1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/*------------------------------------------------------------------------
3 . smc91x.h - macros for SMSC's 91C9x/91C1xx single-chip Ethernet device.
4 .
5 . Copyright (C) 1996 by Erik Stahlman
6 . Copyright (C) 2001 Standard Microsystems Corporation
7 .	Developed by Simple Network Magic Corporation
8 . Copyright (C) 2003 Monta Vista Software, Inc.
9 .	Unified SMC91x driver by Nicolas Pitre
10 .
11 .
12 . Information contained in this file was obtained from the LAN91C111
13 . manual from SMC.  To get a copy, if you really want one, you can find
14 . information under www.smsc.com.
15 .
16 . Authors
17 .	Erik Stahlman		<erik@vt.edu>
18 .	Daris A Nevil		<dnevil@snmc.com>
19 .	Nicolas Pitre 		<nico@fluxnic.net>
20 .
21 ---------------------------------------------------------------------------*/
22#ifndef _SMC91X_H_
23#define _SMC91X_H_
24
25#include <linux/dmaengine.h>
26#include <linux/smc91x.h>
27
28/*
29 * Any 16-bit access is performed with two 8-bit accesses if the hardware
30 * can't do it directly. Most registers are 16-bit so those are mandatory.
31 */
32#define SMC_outw_b(x, a, r)						\
33	do {								\
34		unsigned int __val16 = (x);				\
35		unsigned int __reg = (r);				\
36		SMC_outb(__val16, a, __reg);				\
37		SMC_outb(__val16 >> 8, a, __reg + (1 << SMC_IO_SHIFT));	\
38	} while (0)
39
40#define SMC_inw_b(a, r)							\
41	({								\
42		unsigned int __val16;					\
43		unsigned int __reg = r;					\
44		__val16  = SMC_inb(a, __reg);				\
45		__val16 |= SMC_inb(a, __reg + (1 << SMC_IO_SHIFT)) << 8; \
46		__val16;						\
47	})
48
49/*
50 * Define your architecture specific bus configuration parameters here.
51 */
52
53#if defined(CONFIG_ARM)
54
55#include <asm/mach-types.h>
56
57/* Now the bus width is specified in the platform data
58 * pretend here to support all I/O access types
59 */
60#define SMC_CAN_USE_8BIT	1
61#define SMC_CAN_USE_16BIT	1
62#define SMC_CAN_USE_32BIT	1
63#define SMC_NOWAIT		1
64
65#define SMC_IO_SHIFT		(lp->io_shift)
66
67#define SMC_inb(a, r)		readb((a) + (r))
68#define SMC_inw(a, r)							\
69	({								\
70		unsigned int __smc_r = r;				\
71		SMC_16BIT(lp) ? readw((a) + __smc_r) :			\
72		SMC_8BIT(lp) ? SMC_inw_b(a, __smc_r) :			\
73		({ BUG(); 0; });					\
74	})
75
76#define SMC_inl(a, r)		readl((a) + (r))
77#define SMC_outb(v, a, r)	writeb(v, (a) + (r))
78#define SMC_outw(lp, v, a, r)						\
79	do {								\
80		unsigned int __v = v, __smc_r = r;			\
81		if (SMC_16BIT(lp))					\
82			__SMC_outw(lp, __v, a, __smc_r);		\
83		else if (SMC_8BIT(lp))					\
84			SMC_outw_b(__v, a, __smc_r);			\
85		else							\
86			BUG();						\
87	} while (0)
88
89#define SMC_outl(v, a, r)	writel(v, (a) + (r))
90#define SMC_insb(a, r, p, l)	readsb((a) + (r), p, l)
91#define SMC_outsb(a, r, p, l)	writesb((a) + (r), p, l)
92#define SMC_insw(a, r, p, l)	readsw((a) + (r), p, l)
93#define SMC_outsw(a, r, p, l)	writesw((a) + (r), p, l)
94#define SMC_insl(a, r, p, l)	readsl((a) + (r), p, l)
95#define SMC_outsl(a, r, p, l)	writesl((a) + (r), p, l)
96#define SMC_IRQ_FLAGS		(-1)	/* from resource */
97
98/* We actually can't write halfwords properly if not word aligned */
99static inline void _SMC_outw_align4(u16 val, void __iomem *ioaddr, int reg,
100				    bool use_align4_workaround)
101{
102	if (use_align4_workaround) {
103		unsigned int v = val << 16;
104		v |= readl(ioaddr + (reg & ~2)) & 0xffff;
105		writel(v, ioaddr + (reg & ~2));
106	} else {
107		writew(val, ioaddr + reg);
108	}
109}
110
111#define __SMC_outw(lp, v, a, r)						\
112	_SMC_outw_align4((v), (a), (r),					\
113			 IS_BUILTIN(CONFIG_ARCH_PXA) && ((r) & 2) &&	\
114			 (lp)->cfg.pxa_u16_align4)
115
116
117#elif	defined(CONFIG_SH_SH4202_MICRODEV)
118
119#define SMC_CAN_USE_8BIT	0
120#define SMC_CAN_USE_16BIT	1
121#define SMC_CAN_USE_32BIT	0
122
123#define SMC_inb(a, r)		inb((a) + (r) - 0xa0000000)
124#define SMC_inw(a, r)		inw((a) + (r) - 0xa0000000)
125#define SMC_inl(a, r)		inl((a) + (r) - 0xa0000000)
126#define SMC_outb(v, a, r)	outb(v, (a) + (r) - 0xa0000000)
127#define SMC_outw(lp, v, a, r)	outw(v, (a) + (r) - 0xa0000000)
128#define SMC_outl(v, a, r)	outl(v, (a) + (r) - 0xa0000000)
129#define SMC_insl(a, r, p, l)	insl((a) + (r) - 0xa0000000, p, l)
130#define SMC_outsl(a, r, p, l)	outsl((a) + (r) - 0xa0000000, p, l)
131#define SMC_insw(a, r, p, l)	insw((a) + (r) - 0xa0000000, p, l)
132#define SMC_outsw(a, r, p, l)	outsw((a) + (r) - 0xa0000000, p, l)
133
134#define SMC_IRQ_FLAGS		(0)
135
136#elif defined(CONFIG_ATARI)
137
138#define SMC_CAN_USE_8BIT        1
139#define SMC_CAN_USE_16BIT       1
140#define SMC_CAN_USE_32BIT       1
141#define SMC_NOWAIT              1
142
143#define SMC_inb(a, r)           readb((a) + (r))
144#define SMC_inw(a, r)           readw((a) + (r))
145#define SMC_inl(a, r)           readl((a) + (r))
146#define SMC_outb(v, a, r)       writeb(v, (a) + (r))
147#define SMC_outw(lp, v, a, r)   writew(v, (a) + (r))
148#define SMC_outl(v, a, r)       writel(v, (a) + (r))
149#define SMC_insw(a, r, p, l)    readsw((a) + (r), p, l)
150#define SMC_outsw(a, r, p, l)   writesw((a) + (r), p, l)
151#define SMC_insl(a, r, p, l)    readsl((a) + (r), p, l)
152#define SMC_outsl(a, r, p, l)   writesl((a) + (r), p, l)
153
154#define RPC_LSA_DEFAULT         RPC_LED_100_10
155#define RPC_LSB_DEFAULT         RPC_LED_TX_RX
156
157#elif defined(CONFIG_COLDFIRE)
158
159#define SMC_CAN_USE_8BIT	0
160#define SMC_CAN_USE_16BIT	1
161#define SMC_CAN_USE_32BIT	0
162#define SMC_NOWAIT		1
163
164static inline void mcf_insw(void *a, unsigned char *p, int l)
165{
166	u16 *wp = (u16 *) p;
167	while (l-- > 0)
168		*wp++ = readw(a);
169}
170
171static inline void mcf_outsw(void *a, unsigned char *p, int l)
172{
173	u16 *wp = (u16 *) p;
174	while (l-- > 0)
175		writew(*wp++, a);
176}
177
178#define SMC_inw(a, r)		_swapw(readw((a) + (r)))
179#define SMC_outw(lp, v, a, r)	writew(_swapw(v), (a) + (r))
180#define SMC_insw(a, r, p, l)	mcf_insw(a + r, p, l)
181#define SMC_outsw(a, r, p, l)	mcf_outsw(a + r, p, l)
182
183#define SMC_IRQ_FLAGS		0
184
185#else
186
187/*
188 * Default configuration
189 */
190
191#define SMC_CAN_USE_8BIT	1
192#define SMC_CAN_USE_16BIT	1
193#define SMC_CAN_USE_32BIT	1
194#define SMC_NOWAIT		1
195
196#define SMC_IO_SHIFT		(lp->io_shift)
197
198#define SMC_inb(a, r)		ioread8((a) + (r))
199#define SMC_inw(a, r)		ioread16((a) + (r))
200#define SMC_inl(a, r)		ioread32((a) + (r))
201#define SMC_outb(v, a, r)	iowrite8(v, (a) + (r))
202#define SMC_outw(lp, v, a, r)	iowrite16(v, (a) + (r))
203#define SMC_outl(v, a, r)	iowrite32(v, (a) + (r))
204#define SMC_insw(a, r, p, l)	ioread16_rep((a) + (r), p, l)
205#define SMC_outsw(a, r, p, l)	iowrite16_rep((a) + (r), p, l)
206#define SMC_insl(a, r, p, l)	ioread32_rep((a) + (r), p, l)
207#define SMC_outsl(a, r, p, l)	iowrite32_rep((a) + (r), p, l)
208
209#define RPC_LSA_DEFAULT		RPC_LED_100_10
210#define RPC_LSB_DEFAULT		RPC_LED_TX_RX
211
212#endif
213
214
215/* store this information for the driver.. */
216struct smc_local {
217	/*
218	 * If I have to wait until memory is available to send a
219	 * packet, I will store the skbuff here, until I get the
220	 * desired memory.  Then, I'll send it out and free it.
221	 */
222	struct sk_buff *pending_tx_skb;
223	struct tasklet_struct tx_task;
224
225	struct gpio_desc *power_gpio;
226	struct gpio_desc *reset_gpio;
227
228	/* version/revision of the SMC91x chip */
229	int	version;
230
231	/* Contains the current active transmission mode */
232	int	tcr_cur_mode;
233
234	/* Contains the current active receive mode */
235	int	rcr_cur_mode;
236
237	/* Contains the current active receive/phy mode */
238	int	rpc_cur_mode;
239	int	ctl_rfduplx;
240	int	ctl_rspeed;
241
242	u32	msg_enable;
243	u32	phy_type;
244	struct mii_if_info mii;
245
246	/* work queue */
247	struct work_struct phy_configure;
248	struct net_device *dev;
249	int	work_pending;
250
251	spinlock_t lock;
252
253#ifdef CONFIG_ARCH_PXA
254	/* DMA needs the physical address of the chip */
255	u_long physaddr;
256	struct device *device;
257#endif
258	struct dma_chan *dma_chan;
259	void __iomem *base;
260	void __iomem *datacs;
261
262	/* the low address lines on some platforms aren't connected... */
263	int	io_shift;
264	/* on some platforms a u16 write must be 4-bytes aligned */
265	bool	half_word_align4;
266
267	struct smc91x_platdata cfg;
268};
269
270#define SMC_8BIT(p)	((p)->cfg.flags & SMC91X_USE_8BIT)
271#define SMC_16BIT(p)	((p)->cfg.flags & SMC91X_USE_16BIT)
272#define SMC_32BIT(p)	((p)->cfg.flags & SMC91X_USE_32BIT)
273
274#ifdef CONFIG_ARCH_PXA
275/*
276 * Let's use the DMA engine on the XScale PXA2xx for RX packets. This is
277 * always happening in irq context so no need to worry about races.  TX is
278 * different and probably not worth it for that reason, and not as critical
279 * as RX which can overrun memory and lose packets.
280 */
281#include <linux/dma-mapping.h>
282
283#ifdef SMC_insl
284#undef SMC_insl
285#define SMC_insl(a, r, p, l) \
286	smc_pxa_dma_insl(a, lp, r, dev->dma, p, l)
287static inline void
288smc_pxa_dma_inpump(struct smc_local *lp, u_char *buf, int len)
289{
290	dma_addr_t dmabuf;
291	struct dma_async_tx_descriptor *tx;
292	dma_cookie_t cookie;
293	enum dma_status status;
294	struct dma_tx_state state;
295
296	dmabuf = dma_map_single(lp->device, buf, len, DMA_FROM_DEVICE);
297	tx = dmaengine_prep_slave_single(lp->dma_chan, dmabuf, len,
298					 DMA_DEV_TO_MEM, 0);
299	if (tx) {
300		cookie = dmaengine_submit(tx);
301		dma_async_issue_pending(lp->dma_chan);
302		do {
303			status = dmaengine_tx_status(lp->dma_chan, cookie,
304						     &state);
305			cpu_relax();
306		} while (status != DMA_COMPLETE && status != DMA_ERROR &&
307			 state.residue);
308		dmaengine_terminate_all(lp->dma_chan);
309	}
310	dma_unmap_single(lp->device, dmabuf, len, DMA_FROM_DEVICE);
311}
312
313static inline void
314smc_pxa_dma_insl(void __iomem *ioaddr, struct smc_local *lp, int reg, int dma,
315		 u_char *buf, int len)
316{
317	struct dma_slave_config	config;
318	int ret;
319
320	/* fallback if no DMA available */
321	if (!lp->dma_chan) {
322		readsl(ioaddr + reg, buf, len);
323		return;
324	}
325
326	/* 64 bit alignment is required for memory to memory DMA */
327	if ((long)buf & 4) {
328		*((u32 *)buf) = SMC_inl(ioaddr, reg);
329		buf += 4;
330		len--;
331	}
332
333	memset(&config, 0, sizeof(config));
334	config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
335	config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
336	config.src_addr = lp->physaddr + reg;
337	config.dst_addr = lp->physaddr + reg;
338	config.src_maxburst = 32;
339	config.dst_maxburst = 32;
340	ret = dmaengine_slave_config(lp->dma_chan, &config);
341	if (ret) {
342		dev_err(lp->device, "dma channel configuration failed: %d\n",
343			ret);
344		return;
345	}
346
347	len *= 4;
348	smc_pxa_dma_inpump(lp, buf, len);
349}
350#endif
351
352#ifdef SMC_insw
353#undef SMC_insw
354#define SMC_insw(a, r, p, l) \
355	smc_pxa_dma_insw(a, lp, r, dev->dma, p, l)
356static inline void
357smc_pxa_dma_insw(void __iomem *ioaddr, struct smc_local *lp, int reg, int dma,
358		 u_char *buf, int len)
359{
360	struct dma_slave_config	config;
361	int ret;
362
363	/* fallback if no DMA available */
364	if (!lp->dma_chan) {
365		readsw(ioaddr + reg, buf, len);
366		return;
367	}
368
369	/* 64 bit alignment is required for memory to memory DMA */
370	while ((long)buf & 6) {
371		*((u16 *)buf) = SMC_inw(ioaddr, reg);
372		buf += 2;
373		len--;
374	}
375
376	memset(&config, 0, sizeof(config));
377	config.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
378	config.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
379	config.src_addr = lp->physaddr + reg;
380	config.dst_addr = lp->physaddr + reg;
381	config.src_maxburst = 32;
382	config.dst_maxburst = 32;
383	ret = dmaengine_slave_config(lp->dma_chan, &config);
384	if (ret) {
385		dev_err(lp->device, "dma channel configuration failed: %d\n",
386			ret);
387		return;
388	}
389
390	len *= 2;
391	smc_pxa_dma_inpump(lp, buf, len);
392}
393#endif
394
395#endif  /* CONFIG_ARCH_PXA */
396
397
398/*
399 * Everything a particular hardware setup needs should have been defined
400 * at this point.  Add stubs for the undefined cases, mainly to avoid
401 * compilation warnings since they'll be optimized away, or to prevent buggy
402 * use of them.
403 */
404
405#if ! SMC_CAN_USE_32BIT
406#define SMC_inl(ioaddr, reg)		({ BUG(); 0; })
407#define SMC_outl(x, ioaddr, reg)	BUG()
408#define SMC_insl(a, r, p, l)		BUG()
409#define SMC_outsl(a, r, p, l)		BUG()
410#endif
411
412#if !defined(SMC_insl) || !defined(SMC_outsl)
413#define SMC_insl(a, r, p, l)		BUG()
414#define SMC_outsl(a, r, p, l)		BUG()
415#endif
416
417#if ! SMC_CAN_USE_16BIT
418
419#define SMC_outw(lp, x, ioaddr, reg)	SMC_outw_b(x, ioaddr, reg)
420#define SMC_inw(ioaddr, reg)		SMC_inw_b(ioaddr, reg)
421#define SMC_insw(a, r, p, l)		BUG()
422#define SMC_outsw(a, r, p, l)		BUG()
423
424#endif
425
426#if !defined(SMC_insw) || !defined(SMC_outsw)
427#define SMC_insw(a, r, p, l)		BUG()
428#define SMC_outsw(a, r, p, l)		BUG()
429#endif
430
431#if ! SMC_CAN_USE_8BIT
432#undef SMC_inb
433#define SMC_inb(ioaddr, reg)		({ BUG(); 0; })
434#undef SMC_outb
435#define SMC_outb(x, ioaddr, reg)	BUG()
436#define SMC_insb(a, r, p, l)		BUG()
437#define SMC_outsb(a, r, p, l)		BUG()
438#endif
439
440#if !defined(SMC_insb) || !defined(SMC_outsb)
441#define SMC_insb(a, r, p, l)		BUG()
442#define SMC_outsb(a, r, p, l)		BUG()
443#endif
444
445#ifndef SMC_CAN_USE_DATACS
446#define SMC_CAN_USE_DATACS	0
447#endif
448
449#ifndef SMC_IO_SHIFT
450#define SMC_IO_SHIFT	0
451#endif
452
453#ifndef	SMC_IRQ_FLAGS
454#define	SMC_IRQ_FLAGS		IRQF_TRIGGER_RISING
455#endif
456
457#ifndef SMC_INTERRUPT_PREAMBLE
458#define SMC_INTERRUPT_PREAMBLE
459#endif
460
461
462/* Because of bank switching, the LAN91x uses only 16 I/O ports */
463#define SMC_IO_EXTENT	(16 << SMC_IO_SHIFT)
464#define SMC_DATA_EXTENT (4)
465
466/*
467 . Bank Select Register:
468 .
469 .		yyyy yyyy 0000 00xx
470 .		xx 		= bank number
471 .		yyyy yyyy	= 0x33, for identification purposes.
472*/
473#define BANK_SELECT		(14 << SMC_IO_SHIFT)
474
475
476// Transmit Control Register
477/* BANK 0  */
478#define TCR_REG(lp) 	SMC_REG(lp, 0x0000, 0)
479#define TCR_ENABLE	0x0001	// When 1 we can transmit
480#define TCR_LOOP	0x0002	// Controls output pin LBK
481#define TCR_FORCOL	0x0004	// When 1 will force a collision
482#define TCR_PAD_EN	0x0080	// When 1 will pad tx frames < 64 bytes w/0
483#define TCR_NOCRC	0x0100	// When 1 will not append CRC to tx frames
484#define TCR_MON_CSN	0x0400	// When 1 tx monitors carrier
485#define TCR_FDUPLX    	0x0800  // When 1 enables full duplex operation
486#define TCR_STP_SQET	0x1000	// When 1 stops tx if Signal Quality Error
487#define TCR_EPH_LOOP	0x2000	// When 1 enables EPH block loopback
488#define TCR_SWFDUP	0x8000	// When 1 enables Switched Full Duplex mode
489
490#define TCR_CLEAR	0	/* do NOTHING */
491/* the default settings for the TCR register : */
492#define TCR_DEFAULT	(TCR_ENABLE | TCR_PAD_EN)
493
494
495// EPH Status Register
496/* BANK 0  */
497#define EPH_STATUS_REG(lp)	SMC_REG(lp, 0x0002, 0)
498#define ES_TX_SUC	0x0001	// Last TX was successful
499#define ES_SNGL_COL	0x0002	// Single collision detected for last tx
500#define ES_MUL_COL	0x0004	// Multiple collisions detected for last tx
501#define ES_LTX_MULT	0x0008	// Last tx was a multicast
502#define ES_16COL	0x0010	// 16 Collisions Reached
503#define ES_SQET		0x0020	// Signal Quality Error Test
504#define ES_LTXBRD	0x0040	// Last tx was a broadcast
505#define ES_TXDEFR	0x0080	// Transmit Deferred
506#define ES_LATCOL	0x0200	// Late collision detected on last tx
507#define ES_LOSTCARR	0x0400	// Lost Carrier Sense
508#define ES_EXC_DEF	0x0800	// Excessive Deferral
509#define ES_CTR_ROL	0x1000	// Counter Roll Over indication
510#define ES_LINK_OK	0x4000	// Driven by inverted value of nLNK pin
511#define ES_TXUNRN	0x8000	// Tx Underrun
512
513
514// Receive Control Register
515/* BANK 0  */
516#define RCR_REG(lp)		SMC_REG(lp, 0x0004, 0)
517#define RCR_RX_ABORT	0x0001	// Set if a rx frame was aborted
518#define RCR_PRMS	0x0002	// Enable promiscuous mode
519#define RCR_ALMUL	0x0004	// When set accepts all multicast frames
520#define RCR_RXEN	0x0100	// IFF this is set, we can receive packets
521#define RCR_STRIP_CRC	0x0200	// When set strips CRC from rx packets
522#define RCR_ABORT_ENB	0x0200	// When set will abort rx on collision
523#define RCR_FILT_CAR	0x0400	// When set filters leading 12 bit s of carrier
524#define RCR_SOFTRST	0x8000 	// resets the chip
525
526/* the normal settings for the RCR register : */
527#define RCR_DEFAULT	(RCR_STRIP_CRC | RCR_RXEN)
528#define RCR_CLEAR	0x0	// set it to a base state
529
530
531// Counter Register
532/* BANK 0  */
533#define COUNTER_REG(lp)	SMC_REG(lp, 0x0006, 0)
534
535
536// Memory Information Register
537/* BANK 0  */
538#define MIR_REG(lp)		SMC_REG(lp, 0x0008, 0)
539
540
541// Receive/Phy Control Register
542/* BANK 0  */
543#define RPC_REG(lp)		SMC_REG(lp, 0x000A, 0)
544#define RPC_SPEED	0x2000	// When 1 PHY is in 100Mbps mode.
545#define RPC_DPLX	0x1000	// When 1 PHY is in Full-Duplex Mode
546#define RPC_ANEG	0x0800	// When 1 PHY is in Auto-Negotiate Mode
547#define RPC_LSXA_SHFT	5	// Bits to shift LS2A,LS1A,LS0A to lsb
548#define RPC_LSXB_SHFT	2	// Bits to get LS2B,LS1B,LS0B to lsb
549
550#ifndef RPC_LSA_DEFAULT
551#define RPC_LSA_DEFAULT	RPC_LED_100
552#endif
553#ifndef RPC_LSB_DEFAULT
554#define RPC_LSB_DEFAULT RPC_LED_FD
555#endif
556
557#define RPC_DEFAULT (RPC_ANEG | RPC_SPEED | RPC_DPLX)
558
559
560/* Bank 0 0x0C is reserved */
561
562// Bank Select Register
563/* All Banks */
564#define BSR_REG		0x000E
565
566
567// Configuration Reg
568/* BANK 1 */
569#define CONFIG_REG(lp)	SMC_REG(lp, 0x0000,	1)
570#define CONFIG_EXT_PHY	0x0200	// 1=external MII, 0=internal Phy
571#define CONFIG_GPCNTRL	0x0400	// Inverse value drives pin nCNTRL
572#define CONFIG_NO_WAIT	0x1000	// When 1 no extra wait states on ISA bus
573#define CONFIG_EPH_POWER_EN 0x8000 // When 0 EPH is placed into low power mode.
574
575// Default is powered-up, Internal Phy, Wait States, and pin nCNTRL=low
576#define CONFIG_DEFAULT	(CONFIG_EPH_POWER_EN)
577
578
579// Base Address Register
580/* BANK 1 */
581#define BASE_REG(lp)	SMC_REG(lp, 0x0002, 1)
582
583
584// Individual Address Registers
585/* BANK 1 */
586#define ADDR0_REG(lp)	SMC_REG(lp, 0x0004, 1)
587#define ADDR1_REG(lp)	SMC_REG(lp, 0x0006, 1)
588#define ADDR2_REG(lp)	SMC_REG(lp, 0x0008, 1)
589
590
591// General Purpose Register
592/* BANK 1 */
593#define GP_REG(lp)		SMC_REG(lp, 0x000A, 1)
594
595
596// Control Register
597/* BANK 1 */
598#define CTL_REG(lp)		SMC_REG(lp, 0x000C, 1)
599#define CTL_RCV_BAD	0x4000 // When 1 bad CRC packets are received
600#define CTL_AUTO_RELEASE 0x0800 // When 1 tx pages are released automatically
601#define CTL_LE_ENABLE	0x0080 // When 1 enables Link Error interrupt
602#define CTL_CR_ENABLE	0x0040 // When 1 enables Counter Rollover interrupt
603#define CTL_TE_ENABLE	0x0020 // When 1 enables Transmit Error interrupt
604#define CTL_EEPROM_SELECT 0x0004 // Controls EEPROM reload & store
605#define CTL_RELOAD	0x0002 // When set reads EEPROM into registers
606#define CTL_STORE	0x0001 // When set stores registers into EEPROM
607
608
609// MMU Command Register
610/* BANK 2 */
611#define MMU_CMD_REG(lp)	SMC_REG(lp, 0x0000, 2)
612#define MC_BUSY		1	// When 1 the last release has not completed
613#define MC_NOP		(0<<5)	// No Op
614#define MC_ALLOC	(1<<5) 	// OR with number of 256 byte packets
615#define MC_RESET	(2<<5)	// Reset MMU to initial state
616#define MC_REMOVE	(3<<5) 	// Remove the current rx packet
617#define MC_RELEASE  	(4<<5) 	// Remove and release the current rx packet
618#define MC_FREEPKT  	(5<<5) 	// Release packet in PNR register
619#define MC_ENQUEUE	(6<<5)	// Enqueue the packet for transmit
620#define MC_RSTTXFIFO	(7<<5)	// Reset the TX FIFOs
621
622
623// Packet Number Register
624/* BANK 2 */
625#define PN_REG(lp)		SMC_REG(lp, 0x0002, 2)
626
627
628// Allocation Result Register
629/* BANK 2 */
630#define AR_REG(lp)		SMC_REG(lp, 0x0003, 2)
631#define AR_FAILED	0x80	// Alocation Failed
632
633
634// TX FIFO Ports Register
635/* BANK 2 */
636#define TXFIFO_REG(lp)	SMC_REG(lp, 0x0004, 2)
637#define TXFIFO_TEMPTY	0x80	// TX FIFO Empty
638
639// RX FIFO Ports Register
640/* BANK 2 */
641#define RXFIFO_REG(lp)	SMC_REG(lp, 0x0005, 2)
642#define RXFIFO_REMPTY	0x80	// RX FIFO Empty
643
644#define FIFO_REG(lp)	SMC_REG(lp, 0x0004, 2)
645
646// Pointer Register
647/* BANK 2 */
648#define PTR_REG(lp)		SMC_REG(lp, 0x0006, 2)
649#define PTR_RCV		0x8000 // 1=Receive area, 0=Transmit area
650#define PTR_AUTOINC 	0x4000 // Auto increment the pointer on each access
651#define PTR_READ	0x2000 // When 1 the operation is a read
652
653
654// Data Register
655/* BANK 2 */
656#define DATA_REG(lp)	SMC_REG(lp, 0x0008, 2)
657
658
659// Interrupt Status/Acknowledge Register
660/* BANK 2 */
661#define INT_REG(lp)		SMC_REG(lp, 0x000C, 2)
662
663
664// Interrupt Mask Register
665/* BANK 2 */
666#define IM_REG(lp)		SMC_REG(lp, 0x000D, 2)
667#define IM_MDINT	0x80 // PHY MI Register 18 Interrupt
668#define IM_ERCV_INT	0x40 // Early Receive Interrupt
669#define IM_EPH_INT	0x20 // Set by Ethernet Protocol Handler section
670#define IM_RX_OVRN_INT	0x10 // Set by Receiver Overruns
671#define IM_ALLOC_INT	0x08 // Set when allocation request is completed
672#define IM_TX_EMPTY_INT	0x04 // Set if the TX FIFO goes empty
673#define IM_TX_INT	0x02 // Transmit Interrupt
674#define IM_RCV_INT	0x01 // Receive Interrupt
675
676
677// Multicast Table Registers
678/* BANK 3 */
679#define MCAST_REG1(lp)	SMC_REG(lp, 0x0000, 3)
680#define MCAST_REG2(lp)	SMC_REG(lp, 0x0002, 3)
681#define MCAST_REG3(lp)	SMC_REG(lp, 0x0004, 3)
682#define MCAST_REG4(lp)	SMC_REG(lp, 0x0006, 3)
683
684
685// Management Interface Register (MII)
686/* BANK 3 */
687#define MII_REG(lp)		SMC_REG(lp, 0x0008, 3)
688#define MII_MSK_CRS100	0x4000 // Disables CRS100 detection during tx half dup
689#define MII_MDOE	0x0008 // MII Output Enable
690#define MII_MCLK	0x0004 // MII Clock, pin MDCLK
691#define MII_MDI		0x0002 // MII Input, pin MDI
692#define MII_MDO		0x0001 // MII Output, pin MDO
693
694
695// Revision Register
696/* BANK 3 */
697/* ( hi: chip id   low: rev # ) */
698#define REV_REG(lp)		SMC_REG(lp, 0x000A, 3)
699
700
701// Early RCV Register
702/* BANK 3 */
703/* this is NOT on SMC9192 */
704#define ERCV_REG(lp)	SMC_REG(lp, 0x000C, 3)
705#define ERCV_RCV_DISCRD	0x0080 // When 1 discards a packet being received
706#define ERCV_THRESHOLD	0x001F // ERCV Threshold Mask
707
708
709// External Register
710/* BANK 7 */
711#define EXT_REG(lp)		SMC_REG(lp, 0x0000, 7)
712
713
714#define CHIP_9192	3
715#define CHIP_9194	4
716#define CHIP_9195	5
717#define CHIP_9196	6
718#define CHIP_91100	7
719#define CHIP_91100FD	8
720#define CHIP_91111FD	9
721
722static const char * chip_ids[ 16 ] =  {
723	NULL, NULL, NULL,
724	/* 3 */ "SMC91C90/91C92",
725	/* 4 */ "SMC91C94",
726	/* 5 */ "SMC91C95",
727	/* 6 */ "SMC91C96",
728	/* 7 */ "SMC91C100",
729	/* 8 */ "SMC91C100FD",
730	/* 9 */ "SMC91C11xFD",
731	NULL, NULL, NULL,
732	NULL, NULL, NULL};
733
734
735/*
736 . Receive status bits
737*/
738#define RS_ALGNERR	0x8000
739#define RS_BRODCAST	0x4000
740#define RS_BADCRC	0x2000
741#define RS_ODDFRAME	0x1000
742#define RS_TOOLONG	0x0800
743#define RS_TOOSHORT	0x0400
744#define RS_MULTICAST	0x0001
745#define RS_ERRORS	(RS_ALGNERR | RS_BADCRC | RS_TOOLONG | RS_TOOSHORT)
746
747
748/*
749 * PHY IDs
750 *  LAN83C183 == LAN91C111 Internal PHY
751 */
752#define PHY_LAN83C183	0x0016f840
753#define PHY_LAN83C180	0x02821c50
754
755/*
756 * PHY Register Addresses (LAN91C111 Internal PHY)
757 *
758 * Generic PHY registers can be found in <linux/mii.h>
759 *
760 * These phy registers are specific to our on-board phy.
761 */
762
763// PHY Configuration Register 1
764#define PHY_CFG1_REG		0x10
765#define PHY_CFG1_LNKDIS		0x8000	// 1=Rx Link Detect Function disabled
766#define PHY_CFG1_XMTDIS		0x4000	// 1=TP Transmitter Disabled
767#define PHY_CFG1_XMTPDN		0x2000	// 1=TP Transmitter Powered Down
768#define PHY_CFG1_BYPSCR		0x0400	// 1=Bypass scrambler/descrambler
769#define PHY_CFG1_UNSCDS		0x0200	// 1=Unscramble Idle Reception Disable
770#define PHY_CFG1_EQLZR		0x0100	// 1=Rx Equalizer Disabled
771#define PHY_CFG1_CABLE		0x0080	// 1=STP(150ohm), 0=UTP(100ohm)
772#define PHY_CFG1_RLVL0		0x0040	// 1=Rx Squelch level reduced by 4.5db
773#define PHY_CFG1_TLVL_SHIFT	2	// Transmit Output Level Adjust
774#define PHY_CFG1_TLVL_MASK	0x003C
775#define PHY_CFG1_TRF_MASK	0x0003	// Transmitter Rise/Fall time
776
777
778// PHY Configuration Register 2
779#define PHY_CFG2_REG		0x11
780#define PHY_CFG2_APOLDIS	0x0020	// 1=Auto Polarity Correction disabled
781#define PHY_CFG2_JABDIS		0x0010	// 1=Jabber disabled
782#define PHY_CFG2_MREG		0x0008	// 1=Multiple register access (MII mgt)
783#define PHY_CFG2_INTMDIO	0x0004	// 1=Interrupt signaled with MDIO pulseo
784
785// PHY Status Output (and Interrupt status) Register
786#define PHY_INT_REG		0x12	// Status Output (Interrupt Status)
787#define PHY_INT_INT		0x8000	// 1=bits have changed since last read
788#define PHY_INT_LNKFAIL		0x4000	// 1=Link Not detected
789#define PHY_INT_LOSSSYNC	0x2000	// 1=Descrambler has lost sync
790#define PHY_INT_CWRD		0x1000	// 1=Invalid 4B5B code detected on rx
791#define PHY_INT_SSD		0x0800	// 1=No Start Of Stream detected on rx
792#define PHY_INT_ESD		0x0400	// 1=No End Of Stream detected on rx
793#define PHY_INT_RPOL		0x0200	// 1=Reverse Polarity detected
794#define PHY_INT_JAB		0x0100	// 1=Jabber detected
795#define PHY_INT_SPDDET		0x0080	// 1=100Base-TX mode, 0=10Base-T mode
796#define PHY_INT_DPLXDET		0x0040	// 1=Device in Full Duplex
797
798// PHY Interrupt/Status Mask Register
799#define PHY_MASK_REG		0x13	// Interrupt Mask
800// Uses the same bit definitions as PHY_INT_REG
801
802
803/*
804 * SMC91C96 ethernet config and status registers.
805 * These are in the "attribute" space.
806 */
807#define ECOR			0x8000
808#define ECOR_RESET		0x80
809#define ECOR_LEVEL_IRQ		0x40
810#define ECOR_WR_ATTRIB		0x04
811#define ECOR_ENABLE		0x01
812
813#define ECSR			0x8002
814#define ECSR_IOIS8		0x20
815#define ECSR_PWRDWN		0x04
816#define ECSR_INT		0x02
817
818#define ATTRIB_SIZE		((64*1024) << SMC_IO_SHIFT)
819
820
821/*
822 * Macros to abstract register access according to the data bus
823 * capabilities.  Please use those and not the in/out primitives.
824 * Note: the following macros do *not* select the bank -- this must
825 * be done separately as needed in the main code.  The SMC_REG() macro
826 * only uses the bank argument for debugging purposes (when enabled).
827 *
828 * Note: despite inline functions being safer, everything leading to this
829 * should preferably be macros to let BUG() display the line number in
830 * the core source code since we're interested in the top call site
831 * not in any inline function location.
832 */
833
834#if SMC_DEBUG > 0
835#define SMC_REG(lp, reg, bank)					\
836	({								\
837		int __b = SMC_CURRENT_BANK(lp);			\
838		if (unlikely((__b & ~0xf0) != (0x3300 | bank))) {	\
839			pr_err("%s: bank reg screwed (0x%04x)\n",	\
840			       CARDNAME, __b);				\
841			BUG();						\
842		}							\
843		reg<<SMC_IO_SHIFT;					\
844	})
845#else
846#define SMC_REG(lp, reg, bank)	(reg<<SMC_IO_SHIFT)
847#endif
848
849/*
850 * Hack Alert: Some setups just can't write 8 or 16 bits reliably when not
851 * aligned to a 32 bit boundary.  I tell you that does exist!
852 * Fortunately the affected register accesses can be easily worked around
853 * since we can write zeroes to the preceding 16 bits without adverse
854 * effects and use a 32-bit access.
855 *
856 * Enforce it on any 32-bit capable setup for now.
857 */
858#define SMC_MUST_ALIGN_WRITE(lp)	SMC_32BIT(lp)
859
860#define SMC_GET_PN(lp)						\
861	(SMC_8BIT(lp)	? (SMC_inb(ioaddr, PN_REG(lp)))	\
862				: (SMC_inw(ioaddr, PN_REG(lp)) & 0xFF))
863
864#define SMC_SET_PN(lp, x)						\
865	do {								\
866		if (SMC_MUST_ALIGN_WRITE(lp))				\
867			SMC_outl((x)<<16, ioaddr, SMC_REG(lp, 0, 2));	\
868		else if (SMC_8BIT(lp))				\
869			SMC_outb(x, ioaddr, PN_REG(lp));		\
870		else							\
871			SMC_outw(lp, x, ioaddr, PN_REG(lp));		\
872	} while (0)
873
874#define SMC_GET_AR(lp)						\
875	(SMC_8BIT(lp)	? (SMC_inb(ioaddr, AR_REG(lp)))	\
876				: (SMC_inw(ioaddr, PN_REG(lp)) >> 8))
877
878#define SMC_GET_TXFIFO(lp)						\
879	(SMC_8BIT(lp)	? (SMC_inb(ioaddr, TXFIFO_REG(lp)))	\
880				: (SMC_inw(ioaddr, TXFIFO_REG(lp)) & 0xFF))
881
882#define SMC_GET_RXFIFO(lp)						\
883	(SMC_8BIT(lp)	? (SMC_inb(ioaddr, RXFIFO_REG(lp)))	\
884				: (SMC_inw(ioaddr, TXFIFO_REG(lp)) >> 8))
885
886#define SMC_GET_INT(lp)						\
887	(SMC_8BIT(lp)	? (SMC_inb(ioaddr, INT_REG(lp)))	\
888				: (SMC_inw(ioaddr, INT_REG(lp)) & 0xFF))
889
890#define SMC_ACK_INT(lp, x)						\
891	do {								\
892		if (SMC_8BIT(lp))					\
893			SMC_outb(x, ioaddr, INT_REG(lp));		\
894		else {							\
895			unsigned long __flags;				\
896			int __mask;					\
897			local_irq_save(__flags);			\
898			__mask = SMC_inw(ioaddr, INT_REG(lp)) & ~0xff; \
899			SMC_outw(lp, __mask | (x), ioaddr, INT_REG(lp)); \
900			local_irq_restore(__flags);			\
901		}							\
902	} while (0)
903
904#define SMC_GET_INT_MASK(lp)						\
905	(SMC_8BIT(lp)	? (SMC_inb(ioaddr, IM_REG(lp)))	\
906				: (SMC_inw(ioaddr, INT_REG(lp)) >> 8))
907
908#define SMC_SET_INT_MASK(lp, x)					\
909	do {								\
910		if (SMC_8BIT(lp))					\
911			SMC_outb(x, ioaddr, IM_REG(lp));		\
912		else							\
913			SMC_outw(lp, (x) << 8, ioaddr, INT_REG(lp));	\
914	} while (0)
915
916#define SMC_CURRENT_BANK(lp)	SMC_inw(ioaddr, BANK_SELECT)
917
918#define SMC_SELECT_BANK(lp, x)					\
919	do {								\
920		if (SMC_MUST_ALIGN_WRITE(lp))				\
921			SMC_outl((x)<<16, ioaddr, 12<<SMC_IO_SHIFT);	\
922		else							\
923			SMC_outw(lp, x, ioaddr, BANK_SELECT);		\
924	} while (0)
925
926#define SMC_GET_BASE(lp)		SMC_inw(ioaddr, BASE_REG(lp))
927
928#define SMC_SET_BASE(lp, x)	SMC_outw(lp, x, ioaddr, BASE_REG(lp))
929
930#define SMC_GET_CONFIG(lp)	SMC_inw(ioaddr, CONFIG_REG(lp))
931
932#define SMC_SET_CONFIG(lp, x)	SMC_outw(lp, x, ioaddr, CONFIG_REG(lp))
933
934#define SMC_GET_COUNTER(lp)	SMC_inw(ioaddr, COUNTER_REG(lp))
935
936#define SMC_GET_CTL(lp)		SMC_inw(ioaddr, CTL_REG(lp))
937
938#define SMC_SET_CTL(lp, x)	SMC_outw(lp, x, ioaddr, CTL_REG(lp))
939
940#define SMC_GET_MII(lp)		SMC_inw(ioaddr, MII_REG(lp))
941
942#define SMC_GET_GP(lp)		SMC_inw(ioaddr, GP_REG(lp))
943
944#define SMC_SET_GP(lp, x)						\
945	do {								\
946		if (SMC_MUST_ALIGN_WRITE(lp))				\
947			SMC_outl((x)<<16, ioaddr, SMC_REG(lp, 8, 1));	\
948		else							\
949			SMC_outw(lp, x, ioaddr, GP_REG(lp));		\
950	} while (0)
951
952#define SMC_SET_MII(lp, x)	SMC_outw(lp, x, ioaddr, MII_REG(lp))
953
954#define SMC_GET_MIR(lp)		SMC_inw(ioaddr, MIR_REG(lp))
955
956#define SMC_SET_MIR(lp, x)	SMC_outw(lp, x, ioaddr, MIR_REG(lp))
957
958#define SMC_GET_MMU_CMD(lp)	SMC_inw(ioaddr, MMU_CMD_REG(lp))
959
960#define SMC_SET_MMU_CMD(lp, x)	SMC_outw(lp, x, ioaddr, MMU_CMD_REG(lp))
961
962#define SMC_GET_FIFO(lp)	SMC_inw(ioaddr, FIFO_REG(lp))
963
964#define SMC_GET_PTR(lp)		SMC_inw(ioaddr, PTR_REG(lp))
965
966#define SMC_SET_PTR(lp, x)						\
967	do {								\
968		if (SMC_MUST_ALIGN_WRITE(lp))				\
969			SMC_outl((x)<<16, ioaddr, SMC_REG(lp, 4, 2));	\
970		else							\
971			SMC_outw(lp, x, ioaddr, PTR_REG(lp));		\
972	} while (0)
973
974#define SMC_GET_EPH_STATUS(lp)	SMC_inw(ioaddr, EPH_STATUS_REG(lp))
975
976#define SMC_GET_RCR(lp)		SMC_inw(ioaddr, RCR_REG(lp))
977
978#define SMC_SET_RCR(lp, x)		SMC_outw(lp, x, ioaddr, RCR_REG(lp))
979
980#define SMC_GET_REV(lp)		SMC_inw(ioaddr, REV_REG(lp))
981
982#define SMC_GET_RPC(lp)		SMC_inw(ioaddr, RPC_REG(lp))
983
984#define SMC_SET_RPC(lp, x)						\
985	do {								\
986		if (SMC_MUST_ALIGN_WRITE(lp))				\
987			SMC_outl((x)<<16, ioaddr, SMC_REG(lp, 8, 0));	\
988		else							\
989			SMC_outw(lp, x, ioaddr, RPC_REG(lp));		\
990	} while (0)
991
992#define SMC_GET_TCR(lp)		SMC_inw(ioaddr, TCR_REG(lp))
993
994#define SMC_SET_TCR(lp, x)	SMC_outw(lp, x, ioaddr, TCR_REG(lp))
995
996#ifndef SMC_GET_MAC_ADDR
997#define SMC_GET_MAC_ADDR(lp, addr)					\
998	do {								\
999		unsigned int __v;					\
1000		__v = SMC_inw(ioaddr, ADDR0_REG(lp));			\
1001		addr[0] = __v; addr[1] = __v >> 8;			\
1002		__v = SMC_inw(ioaddr, ADDR1_REG(lp));			\
1003		addr[2] = __v; addr[3] = __v >> 8;			\
1004		__v = SMC_inw(ioaddr, ADDR2_REG(lp));			\
1005		addr[4] = __v; addr[5] = __v >> 8;			\
1006	} while (0)
1007#endif
1008
1009#define SMC_SET_MAC_ADDR(lp, addr)					\
1010	do {								\
1011		SMC_outw(lp, addr[0] | (addr[1] << 8), ioaddr, ADDR0_REG(lp)); \
1012		SMC_outw(lp, addr[2] | (addr[3] << 8), ioaddr, ADDR1_REG(lp)); \
1013		SMC_outw(lp, addr[4] | (addr[5] << 8), ioaddr, ADDR2_REG(lp)); \
1014	} while (0)
1015
1016#define SMC_SET_MCAST(lp, x)						\
1017	do {								\
1018		const unsigned char *mt = (x);				\
1019		SMC_outw(lp, mt[0] | (mt[1] << 8), ioaddr, MCAST_REG1(lp)); \
1020		SMC_outw(lp, mt[2] | (mt[3] << 8), ioaddr, MCAST_REG2(lp)); \
1021		SMC_outw(lp, mt[4] | (mt[5] << 8), ioaddr, MCAST_REG3(lp)); \
1022		SMC_outw(lp, mt[6] | (mt[7] << 8), ioaddr, MCAST_REG4(lp)); \
1023	} while (0)
1024
1025#define SMC_PUT_PKT_HDR(lp, status, length)				\
1026	do {								\
1027		if (SMC_32BIT(lp))					\
1028			SMC_outl((status) | (length)<<16, ioaddr,	\
1029				 DATA_REG(lp));			\
1030		else {							\
1031			SMC_outw(lp, status, ioaddr, DATA_REG(lp));	\
1032			SMC_outw(lp, length, ioaddr, DATA_REG(lp));	\
1033		}							\
1034	} while (0)
1035
1036#define SMC_GET_PKT_HDR(lp, status, length)				\
1037	do {								\
1038		if (SMC_32BIT(lp)) {				\
1039			unsigned int __val = SMC_inl(ioaddr, DATA_REG(lp)); \
1040			(status) = __val & 0xffff;			\
1041			(length) = __val >> 16;				\
1042		} else {						\
1043			(status) = SMC_inw(ioaddr, DATA_REG(lp));	\
1044			(length) = SMC_inw(ioaddr, DATA_REG(lp));	\
1045		}							\
1046	} while (0)
1047
1048#define SMC_PUSH_DATA(lp, p, l)					\
1049	do {								\
1050		if (SMC_32BIT(lp)) {				\
1051			void *__ptr = (p);				\
1052			int __len = (l);				\
1053			void __iomem *__ioaddr = ioaddr;		\
1054			if (__len >= 2 && (unsigned long)__ptr & 2) {	\
1055				__len -= 2;				\
1056				SMC_outsw(ioaddr, DATA_REG(lp), __ptr, 1); \
1057				__ptr += 2;				\
1058			}						\
1059			if (SMC_CAN_USE_DATACS && lp->datacs)		\
1060				__ioaddr = lp->datacs;			\
1061			SMC_outsl(__ioaddr, DATA_REG(lp), __ptr, __len>>2); \
1062			if (__len & 2) {				\
1063				__ptr += (__len & ~3);			\
1064				SMC_outsw(ioaddr, DATA_REG(lp), __ptr, 1); \
1065			}						\
1066		} else if (SMC_16BIT(lp))				\
1067			SMC_outsw(ioaddr, DATA_REG(lp), p, (l) >> 1);	\
1068		else if (SMC_8BIT(lp))				\
1069			SMC_outsb(ioaddr, DATA_REG(lp), p, l);	\
1070	} while (0)
1071
1072#define SMC_PULL_DATA(lp, p, l)					\
1073	do {								\
1074		if (SMC_32BIT(lp)) {				\
1075			void *__ptr = (p);				\
1076			int __len = (l);				\
1077			void __iomem *__ioaddr = ioaddr;		\
1078			if ((unsigned long)__ptr & 2) {			\
1079				/*					\
1080				 * We want 32bit alignment here.	\
1081				 * Since some buses perform a full	\
1082				 * 32bit fetch even for 16bit data	\
1083				 * we can't use SMC_inw() here.		\
1084				 * Back both source (on-chip) and	\
1085				 * destination pointers of 2 bytes.	\
1086				 * This is possible since the call to	\
1087				 * SMC_GET_PKT_HDR() already advanced	\
1088				 * the source pointer of 4 bytes, and	\
1089				 * the skb_reserve(skb, 2) advanced	\
1090				 * the destination pointer of 2 bytes.	\
1091				 */					\
1092				__ptr -= 2;				\
1093				__len += 2;				\
1094				SMC_SET_PTR(lp,			\
1095					2|PTR_READ|PTR_RCV|PTR_AUTOINC); \
1096			}						\
1097			if (SMC_CAN_USE_DATACS && lp->datacs)		\
1098				__ioaddr = lp->datacs;			\
1099			__len += 2;					\
1100			SMC_insl(__ioaddr, DATA_REG(lp), __ptr, __len>>2); \
1101		} else if (SMC_16BIT(lp))				\
1102			SMC_insw(ioaddr, DATA_REG(lp), p, (l) >> 1);	\
1103		else if (SMC_8BIT(lp))				\
1104			SMC_insb(ioaddr, DATA_REG(lp), p, l);		\
1105	} while (0)
1106
1107#endif  /* _SMC91X_H_ */
1108