= ~(WX_PSR_CTL_MO | WX_PSR_CTL_MFE);
949		psrctl |= WX_PSR_CTL_MFE |
950			  (wx->mac.mc_filter_type << WX_PSR_CTL_MO_SHIFT);
951		wr32(wx, WX_PSR_CTL, psrctl);
952	}
953
954	wx_dbg(wx, "Update mc addr list Complete\n");
955}
956
957/**
958 * wx_write_mc_addr_list - write multicast addresses to MTA
959 * @netdev: network interface device structure
960 *
961 * Writes multicast address list to the MTA hash table.
962 * Returns: 0 on no addresses written
963 *          X on writing X addresses to MTA
964 **/
965static int wx_write_mc_addr_list(struct net_device *netdev)
966{
967	struct wx *wx = netdev_priv(netdev);
968
969	if (!netif_running(netdev))
970		return 0;
971
972	wx_update_mc_addr_list(wx, netdev);
973
974	return netdev_mc_count(netdev);
975}
976
977/**
978 * wx_set_mac - Change the Ethernet Address of the NIC
979 * @netdev: network interface device structure
980 * @p: pointer to an address structure
981 *
982 * Returns 0 on success, negative on failure
983 **/
984int wx_set_mac(struct net_device *netdev, void *p)
985{
986	struct wx *wx = netdev_priv(netdev);
987	struct sockaddr *addr = p;
988	int retval;
989
990	retval = eth_prepare_mac_addr_change(netdev, addr);
991	if (retval)
992		return retval;
993
994	wx_del_mac_filter(wx, wx->mac.addr, 0);
995	eth_hw_addr_set(netdev, addr->sa_data);
996	memcpy(wx->mac.addr, addr->sa_data, netdev->addr_len);
997
998	wx_mac_set_default_filter(wx, wx->mac.addr);
999
1000	return 0;
1001}
1002EXPORT_SYMBOL(wx_set_mac);
1003
1004void wx_disable_rx(struct wx *wx)
1005{
1006	u32 pfdtxgswc;
1007	u32 rxctrl;
1008
1009	rxctrl = rd32(wx, WX_RDB_PB_CTL);
1010	if (rxctrl & WX_RDB_PB_CTL_RXEN) {
1011		pfdtxgswc = rd32(wx, WX_PSR_CTL);
1012		if (pfdtxgswc & WX_PSR_CTL_SW_EN) {
1013			pfdtxgswc &= ~WX_PSR_CTL_SW_EN;
1014			wr32(wx, WX_PSR_CTL, pfdtxgswc);
1015			wx->mac.set_lben = true;
1016		} else {
1017			wx->mac.set_lben = false;
1018		}
1019		rxctrl &= ~WX_RDB_PB_CTL_RXEN;
1020		wr32(wx, WX_RDB_PB_CTL, rxctrl);
1021
1022		if (!(((wx->subsystem_device_id & WX_NCSI_MASK) == WX_NCSI_SUP) ||
1023		      ((wx->subsystem_device_id & WX_WOL_MASK) == WX_WOL_SUP))) {
1024			/* disable mac receiver */
1025			wr32m(wx, WX_MAC_RX_CFG,
1026			      WX_MAC_RX_CFG_RE, 0);
1027		}
1028	}
1029}
1030EXPORT_SYMBOL(wx_disable_rx);
1031
1032static void wx_enable_rx(struct wx *wx)
1033{
1034	u32 psrctl;
1035
1036	/* enable mac receiver */
1037	wr32m(wx, WX_MAC_RX_CFG,
1038	      WX_MAC_RX_CFG_RE, WX_MAC_RX_CFG_RE);
1039
1040	wr32m(wx, WX_RDB_PB_CTL,
1041	      WX_RDB_PB_CTL_RXEN, WX_RDB_PB_CTL_RXEN);
1042
1043	if (wx->mac.set_lben) {
1044		psrctl = rd32(wx, WX_PSR_CTL);
1045		psrctl |= WX_PSR_CTL_SW_EN;
1046		wr32(wx, WX_PSR_CTL, psrctl);
1047		wx->mac.set_lben = false;
1048	}
1049}
1050
1051/**
1052 * wx_set_rxpba - Initialize Rx packet buffer
1053 * @wx: pointer to private structure
1054 **/
1055static void wx_set_rxpba(struct wx *wx)
1056{
1057	u32 rxpktsize, txpktsize, txpbthresh;
1058
1059	rxpktsize = wx->mac.rx_pb_size << WX_RDB_PB_SZ_SHIFT;
1060	wr32(wx, WX_RDB_PB_SZ(0), rxpktsize);
1061
1062	/* Only support an equally distributed Tx packet buffer strategy. */
1063	txpktsize = wx->mac.tx_pb_size;
1064	txpbthresh = (txpktsize / 1024) - WX_TXPKT_SIZE_MAX;
1065	wr32(wx, WX_TDB_PB_SZ(0), txpktsize);
1066	wr32(wx, WX_TDM_PB_THRE(0), txpbthresh);
1067}
1068
1069static void wx_configure_port(struct wx *wx)
1070{
1071	u32 value, i;
1072
1073	value = WX_CFG_PORT_CTL_D_VLAN | WX_CFG_PORT_CTL_QINQ;
1074	wr32m(wx, WX_CFG_PORT_CTL,
1075	      WX_CFG_PORT_CTL_D_VLAN |
1076	      WX_CFG_PORT_CTL_QINQ,
1077	      value);
1078
1079	wr32(wx, WX_CFG_TAG_TPID(0),
1080	     ETH_P_8021Q | ETH_P_8021AD << 16);
1081	wx->tpid[0] = ETH_P_8021Q;
1082	wx->tpid[1] = ETH_P_8021AD;
1083	for (i = 1; i < 4; i++)
1084		wr32(wx, WX_CFG_TAG_TPID(i),
1085		     ETH_P_8021Q | ETH_P_8021Q << 16);
1086	for (i = 2; i < 8; i++)
1087		wx->tpid[i] = ETH_P_8021Q;
1088}
1089
1090/**
1091 *  wx_disable_sec_rx_path - Stops the receive data path
1092 *  @wx: pointer to private structure
1093 *
1094 *  Stops the receive data path and waits for the HW to internally empty
1095 *  the Rx security block
1096 **/
1097static int wx_disable_sec_rx_path(struct wx *wx)
1098{
1099	u32 secrx;
1100
1101	wr32m(wx, WX_RSC_CTL,
1102	      WX_RSC_CTL_RX_DIS, WX_RSC_CTL_RX_DIS);
1103
1104	return read_poll_timeout(rd32, secrx, secrx & WX_RSC_ST_RSEC_RDY,
1105				 1000, 40000, false, wx, WX_RSC_ST);
1106}
1107
1108/**
1109 *  wx_enable_sec_rx_path - Enables the receive data path
1110 *  @wx: pointer to private structure
1111 *
1112 *  Enables the receive data path.
1113 **/
1114static void wx_enable_sec_rx_path(struct wx *wx)
1115{
1116	wr32m(wx, WX_RSC_CTL, WX_RSC_CTL_RX_DIS, 0);
1117	WX_WRITE_FLUSH(wx);
1118}
1119
1120static void wx_vlan_strip_control(struct wx *wx, bool enable)
1121{
1122	int i, j;
1123
1124	for (i = 0; i < wx->num_rx_queues; i++) {
1125		struct wx_ring *ring = wx->rx_ring[i];
1126
1127		j = ring->reg_idx;
1128		wr32m(wx, WX_PX_RR_CFG(j), WX_PX_RR_CFG_VLAN,
1129		      enable ? WX_PX_RR_CFG_VLAN : 0);
1130	}
1131}
1132
1133void wx_set_rx_mode(struct net_device *netdev)
1134{
1135	struct wx *wx = netdev_priv(netdev);
1136	netdev_features_t features;
1137	u32 fctrl, vmolr, vlnctrl;
1138	int count;
1139
1140	features = netdev->features;
1141
1142	/* Check for Promiscuous and All Multicast modes */
1143	fctrl = rd32(wx, WX_PSR_CTL);
1144	fctrl &= ~(WX_PSR_CTL_UPE | WX_PSR_CTL_MPE);
1145	vmolr = rd32(wx, WX_PSR_VM_L2CTL(0));
1146	vmolr &= ~(WX_PSR_VM_L2CTL_UPE |
1147		   WX_PSR_VM_L2CTL_MPE |
1148		   WX_PSR_VM_L2CTL_ROPE |
1149		   WX_PSR_VM_L2CTL_ROMPE);
1150	vlnctrl = rd32(wx, WX_PSR_VLAN_CTL);
1151	vlnctrl &= ~(WX_PSR_VLAN_CTL_VFE | WX_PSR_VLAN_CTL_CFIEN);
1152
1153	/* set all bits that we expect to always be set */
1154	fctrl |= WX_PSR_CTL_BAM | WX_PSR_CTL_MFE;
1155	vmolr |= WX_PSR_VM_L2CTL_BAM |
1156		 WX_PSR_VM_L2CTL_AUPE |
1157		 WX_PSR_VM_L2CTL_VACC;
1158	vlnctrl |= WX_PSR_VLAN_CTL_VFE;
1159
1160	wx->addr_ctrl.user_set_promisc = false;
1161	if (netdev->flags & IFF_PROMISC) {
1162		wx->addr_ctrl.user_set_promisc = true;
1163		fctrl |= WX_PSR_CTL_UPE | WX_PSR_CTL_MPE;
1164		/* pf don't want packets routing to vf, so clear UPE */
1165		vmolr |= WX_PSR_VM_L2CTL_MPE;
1166		vlnctrl &= ~WX_PSR_VLAN_CTL_VFE;
1167	}
1168
1169	if (netdev->flags & IFF_ALLMULTI) {
1170		fctrl |= WX_PSR_CTL_MPE;
1171		vmolr |= WX_PSR_VM_L2CTL_MPE;
1172	}
1173
1174	if (netdev->features & NETIF_F_RXALL) {
1175		vmolr |= (WX_PSR_VM_L2CTL_UPE | WX_PSR_VM_L2CTL_MPE);
1176		vlnctrl &= ~WX_PSR_VLAN_CTL_VFE;
1177		/* receive bad packets */
1178		wr32m(wx, WX_RSC_CTL,
1179		      WX_RSC_CTL_SAVE_MAC_ERR,
1180		      WX_RSC_CTL_SAVE_MAC_ERR);
1181	} else {
1182		vmolr |= WX_PSR_VM_L2CTL_ROPE | WX_PSR_VM_L2CTL_ROMPE;
1183	}
1184
1185	/* Write addresses to available RAR registers, if there is not
1186	 * sufficient space to store all the addresses then enable
1187	 * unicast promiscuous mode
1188	 */
1189	count = wx_write_uc_addr_list(netdev, 0);
1190	if (count < 0) {
1191		vmolr &= ~WX_PSR_VM_L2CTL_ROPE;
1192		vmolr |= WX_PSR_VM_L2CTL_UPE;
1193	}
1194
1195	/* Write addresses to the MTA, if the attempt fails
1196	 * then we should just turn on promiscuous mode so
1197	 * that we can at least receive multicast traffic
1198	 */
1199	count = wx_write_mc_addr_list(netdev);
1200	if (count < 0) {
1201		vmolr &= ~WX_PSR_VM_L2CTL_ROMPE;
1202		vmolr |= WX_PSR_VM_L2CTL_MPE;
1203	}
1204
1205	wr32(wx, WX_PSR_VLAN_CTL, vlnctrl);
1206	wr32(wx, WX_PSR_CTL, fctrl);
1207	wr32(wx, WX_PSR_VM_L2CTL(0), vmolr);
1208
1209	if ((features & NETIF_F_HW_VLAN_CTAG_RX) &&
1210	    (features & NETIF_F_HW_VLAN_STAG_RX))
1211		wx_vlan_strip_control(wx, true);
1212	else
1213		wx_vlan_strip_control(wx, false);
1214
1215}
1216EXPORT_SYMBOL(wx_set_rx_mode);
1217
1218static void wx_set_rx_buffer_len(struct wx *wx)
1219{
1220	struct net_device *netdev = wx->netdev;
1221	u32 mhadd, max_frame;
1222
1223	max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
1224	/* adjust max frame to be at least the size of a standard frame */
1225	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
1226		max_frame = (ETH_FRAME_LEN + ETH_FCS_LEN);
1227
1228	mhadd = rd32(wx, WX_PSR_MAX_SZ);
1229	if (max_frame != mhadd)
1230		wr32(wx, WX_PSR_MAX_SZ, max_frame);
1231}
1232
1233/**
1234 * wx_change_mtu - Change the Maximum Transfer Unit
1235 * @netdev: network interface device structure
1236 * @new_mtu: new value for maximum frame size
1237 *
1238 * Returns 0 on success, negative on failure
1239 **/
1240int wx_change_mtu(struct net_device *netdev, int new_mtu)
1241{
1242	struct wx *wx = netdev_priv(netdev);
1243
1244	netdev->mtu = new_mtu;
1245	wx_set_rx_buffer_len(wx);
1246
1247	return 0;
1248}
1249EXPORT_SYMBOL(wx_change_mtu);
1250
1251/* Disable the specified rx queue */
1252void wx_disable_rx_queue(struct wx *wx, struct wx_ring *ring)
1253{
1254	u8 reg_idx = ring->reg_idx;
1255	u32 rxdctl;
1256	int ret;
1257
1258	/* write value back with RRCFG.EN bit cleared */
1259	wr32m(wx, WX_PX_RR_CFG(reg_idx),
1260	      WX_PX_RR_CFG_RR_EN, 0);
1261
1262	/* the hardware may take up to 100us to really disable the rx queue */
1263	ret = read_poll_timeout(rd32, rxdctl, !(rxdctl & WX_PX_RR_CFG_RR_EN),
1264				10, 100, true, wx, WX_PX_RR_CFG(reg_idx));
1265
1266	if (ret == -ETIMEDOUT) {
1267		/* Just for information */
1268		wx_err(wx,
1269		       "RRCFG.EN on Rx queue %d not cleared within the polling period\n",
1270		       reg_idx);
1271	}
1272}
1273EXPORT_SYMBOL(wx_disable_rx_queue);
1274
1275static void wx_enable_rx_queue(struct wx *wx, struct wx_ring *ring)
1276{
1277	u8 reg_idx = ring->reg_idx;
1278	u32 rxdctl;
1279	int ret;
1280
1281	ret = read_poll_timeout(rd32, rxdctl, rxdctl & WX_PX_RR_CFG_RR_EN,
1282				1000, 10000, true, wx, WX_PX_RR_CFG(reg_idx));
1283
1284	if (ret == -ETIMEDOUT) {
1285		/* Just for information */
1286		wx_err(wx,
1287		       "RRCFG.EN on Rx queue %d not set within the polling period\n",
1288		       reg_idx);
1289	}
1290}
1291
1292static void wx_configure_srrctl(struct wx *wx,
1293				struct wx_ring *rx_ring)
1294{
1295	u16 reg_idx = rx_ring->reg_idx;
1296	u32 srrctl;
1297
1298	srrctl = rd32(wx, WX_PX_RR_CFG(reg_idx));
1299	srrctl &= ~(WX_PX_RR_CFG_RR_HDR_SZ |
1300		    WX_PX_RR_CFG_RR_BUF_SZ |
1301		    WX_PX_RR_CFG_SPLIT_MODE);
1302	/* configure header buffer length, needed for RSC */
1303	srrctl |= WX_RXBUFFER_256 << WX_PX_RR_CFG_BHDRSIZE_SHIFT;
1304
1305	/* configure the packet buffer length */
1306	srrctl |= WX_RX_BUFSZ >> WX_PX_RR_CFG_BSIZEPKT_SHIFT;
1307
1308	wr32(wx, WX_PX_RR_CFG(reg_idx), srrctl);
1309}
1310
1311static void wx_configure_tx_ring(struct wx *wx,
1312				 struct wx_ring *ring)
1313{
1314	u32 txdctl = WX_PX_TR_CFG_ENABLE;
1315	u8 reg_idx = ring->reg_idx;
1316	u64 tdba = ring->dma;
1317	int ret;
1318
1319	/* disable queue to avoid issues while updating state */
1320	wr32(wx, WX_PX_TR_CFG(reg_idx), WX_PX_TR_CFG_SWFLSH);
1321	WX_WRITE_FLUSH(wx);
1322
1323	wr32(wx, WX_PX_TR_BAL(reg_idx), tdba & DMA_BIT_MASK(32));
1324	wr32(wx, WX_PX_TR_BAH(reg_idx), upper_32_bits(tdba));
1325
1326	/* reset head and tail pointers */
1327	wr32(wx, WX_PX_TR_RP(reg_idx), 0);
1328	wr32(wx, WX_PX_TR_WP(reg_idx), 0);
1329	ring->tail = wx->hw_addr + WX_PX_TR_WP(reg_idx);
1330
1331	if (ring->count < WX_MAX_TXD)
1332		txdctl |= ring->count / 128 << WX_PX_TR_CFG_TR_SIZE_SHIFT;
1333	txdctl |= 0x20 << WX_PX_TR_CFG_WTHRESH_SHIFT;
1334
1335	/* reinitialize tx_buffer_info */
1336	memset(ring->tx_buffer_info, 0,
1337	       sizeof(struct wx_tx_buffer) * ring->count);
1338
1339	/* enable queue */
1340	wr32(wx, WX_PX_TR_CFG(reg_idx), txdctl);
1341
1342	/* poll to verify queue is enabled */
1343	ret = read_poll_timeout(rd32, txdctl, txdctl & WX_PX_TR_CFG_ENABLE,
1344				1000, 10000, true, wx, WX_PX_TR_CFG(reg_idx));
1345	if (ret == -ETIMEDOUT)
1346		wx_err(wx, "Could not enable Tx Queue %d\n", reg_idx);
1347}
1348
1349static void wx_configure_rx_ring(struct wx *wx,
1350				 struct wx_ring *ring)
1351{
1352	u16 reg_idx = ring->reg_idx;
1353	union wx_rx_desc *rx_desc;
1354	u64 rdba = ring->dma;
1355	u32 rxdctl;
1356
1357	/* disable queue to avoid issues while updating state */
1358	rxdctl = rd32(wx, WX_PX_RR_CFG(reg_idx));
1359	wx_disable_rx_queue(wx, ring);
1360
1361	wr32(wx, WX_PX_RR_BAL(reg_idx), rdba & DMA_BIT_MASK(32));
1362	wr32(wx, WX_PX_RR_BAH(reg_idx), upper_32_bits(rdba));
1363
1364	if (ring->count == WX_MAX_RXD)
1365		rxdctl |= 0 << WX_PX_RR_CFG_RR_SIZE_SHIFT;
1366	else
1367		rxdctl |= (ring->count / 128) << WX_PX_RR_CFG_RR_SIZE_SHIFT;
1368
1369	rxdctl |= 0x1 << WX_PX_RR_CFG_RR_THER_SHIFT;
1370	wr32(wx, WX_PX_RR_CFG(reg_idx), rxdctl);
1371
1372	/* reset head and tail pointers */
1373	wr32(wx, WX_PX_RR_RP(reg_idx), 0);
1374	wr32(wx, WX_PX_RR_WP(reg_idx), 0);
1375	ring->tail = wx->hw_addr + WX_PX_RR_WP(reg_idx);
1376
1377	wx_configure_srrctl(wx, ring);
1378
1379	/* initialize rx_buffer_info */
1380	memset(ring->rx_buffer_info, 0,
1381	       sizeof(struct wx_rx_buffer) * ring->count);
1382
1383	/* initialize Rx descriptor 0 */
1384	rx_desc = WX_RX_DESC(ring, 0);
1385	rx_desc->wb.upper.length = 0;
1386
1387	/* enable receive descriptor ring */
1388	wr32m(wx, WX_PX_RR_CFG(reg_idx),
1389	      WX_PX_RR_CFG_RR_EN, WX_PX_RR_CFG_RR_EN);
1390
1391	wx_enable_rx_queue(wx, ring);
1392	wx_alloc_rx_buffers(ring, wx_desc_unused(ring));
1393}
1394
1395/**
1396 * wx_configure_tx - Configure Transmit Unit after Reset
1397 * @wx: pointer to private structure
1398 *
1399 * Configure the Tx unit of the MAC after a reset.
1400 **/
1401static void wx_configure_tx(struct wx *wx)
1402{
1403	u32 i;
1404
1405	/* TDM_CTL.TE must be before Tx queues are enabled */
1406	wr32m(wx, WX_TDM_CTL,
1407	      WX_TDM_CTL_TE, WX_TDM_CTL_TE);
1408
1409	/* Setup the HW Tx Head and Tail descriptor pointers */
1410	for (i = 0; i < wx->num_tx_queues; i++)
1411		wx_configure_tx_ring(wx, wx->tx_ring[i]);
1412
1413	wr32m(wx, WX_TSC_BUF_AE, WX_TSC_BUF_AE_THR, 0x10);
1414
1415	if (wx->mac.type == wx_mac_em)
1416		wr32m(wx, WX_TSC_CTL, WX_TSC_CTL_TX_DIS | WX_TSC_CTL_TSEC_DIS, 0x1);
1417
1418	/* enable mac transmitter */
1419	wr32m(wx, WX_MAC_TX_CFG,
1420	      WX_MAC_TX_CFG_TE, WX_MAC_TX_CFG_TE);
1421}
1422
1423static void wx_restore_vlan(struct wx *wx)
1424{
1425	u16 vid = 1;
1426
1427	wx_vlan_rx_add_vid(wx->netdev, htons(ETH_P_8021Q), 0);
1428
1429	for_each_set_bit_from(vid, wx->active_vlans, VLAN_N_VID)
1430		wx_vlan_rx_add_vid(wx->netdev, htons(ETH_P_8021Q), vid);
1431}
1432
1433/**
1434 * wx_configure_rx - Configure Receive Unit after Reset
1435 * @wx: pointer to private structure
1436 *
1437 * Configure the Rx unit of the MAC after a reset.
1438 **/
1439void wx_configure_rx(struct wx *wx)
1440{
1441	u32 psrtype, i;
1442	int ret;
1443
1444	wx_disable_rx(wx);
1445
1446	psrtype = WX_RDB_PL_CFG_L4HDR |
1447		  WX_RDB_PL_CFG_L3HDR |
1448		  WX_RDB_PL_CFG_L2HDR |
1449		  WX_RDB_PL_CFG_TUN_TUNHDR;
1450	wr32(wx, WX_RDB_PL_CFG(0), psrtype);
1451
1452	/* enable hw crc stripping */
1453	wr32m(wx, WX_RSC_CTL, WX_RSC_CTL_CRC_STRIP, WX_RSC_CTL_CRC_STRIP);
1454
1455	if (wx->mac.type == wx_mac_sp) {
1456		u32 psrctl;
1457
1458		/* RSC Setup */
1459		psrctl = rd32(wx, WX_PSR_CTL);
1460		psrctl |= WX_PSR_CTL_RSC_ACK; /* Disable RSC for ACK packets */
1461		psrctl |= WX_PSR_CTL_RSC_DIS;
1462		wr32(wx, WX_PSR_CTL, psrctl);
1463	}
1464
1465	/* set_rx_buffer_len must be called before ring initialization */
1466	wx_set_rx_buffer_len(wx);
1467
1468	/* Setup the HW Rx Head and Tail Descriptor Pointers and
1469	 * the Base and Length of the Rx Descriptor Ring
1470	 */
1471	for (i = 0; i < wx->num_rx_queues; i++)
1472		wx_configure_rx_ring(wx, wx->rx_ring[i]);
1473
1474	/* Enable all receives, disable security engine prior to block traffic */
1475	ret = wx_disable_sec_rx_path(wx);
1476	if (ret < 0)
1477		wx_err(wx, "The register status is abnormal, please check device.");
1478
1479	wx_enable_rx(wx);
1480	wx_enable_sec_rx_path(wx);
1481}
1482EXPORT_SYMBOL(wx_configure_rx);
1483
1484static void wx_configure_isb(struct wx *wx)
1485{
1486	/* set ISB Address */
1487	wr32(wx, WX_PX_ISB_ADDR_L, wx->isb_dma & DMA_BIT_MASK(32));
1488	if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT))
1489		wr32(wx, WX_PX_ISB_ADDR_H, upper_32_bits(wx->isb_dma));
1490}
1491
1492void wx_configure(struct wx *wx)
1493{
1494	wx_set_rxpba(wx);
1495	wx_configure_port(wx);
1496
1497	wx_set_rx_mode(wx->netdev);
1498	wx_restore_vlan(wx);
1499	wx_enable_sec_rx_path(wx);
1500
1501	wx_configure_tx(wx);
1502	wx_configure_rx(wx);
1503	wx_configure_isb(wx);
1504}
1505EXPORT_SYMBOL(wx_configure);
1506
1507/**
1508 *  wx_disable_pcie_master - Disable PCI-express master access
1509 *  @wx: pointer to hardware structure
1510 *
1511 *  Disables PCI-Express master access and verifies there are no pending
1512 *  requests.
1513 **/
1514int wx_disable_pcie_master(struct wx *wx)
1515{
1516	int status = 0;
1517	u32 val;
1518
1519	/* Always set this bit to ensure any future transactions are blocked */
1520	pci_clear_master(wx->pdev);
1521
1522	/* Exit if master requests are blocked */
1523	if (!(rd32(wx, WX_PX_TRANSACTION_PENDING)))
1524		return 0;
1525
1526	/* Poll for master request bit to clear */
1527	status = read_poll_timeout(rd32, val, !val, 100, WX_PCI_MASTER_DISABLE_TIMEOUT,
1528				   false, wx, WX_PX_TRANSACTION_PENDING);
1529	if (status < 0)
1530		wx_err(wx, "PCIe transaction pending bit did not clear.\n");
1531
1532	return status;
1533}
1534EXPORT_SYMBOL(wx_disable_pcie_master);
1535
1536/**
1537 *  wx_stop_adapter - Generic stop Tx/Rx units
1538 *  @wx: pointer to hardware structure
1539 *
1540 *  Sets the adapter_stopped flag within wx_hw struct. Clears interrupts,
1541 *  disables transmit and receive units. The adapter_stopped flag is used by
1542 *  the shared code and drivers to determine if the adapter is in a stopped
1543 *  state and should not touch the hardware.
1544 **/
1545int wx_stop_adapter(struct wx *wx)
1546{
1547	u16 i;
1548
1549	/* Set the adapter_stopped flag so other driver functions stop touching
1550	 * the hardware
1551	 */
1552	wx->adapter_stopped = true;
1553
1554	/* Disable the receive unit */
1555	wx_disable_rx(wx);
1556
1557	/* Set interrupt mask to stop interrupts from being generated */
1558	wx_intr_disable(wx, WX_INTR_ALL);
1559
1560	/* Clear any pending interrupts, flush previous writes */
1561	wr32(wx, WX_PX_MISC_IC, 0xffffffff);
1562	wr32(wx, WX_BME_CTL, 0x3);
1563
1564	/* Disable the transmit unit.  Each queue must be disabled. */
1565	for (i = 0; i < wx->mac.max_tx_queues; i++) {
1566		wr32m(wx, WX_PX_TR_CFG(i),
1567		      WX_PX_TR_CFG_SWFLSH | WX_PX_TR_CFG_ENABLE,
1568		      WX_PX_TR_CFG_SWFLSH);
1569	}
1570
1571	/* Disable the receive unit by stopping each queue */
1572	for (i = 0; i < wx->mac.max_rx_queues; i++) {
1573		wr32m(wx, WX_PX_RR_CFG(i),
1574		      WX_PX_RR_CFG_RR_EN, 0);
1575	}
1576
1577	/* flush all queues disables */
1578	WX_WRITE_FLUSH(wx);
1579
1580	/* Prevent the PCI-E bus from hanging by disabling PCI-E master
1581	 * access and verify no pending requests
1582	 */
1583	return wx_disable_pcie_master(wx);
1584}
1585EXPORT_SYMBOL(wx_stop_adapter);
1586
1587void wx_reset_misc(struct wx *wx)
1588{
1589	int i;
1590
1591	/* receive packets that size > 2048 */
1592	wr32m(wx, WX_MAC_RX_CFG, WX_MAC_RX_CFG_JE, WX_MAC_RX_CFG_JE);
1593
1594	/* clear counters on read */
1595	wr32m(wx, WX_MMC_CONTROL,
1596	      WX_MMC_CONTROL_RSTONRD, WX_MMC_CONTROL_RSTONRD);
1597
1598	wr32m(wx, WX_MAC_RX_FLOW_CTRL,
1599	      WX_MAC_RX_FLOW_CTRL_RFE, WX_MAC_RX_FLOW_CTRL_RFE);
1600
1601	wr32(wx, WX_MAC_PKT_FLT, WX_MAC_PKT_FLT_PR);
1602
1603	wr32m(wx, WX_MIS_RST_ST,
1604	      WX_MIS_RST_ST_RST_INIT, 0x1E00);
1605
1606	/* errata 4: initialize mng flex tbl and wakeup flex tbl*/
1607	wr32(wx, WX_PSR_MNG_FLEX_SEL, 0);
1608	for (i = 0; i < 16; i++) {
1609		wr32(wx, WX_PSR_MNG_FLEX_DW_L(i), 0);
1610		wr32(wx, WX_PSR_MNG_FLEX_DW_H(i), 0);
1611		wr32(wx, WX_PSR_MNG_FLEX_MSK(i), 0);
1612	}
1613	wr32(wx, WX_PSR_LAN_FLEX_SEL, 0);
1614	for (i = 0; i < 16; i++) {
1615		wr32(wx, WX_PSR_LAN_FLEX_DW_L(i), 0);
1616		wr32(wx, WX_PSR_LAN_FLEX_DW_H(i), 0);
1617		wr32(wx, WX_PSR_LAN_FLEX_MSK(i), 0);
1618	}
1619
1620	/* set pause frame dst mac addr */
1621	wr32(wx, WX_RDB_PFCMACDAL, 0xC2000001);
1622	wr32(wx, WX_RDB_PFCMACDAH, 0x0180);
1623}
1624EXPORT_SYMBOL(wx_reset_misc);
1625
1626/**
1627 *  wx_get_pcie_msix_counts - Gets MSI-X vector count
1628 *  @wx: pointer to hardware structure
1629 *  @msix_count: number of MSI interrupts that can be obtained
1630 *  @max_msix_count: number of MSI interrupts that mac need
1631 *
1632 *  Read PCIe configuration space, and get the MSI-X vector count from
1633 *  the capabilities table.
1634 **/
1635int wx_get_pcie_msix_counts(struct wx *wx, u16 *msix_count, u16 max_msix_count)
1636{
1637	struct pci_dev *pdev = wx->pdev;
1638	struct device *dev = &pdev->dev;
1639	int pos;
1640
1641	*msix_count = 1;
1642	pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
1643	if (!pos) {
1644		dev_err(dev, "Unable to find MSI-X Capabilities\n");
1645		return -EINVAL;
1646	}
1647	pci_read_config_word(pdev,
1648			     pos + PCI_MSIX_FLAGS,
1649			     msix_count);
1650	*msix_count &= WX_PCIE_MSIX_TBL_SZ_MASK;
1651	/* MSI-X count is zero-based in HW */
1652	*msix_count += 1;
1653
1654	if (*msix_count > max_msix_count)
1655		*msix_count = max_msix_count;
1656
1657	return 0;
1658}
1659EXPORT_SYMBOL(wx_get_pcie_msix_counts);
1660
1661int wx_sw_init(struct wx *wx)
1662{
1663	struct pci_dev *pdev = wx->pdev;
1664	u32 ssid = 0;
1665	int err = 0;
1666
1667	wx->vendor_id = pdev->vendor;
1668	wx->device_id = pdev->device;
1669	wx->revision_id = pdev->revision;
1670	wx->oem_svid = pdev->subsystem_vendor;
1671	wx->oem_ssid = pdev->subsystem_device;
1672	wx->bus.device = PCI_SLOT(pdev->devfn);
1673	wx->bus.func = PCI_FUNC(pdev->devfn);
1674
1675	if (wx->oem_svid == PCI_VENDOR_ID_WANGXUN) {
1676		wx->subsystem_vendor_id = pdev->subsystem_vendor;
1677		wx->subsystem_device_id = pdev->subsystem_device;
1678	} else {
1679		err = wx_flash_read_dword(wx, 0xfffdc, &ssid);
1680		if (err < 0) {
1681			wx_err(wx, "read of internal subsystem device id failed\n");
1682			return err;
1683		}
1684
1685		wx->subsystem_device_id = swab16((u16)ssid);
1686	}
1687
1688	wx->mac_table = kcalloc(wx->mac.num_rar_entries,
1689				sizeof(struct wx_mac_addr),
1690				GFP_KERNEL);
1691	if (!wx->mac_table) {
1692		wx_err(wx, "mac_table allocation failed\n");
1693		return -ENOMEM;
1694	}
1695
1696	return 0;
1697}
1698EXPORT_SYMBOL(wx_sw_init);
1699
1700/**
1701 *  wx_find_vlvf_slot - find the vlanid or the first empty slot
1702 *  @wx: pointer to hardware structure
1703 *  @vlan: VLAN id to write to VLAN filter
1704 *
1705 *  return the VLVF index where this VLAN id should be placed
1706 *
1707 **/
1708static int wx_find_vlvf_slot(struct wx *wx, u32 vlan)
1709{
1710	u32 bits = 0, first_empty_slot = 0;
1711	int regindex;
1712
1713	/* short cut the special case */
1714	if (vlan == 0)
1715		return 0;
1716
1717	/* Search for the vlan id in the VLVF entries. Save off the first empty
1718	 * slot found along the way
1719	 */
1720	for (regindex = 1; regindex < WX_PSR_VLAN_SWC_ENTRIES; regindex++) {
1721		wr32(wx, WX_PSR_VLAN_SWC_IDX, regindex);
1722		bits = rd32(wx, WX_PSR_VLAN_SWC);
1723		if (!bits && !(first_empty_slot))
1724			first_empty_slot = regindex;
1725		else if ((bits & 0x0FFF) == vlan)
1726			break;
1727	}
1728
1729	if (regindex >= WX_PSR_VLAN_SWC_ENTRIES) {
1730		if (first_empty_slot)
1731			regindex = first_empty_slot;
1732		else
1733			regindex = -ENOMEM;
1734	}
1735
1736	return regindex;
1737}
1738
1739/**
1740 *  wx_set_vlvf - Set VLAN Pool Filter
1741 *  @wx: pointer to hardware structure
1742 *  @vlan: VLAN id to write to VLAN filter
1743 *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
1744 *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
1745 *  @vfta_changed: pointer to boolean flag which indicates whether VFTA
1746 *                 should be changed
1747 *
1748 *  Turn on/off specified bit in VLVF table.
1749 **/
1750static int wx_set_vlvf(struct wx *wx, u32 vlan, u32 vind, bool vlan_on,
1751		       bool *vfta_changed)
1752{
1753	int vlvf_index;
1754	u32 vt, bits;
1755
1756	/* If VT Mode is set
1757	 *   Either vlan_on
1758	 *     make sure the vlan is in VLVF
1759	 *     set the vind bit in the matching VLVFB
1760	 *   Or !vlan_on
1761	 *     clear the pool bit and possibly the vind
1762	 */
1763	vt = rd32(wx, WX_CFG_PORT_CTL);
1764	if (!(vt & WX_CFG_PORT_CTL_NUM_VT_MASK))
1765		return 0;
1766
1767	vlvf_index = wx_find_vlvf_slot(wx, vlan);
1768	if (vlvf_index < 0)
1769		return vlvf_index;
1770
1771	wr32(wx, WX_PSR_VLAN_SWC_IDX, vlvf_index);
1772	if (vlan_on) {
1773		/* set the pool bit */
1774		if (vind < 32) {
1775			bits = rd32(wx, WX_PSR_VLAN_SWC_VM_L);
1776			bits |= (1 << vind);
1777			wr32(wx, WX_PSR_VLAN_SWC_VM_L, bits);
1778		} else {
1779			bits = rd32(wx, WX_PSR_VLAN_SWC_VM_H);
1780			bits |= (1 << (vind - 32));
1781			wr32(wx, WX_PSR_VLAN_SWC_VM_H, bits);
1782		}
1783	} else {
1784		/* clear the pool bit */
1785		if (vind < 32) {
1786			bits = rd32(wx, WX_PSR_VLAN_SWC_VM_L);
1787			bits &= ~(1 << vind);
1788			wr32(wx, WX_PSR_VLAN_SWC_VM_L, bits);
1789			bits |= rd32(wx, WX_PSR_VLAN_SWC_VM_H);
1790		} else {
1791			bits = rd32(wx, WX_PSR_VLAN_SWC_VM_H);
1792			bits &= ~(1 << (vind - 32));
1793			wr32(wx, WX_PSR_VLAN_SWC_VM_H, bits);
1794			bits |= rd32(wx, WX_PSR_VLAN_SWC_VM_L);
1795		}
1796	}
1797
1798	if (bits) {
1799		wr32(wx, WX_PSR_VLAN_SWC, (WX_PSR_VLAN_SWC_VIEN | vlan));
1800		if (!vlan_on && vfta_changed)
1801			*vfta_changed = false;
1802	} else {
1803		wr32(wx, WX_PSR_VLAN_SWC, 0);
1804	}
1805
1806	return 0;
1807}
1808
1809/**
1810 *  wx_set_vfta - Set VLAN filter table
1811 *  @wx: pointer to hardware structure
1812 *  @vlan: VLAN id to write to VLAN filter
1813 *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
1814 *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
1815 *
1816 *  Turn on/off specified VLAN in the VLAN filter table.
1817 **/
1818static int wx_set_vfta(struct wx *wx, u32 vlan, u32 vind, bool vlan_on)
1819{
1820	u32 bitindex, vfta, targetbit;
1821	bool vfta_changed = false;
1822	int regindex, ret;
1823
1824	/* this is a 2 part operation - first the VFTA, then the
1825	 * VLVF and VLVFB if VT Mode is set
1826	 * We don't write the VFTA until we know the VLVF part succeeded.
1827	 */
1828
1829	/* Part 1
1830	 * The VFTA is a bitstring made up of 128 32-bit registers
1831	 * that enable the particular VLAN id, much like the MTA:
1832	 *    bits[11-5]: which register
1833	 *    bits[4-0]:  which bit in the register
1834	 */
1835	regindex = (vlan >> 5) & 0x7F;
1836	bitindex = vlan & 0x1F;
1837	targetbit = (1 << bitindex);
1838	/* errata 5 */
1839	vfta = wx->mac.vft_shadow[regindex];
1840	if (vlan_on) {
1841		if (!(vfta & targetbit)) {
1842			vfta |= targetbit;
1843			vfta_changed = true;
1844		}
1845	} else {
1846		if ((vfta & targetbit)) {
1847			vfta &= ~targetbit;
1848			vfta_changed = true;
1849		}
1850	}
1851	/* Part 2
1852	 * Call wx_set_vlvf to set VLVFB and VLVF
1853	 */
1854	ret = wx_set_vlvf(wx, vlan, vind, vlan_on, &vfta_changed);
1855	if (ret != 0)
1856		return ret;
1857
1858	if (vfta_changed)
1859		wr32(wx, WX_PSR_VLAN_TBL(regindex), vfta);
1860	wx->mac.vft_shadow[regindex] = vfta;
1861
1862	return 0;
1863}
1864
1865/**
1866 *  wx_clear_vfta - Clear VLAN filter table
1867 *  @wx: pointer to hardware structure
1868 *
1869 *  Clears the VLAN filer table, and the VMDq index associated with the filter
1870 **/
1871static void wx_clear_vfta(struct wx *wx)
1872{
1873	u32 offset;
1874
1875	for (offset = 0; offset < wx->mac.vft_size; offset++) {
1876		wr32(wx, WX_PSR_VLAN_TBL(offset), 0);
1877		wx->mac.vft_shadow[offset] = 0;
1878	}
1879
1880	for (offset = 0; offset < WX_PSR_VLAN_SWC_ENTRIES; offset++) {
1881		wr32(wx, WX_PSR_VLAN_SWC_IDX, offset);
1882		wr32(wx, WX_PSR_VLAN_SWC, 0);
1883		wr32(wx, WX_PSR_VLAN_SWC_VM_L, 0);
1884		wr32(wx, WX_PSR_VLAN_SWC_VM_H, 0);
1885	}
1886}
1887
1888int wx_vlan_rx_add_vid(struct net_device *netdev,
1889		       __be16 proto, u16 vid)
1890{
1891	struct wx *wx = netdev_priv(netdev);
1892
1893	/* add VID to filter table */
1894	wx_set_vfta(wx, vid, VMDQ_P(0), true);
1895	set_bit(vid, wx->active_vlans);
1896
1897	return 0;
1898}
1899EXPORT_SYMBOL(wx_vlan_rx_add_vid);
1900
1901int wx_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid)
1902{
1903	struct wx *wx = netdev_priv(netdev);
1904
1905	/* remove VID from filter table */
1906	if (vid)
1907		wx_set_vfta(wx, vid, VMDQ_P(0), false);
1908	clear_bit(vid, wx->active_vlans);
1909
1910	return 0;
1911}
1912EXPORT_SYMBOL(wx_vlan_rx_kill_vid);
1913
1914/**
1915 *  wx_start_hw - Prepare hardware for Tx/Rx
1916 *  @wx: pointer to hardware structure
1917 *
1918 *  Starts the hardware using the generic start_hw function
1919 *  and the generation start_hw function.
1920 *  Then performs revision-specific operations, if any.
1921 **/
1922void wx_start_hw(struct wx *wx)
1923{
1924	int i;
1925
1926	/* Clear the VLAN filter table */
1927	wx_clear_vfta(wx);
1928	WX_WRITE_FLUSH(wx);
1929	/* Clear the rate limiters */
1930	for (i = 0; i < wx->mac.max_tx_queues; i++) {
1931		wr32(wx, WX_TDM_RP_IDX, i);
1932		wr32(wx, WX_TDM_RP_RATE, 0);
1933	}
1934}
1935EXPORT_SYMBOL(wx_start_hw);
1936
1937MODULE_LICENSE("GPL");
1938