1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Texas Instruments Ethernet Switch Driver
4 *
5 * Copyright (C) 2019 Texas Instruments
6 */
7
8#include <linux/bpf.h>
9#include <linux/bpf_trace.h>
10#include <linux/if_ether.h>
11#include <linux/if_vlan.h>
12#include <linux/kmemleak.h>
13#include <linux/module.h>
14#include <linux/netdevice.h>
15#include <linux/net_tstamp.h>
16#include <linux/of.h>
17#include <linux/phy.h>
18#include <linux/platform_device.h>
19#include <linux/pm_runtime.h>
20#include <linux/skbuff.h>
21#include <net/page_pool/helpers.h>
22#include <net/pkt_cls.h>
23#include <net/pkt_sched.h>
24
25#include "cpsw.h"
26#include "cpts.h"
27#include "cpsw_ale.h"
28#include "cpsw_priv.h"
29#include "cpsw_sl.h"
30#include "davinci_cpdma.h"
31
32#define CPTS_N_ETX_TS 4
33
34int (*cpsw_slave_index)(struct cpsw_common *cpsw, struct cpsw_priv *priv);
35
36void cpsw_intr_enable(struct cpsw_common *cpsw)
37{
38	writel_relaxed(0xFF, &cpsw->wr_regs->tx_en);
39	writel_relaxed(0xFF, &cpsw->wr_regs->rx_en);
40
41	cpdma_ctlr_int_ctrl(cpsw->dma, true);
42}
43
44void cpsw_intr_disable(struct cpsw_common *cpsw)
45{
46	writel_relaxed(0, &cpsw->wr_regs->tx_en);
47	writel_relaxed(0, &cpsw->wr_regs->rx_en);
48
49	cpdma_ctlr_int_ctrl(cpsw->dma, false);
50}
51
52void cpsw_tx_handler(void *token, int len, int status)
53{
54	struct cpsw_meta_xdp	*xmeta;
55	struct xdp_frame	*xdpf;
56	struct net_device	*ndev;
57	struct netdev_queue	*txq;
58	struct sk_buff		*skb;
59	int			ch;
60
61	if (cpsw_is_xdpf_handle(token)) {
62		xdpf = cpsw_handle_to_xdpf(token);
63		xmeta = (void *)xdpf + CPSW_XMETA_OFFSET;
64		ndev = xmeta->ndev;
65		ch = xmeta->ch;
66		xdp_return_frame(xdpf);
67	} else {
68		skb = token;
69		ndev = skb->dev;
70		ch = skb_get_queue_mapping(skb);
71		cpts_tx_timestamp(ndev_to_cpsw(ndev)->cpts, skb);
72		dev_kfree_skb_any(skb);
73	}
74
75	/* Check whether the queue is stopped due to stalled tx dma, if the
76	 * queue is stopped then start the queue as we have free desc for tx
77	 */
78	txq = netdev_get_tx_queue(ndev, ch);
79	if (unlikely(netif_tx_queue_stopped(txq)))
80		netif_tx_wake_queue(txq);
81
82	ndev->stats.tx_packets++;
83	ndev->stats.tx_bytes += len;
84}
85
86irqreturn_t cpsw_tx_interrupt(int irq, void *dev_id)
87{
88	struct cpsw_common *cpsw = dev_id;
89
90	writel(0, &cpsw->wr_regs->tx_en);
91	cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_TX);
92
93	if (cpsw->quirk_irq) {
94		disable_irq_nosync(cpsw->irqs_table[1]);
95		cpsw->tx_irq_disabled = true;
96	}
97
98	napi_schedule(&cpsw->napi_tx);
99	return IRQ_HANDLED;
100}
101
102irqreturn_t cpsw_rx_interrupt(int irq, void *dev_id)
103{
104	struct cpsw_common *cpsw = dev_id;
105
106	writel(0, &cpsw->wr_regs->rx_en);
107	cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_RX);
108
109	if (cpsw->quirk_irq) {
110		disable_irq_nosync(cpsw->irqs_table[0]);
111		cpsw->rx_irq_disabled = true;
112	}
113
114	napi_schedule(&cpsw->napi_rx);
115	return IRQ_HANDLED;
116}
117
118irqreturn_t cpsw_misc_interrupt(int irq, void *dev_id)
119{
120	struct cpsw_common *cpsw = dev_id;
121
122	writel(0, &cpsw->wr_regs->misc_en);
123	cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_MISC);
124	cpts_misc_interrupt(cpsw->cpts);
125	writel(0x10, &cpsw->wr_regs->misc_en);
126
127	return IRQ_HANDLED;
128}
129
130int cpsw_tx_mq_poll(struct napi_struct *napi_tx, int budget)
131{
132	struct cpsw_common	*cpsw = napi_to_cpsw(napi_tx);
133	int			num_tx, cur_budget, ch;
134	u32			ch_map;
135	struct cpsw_vector	*txv;
136
137	/* process every unprocessed channel */
138	ch_map = cpdma_ctrl_txchs_state(cpsw->dma);
139	for (ch = 0, num_tx = 0; ch_map & 0xff; ch_map <<= 1, ch++) {
140		if (!(ch_map & 0x80))
141			continue;
142
143		txv = &cpsw->txv[ch];
144		if (unlikely(txv->budget > budget - num_tx))
145			cur_budget = budget - num_tx;
146		else
147			cur_budget = txv->budget;
148
149		num_tx += cpdma_chan_process(txv->ch, cur_budget);
150		if (num_tx >= budget)
151			break;
152	}
153
154	if (num_tx < budget) {
155		napi_complete(napi_tx);
156		writel(0xff, &cpsw->wr_regs->tx_en);
157	}
158
159	return num_tx;
160}
161
162int cpsw_tx_poll(struct napi_struct *napi_tx, int budget)
163{
164	struct cpsw_common *cpsw = napi_to_cpsw(napi_tx);
165	int num_tx;
166
167	num_tx = cpdma_chan_process(cpsw->txv[0].ch, budget);
168	if (num_tx < budget) {
169		napi_complete(napi_tx);
170		writel(0xff, &cpsw->wr_regs->tx_en);
171		if (cpsw->tx_irq_disabled) {
172			cpsw->tx_irq_disabled = false;
173			enable_irq(cpsw->irqs_table[1]);
174		}
175	}
176
177	return num_tx;
178}
179
180int cpsw_rx_mq_poll(struct napi_struct *napi_rx, int budget)
181{
182	struct cpsw_common	*cpsw = napi_to_cpsw(napi_rx);
183	int			num_rx, cur_budget, ch;
184	u32			ch_map;
185	struct cpsw_vector	*rxv;
186
187	/* process every unprocessed channel */
188	ch_map = cpdma_ctrl_rxchs_state(cpsw->dma);
189	for (ch = 0, num_rx = 0; ch_map; ch_map >>= 1, ch++) {
190		if (!(ch_map & 0x01))
191			continue;
192
193		rxv = &cpsw->rxv[ch];
194		if (unlikely(rxv->budget > budget - num_rx))
195			cur_budget = budget - num_rx;
196		else
197			cur_budget = rxv->budget;
198
199		num_rx += cpdma_chan_process(rxv->ch, cur_budget);
200		if (num_rx >= budget)
201			break;
202	}
203
204	if (num_rx < budget) {
205		napi_complete_done(napi_rx, num_rx);
206		writel(0xff, &cpsw->wr_regs->rx_en);
207	}
208
209	return num_rx;
210}
211
212int cpsw_rx_poll(struct napi_struct *napi_rx, int budget)
213{
214	struct cpsw_common *cpsw = napi_to_cpsw(napi_rx);
215	int num_rx;
216
217	num_rx = cpdma_chan_process(cpsw->rxv[0].ch, budget);
218	if (num_rx < budget) {
219		napi_complete_done(napi_rx, num_rx);
220		writel(0xff, &cpsw->wr_regs->rx_en);
221		if (cpsw->rx_irq_disabled) {
222			cpsw->rx_irq_disabled = false;
223			enable_irq(cpsw->irqs_table[0]);
224		}
225	}
226
227	return num_rx;
228}
229
230void cpsw_rx_vlan_encap(struct sk_buff *skb)
231{
232	struct cpsw_priv *priv = netdev_priv(skb->dev);
233	u32 rx_vlan_encap_hdr = *((u32 *)skb->data);
234	struct cpsw_common *cpsw = priv->cpsw;
235	u16 vtag, vid, prio, pkt_type;
236
237	/* Remove VLAN header encapsulation word */
238	skb_pull(skb, CPSW_RX_VLAN_ENCAP_HDR_SIZE);
239
240	pkt_type = (rx_vlan_encap_hdr >>
241		    CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_SHIFT) &
242		    CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_MSK;
243	/* Ignore unknown & Priority-tagged packets*/
244	if (pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_RESERV ||
245	    pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_PRIO_TAG)
246		return;
247
248	vid = (rx_vlan_encap_hdr >>
249	       CPSW_RX_VLAN_ENCAP_HDR_VID_SHIFT) &
250	       VLAN_VID_MASK;
251	/* Ignore vid 0 and pass packet as is */
252	if (!vid)
253		return;
254
255	/* Untag P0 packets if set for vlan */
256	if (!cpsw_ale_get_vlan_p0_untag(cpsw->ale, vid)) {
257		prio = (rx_vlan_encap_hdr >>
258			CPSW_RX_VLAN_ENCAP_HDR_PRIO_SHIFT) &
259			CPSW_RX_VLAN_ENCAP_HDR_PRIO_MSK;
260
261		vtag = (prio << VLAN_PRIO_SHIFT) | vid;
262		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vtag);
263	}
264
265	/* strip vlan tag for VLAN-tagged packet */
266	if (pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_VLAN_TAG) {
267		memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
268		skb_pull(skb, VLAN_HLEN);
269	}
270}
271
272void cpsw_set_slave_mac(struct cpsw_slave *slave, struct cpsw_priv *priv)
273{
274	slave_write(slave, mac_hi(priv->mac_addr), SA_HI);
275	slave_write(slave, mac_lo(priv->mac_addr), SA_LO);
276}
277
278void soft_reset(const char *module, void __iomem *reg)
279{
280	unsigned long timeout = jiffies + HZ;
281
282	writel_relaxed(1, reg);
283	do {
284		cpu_relax();
285	} while ((readl_relaxed(reg) & 1) && time_after(timeout, jiffies));
286
287	WARN(readl_relaxed(reg) & 1, "failed to soft-reset %s\n", module);
288}
289
290void cpsw_ndo_tx_timeout(struct net_device *ndev, unsigned int txqueue)
291{
292	struct cpsw_priv *priv = netdev_priv(ndev);
293	struct cpsw_common *cpsw = priv->cpsw;
294	int ch;
295
296	cpsw_err(priv, tx_err, "transmit timeout, restarting dma\n");
297	ndev->stats.tx_errors++;
298	cpsw_intr_disable(cpsw);
299	for (ch = 0; ch < cpsw->tx_ch_num; ch++) {
300		cpdma_chan_stop(cpsw->txv[ch].ch);
301		cpdma_chan_start(cpsw->txv[ch].ch);
302	}
303
304	cpsw_intr_enable(cpsw);
305	netif_trans_update(ndev);
306	netif_tx_wake_all_queues(ndev);
307}
308
309static int cpsw_get_common_speed(struct cpsw_common *cpsw)
310{
311	int i, speed;
312
313	for (i = 0, speed = 0; i < cpsw->data.slaves; i++)
314		if (cpsw->slaves[i].phy && cpsw->slaves[i].phy->link)
315			speed += cpsw->slaves[i].phy->speed;
316
317	return speed;
318}
319
320int cpsw_need_resplit(struct cpsw_common *cpsw)
321{
322	int i, rlim_ch_num;
323	int speed, ch_rate;
324
325	/* re-split resources only in case speed was changed */
326	speed = cpsw_get_common_speed(cpsw);
327	if (speed == cpsw->speed || !speed)
328		return 0;
329
330	cpsw->speed = speed;
331
332	for (i = 0, rlim_ch_num = 0; i < cpsw->tx_ch_num; i++) {
333		ch_rate = cpdma_chan_get_rate(cpsw->txv[i].ch);
334		if (!ch_rate)
335			break;
336
337		rlim_ch_num++;
338	}
339
340	/* cases not dependent on speed */
341	if (!rlim_ch_num || rlim_ch_num == cpsw->tx_ch_num)
342		return 0;
343
344	return 1;
345}
346
347void cpsw_split_res(struct cpsw_common *cpsw)
348{
349	u32 consumed_rate = 0, bigest_rate = 0;
350	struct cpsw_vector *txv = cpsw->txv;
351	int i, ch_weight, rlim_ch_num = 0;
352	int budget, bigest_rate_ch = 0;
353	u32 ch_rate, max_rate;
354	int ch_budget = 0;
355
356	for (i = 0; i < cpsw->tx_ch_num; i++) {
357		ch_rate = cpdma_chan_get_rate(txv[i].ch);
358		if (!ch_rate)
359			continue;
360
361		rlim_ch_num++;
362		consumed_rate += ch_rate;
363	}
364
365	if (cpsw->tx_ch_num == rlim_ch_num) {
366		max_rate = consumed_rate;
367	} else if (!rlim_ch_num) {
368		ch_budget = NAPI_POLL_WEIGHT / cpsw->tx_ch_num;
369		bigest_rate = 0;
370		max_rate = consumed_rate;
371	} else {
372		max_rate = cpsw->speed * 1000;
373
374		/* if max_rate is less then expected due to reduced link speed,
375		 * split proportionally according next potential max speed
376		 */
377		if (max_rate < consumed_rate)
378			max_rate *= 10;
379
380		if (max_rate < consumed_rate)
381			max_rate *= 10;
382
383		ch_budget = (consumed_rate * NAPI_POLL_WEIGHT) / max_rate;
384		ch_budget = (NAPI_POLL_WEIGHT - ch_budget) /
385			    (cpsw->tx_ch_num - rlim_ch_num);
386		bigest_rate = (max_rate - consumed_rate) /
387			      (cpsw->tx_ch_num - rlim_ch_num);
388	}
389
390	/* split tx weight/budget */
391	budget = NAPI_POLL_WEIGHT;
392	for (i = 0; i < cpsw->tx_ch_num; i++) {
393		ch_rate = cpdma_chan_get_rate(txv[i].ch);
394		if (ch_rate) {
395			txv[i].budget = (ch_rate * NAPI_POLL_WEIGHT) / max_rate;
396			if (!txv[i].budget)
397				txv[i].budget++;
398			if (ch_rate > bigest_rate) {
399				bigest_rate_ch = i;
400				bigest_rate = ch_rate;
401			}
402
403			ch_weight = (ch_rate * 100) / max_rate;
404			if (!ch_weight)
405				ch_weight++;
406			cpdma_chan_set_weight(cpsw->txv[i].ch, ch_weight);
407		} else {
408			txv[i].budget = ch_budget;
409			if (!bigest_rate_ch)
410				bigest_rate_ch = i;
411			cpdma_chan_set_weight(cpsw->txv[i].ch, 0);
412		}
413
414		budget -= txv[i].budget;
415	}
416
417	if (budget)
418		txv[bigest_rate_ch].budget += budget;
419
420	/* split rx budget */
421	budget = NAPI_POLL_WEIGHT;
422	ch_budget = budget / cpsw->rx_ch_num;
423	for (i = 0; i < cpsw->rx_ch_num; i++) {
424		cpsw->rxv[i].budget = ch_budget;
425		budget -= ch_budget;
426	}
427
428	if (budget)
429		cpsw->rxv[0].budget += budget;
430}
431
432int cpsw_init_common(struct cpsw_common *cpsw, void __iomem *ss_regs,
433		     int ale_ageout, phys_addr_t desc_mem_phys,
434		     int descs_pool_size)
435{
436	u32 slave_offset, sliver_offset, slave_size;
437	struct cpsw_ale_params ale_params;
438	struct cpsw_platform_data *data;
439	struct cpdma_params dma_params;
440	struct device *dev = cpsw->dev;
441	struct device_node *cpts_node;
442	void __iomem *cpts_regs;
443	int ret = 0, i;
444
445	data = &cpsw->data;
446	cpsw->rx_ch_num = 1;
447	cpsw->tx_ch_num = 1;
448
449	cpsw->version = readl(&cpsw->regs->id_ver);
450
451	memset(&dma_params, 0, sizeof(dma_params));
452	memset(&ale_params, 0, sizeof(ale_params));
453
454	switch (cpsw->version) {
455	case CPSW_VERSION_1:
456		cpsw->host_port_regs = ss_regs + CPSW1_HOST_PORT_OFFSET;
457		cpts_regs	     = ss_regs + CPSW1_CPTS_OFFSET;
458		cpsw->hw_stats	     = ss_regs + CPSW1_HW_STATS;
459		dma_params.dmaregs   = ss_regs + CPSW1_CPDMA_OFFSET;
460		dma_params.txhdp     = ss_regs + CPSW1_STATERAM_OFFSET;
461		ale_params.ale_regs  = ss_regs + CPSW1_ALE_OFFSET;
462		slave_offset         = CPSW1_SLAVE_OFFSET;
463		slave_size           = CPSW1_SLAVE_SIZE;
464		sliver_offset        = CPSW1_SLIVER_OFFSET;
465		dma_params.desc_mem_phys = 0;
466		break;
467	case CPSW_VERSION_2:
468	case CPSW_VERSION_3:
469	case CPSW_VERSION_4:
470		cpsw->host_port_regs = ss_regs + CPSW2_HOST_PORT_OFFSET;
471		cpts_regs	     = ss_regs + CPSW2_CPTS_OFFSET;
472		cpsw->hw_stats	     = ss_regs + CPSW2_HW_STATS;
473		dma_params.dmaregs   = ss_regs + CPSW2_CPDMA_OFFSET;
474		dma_params.txhdp     = ss_regs + CPSW2_STATERAM_OFFSET;
475		ale_params.ale_regs  = ss_regs + CPSW2_ALE_OFFSET;
476		slave_offset         = CPSW2_SLAVE_OFFSET;
477		slave_size           = CPSW2_SLAVE_SIZE;
478		sliver_offset        = CPSW2_SLIVER_OFFSET;
479		dma_params.desc_mem_phys = desc_mem_phys;
480		break;
481	default:
482		dev_err(dev, "unknown version 0x%08x\n", cpsw->version);
483		return -ENODEV;
484	}
485
486	for (i = 0; i < cpsw->data.slaves; i++) {
487		struct cpsw_slave *slave = &cpsw->slaves[i];
488		void __iomem		*regs = cpsw->regs;
489
490		slave->slave_num = i;
491		slave->data	= &cpsw->data.slave_data[i];
492		slave->regs	= regs + slave_offset;
493		slave->port_vlan = slave->data->dual_emac_res_vlan;
494		slave->mac_sl = cpsw_sl_get("cpsw", dev, regs + sliver_offset);
495		if (IS_ERR(slave->mac_sl))
496			return PTR_ERR(slave->mac_sl);
497
498		slave_offset  += slave_size;
499		sliver_offset += SLIVER_SIZE;
500	}
501
502	ale_params.dev			= dev;
503	ale_params.ale_ageout		= ale_ageout;
504	ale_params.ale_ports		= CPSW_ALE_PORTS_NUM;
505	ale_params.dev_id		= "cpsw";
506	ale_params.bus_freq		= cpsw->bus_freq_mhz * 1000000;
507
508	cpsw->ale = cpsw_ale_create(&ale_params);
509	if (IS_ERR(cpsw->ale)) {
510		dev_err(dev, "error initializing ale engine\n");
511		return PTR_ERR(cpsw->ale);
512	}
513
514	dma_params.dev		= dev;
515	dma_params.rxthresh	= dma_params.dmaregs + CPDMA_RXTHRESH;
516	dma_params.rxfree	= dma_params.dmaregs + CPDMA_RXFREE;
517	dma_params.rxhdp	= dma_params.txhdp + CPDMA_RXHDP;
518	dma_params.txcp		= dma_params.txhdp + CPDMA_TXCP;
519	dma_params.rxcp		= dma_params.txhdp + CPDMA_RXCP;
520
521	dma_params.num_chan		= data->channels;
522	dma_params.has_soft_reset	= true;
523	dma_params.min_packet_size	= CPSW_MIN_PACKET_SIZE;
524	dma_params.desc_mem_size	= data->bd_ram_size;
525	dma_params.desc_align		= 16;
526	dma_params.has_ext_regs		= true;
527	dma_params.desc_hw_addr         = dma_params.desc_mem_phys;
528	dma_params.bus_freq_mhz		= cpsw->bus_freq_mhz;
529	dma_params.descs_pool_size	= descs_pool_size;
530
531	cpsw->dma = cpdma_ctlr_create(&dma_params);
532	if (!cpsw->dma) {
533		dev_err(dev, "error initializing dma\n");
534		return -ENOMEM;
535	}
536
537	cpts_node = of_get_child_by_name(cpsw->dev->of_node, "cpts");
538	if (!cpts_node)
539		cpts_node = cpsw->dev->of_node;
540
541	cpsw->cpts = cpts_create(cpsw->dev, cpts_regs, cpts_node,
542				 CPTS_N_ETX_TS);
543	if (IS_ERR(cpsw->cpts)) {
544		ret = PTR_ERR(cpsw->cpts);
545		cpdma_ctlr_destroy(cpsw->dma);
546	}
547	of_node_put(cpts_node);
548
549	return ret;
550}
551
552#if IS_ENABLED(CONFIG_TI_CPTS)
553
554static void cpsw_hwtstamp_v1(struct cpsw_priv *priv)
555{
556	struct cpsw_common *cpsw = priv->cpsw;
557	struct cpsw_slave *slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
558	u32 ts_en, seq_id;
559
560	if (!priv->tx_ts_enabled && !priv->rx_ts_enabled) {
561		slave_write(slave, 0, CPSW1_TS_CTL);
562		return;
563	}
564
565	seq_id = (30 << CPSW_V1_SEQ_ID_OFS_SHIFT) | ETH_P_1588;
566	ts_en = EVENT_MSG_BITS << CPSW_V1_MSG_TYPE_OFS;
567
568	if (priv->tx_ts_enabled)
569		ts_en |= CPSW_V1_TS_TX_EN;
570
571	if (priv->rx_ts_enabled)
572		ts_en |= CPSW_V1_TS_RX_EN;
573
574	slave_write(slave, ts_en, CPSW1_TS_CTL);
575	slave_write(slave, seq_id, CPSW1_TS_SEQ_LTYPE);
576}
577
578static void cpsw_hwtstamp_v2(struct cpsw_priv *priv)
579{
580	struct cpsw_common *cpsw = priv->cpsw;
581	struct cpsw_slave *slave;
582	u32 ctrl, mtype;
583
584	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
585
586	ctrl = slave_read(slave, CPSW2_CONTROL);
587	switch (cpsw->version) {
588	case CPSW_VERSION_2:
589		ctrl &= ~CTRL_V2_ALL_TS_MASK;
590
591		if (priv->tx_ts_enabled)
592			ctrl |= CTRL_V2_TX_TS_BITS;
593
594		if (priv->rx_ts_enabled)
595			ctrl |= CTRL_V2_RX_TS_BITS;
596		break;
597	case CPSW_VERSION_3:
598	default:
599		ctrl &= ~CTRL_V3_ALL_TS_MASK;
600
601		if (priv->tx_ts_enabled)
602			ctrl |= CTRL_V3_TX_TS_BITS;
603
604		if (priv->rx_ts_enabled)
605			ctrl |= CTRL_V3_RX_TS_BITS;
606		break;
607	}
608
609	mtype = (30 << TS_SEQ_ID_OFFSET_SHIFT) | EVENT_MSG_BITS;
610
611	slave_write(slave, mtype, CPSW2_TS_SEQ_MTYPE);
612	slave_write(slave, ctrl, CPSW2_CONTROL);
613	writel_relaxed(ETH_P_1588, &cpsw->regs->ts_ltype);
614	writel_relaxed(ETH_P_8021Q, &cpsw->regs->vlan_ltype);
615}
616
617static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
618{
619	struct cpsw_priv *priv = netdev_priv(dev);
620	struct cpsw_common *cpsw = priv->cpsw;
621	struct hwtstamp_config cfg;
622
623	if (cpsw->version != CPSW_VERSION_1 &&
624	    cpsw->version != CPSW_VERSION_2 &&
625	    cpsw->version != CPSW_VERSION_3)
626		return -EOPNOTSUPP;
627
628	if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
629		return -EFAULT;
630
631	if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON)
632		return -ERANGE;
633
634	switch (cfg.rx_filter) {
635	case HWTSTAMP_FILTER_NONE:
636		priv->rx_ts_enabled = 0;
637		break;
638	case HWTSTAMP_FILTER_ALL:
639	case HWTSTAMP_FILTER_NTP_ALL:
640	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
641	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
642	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
643		return -ERANGE;
644	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
645	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
646	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
647	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
648	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
649	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
650	case HWTSTAMP_FILTER_PTP_V2_EVENT:
651	case HWTSTAMP_FILTER_PTP_V2_SYNC:
652	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
653		priv->rx_ts_enabled = HWTSTAMP_FILTER_PTP_V2_EVENT;
654		cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
655		break;
656	default:
657		return -ERANGE;
658	}
659
660	priv->tx_ts_enabled = cfg.tx_type == HWTSTAMP_TX_ON;
661
662	switch (cpsw->version) {
663	case CPSW_VERSION_1:
664		cpsw_hwtstamp_v1(priv);
665		break;
666	case CPSW_VERSION_2:
667	case CPSW_VERSION_3:
668		cpsw_hwtstamp_v2(priv);
669		break;
670	default:
671		WARN_ON(1);
672	}
673
674	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
675}
676
677static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
678{
679	struct cpsw_common *cpsw = ndev_to_cpsw(dev);
680	struct cpsw_priv *priv = netdev_priv(dev);
681	struct hwtstamp_config cfg;
682
683	if (cpsw->version != CPSW_VERSION_1 &&
684	    cpsw->version != CPSW_VERSION_2 &&
685	    cpsw->version != CPSW_VERSION_3)
686		return -EOPNOTSUPP;
687
688	cfg.flags = 0;
689	cfg.tx_type = priv->tx_ts_enabled ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
690	cfg.rx_filter = priv->rx_ts_enabled;
691
692	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
693}
694#else
695static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
696{
697	return -EOPNOTSUPP;
698}
699
700static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
701{
702	return -EOPNOTSUPP;
703}
704#endif /*CONFIG_TI_CPTS*/
705
706int cpsw_ndo_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
707{
708	struct cpsw_priv *priv = netdev_priv(dev);
709	struct cpsw_common *cpsw = priv->cpsw;
710	int slave_no = cpsw_slave_index(cpsw, priv);
711	struct phy_device *phy;
712
713	if (!netif_running(dev))
714		return -EINVAL;
715
716	phy = cpsw->slaves[slave_no].phy;
717
718	if (!phy_has_hwtstamp(phy)) {
719		switch (cmd) {
720		case SIOCSHWTSTAMP:
721			return cpsw_hwtstamp_set(dev, req);
722		case SIOCGHWTSTAMP:
723			return cpsw_hwtstamp_get(dev, req);
724		}
725	}
726
727	if (phy)
728		return phy_mii_ioctl(phy, req, cmd);
729
730	return -EOPNOTSUPP;
731}
732
733int cpsw_ndo_set_tx_maxrate(struct net_device *ndev, int queue, u32 rate)
734{
735	struct cpsw_priv *priv = netdev_priv(ndev);
736	struct cpsw_common *cpsw = priv->cpsw;
737	struct cpsw_slave *slave;
738	u32 min_rate;
739	u32 ch_rate;
740	int i, ret;
741
742	ch_rate = netdev_get_tx_queue(ndev, queue)->tx_maxrate;
743	if (ch_rate == rate)
744		return 0;
745
746	ch_rate = rate * 1000;
747	min_rate = cpdma_chan_get_min_rate(cpsw->dma);
748	if ((ch_rate < min_rate && ch_rate)) {
749		dev_err(priv->dev, "The channel rate cannot be less than %dMbps",
750			min_rate);
751		return -EINVAL;
752	}
753
754	if (rate > cpsw->speed) {
755		dev_err(priv->dev, "The channel rate cannot be more than 2Gbps");
756		return -EINVAL;
757	}
758
759	ret = pm_runtime_resume_and_get(cpsw->dev);
760	if (ret < 0)
761		return ret;
762
763	ret = cpdma_chan_set_rate(cpsw->txv[queue].ch, ch_rate);
764	pm_runtime_put(cpsw->dev);
765
766	if (ret)
767		return ret;
768
769	/* update rates for slaves tx queues */
770	for (i = 0; i < cpsw->data.slaves; i++) {
771		slave = &cpsw->slaves[i];
772		if (!slave->ndev)
773			continue;
774
775		netdev_get_tx_queue(slave->ndev, queue)->tx_maxrate = rate;
776	}
777
778	cpsw_split_res(cpsw);
779	return ret;
780}
781
782static int cpsw_tc_to_fifo(int tc, int num_tc)
783{
784	if (tc == num_tc - 1)
785		return 0;
786
787	return CPSW_FIFO_SHAPERS_NUM - tc;
788}
789
790bool cpsw_shp_is_off(struct cpsw_priv *priv)
791{
792	struct cpsw_common *cpsw = priv->cpsw;
793	struct cpsw_slave *slave;
794	u32 shift, mask, val;
795
796	val = readl_relaxed(&cpsw->regs->ptype);
797
798	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
799	shift = CPSW_FIFO_SHAPE_EN_SHIFT + 3 * slave->slave_num;
800	mask = 7 << shift;
801	val = val & mask;
802
803	return !val;
804}
805
806static void cpsw_fifo_shp_on(struct cpsw_priv *priv, int fifo, int on)
807{
808	struct cpsw_common *cpsw = priv->cpsw;
809	struct cpsw_slave *slave;
810	u32 shift, mask, val;
811
812	val = readl_relaxed(&cpsw->regs->ptype);
813
814	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
815	shift = CPSW_FIFO_SHAPE_EN_SHIFT + 3 * slave->slave_num;
816	mask = (1 << --fifo) << shift;
817	val = on ? val | mask : val & ~mask;
818
819	writel_relaxed(val, &cpsw->regs->ptype);
820}
821
822static int cpsw_set_fifo_bw(struct cpsw_priv *priv, int fifo, int bw)
823{
824	struct cpsw_common *cpsw = priv->cpsw;
825	u32 val = 0, send_pct, shift;
826	struct cpsw_slave *slave;
827	int pct = 0, i;
828
829	if (bw > priv->shp_cfg_speed * 1000)
830		goto err;
831
832	/* shaping has to stay enabled for highest fifos linearly
833	 * and fifo bw no more then interface can allow
834	 */
835	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
836	send_pct = slave_read(slave, SEND_PERCENT);
837	for (i = CPSW_FIFO_SHAPERS_NUM; i > 0; i--) {
838		if (!bw) {
839			if (i >= fifo || !priv->fifo_bw[i])
840				continue;
841
842			dev_warn(priv->dev, "Prev FIFO%d is shaped", i);
843			continue;
844		}
845
846		if (!priv->fifo_bw[i] && i > fifo) {
847			dev_err(priv->dev, "Upper FIFO%d is not shaped", i);
848			return -EINVAL;
849		}
850
851		shift = (i - 1) * 8;
852		if (i == fifo) {
853			send_pct &= ~(CPSW_PCT_MASK << shift);
854			val = DIV_ROUND_UP(bw, priv->shp_cfg_speed * 10);
855			if (!val)
856				val = 1;
857
858			send_pct |= val << shift;
859			pct += val;
860			continue;
861		}
862
863		if (priv->fifo_bw[i])
864			pct += (send_pct >> shift) & CPSW_PCT_MASK;
865	}
866
867	if (pct >= 100)
868		goto err;
869
870	slave_write(slave, send_pct, SEND_PERCENT);
871	priv->fifo_bw[fifo] = bw;
872
873	dev_warn(priv->dev, "set FIFO%d bw = %d\n", fifo,
874		 DIV_ROUND_CLOSEST(val * priv->shp_cfg_speed, 100));
875
876	return 0;
877err:
878	dev_err(priv->dev, "Bandwidth doesn't fit in tc configuration");
879	return -EINVAL;
880}
881
882static int cpsw_set_fifo_rlimit(struct cpsw_priv *priv, int fifo, int bw)
883{
884	struct cpsw_common *cpsw = priv->cpsw;
885	struct cpsw_slave *slave;
886	u32 tx_in_ctl_rg, val;
887	int ret;
888
889	ret = cpsw_set_fifo_bw(priv, fifo, bw);
890	if (ret)
891		return ret;
892
893	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
894	tx_in_ctl_rg = cpsw->version == CPSW_VERSION_1 ?
895		       CPSW1_TX_IN_CTL : CPSW2_TX_IN_CTL;
896
897	if (!bw)
898		cpsw_fifo_shp_on(priv, fifo, bw);
899
900	val = slave_read(slave, tx_in_ctl_rg);
901	if (cpsw_shp_is_off(priv)) {
902		/* disable FIFOs rate limited queues */
903		val &= ~(0xf << CPSW_FIFO_RATE_EN_SHIFT);
904
905		/* set type of FIFO queues to normal priority mode */
906		val &= ~(3 << CPSW_FIFO_QUEUE_TYPE_SHIFT);
907
908		/* set type of FIFO queues to be rate limited */
909		if (bw)
910			val |= 2 << CPSW_FIFO_QUEUE_TYPE_SHIFT;
911		else
912			priv->shp_cfg_speed = 0;
913	}
914
915	/* toggle a FIFO rate limited queue */
916	if (bw)
917		val |= BIT(fifo + CPSW_FIFO_RATE_EN_SHIFT);
918	else
919		val &= ~BIT(fifo + CPSW_FIFO_RATE_EN_SHIFT);
920	slave_write(slave, val, tx_in_ctl_rg);
921
922	/* FIFO transmit shape enable */
923	cpsw_fifo_shp_on(priv, fifo, bw);
924	return 0;
925}
926
927/* Defaults:
928 * class A - prio 3
929 * class B - prio 2
930 * shaping for class A should be set first
931 */
932static int cpsw_set_cbs(struct net_device *ndev,
933			struct tc_cbs_qopt_offload *qopt)
934{
935	struct cpsw_priv *priv = netdev_priv(ndev);
936	struct cpsw_common *cpsw = priv->cpsw;
937	struct cpsw_slave *slave;
938	int prev_speed = 0;
939	int tc, ret, fifo;
940	u32 bw = 0;
941
942	tc = netdev_txq_to_tc(priv->ndev, qopt->queue);
943
944	/* enable channels in backward order, as highest FIFOs must be rate
945	 * limited first and for compliance with CPDMA rate limited channels
946	 * that also used in bacward order. FIFO0 cannot be rate limited.
947	 */
948	fifo = cpsw_tc_to_fifo(tc, ndev->num_tc);
949	if (!fifo) {
950		dev_err(priv->dev, "Last tc%d can't be rate limited", tc);
951		return -EINVAL;
952	}
953
954	/* do nothing, it's disabled anyway */
955	if (!qopt->enable && !priv->fifo_bw[fifo])
956		return 0;
957
958	/* shapers can be set if link speed is known */
959	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
960	if (slave->phy && slave->phy->link) {
961		if (priv->shp_cfg_speed &&
962		    priv->shp_cfg_speed != slave->phy->speed)
963			prev_speed = priv->shp_cfg_speed;
964
965		priv->shp_cfg_speed = slave->phy->speed;
966	}
967
968	if (!priv->shp_cfg_speed) {
969		dev_err(priv->dev, "Link speed is not known");
970		return -1;
971	}
972
973	ret = pm_runtime_resume_and_get(cpsw->dev);
974	if (ret < 0)
975		return ret;
976
977	bw = qopt->enable ? qopt->idleslope : 0;
978	ret = cpsw_set_fifo_rlimit(priv, fifo, bw);
979	if (ret) {
980		priv->shp_cfg_speed = prev_speed;
981		prev_speed = 0;
982	}
983
984	if (bw && prev_speed)
985		dev_warn(priv->dev,
986			 "Speed was changed, CBS shaper speeds are changed!");
987
988	pm_runtime_put_sync(cpsw->dev);
989	return ret;
990}
991
992static int cpsw_set_mqprio(struct net_device *ndev, void *type_data)
993{
994	struct tc_mqprio_qopt_offload *mqprio = type_data;
995	struct cpsw_priv *priv = netdev_priv(ndev);
996	struct cpsw_common *cpsw = priv->cpsw;
997	int fifo, num_tc, count, offset;
998	struct cpsw_slave *slave;
999	u32 tx_prio_map = 0;
1000	int i, tc, ret;
1001
1002	num_tc = mqprio->qopt.num_tc;
1003	if (num_tc > CPSW_TC_NUM)
1004		return -EINVAL;
1005
1006	if (mqprio->mode != TC_MQPRIO_MODE_DCB)
1007		return -EINVAL;
1008
1009	ret = pm_runtime_resume_and_get(cpsw->dev);
1010	if (ret < 0)
1011		return ret;
1012
1013	if (num_tc) {
1014		for (i = 0; i < 8; i++) {
1015			tc = mqprio->qopt.prio_tc_map[i];
1016			fifo = cpsw_tc_to_fifo(tc, num_tc);
1017			tx_prio_map |= fifo << (4 * i);
1018		}
1019
1020		netdev_set_num_tc(ndev, num_tc);
1021		for (i = 0; i < num_tc; i++) {
1022			count = mqprio->qopt.count[i];
1023			offset = mqprio->qopt.offset[i];
1024			netdev_set_tc_queue(ndev, i, count, offset);
1025		}
1026	}
1027
1028	if (!mqprio->qopt.hw) {
1029		/* restore default configuration */
1030		netdev_reset_tc(ndev);
1031		tx_prio_map = TX_PRIORITY_MAPPING;
1032	}
1033
1034	priv->mqprio_hw = mqprio->qopt.hw;
1035
1036	offset = cpsw->version == CPSW_VERSION_1 ?
1037		 CPSW1_TX_PRI_MAP : CPSW2_TX_PRI_MAP;
1038
1039	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
1040	slave_write(slave, tx_prio_map, offset);
1041
1042	pm_runtime_put_sync(cpsw->dev);
1043
1044	return 0;
1045}
1046
1047static int cpsw_qos_setup_tc_block(struct net_device *ndev, struct flow_block_offload *f);
1048
1049int cpsw_ndo_setup_tc(struct net_device *ndev, enum tc_setup_type type,
1050		      void *type_data)
1051{
1052	switch (type) {
1053	case TC_SETUP_QDISC_CBS:
1054		return cpsw_set_cbs(ndev, type_data);
1055
1056	case TC_SETUP_QDISC_MQPRIO:
1057		return cpsw_set_mqprio(ndev, type_data);
1058
1059	case TC_SETUP_BLOCK:
1060		return cpsw_qos_setup_tc_block(ndev, type_data);
1061
1062	default:
1063		return -EOPNOTSUPP;
1064	}
1065}
1066
1067void cpsw_cbs_resume(struct cpsw_slave *slave, struct cpsw_priv *priv)
1068{
1069	int fifo, bw;
1070
1071	for (fifo = CPSW_FIFO_SHAPERS_NUM; fifo > 0; fifo--) {
1072		bw = priv->fifo_bw[fifo];
1073		if (!bw)
1074			continue;
1075
1076		cpsw_set_fifo_rlimit(priv, fifo, bw);
1077	}
1078}
1079
1080void cpsw_mqprio_resume(struct cpsw_slave *slave, struct cpsw_priv *priv)
1081{
1082	struct cpsw_common *cpsw = priv->cpsw;
1083	u32 tx_prio_map = 0;
1084	int i, tc, fifo;
1085	u32 tx_prio_rg;
1086
1087	if (!priv->mqprio_hw)
1088		return;
1089
1090	for (i = 0; i < 8; i++) {
1091		tc = netdev_get_prio_tc_map(priv->ndev, i);
1092		fifo = CPSW_FIFO_SHAPERS_NUM - tc;
1093		tx_prio_map |= fifo << (4 * i);
1094	}
1095
1096	tx_prio_rg = cpsw->version == CPSW_VERSION_1 ?
1097		     CPSW1_TX_PRI_MAP : CPSW2_TX_PRI_MAP;
1098
1099	slave_write(slave, tx_prio_map, tx_prio_rg);
1100}
1101
1102int cpsw_fill_rx_channels(struct cpsw_priv *priv)
1103{
1104	struct cpsw_common *cpsw = priv->cpsw;
1105	struct cpsw_meta_xdp *xmeta;
1106	struct page_pool *pool;
1107	struct page *page;
1108	int ch_buf_num;
1109	int ch, i, ret;
1110	dma_addr_t dma;
1111
1112	for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
1113		pool = cpsw->page_pool[ch];
1114		ch_buf_num = cpdma_chan_get_rx_buf_num(cpsw->rxv[ch].ch);
1115		for (i = 0; i < ch_buf_num; i++) {
1116			page = page_pool_dev_alloc_pages(pool);
1117			if (!page) {
1118				cpsw_err(priv, ifup, "allocate rx page err\n");
1119				return -ENOMEM;
1120			}
1121
1122			xmeta = page_address(page) + CPSW_XMETA_OFFSET;
1123			xmeta->ndev = priv->ndev;
1124			xmeta->ch = ch;
1125
1126			dma = page_pool_get_dma_addr(page) + CPSW_HEADROOM_NA;
1127			ret = cpdma_chan_idle_submit_mapped(cpsw->rxv[ch].ch,
1128							    page, dma,
1129							    cpsw->rx_packet_max,
1130							    0);
1131			if (ret < 0) {
1132				cpsw_err(priv, ifup,
1133					 "cannot submit page to channel %d rx, error %d\n",
1134					 ch, ret);
1135				page_pool_recycle_direct(pool, page);
1136				return ret;
1137			}
1138		}
1139
1140		cpsw_info(priv, ifup, "ch %d rx, submitted %d descriptors\n",
1141			  ch, ch_buf_num);
1142	}
1143
1144	return 0;
1145}
1146
1147static struct page_pool *cpsw_create_page_pool(struct cpsw_common *cpsw,
1148					       int size)
1149{
1150	struct page_pool_params pp_params = {};
1151	struct page_pool *pool;
1152
1153	pp_params.order = 0;
1154	pp_params.flags = PP_FLAG_DMA_MAP;
1155	pp_params.pool_size = size;
1156	pp_params.nid = NUMA_NO_NODE;
1157	pp_params.dma_dir = DMA_BIDIRECTIONAL;
1158	pp_params.dev = cpsw->dev;
1159
1160	pool = page_pool_create(&pp_params);
1161	if (IS_ERR(pool))
1162		dev_err(cpsw->dev, "cannot create rx page pool\n");
1163
1164	return pool;
1165}
1166
1167static int cpsw_create_rx_pool(struct cpsw_common *cpsw, int ch)
1168{
1169	struct page_pool *pool;
1170	int ret = 0, pool_size;
1171
1172	pool_size = cpdma_chan_get_rx_buf_num(cpsw->rxv[ch].ch);
1173	pool = cpsw_create_page_pool(cpsw, pool_size);
1174	if (IS_ERR(pool))
1175		ret = PTR_ERR(pool);
1176	else
1177		cpsw->page_pool[ch] = pool;
1178
1179	return ret;
1180}
1181
1182static int cpsw_ndev_create_xdp_rxq(struct cpsw_priv *priv, int ch)
1183{
1184	struct cpsw_common *cpsw = priv->cpsw;
1185	struct xdp_rxq_info *rxq;
1186	struct page_pool *pool;
1187	int ret;
1188
1189	pool = cpsw->page_pool[ch];
1190	rxq = &priv->xdp_rxq[ch];
1191
1192	ret = xdp_rxq_info_reg(rxq, priv->ndev, ch, 0);
1193	if (ret)
1194		return ret;
1195
1196	ret = xdp_rxq_info_reg_mem_model(rxq, MEM_TYPE_PAGE_POOL, pool);
1197	if (ret)
1198		xdp_rxq_info_unreg(rxq);
1199
1200	return ret;
1201}
1202
1203static void cpsw_ndev_destroy_xdp_rxq(struct cpsw_priv *priv, int ch)
1204{
1205	struct xdp_rxq_info *rxq = &priv->xdp_rxq[ch];
1206
1207	if (!xdp_rxq_info_is_reg(rxq))
1208		return;
1209
1210	xdp_rxq_info_unreg(rxq);
1211}
1212
1213void cpsw_destroy_xdp_rxqs(struct cpsw_common *cpsw)
1214{
1215	struct net_device *ndev;
1216	int i, ch;
1217
1218	for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
1219		for (i = 0; i < cpsw->data.slaves; i++) {
1220			ndev = cpsw->slaves[i].ndev;
1221			if (!ndev)
1222				continue;
1223
1224			cpsw_ndev_destroy_xdp_rxq(netdev_priv(ndev), ch);
1225		}
1226
1227		page_pool_destroy(cpsw->page_pool[ch]);
1228		cpsw->page_pool[ch] = NULL;
1229	}
1230}
1231
1232int cpsw_create_xdp_rxqs(struct cpsw_common *cpsw)
1233{
1234	struct net_device *ndev;
1235	int i, ch, ret;
1236
1237	for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
1238		ret = cpsw_create_rx_pool(cpsw, ch);
1239		if (ret)
1240			goto err_cleanup;
1241
1242		/* using same page pool is allowed as no running rx handlers
1243		 * simultaneously for both ndevs
1244		 */
1245		for (i = 0; i < cpsw->data.slaves; i++) {
1246			ndev = cpsw->slaves[i].ndev;
1247			if (!ndev)
1248				continue;
1249
1250			ret = cpsw_ndev_create_xdp_rxq(netdev_priv(ndev), ch);
1251			if (ret)
1252				goto err_cleanup;
1253		}
1254	}
1255
1256	return 0;
1257
1258err_cleanup:
1259	cpsw_destroy_xdp_rxqs(cpsw);
1260
1261	return ret;
1262}
1263
1264static int cpsw_xdp_prog_setup(struct cpsw_priv *priv, struct netdev_bpf *bpf)
1265{
1266	struct bpf_prog *prog = bpf->prog;
1267
1268	if (!priv->xdpi.prog && !prog)
1269		return 0;
1270
1271	WRITE_ONCE(priv->xdp_prog, prog);
1272
1273	xdp_attachment_setup(&priv->xdpi, bpf);
1274
1275	return 0;
1276}
1277
1278int cpsw_ndo_bpf(struct net_device *ndev, struct netdev_bpf *bpf)
1279{
1280	struct cpsw_priv *priv = netdev_priv(ndev);
1281
1282	switch (bpf->command) {
1283	case XDP_SETUP_PROG:
1284		return cpsw_xdp_prog_setup(priv, bpf);
1285
1286	default:
1287		return -EINVAL;
1288	}
1289}
1290
1291int cpsw_xdp_tx_frame(struct cpsw_priv *priv, struct xdp_frame *xdpf,
1292		      struct page *page, int port)
1293{
1294	struct cpsw_common *cpsw = priv->cpsw;
1295	struct cpsw_meta_xdp *xmeta;
1296	struct cpdma_chan *txch;
1297	dma_addr_t dma;
1298	int ret;
1299
1300	xmeta = (void *)xdpf + CPSW_XMETA_OFFSET;
1301	xmeta->ndev = priv->ndev;
1302	xmeta->ch = 0;
1303	txch = cpsw->txv[0].ch;
1304
1305	if (page) {
1306		dma = page_pool_get_dma_addr(page);
1307		dma += xdpf->headroom + sizeof(struct xdp_frame);
1308		ret = cpdma_chan_submit_mapped(txch, cpsw_xdpf_to_handle(xdpf),
1309					       dma, xdpf->len, port);
1310	} else {
1311		if (sizeof(*xmeta) > xdpf->headroom)
1312			return -EINVAL;
1313
1314		ret = cpdma_chan_submit(txch, cpsw_xdpf_to_handle(xdpf),
1315					xdpf->data, xdpf->len, port);
1316	}
1317
1318	if (ret)
1319		priv->ndev->stats.tx_dropped++;
1320
1321	return ret;
1322}
1323
1324int cpsw_run_xdp(struct cpsw_priv *priv, int ch, struct xdp_buff *xdp,
1325		 struct page *page, int port, int *len)
1326{
1327	struct cpsw_common *cpsw = priv->cpsw;
1328	struct net_device *ndev = priv->ndev;
1329	int ret = CPSW_XDP_CONSUMED;
1330	struct xdp_frame *xdpf;
1331	struct bpf_prog *prog;
1332	u32 act;
1333
1334	prog = READ_ONCE(priv->xdp_prog);
1335	if (!prog)
1336		return CPSW_XDP_PASS;
1337
1338	act = bpf_prog_run_xdp(prog, xdp);
1339	/* XDP prog might have changed packet data and boundaries */
1340	*len = xdp->data_end - xdp->data;
1341
1342	switch (act) {
1343	case XDP_PASS:
1344		ret = CPSW_XDP_PASS;
1345		goto out;
1346	case XDP_TX:
1347		xdpf = xdp_convert_buff_to_frame(xdp);
1348		if (unlikely(!xdpf))
1349			goto drop;
1350
1351		if (cpsw_xdp_tx_frame(priv, xdpf, page, port))
1352			xdp_return_frame_rx_napi(xdpf);
1353		break;
1354	case XDP_REDIRECT:
1355		if (xdp_do_redirect(ndev, xdp, prog))
1356			goto drop;
1357
1358		/*  Have to flush here, per packet, instead of doing it in bulk
1359		 *  at the end of the napi handler. The RX devices on this
1360		 *  particular hardware is sharing a common queue, so the
1361		 *  incoming device might change per packet.
1362		 */
1363		xdp_do_flush_map();
1364		break;
1365	default:
1366		bpf_warn_invalid_xdp_action(ndev, prog, act);
1367		fallthrough;
1368	case XDP_ABORTED:
1369		trace_xdp_exception(ndev, prog, act);
1370		fallthrough;	/* handle aborts by dropping packet */
1371	case XDP_DROP:
1372		ndev->stats.rx_bytes += *len;
1373		ndev->stats.rx_packets++;
1374		goto drop;
1375	}
1376
1377	ndev->stats.rx_bytes += *len;
1378	ndev->stats.rx_packets++;
1379out:
1380	return ret;
1381drop:
1382	page_pool_recycle_direct(cpsw->page_pool[ch], page);
1383	return ret;
1384}
1385
1386static int cpsw_qos_clsflower_add_policer(struct cpsw_priv *priv,
1387					  struct netlink_ext_ack *extack,
1388					  struct flow_cls_offload *cls,
1389					  u64 rate_pkt_ps)
1390{
1391	struct flow_rule *rule = flow_cls_offload_flow_rule(cls);
1392	struct flow_dissector *dissector = rule->match.dissector;
1393	static const u8 mc_mac[] = {0x01, 0x00, 0x00, 0x00, 0x00, 0x00};
1394	struct flow_match_eth_addrs match;
1395	u32 port_id;
1396	int ret;
1397
1398	if (dissector->used_keys &
1399	    ~(BIT_ULL(FLOW_DISSECTOR_KEY_BASIC) |
1400	      BIT_ULL(FLOW_DISSECTOR_KEY_CONTROL) |
1401	      BIT_ULL(FLOW_DISSECTOR_KEY_ETH_ADDRS))) {
1402		NL_SET_ERR_MSG_MOD(extack,
1403				   "Unsupported keys used");
1404		return -EOPNOTSUPP;
1405	}
1406
1407	if (!flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
1408		NL_SET_ERR_MSG_MOD(extack, "Not matching on eth address");
1409		return -EOPNOTSUPP;
1410	}
1411
1412	flow_rule_match_eth_addrs(rule, &match);
1413
1414	if (!is_zero_ether_addr(match.mask->src)) {
1415		NL_SET_ERR_MSG_MOD(extack,
1416				   "Matching on source MAC not supported");
1417		return -EOPNOTSUPP;
1418	}
1419
1420	port_id = cpsw_slave_index(priv->cpsw, priv) + 1;
1421
1422	if (is_broadcast_ether_addr(match.key->dst) &&
1423	    is_broadcast_ether_addr(match.mask->dst)) {
1424		ret = cpsw_ale_rx_ratelimit_bc(priv->cpsw->ale, port_id, rate_pkt_ps);
1425		if (ret)
1426			return ret;
1427
1428		priv->ale_bc_ratelimit.cookie = cls->cookie;
1429		priv->ale_bc_ratelimit.rate_packet_ps = rate_pkt_ps;
1430	} else if (ether_addr_equal_unaligned(match.key->dst, mc_mac) &&
1431		   ether_addr_equal_unaligned(match.mask->dst, mc_mac)) {
1432		ret = cpsw_ale_rx_ratelimit_mc(priv->cpsw->ale, port_id, rate_pkt_ps);
1433		if (ret)
1434			return ret;
1435
1436		priv->ale_mc_ratelimit.cookie = cls->cookie;
1437		priv->ale_mc_ratelimit.rate_packet_ps = rate_pkt_ps;
1438	} else {
1439		NL_SET_ERR_MSG_MOD(extack, "Not supported matching key");
1440		return -EOPNOTSUPP;
1441	}
1442
1443	return 0;
1444}
1445
1446static int cpsw_qos_clsflower_policer_validate(const struct flow_action *action,
1447					       const struct flow_action_entry *act,
1448					       struct netlink_ext_ack *extack)
1449{
1450	if (act->police.exceed.act_id != FLOW_ACTION_DROP) {
1451		NL_SET_ERR_MSG_MOD(extack,
1452				   "Offload not supported when exceed action is not drop");
1453		return -EOPNOTSUPP;
1454	}
1455
1456	if (act->police.notexceed.act_id != FLOW_ACTION_PIPE &&
1457	    act->police.notexceed.act_id != FLOW_ACTION_ACCEPT) {
1458		NL_SET_ERR_MSG_MOD(extack,
1459				   "Offload not supported when conform action is not pipe or ok");
1460		return -EOPNOTSUPP;
1461	}
1462
1463	if (act->police.notexceed.act_id == FLOW_ACTION_ACCEPT &&
1464	    !flow_action_is_last_entry(action, act)) {
1465		NL_SET_ERR_MSG_MOD(extack,
1466				   "Offload not supported when conform action is ok, but action is not last");
1467		return -EOPNOTSUPP;
1468	}
1469
1470	if (act->police.rate_bytes_ps || act->police.peakrate_bytes_ps ||
1471	    act->police.avrate || act->police.overhead) {
1472		NL_SET_ERR_MSG_MOD(extack,
1473				   "Offload not supported when bytes per second/peakrate/avrate/overhead is configured");
1474		return -EOPNOTSUPP;
1475	}
1476
1477	return 0;
1478}
1479
1480static int cpsw_qos_configure_clsflower(struct cpsw_priv *priv, struct flow_cls_offload *cls)
1481{
1482	struct flow_rule *rule = flow_cls_offload_flow_rule(cls);
1483	struct netlink_ext_ack *extack = cls->common.extack;
1484	const struct flow_action_entry *act;
1485	int i, ret;
1486
1487	flow_action_for_each(i, act, &rule->action) {
1488		switch (act->id) {
1489		case FLOW_ACTION_POLICE:
1490			ret = cpsw_qos_clsflower_policer_validate(&rule->action, act, extack);
1491			if (ret)
1492				return ret;
1493
1494			return cpsw_qos_clsflower_add_policer(priv, extack, cls,
1495							      act->police.rate_pkt_ps);
1496		default:
1497			NL_SET_ERR_MSG_MOD(extack, "Action not supported");
1498			return -EOPNOTSUPP;
1499		}
1500	}
1501	return -EOPNOTSUPP;
1502}
1503
1504static int cpsw_qos_delete_clsflower(struct cpsw_priv *priv, struct flow_cls_offload *cls)
1505{
1506	u32 port_id = cpsw_slave_index(priv->cpsw, priv) + 1;
1507
1508	if (cls->cookie == priv->ale_bc_ratelimit.cookie) {
1509		priv->ale_bc_ratelimit.cookie = 0;
1510		priv->ale_bc_ratelimit.rate_packet_ps = 0;
1511		cpsw_ale_rx_ratelimit_bc(priv->cpsw->ale, port_id, 0);
1512	}
1513
1514	if (cls->cookie == priv->ale_mc_ratelimit.cookie) {
1515		priv->ale_mc_ratelimit.cookie = 0;
1516		priv->ale_mc_ratelimit.rate_packet_ps = 0;
1517		cpsw_ale_rx_ratelimit_mc(priv->cpsw->ale, port_id, 0);
1518	}
1519
1520	return 0;
1521}
1522
1523static int cpsw_qos_setup_tc_clsflower(struct cpsw_priv *priv, struct flow_cls_offload *cls_flower)
1524{
1525	switch (cls_flower->command) {
1526	case FLOW_CLS_REPLACE:
1527		return cpsw_qos_configure_clsflower(priv, cls_flower);
1528	case FLOW_CLS_DESTROY:
1529		return cpsw_qos_delete_clsflower(priv, cls_flower);
1530	default:
1531		return -EOPNOTSUPP;
1532	}
1533}
1534
1535static int cpsw_qos_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv)
1536{
1537	struct cpsw_priv *priv = cb_priv;
1538	int ret;
1539
1540	if (!tc_cls_can_offload_and_chain0(priv->ndev, type_data))
1541		return -EOPNOTSUPP;
1542
1543	ret = pm_runtime_get_sync(priv->dev);
1544	if (ret < 0) {
1545		pm_runtime_put_noidle(priv->dev);
1546		return ret;
1547	}
1548
1549	switch (type) {
1550	case TC_SETUP_CLSFLOWER:
1551		ret = cpsw_qos_setup_tc_clsflower(priv, type_data);
1552		break;
1553	default:
1554		ret = -EOPNOTSUPP;
1555	}
1556
1557	pm_runtime_put(priv->dev);
1558	return ret;
1559}
1560
1561static LIST_HEAD(cpsw_qos_block_cb_list);
1562
1563static int cpsw_qos_setup_tc_block(struct net_device *ndev, struct flow_block_offload *f)
1564{
1565	struct cpsw_priv *priv = netdev_priv(ndev);
1566
1567	return flow_block_cb_setup_simple(f, &cpsw_qos_block_cb_list,
1568					  cpsw_qos_setup_tc_block_cb,
1569					  priv, priv, true);
1570}
1571
1572void cpsw_qos_clsflower_resume(struct cpsw_priv *priv)
1573{
1574	u32 port_id = cpsw_slave_index(priv->cpsw, priv) + 1;
1575
1576	if (priv->ale_bc_ratelimit.cookie)
1577		cpsw_ale_rx_ratelimit_bc(priv->cpsw->ale, port_id,
1578					 priv->ale_bc_ratelimit.rate_packet_ps);
1579
1580	if (priv->ale_mc_ratelimit.cookie)
1581		cpsw_ale_rx_ratelimit_mc(priv->cpsw->ale, port_id,
1582					 priv->ale_mc_ratelimit.rate_packet_ps);
1583}
1584