1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * smc91x.c
4 * This is a driver for SMSC's 91C9x/91C1xx single-chip Ethernet devices.
5 *
6 * Copyright (C) 1996 by Erik Stahlman
7 * Copyright (C) 2001 Standard Microsystems Corporation
8 *	Developed by Simple Network Magic Corporation
9 * Copyright (C) 2003 Monta Vista Software, Inc.
10 *	Unified SMC91x driver by Nicolas Pitre
11 *
12 * Arguments:
13 * 	io	= for the base address
14 *	irq	= for the IRQ
15 *	nowait	= 0 for normal wait states, 1 eliminates additional wait states
16 *
17 * original author:
18 * 	Erik Stahlman <erik@vt.edu>
19 *
20 * hardware multicast code:
21 *    Peter Cammaert <pc@denkart.be>
22 *
23 * contributors:
24 * 	Daris A Nevil <dnevil@snmc.com>
25 *      Nicolas Pitre <nico@fluxnic.net>
26 *	Russell King <rmk@arm.linux.org.uk>
27 *
28 * History:
29 *   08/20/00  Arnaldo Melo       fix kfree(skb) in smc_hardware_send_packet
30 *   12/15/00  Christian Jullien  fix "Warning: kfree_skb on hard IRQ"
31 *   03/16/01  Daris A Nevil      modified smc9194.c for use with LAN91C111
32 *   08/22/01  Scott Anderson     merge changes from smc9194 to smc91111
33 *   08/21/01  Pramod B Bhardwaj  added support for RevB of LAN91C111
34 *   12/20/01  Jeff Sutherland    initial port to Xscale PXA with DMA support
35 *   04/07/03  Nicolas Pitre      unified SMC91x driver, killed irq races,
36 *                                more bus abstraction, big cleanup, etc.
37 *   29/09/03  Russell King       - add driver model support
38 *                                - ethtool support
39 *                                - convert to use generic MII interface
40 *                                - add link up/down notification
41 *                                - don't try to handle full negotiation in
42 *                                  smc_phy_configure
43 *                                - clean up (and fix stack overrun) in PHY
44 *                                  MII read/write functions
45 *   22/09/04  Nicolas Pitre      big update (see commit log for details)
46 */
47static const char version[] =
48	"smc91x.c: v1.1, sep 22 2004 by Nicolas Pitre <nico@fluxnic.net>";
49
50/* Debugging level */
51#ifndef SMC_DEBUG
52#define SMC_DEBUG		0
53#endif
54
55
56#include <linux/module.h>
57#include <linux/kernel.h>
58#include <linux/sched.h>
59#include <linux/delay.h>
60#include <linux/gpio/consumer.h>
61#include <linux/interrupt.h>
62#include <linux/irq.h>
63#include <linux/errno.h>
64#include <linux/ioport.h>
65#include <linux/crc32.h>
66#include <linux/platform_device.h>
67#include <linux/spinlock.h>
68#include <linux/ethtool.h>
69#include <linux/mii.h>
70#include <linux/workqueue.h>
71#include <linux/of.h>
72#include <linux/of_device.h>
73
74#include <linux/netdevice.h>
75#include <linux/etherdevice.h>
76#include <linux/skbuff.h>
77
78#include <asm/io.h>
79
80#include "smc91x.h"
81
82#if defined(CONFIG_ASSABET_NEPONSET)
83#include <mach/assabet.h>
84#include <mach/neponset.h>
85#endif
86
87#ifndef SMC_NOWAIT
88# define SMC_NOWAIT		0
89#endif
90static int nowait = SMC_NOWAIT;
91module_param(nowait, int, 0400);
92MODULE_PARM_DESC(nowait, "set to 1 for no wait state");
93
94/*
95 * Transmit timeout, default 5 seconds.
96 */
97static int watchdog = 1000;
98module_param(watchdog, int, 0400);
99MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");
100
101MODULE_LICENSE("GPL");
102MODULE_ALIAS("platform:smc91x");
103
104/*
105 * The internal workings of the driver.  If you are changing anything
106 * here with the SMC stuff, you should have the datasheet and know
107 * what you are doing.
108 */
109#define CARDNAME "smc91x"
110
111/*
112 * Use power-down feature of the chip
113 */
114#define POWER_DOWN		1
115
116/*
117 * Wait time for memory to be free.  This probably shouldn't be
118 * tuned that much, as waiting for this means nothing else happens
119 * in the system
120 */
121#define MEMORY_WAIT_TIME	16
122
123/*
124 * The maximum number of processing loops allowed for each call to the
125 * IRQ handler.
126 */
127#define MAX_IRQ_LOOPS		8
128
129/*
130 * This selects whether TX packets are sent one by one to the SMC91x internal
131 * memory and throttled until transmission completes.  This may prevent
132 * RX overruns a litle by keeping much of the memory free for RX packets
133 * but to the expense of reduced TX throughput and increased IRQ overhead.
134 * Note this is not a cure for a too slow data bus or too high IRQ latency.
135 */
136#define THROTTLE_TX_PKTS	0
137
138/*
139 * The MII clock high/low times.  2x this number gives the MII clock period
140 * in microseconds. (was 50, but this gives 6.4ms for each MII transaction!)
141 */
142#define MII_DELAY		1
143
144#define DBG(n, dev, fmt, ...)					\
145	do {							\
146		if (SMC_DEBUG >= (n))				\
147			netdev_dbg(dev, fmt, ##__VA_ARGS__);	\
148	} while (0)
149
150#define PRINTK(dev, fmt, ...)					\
151	do {							\
152		if (SMC_DEBUG > 0)				\
153			netdev_info(dev, fmt, ##__VA_ARGS__);	\
154		else						\
155			netdev_dbg(dev, fmt, ##__VA_ARGS__);	\
156	} while (0)
157
158#if SMC_DEBUG > 3
159static void PRINT_PKT(u_char *buf, int length)
160{
161	int i;
162	int remainder;
163	int lines;
164
165	lines = length / 16;
166	remainder = length % 16;
167
168	for (i = 0; i < lines ; i ++) {
169		int cur;
170		printk(KERN_DEBUG);
171		for (cur = 0; cur < 8; cur++) {
172			u_char a, b;
173			a = *buf++;
174			b = *buf++;
175			pr_cont("%02x%02x ", a, b);
176		}
177		pr_cont("\n");
178	}
179	printk(KERN_DEBUG);
180	for (i = 0; i < remainder/2 ; i++) {
181		u_char a, b;
182		a = *buf++;
183		b = *buf++;
184		pr_cont("%02x%02x ", a, b);
185	}
186	pr_cont("\n");
187}
188#else
189static inline void PRINT_PKT(u_char *buf, int length) { }
190#endif
191
192
193/* this enables an interrupt in the interrupt mask register */
194#define SMC_ENABLE_INT(lp, x) do {					\
195	unsigned char mask;						\
196	unsigned long smc_enable_flags;					\
197	spin_lock_irqsave(&lp->lock, smc_enable_flags);			\
198	mask = SMC_GET_INT_MASK(lp);					\
199	mask |= (x);							\
200	SMC_SET_INT_MASK(lp, mask);					\
201	spin_unlock_irqrestore(&lp->lock, smc_enable_flags);		\
202} while (0)
203
204/* this disables an interrupt from the interrupt mask register */
205#define SMC_DISABLE_INT(lp, x) do {					\
206	unsigned char mask;						\
207	unsigned long smc_disable_flags;				\
208	spin_lock_irqsave(&lp->lock, smc_disable_flags);		\
209	mask = SMC_GET_INT_MASK(lp);					\
210	mask &= ~(x);							\
211	SMC_SET_INT_MASK(lp, mask);					\
212	spin_unlock_irqrestore(&lp->lock, smc_disable_flags);		\
213} while (0)
214
215/*
216 * Wait while MMU is busy.  This is usually in the order of a few nanosecs
217 * if at all, but let's avoid deadlocking the system if the hardware
218 * decides to go south.
219 */
220#define SMC_WAIT_MMU_BUSY(lp) do {					\
221	if (unlikely(SMC_GET_MMU_CMD(lp) & MC_BUSY)) {		\
222		unsigned long timeout = jiffies + 2;			\
223		while (SMC_GET_MMU_CMD(lp) & MC_BUSY) {		\
224			if (time_after(jiffies, timeout)) {		\
225				netdev_dbg(dev, "timeout %s line %d\n",	\
226					   __FILE__, __LINE__);		\
227				break;					\
228			}						\
229			cpu_relax();					\
230		}							\
231	}								\
232} while (0)
233
234
235/*
236 * this does a soft reset on the device
237 */
238static void smc_reset(struct net_device *dev)
239{
240	struct smc_local *lp = netdev_priv(dev);
241	void __iomem *ioaddr = lp->base;
242	unsigned int ctl, cfg;
243	struct sk_buff *pending_skb;
244
245	DBG(2, dev, "%s\n", __func__);
246
247	/* Disable all interrupts, block TX tasklet */
248	spin_lock_irq(&lp->lock);
249	SMC_SELECT_BANK(lp, 2);
250	SMC_SET_INT_MASK(lp, 0);
251	pending_skb = lp->pending_tx_skb;
252	lp->pending_tx_skb = NULL;
253	spin_unlock_irq(&lp->lock);
254
255	/* free any pending tx skb */
256	if (pending_skb) {
257		dev_kfree_skb(pending_skb);
258		dev->stats.tx_errors++;
259		dev->stats.tx_aborted_errors++;
260	}
261
262	/*
263	 * This resets the registers mostly to defaults, but doesn't
264	 * affect EEPROM.  That seems unnecessary
265	 */
266	SMC_SELECT_BANK(lp, 0);
267	SMC_SET_RCR(lp, RCR_SOFTRST);
268
269	/*
270	 * Setup the Configuration Register
271	 * This is necessary because the CONFIG_REG is not affected
272	 * by a soft reset
273	 */
274	SMC_SELECT_BANK(lp, 1);
275
276	cfg = CONFIG_DEFAULT;
277
278	/*
279	 * Setup for fast accesses if requested.  If the card/system
280	 * can't handle it then there will be no recovery except for
281	 * a hard reset or power cycle
282	 */
283	if (lp->cfg.flags & SMC91X_NOWAIT)
284		cfg |= CONFIG_NO_WAIT;
285
286	/*
287	 * Release from possible power-down state
288	 * Configuration register is not affected by Soft Reset
289	 */
290	cfg |= CONFIG_EPH_POWER_EN;
291
292	SMC_SET_CONFIG(lp, cfg);
293
294	/* this should pause enough for the chip to be happy */
295	/*
296	 * elaborate?  What does the chip _need_? --jgarzik
297	 *
298	 * This seems to be undocumented, but something the original
299	 * driver(s) have always done.  Suspect undocumented timing
300	 * info/determined empirically. --rmk
301	 */
302	udelay(1);
303
304	/* Disable transmit and receive functionality */
305	SMC_SELECT_BANK(lp, 0);
306	SMC_SET_RCR(lp, RCR_CLEAR);
307	SMC_SET_TCR(lp, TCR_CLEAR);
308
309	SMC_SELECT_BANK(lp, 1);
310	ctl = SMC_GET_CTL(lp) | CTL_LE_ENABLE;
311
312	/*
313	 * Set the control register to automatically release successfully
314	 * transmitted packets, to make the best use out of our limited
315	 * memory
316	 */
317	if(!THROTTLE_TX_PKTS)
318		ctl |= CTL_AUTO_RELEASE;
319	else
320		ctl &= ~CTL_AUTO_RELEASE;
321	SMC_SET_CTL(lp, ctl);
322
323	/* Reset the MMU */
324	SMC_SELECT_BANK(lp, 2);
325	SMC_SET_MMU_CMD(lp, MC_RESET);
326	SMC_WAIT_MMU_BUSY(lp);
327}
328
329/*
330 * Enable Interrupts, Receive, and Transmit
331 */
332static void smc_enable(struct net_device *dev)
333{
334	struct smc_local *lp = netdev_priv(dev);
335	void __iomem *ioaddr = lp->base;
336	int mask;
337
338	DBG(2, dev, "%s\n", __func__);
339
340	/* see the header file for options in TCR/RCR DEFAULT */
341	SMC_SELECT_BANK(lp, 0);
342	SMC_SET_TCR(lp, lp->tcr_cur_mode);
343	SMC_SET_RCR(lp, lp->rcr_cur_mode);
344
345	SMC_SELECT_BANK(lp, 1);
346	SMC_SET_MAC_ADDR(lp, dev->dev_addr);
347
348	/* now, enable interrupts */
349	mask = IM_EPH_INT|IM_RX_OVRN_INT|IM_RCV_INT;
350	if (lp->version >= (CHIP_91100 << 4))
351		mask |= IM_MDINT;
352	SMC_SELECT_BANK(lp, 2);
353	SMC_SET_INT_MASK(lp, mask);
354
355	/*
356	 * From this point the register bank must _NOT_ be switched away
357	 * to something else than bank 2 without proper locking against
358	 * races with any tasklet or interrupt handlers until smc_shutdown()
359	 * or smc_reset() is called.
360	 */
361}
362
363/*
364 * this puts the device in an inactive state
365 */
366static void smc_shutdown(struct net_device *dev)
367{
368	struct smc_local *lp = netdev_priv(dev);
369	void __iomem *ioaddr = lp->base;
370	struct sk_buff *pending_skb;
371
372	DBG(2, dev, "%s: %s\n", CARDNAME, __func__);
373
374	/* no more interrupts for me */
375	spin_lock_irq(&lp->lock);
376	SMC_SELECT_BANK(lp, 2);
377	SMC_SET_INT_MASK(lp, 0);
378	pending_skb = lp->pending_tx_skb;
379	lp->pending_tx_skb = NULL;
380	spin_unlock_irq(&lp->lock);
381	dev_kfree_skb(pending_skb);
382
383	/* and tell the card to stay away from that nasty outside world */
384	SMC_SELECT_BANK(lp, 0);
385	SMC_SET_RCR(lp, RCR_CLEAR);
386	SMC_SET_TCR(lp, TCR_CLEAR);
387
388#ifdef POWER_DOWN
389	/* finally, shut the chip down */
390	SMC_SELECT_BANK(lp, 1);
391	SMC_SET_CONFIG(lp, SMC_GET_CONFIG(lp) & ~CONFIG_EPH_POWER_EN);
392#endif
393}
394
395/*
396 * This is the procedure to handle the receipt of a packet.
397 */
398static inline void  smc_rcv(struct net_device *dev)
399{
400	struct smc_local *lp = netdev_priv(dev);
401	void __iomem *ioaddr = lp->base;
402	unsigned int packet_number, status, packet_len;
403
404	DBG(3, dev, "%s\n", __func__);
405
406	packet_number = SMC_GET_RXFIFO(lp);
407	if (unlikely(packet_number & RXFIFO_REMPTY)) {
408		PRINTK(dev, "smc_rcv with nothing on FIFO.\n");
409		return;
410	}
411
412	/* read from start of packet */
413	SMC_SET_PTR(lp, PTR_READ | PTR_RCV | PTR_AUTOINC);
414
415	/* First two words are status and packet length */
416	SMC_GET_PKT_HDR(lp, status, packet_len);
417	packet_len &= 0x07ff;  /* mask off top bits */
418	DBG(2, dev, "RX PNR 0x%x STATUS 0x%04x LENGTH 0x%04x (%d)\n",
419	    packet_number, status, packet_len, packet_len);
420
421	back:
422	if (unlikely(packet_len < 6 || status & RS_ERRORS)) {
423		if (status & RS_TOOLONG && packet_len <= (1514 + 4 + 6)) {
424			/* accept VLAN packets */
425			status &= ~RS_TOOLONG;
426			goto back;
427		}
428		if (packet_len < 6) {
429			/* bloody hardware */
430			netdev_err(dev, "fubar (rxlen %u status %x\n",
431				   packet_len, status);
432			status |= RS_TOOSHORT;
433		}
434		SMC_WAIT_MMU_BUSY(lp);
435		SMC_SET_MMU_CMD(lp, MC_RELEASE);
436		dev->stats.rx_errors++;
437		if (status & RS_ALGNERR)
438			dev->stats.rx_frame_errors++;
439		if (status & (RS_TOOSHORT | RS_TOOLONG))
440			dev->stats.rx_length_errors++;
441		if (status & RS_BADCRC)
442			dev->stats.rx_crc_errors++;
443	} else {
444		struct sk_buff *skb;
445		unsigned char *data;
446		unsigned int data_len;
447
448		/* set multicast stats */
449		if (status & RS_MULTICAST)
450			dev->stats.multicast++;
451
452		/*
453		 * Actual payload is packet_len - 6 (or 5 if odd byte).
454		 * We want skb_reserve(2) and the final ctrl word
455		 * (2 bytes, possibly containing the payload odd byte).
456		 * Furthermore, we add 2 bytes to allow rounding up to
457		 * multiple of 4 bytes on 32 bit buses.
458		 * Hence packet_len - 6 + 2 + 2 + 2.
459		 */
460		skb = netdev_alloc_skb(dev, packet_len);
461		if (unlikely(skb == NULL)) {
462			SMC_WAIT_MMU_BUSY(lp);
463			SMC_SET_MMU_CMD(lp, MC_RELEASE);
464			dev->stats.rx_dropped++;
465			return;
466		}
467
468		/* Align IP header to 32 bits */
469		skb_reserve(skb, 2);
470
471		/* BUG: the LAN91C111 rev A never sets this bit. Force it. */
472		if (lp->version == 0x90)
473			status |= RS_ODDFRAME;
474
475		/*
476		 * If odd length: packet_len - 5,
477		 * otherwise packet_len - 6.
478		 * With the trailing ctrl byte it's packet_len - 4.
479		 */
480		data_len = packet_len - ((status & RS_ODDFRAME) ? 5 : 6);
481		data = skb_put(skb, data_len);
482		SMC_PULL_DATA(lp, data, packet_len - 4);
483
484		SMC_WAIT_MMU_BUSY(lp);
485		SMC_SET_MMU_CMD(lp, MC_RELEASE);
486
487		PRINT_PKT(data, packet_len - 4);
488
489		skb->protocol = eth_type_trans(skb, dev);
490		netif_rx(skb);
491		dev->stats.rx_packets++;
492		dev->stats.rx_bytes += data_len;
493	}
494}
495
496#ifdef CONFIG_SMP
497/*
498 * On SMP we have the following problem:
499 *
500 * 	A = smc_hardware_send_pkt()
501 * 	B = smc_hard_start_xmit()
502 * 	C = smc_interrupt()
503 *
504 * A and B can never be executed simultaneously.  However, at least on UP,
505 * it is possible (and even desirable) for C to interrupt execution of
506 * A or B in order to have better RX reliability and avoid overruns.
507 * C, just like A and B, must have exclusive access to the chip and
508 * each of them must lock against any other concurrent access.
509 * Unfortunately this is not possible to have C suspend execution of A or
510 * B taking place on another CPU. On UP this is no an issue since A and B
511 * are run from softirq context and C from hard IRQ context, and there is
512 * no other CPU where concurrent access can happen.
513 * If ever there is a way to force at least B and C to always be executed
514 * on the same CPU then we could use read/write locks to protect against
515 * any other concurrent access and C would always interrupt B. But life
516 * isn't that easy in a SMP world...
517 */
518#define smc_special_trylock(lock, flags)				\
519({									\
520	int __ret;							\
521	local_irq_save(flags);						\
522	__ret = spin_trylock(lock);					\
523	if (!__ret)							\
524		local_irq_restore(flags);				\
525	__ret;								\
526})
527#define smc_special_lock(lock, flags)		spin_lock_irqsave(lock, flags)
528#define smc_special_unlock(lock, flags) 	spin_unlock_irqrestore(lock, flags)
529#else
530#define smc_special_trylock(lock, flags)	((void)flags, true)
531#define smc_special_lock(lock, flags)   	do { flags = 0; } while (0)
532#define smc_special_unlock(lock, flags)	do { flags = 0; } while (0)
533#endif
534
535/*
536 * This is called to actually send a packet to the chip.
537 */
538static void smc_hardware_send_pkt(struct tasklet_struct *t)
539{
540	struct smc_local *lp = from_tasklet(lp, t, tx_task);
541	struct net_device *dev = lp->dev;
542	void __iomem *ioaddr = lp->base;
543	struct sk_buff *skb;
544	unsigned int packet_no, len;
545	unsigned char *buf;
546	unsigned long flags;
547
548	DBG(3, dev, "%s\n", __func__);
549
550	if (!smc_special_trylock(&lp->lock, flags)) {
551		netif_stop_queue(dev);
552		tasklet_schedule(&lp->tx_task);
553		return;
554	}
555
556	skb = lp->pending_tx_skb;
557	if (unlikely(!skb)) {
558		smc_special_unlock(&lp->lock, flags);
559		return;
560	}
561	lp->pending_tx_skb = NULL;
562
563	packet_no = SMC_GET_AR(lp);
564	if (unlikely(packet_no & AR_FAILED)) {
565		netdev_err(dev, "Memory allocation failed.\n");
566		dev->stats.tx_errors++;
567		dev->stats.tx_fifo_errors++;
568		smc_special_unlock(&lp->lock, flags);
569		goto done;
570	}
571
572	/* point to the beginning of the packet */
573	SMC_SET_PN(lp, packet_no);
574	SMC_SET_PTR(lp, PTR_AUTOINC);
575
576	buf = skb->data;
577	len = skb->len;
578	DBG(2, dev, "TX PNR 0x%x LENGTH 0x%04x (%d) BUF 0x%p\n",
579	    packet_no, len, len, buf);
580	PRINT_PKT(buf, len);
581
582	/*
583	 * Send the packet length (+6 for status words, length, and ctl.
584	 * The card will pad to 64 bytes with zeroes if packet is too small.
585	 */
586	SMC_PUT_PKT_HDR(lp, 0, len + 6);
587
588	/* send the actual data */
589	SMC_PUSH_DATA(lp, buf, len & ~1);
590
591	/* Send final ctl word with the last byte if there is one */
592	SMC_outw(lp, ((len & 1) ? (0x2000 | buf[len - 1]) : 0), ioaddr,
593		 DATA_REG(lp));
594
595	/*
596	 * If THROTTLE_TX_PKTS is set, we stop the queue here. This will
597	 * have the effect of having at most one packet queued for TX
598	 * in the chip's memory at all time.
599	 *
600	 * If THROTTLE_TX_PKTS is not set then the queue is stopped only
601	 * when memory allocation (MC_ALLOC) does not succeed right away.
602	 */
603	if (THROTTLE_TX_PKTS)
604		netif_stop_queue(dev);
605
606	/* queue the packet for TX */
607	SMC_SET_MMU_CMD(lp, MC_ENQUEUE);
608	smc_special_unlock(&lp->lock, flags);
609
610	netif_trans_update(dev);
611	dev->stats.tx_packets++;
612	dev->stats.tx_bytes += len;
613
614	SMC_ENABLE_INT(lp, IM_TX_INT | IM_TX_EMPTY_INT);
615
616done:	if (!THROTTLE_TX_PKTS)
617		netif_wake_queue(dev);
618
619	dev_consume_skb_any(skb);
620}
621
622/*
623 * Since I am not sure if I will have enough room in the chip's ram
624 * to store the packet, I call this routine which either sends it
625 * now, or set the card to generates an interrupt when ready
626 * for the packet.
627 */
628static netdev_tx_t
629smc_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
630{
631	struct smc_local *lp = netdev_priv(dev);
632	void __iomem *ioaddr = lp->base;
633	unsigned int numPages, poll_count, status;
634	unsigned long flags;
635
636	DBG(3, dev, "%s\n", __func__);
637
638	BUG_ON(lp->pending_tx_skb != NULL);
639
640	/*
641	 * The MMU wants the number of pages to be the number of 256 bytes
642	 * 'pages', minus 1 (since a packet can't ever have 0 pages :))
643	 *
644	 * The 91C111 ignores the size bits, but earlier models don't.
645	 *
646	 * Pkt size for allocating is data length +6 (for additional status
647	 * words, length and ctl)
648	 *
649	 * If odd size then last byte is included in ctl word.
650	 */
651	numPages = ((skb->len & ~1) + (6 - 1)) >> 8;
652	if (unlikely(numPages > 7)) {
653		netdev_warn(dev, "Far too big packet error.\n");
654		dev->stats.tx_errors++;
655		dev->stats.tx_dropped++;
656		dev_kfree_skb_any(skb);
657		return NETDEV_TX_OK;
658	}
659
660	smc_special_lock(&lp->lock, flags);
661
662	/* now, try to allocate the memory */
663	SMC_SET_MMU_CMD(lp, MC_ALLOC | numPages);
664
665	/*
666	 * Poll the chip for a short amount of time in case the
667	 * allocation succeeds quickly.
668	 */
669	poll_count = MEMORY_WAIT_TIME;
670	do {
671		status = SMC_GET_INT(lp);
672		if (status & IM_ALLOC_INT) {
673			SMC_ACK_INT(lp, IM_ALLOC_INT);
674			break;
675		}
676	} while (--poll_count);
677
678	smc_special_unlock(&lp->lock, flags);
679
680	lp->pending_tx_skb = skb;
681	if (!poll_count) {
682		/* oh well, wait until the chip finds memory later */
683		netif_stop_queue(dev);
684		DBG(2, dev, "TX memory allocation deferred.\n");
685		SMC_ENABLE_INT(lp, IM_ALLOC_INT);
686	} else {
687		/*
688		 * Allocation succeeded: push packet to the chip's own memory
689		 * immediately.
690		 */
691		smc_hardware_send_pkt(&lp->tx_task);
692	}
693
694	return NETDEV_TX_OK;
695}
696
697/*
698 * This handles a TX interrupt, which is only called when:
699 * - a TX error occurred, or
700 * - CTL_AUTO_RELEASE is not set and TX of a packet completed.
701 */
702static void smc_tx(struct net_device *dev)
703{
704	struct smc_local *lp = netdev_priv(dev);
705	void __iomem *ioaddr = lp->base;
706	unsigned int saved_packet, packet_no, tx_status;
707	unsigned int pkt_len __always_unused;
708
709	DBG(3, dev, "%s\n", __func__);
710
711	/* If the TX FIFO is empty then nothing to do */
712	packet_no = SMC_GET_TXFIFO(lp);
713	if (unlikely(packet_no & TXFIFO_TEMPTY)) {
714		PRINTK(dev, "smc_tx with nothing on FIFO.\n");
715		return;
716	}
717
718	/* select packet to read from */
719	saved_packet = SMC_GET_PN(lp);
720	SMC_SET_PN(lp, packet_no);
721
722	/* read the first word (status word) from this packet */
723	SMC_SET_PTR(lp, PTR_AUTOINC | PTR_READ);
724	SMC_GET_PKT_HDR(lp, tx_status, pkt_len);
725	DBG(2, dev, "TX STATUS 0x%04x PNR 0x%02x\n",
726	    tx_status, packet_no);
727
728	if (!(tx_status & ES_TX_SUC))
729		dev->stats.tx_errors++;
730
731	if (tx_status & ES_LOSTCARR)
732		dev->stats.tx_carrier_errors++;
733
734	if (tx_status & (ES_LATCOL | ES_16COL)) {
735		PRINTK(dev, "%s occurred on last xmit\n",
736		       (tx_status & ES_LATCOL) ?
737			"late collision" : "too many collisions");
738		dev->stats.tx_window_errors++;
739		if (!(dev->stats.tx_window_errors & 63) && net_ratelimit()) {
740			netdev_info(dev, "unexpectedly large number of bad collisions. Please check duplex setting.\n");
741		}
742	}
743
744	/* kill the packet */
745	SMC_WAIT_MMU_BUSY(lp);
746	SMC_SET_MMU_CMD(lp, MC_FREEPKT);
747
748	/* Don't restore Packet Number Reg until busy bit is cleared */
749	SMC_WAIT_MMU_BUSY(lp);
750	SMC_SET_PN(lp, saved_packet);
751
752	/* re-enable transmit */
753	SMC_SELECT_BANK(lp, 0);
754	SMC_SET_TCR(lp, lp->tcr_cur_mode);
755	SMC_SELECT_BANK(lp, 2);
756}
757
758
759/*---PHY CONTROL AND CONFIGURATION-----------------------------------------*/
760
761static void smc_mii_out(struct net_device *dev, unsigned int val, int bits)
762{
763	struct smc_local *lp = netdev_priv(dev);
764	void __iomem *ioaddr = lp->base;
765	unsigned int mii_reg, mask;
766
767	mii_reg = SMC_GET_MII(lp) & ~(MII_MCLK | MII_MDOE | MII_MDO);
768	mii_reg |= MII_MDOE;
769
770	for (mask = 1 << (bits - 1); mask; mask >>= 1) {
771		if (val & mask)
772			mii_reg |= MII_MDO;
773		else
774			mii_reg &= ~MII_MDO;
775
776		SMC_SET_MII(lp, mii_reg);
777		udelay(MII_DELAY);
778		SMC_SET_MII(lp, mii_reg | MII_MCLK);
779		udelay(MII_DELAY);
780	}
781}
782
783static unsigned int smc_mii_in(struct net_device *dev, int bits)
784{
785	struct smc_local *lp = netdev_priv(dev);
786	void __iomem *ioaddr = lp->base;
787	unsigned int mii_reg, mask, val;
788
789	mii_reg = SMC_GET_MII(lp) & ~(MII_MCLK | MII_MDOE | MII_MDO);
790	SMC_SET_MII(lp, mii_reg);
791
792	for (mask = 1 << (bits - 1), val = 0; mask; mask >>= 1) {
793		if (SMC_GET_MII(lp) & MII_MDI)
794			val |= mask;
795
796		SMC_SET_MII(lp, mii_reg);
797		udelay(MII_DELAY);
798		SMC_SET_MII(lp, mii_reg | MII_MCLK);
799		udelay(MII_DELAY);
800	}
801
802	return val;
803}
804
805/*
806 * Reads a register from the MII Management serial interface
807 */
808static int smc_phy_read(struct net_device *dev, int phyaddr, int phyreg)
809{
810	struct smc_local *lp = netdev_priv(dev);
811	void __iomem *ioaddr = lp->base;
812	unsigned int phydata;
813
814	SMC_SELECT_BANK(lp, 3);
815
816	/* Idle - 32 ones */
817	smc_mii_out(dev, 0xffffffff, 32);
818
819	/* Start code (01) + read (10) + phyaddr + phyreg */
820	smc_mii_out(dev, 6 << 10 | phyaddr << 5 | phyreg, 14);
821
822	/* Turnaround (2bits) + phydata */
823	phydata = smc_mii_in(dev, 18);
824
825	/* Return to idle state */
826	SMC_SET_MII(lp, SMC_GET_MII(lp) & ~(MII_MCLK|MII_MDOE|MII_MDO));
827
828	DBG(3, dev, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n",
829	    __func__, phyaddr, phyreg, phydata);
830
831	SMC_SELECT_BANK(lp, 2);
832	return phydata;
833}
834
835/*
836 * Writes a register to the MII Management serial interface
837 */
838static void smc_phy_write(struct net_device *dev, int phyaddr, int phyreg,
839			  int phydata)
840{
841	struct smc_local *lp = netdev_priv(dev);
842	void __iomem *ioaddr = lp->base;
843
844	SMC_SELECT_BANK(lp, 3);
845
846	/* Idle - 32 ones */
847	smc_mii_out(dev, 0xffffffff, 32);
848
849	/* Start code (01) + write (01) + phyaddr + phyreg + turnaround + phydata */
850	smc_mii_out(dev, 5 << 28 | phyaddr << 23 | phyreg << 18 | 2 << 16 | phydata, 32);
851
852	/* Return to idle state */
853	SMC_SET_MII(lp, SMC_GET_MII(lp) & ~(MII_MCLK|MII_MDOE|MII_MDO));
854
855	DBG(3, dev, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n",
856	    __func__, phyaddr, phyreg, phydata);
857
858	SMC_SELECT_BANK(lp, 2);
859}
860
861/*
862 * Finds and reports the PHY address
863 */
864static void smc_phy_detect(struct net_device *dev)
865{
866	struct smc_local *lp = netdev_priv(dev);
867	int phyaddr;
868
869	DBG(2, dev, "%s\n", __func__);
870
871	lp->phy_type = 0;
872
873	/*
874	 * Scan all 32 PHY addresses if necessary, starting at
875	 * PHY#1 to PHY#31, and then PHY#0 last.
876	 */
877	for (phyaddr = 1; phyaddr < 33; ++phyaddr) {
878		unsigned int id1, id2;
879
880		/* Read the PHY identifiers */
881		id1 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID1);
882		id2 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID2);
883
884		DBG(3, dev, "phy_id1=0x%x, phy_id2=0x%x\n",
885		    id1, id2);
886
887		/* Make sure it is a valid identifier */
888		if (id1 != 0x0000 && id1 != 0xffff && id1 != 0x8000 &&
889		    id2 != 0x0000 && id2 != 0xffff && id2 != 0x8000) {
890			/* Save the PHY's address */
891			lp->mii.phy_id = phyaddr & 31;
892			lp->phy_type = id1 << 16 | id2;
893			break;
894		}
895	}
896}
897
898/*
899 * Sets the PHY to a configuration as determined by the user
900 */
901static int smc_phy_fixed(struct net_device *dev)
902{
903	struct smc_local *lp = netdev_priv(dev);
904	void __iomem *ioaddr = lp->base;
905	int phyaddr = lp->mii.phy_id;
906	int bmcr, cfg1;
907
908	DBG(3, dev, "%s\n", __func__);
909
910	/* Enter Link Disable state */
911	cfg1 = smc_phy_read(dev, phyaddr, PHY_CFG1_REG);
912	cfg1 |= PHY_CFG1_LNKDIS;
913	smc_phy_write(dev, phyaddr, PHY_CFG1_REG, cfg1);
914
915	/*
916	 * Set our fixed capabilities
917	 * Disable auto-negotiation
918	 */
919	bmcr = 0;
920
921	if (lp->ctl_rfduplx)
922		bmcr |= BMCR_FULLDPLX;
923
924	if (lp->ctl_rspeed == 100)
925		bmcr |= BMCR_SPEED100;
926
927	/* Write our capabilities to the phy control register */
928	smc_phy_write(dev, phyaddr, MII_BMCR, bmcr);
929
930	/* Re-Configure the Receive/Phy Control register */
931	SMC_SELECT_BANK(lp, 0);
932	SMC_SET_RPC(lp, lp->rpc_cur_mode);
933	SMC_SELECT_BANK(lp, 2);
934
935	return 1;
936}
937
938/**
939 * smc_phy_reset - reset the phy
940 * @dev: net device
941 * @phy: phy address
942 *
943 * Issue a software reset for the specified PHY and
944 * wait up to 100ms for the reset to complete.  We should
945 * not access the PHY for 50ms after issuing the reset.
946 *
947 * The time to wait appears to be dependent on the PHY.
948 *
949 * Must be called with lp->lock locked.
950 */
951static int smc_phy_reset(struct net_device *dev, int phy)
952{
953	struct smc_local *lp = netdev_priv(dev);
954	unsigned int bmcr;
955	int timeout;
956
957	smc_phy_write(dev, phy, MII_BMCR, BMCR_RESET);
958
959	for (timeout = 2; timeout; timeout--) {
960		spin_unlock_irq(&lp->lock);
961		msleep(50);
962		spin_lock_irq(&lp->lock);
963
964		bmcr = smc_phy_read(dev, phy, MII_BMCR);
965		if (!(bmcr & BMCR_RESET))
966			break;
967	}
968
969	return bmcr & BMCR_RESET;
970}
971
972/**
973 * smc_phy_powerdown - powerdown phy
974 * @dev: net device
975 *
976 * Power down the specified PHY
977 */
978static void smc_phy_powerdown(struct net_device *dev)
979{
980	struct smc_local *lp = netdev_priv(dev);
981	unsigned int bmcr;
982	int phy = lp->mii.phy_id;
983
984	if (lp->phy_type == 0)
985		return;
986
987	/* We need to ensure that no calls to smc_phy_configure are
988	   pending.
989	*/
990	cancel_work_sync(&lp->phy_configure);
991
992	bmcr = smc_phy_read(dev, phy, MII_BMCR);
993	smc_phy_write(dev, phy, MII_BMCR, bmcr | BMCR_PDOWN);
994}
995
996/**
997 * smc_phy_check_media - check the media status and adjust TCR
998 * @dev: net device
999 * @init: set true for initialisation
1000 *
1001 * Select duplex mode depending on negotiation state.  This
1002 * also updates our carrier state.
1003 */
1004static void smc_phy_check_media(struct net_device *dev, int init)
1005{
1006	struct smc_local *lp = netdev_priv(dev);
1007	void __iomem *ioaddr = lp->base;
1008
1009	if (mii_check_media(&lp->mii, netif_msg_link(lp), init)) {
1010		/* duplex state has changed */
1011		if (lp->mii.full_duplex) {
1012			lp->tcr_cur_mode |= TCR_SWFDUP;
1013		} else {
1014			lp->tcr_cur_mode &= ~TCR_SWFDUP;
1015		}
1016
1017		SMC_SELECT_BANK(lp, 0);
1018		SMC_SET_TCR(lp, lp->tcr_cur_mode);
1019	}
1020}
1021
1022/*
1023 * Configures the specified PHY through the MII management interface
1024 * using Autonegotiation.
1025 * Calls smc_phy_fixed() if the user has requested a certain config.
1026 * If RPC ANEG bit is set, the media selection is dependent purely on
1027 * the selection by the MII (either in the MII BMCR reg or the result
1028 * of autonegotiation.)  If the RPC ANEG bit is cleared, the selection
1029 * is controlled by the RPC SPEED and RPC DPLX bits.
1030 */
1031static void smc_phy_configure(struct work_struct *work)
1032{
1033	struct smc_local *lp =
1034		container_of(work, struct smc_local, phy_configure);
1035	struct net_device *dev = lp->dev;
1036	void __iomem *ioaddr = lp->base;
1037	int phyaddr = lp->mii.phy_id;
1038	int my_phy_caps; /* My PHY capabilities */
1039	int my_ad_caps; /* My Advertised capabilities */
1040
1041	DBG(3, dev, "smc_program_phy()\n");
1042
1043	spin_lock_irq(&lp->lock);
1044
1045	/*
1046	 * We should not be called if phy_type is zero.
1047	 */
1048	if (lp->phy_type == 0)
1049		goto smc_phy_configure_exit;
1050
1051	if (smc_phy_reset(dev, phyaddr)) {
1052		netdev_info(dev, "PHY reset timed out\n");
1053		goto smc_phy_configure_exit;
1054	}
1055
1056	/*
1057	 * Enable PHY Interrupts (for register 18)
1058	 * Interrupts listed here are disabled
1059	 */
1060	smc_phy_write(dev, phyaddr, PHY_MASK_REG,
1061		PHY_INT_LOSSSYNC | PHY_INT_CWRD | PHY_INT_SSD |
1062		PHY_INT_ESD | PHY_INT_RPOL | PHY_INT_JAB |
1063		PHY_INT_SPDDET | PHY_INT_DPLXDET);
1064
1065	/* Configure the Receive/Phy Control register */
1066	SMC_SELECT_BANK(lp, 0);
1067	SMC_SET_RPC(lp, lp->rpc_cur_mode);
1068
1069	/* If the user requested no auto neg, then go set his request */
1070	if (lp->mii.force_media) {
1071		smc_phy_fixed(dev);
1072		goto smc_phy_configure_exit;
1073	}
1074
1075	/* Copy our capabilities from MII_BMSR to MII_ADVERTISE */
1076	my_phy_caps = smc_phy_read(dev, phyaddr, MII_BMSR);
1077
1078	if (!(my_phy_caps & BMSR_ANEGCAPABLE)) {
1079		netdev_info(dev, "Auto negotiation NOT supported\n");
1080		smc_phy_fixed(dev);
1081		goto smc_phy_configure_exit;
1082	}
1083
1084	my_ad_caps = ADVERTISE_CSMA; /* I am CSMA capable */
1085
1086	if (my_phy_caps & BMSR_100BASE4)
1087		my_ad_caps |= ADVERTISE_100BASE4;
1088	if (my_phy_caps & BMSR_100FULL)
1089		my_ad_caps |= ADVERTISE_100FULL;
1090	if (my_phy_caps & BMSR_100HALF)
1091		my_ad_caps |= ADVERTISE_100HALF;
1092	if (my_phy_caps & BMSR_10FULL)
1093		my_ad_caps |= ADVERTISE_10FULL;
1094	if (my_phy_caps & BMSR_10HALF)
1095		my_ad_caps |= ADVERTISE_10HALF;
1096
1097	/* Disable capabilities not selected by our user */
1098	if (lp->ctl_rspeed != 100)
1099		my_ad_caps &= ~(ADVERTISE_100BASE4|ADVERTISE_100FULL|ADVERTISE_100HALF);
1100
1101	if (!lp->ctl_rfduplx)
1102		my_ad_caps &= ~(ADVERTISE_100FULL|ADVERTISE_10FULL);
1103
1104	/* Update our Auto-Neg Advertisement Register */
1105	smc_phy_write(dev, phyaddr, MII_ADVERTISE, my_ad_caps);
1106	lp->mii.advertising = my_ad_caps;
1107
1108	/*
1109	 * Read the register back.  Without this, it appears that when
1110	 * auto-negotiation is restarted, sometimes it isn't ready and
1111	 * the link does not come up.
1112	 */
1113	smc_phy_read(dev, phyaddr, MII_ADVERTISE);
1114
1115	DBG(2, dev, "phy caps=%x\n", my_phy_caps);
1116	DBG(2, dev, "phy advertised caps=%x\n", my_ad_caps);
1117
1118	/* Restart auto-negotiation process in order to advertise my caps */
1119	smc_phy_write(dev, phyaddr, MII_BMCR, BMCR_ANENABLE | BMCR_ANRESTART);
1120
1121	smc_phy_check_media(dev, 1);
1122
1123smc_phy_configure_exit:
1124	SMC_SELECT_BANK(lp, 2);
1125	spin_unlock_irq(&lp->lock);
1126}
1127
1128/*
1129 * smc_phy_interrupt
1130 *
1131 * Purpose:  Handle interrupts relating to PHY register 18. This is
1132 *  called from the "hard" interrupt handler under our private spinlock.
1133 */
1134static void smc_phy_interrupt(struct net_device *dev)
1135{
1136	struct smc_local *lp = netdev_priv(dev);
1137	int phyaddr = lp->mii.phy_id;
1138	int phy18;
1139
1140	DBG(2, dev, "%s\n", __func__);
1141
1142	if (lp->phy_type == 0)
1143		return;
1144
1145	for(;;) {
1146		smc_phy_check_media(dev, 0);
1147
1148		/* Read PHY Register 18, Status Output */
1149		phy18 = smc_phy_read(dev, phyaddr, PHY_INT_REG);
1150		if ((phy18 & PHY_INT_INT) == 0)
1151			break;
1152	}
1153}
1154
1155/*--- END PHY CONTROL AND CONFIGURATION-------------------------------------*/
1156
1157static void smc_10bt_check_media(struct net_device *dev, int init)
1158{
1159	struct smc_local *lp = netdev_priv(dev);
1160	void __iomem *ioaddr = lp->base;
1161	unsigned int old_carrier, new_carrier;
1162
1163	old_carrier = netif_carrier_ok(dev) ? 1 : 0;
1164
1165	SMC_SELECT_BANK(lp, 0);
1166	new_carrier = (SMC_GET_EPH_STATUS(lp) & ES_LINK_OK) ? 1 : 0;
1167	SMC_SELECT_BANK(lp, 2);
1168
1169	if (init || (old_carrier != new_carrier)) {
1170		if (!new_carrier) {
1171			netif_carrier_off(dev);
1172		} else {
1173			netif_carrier_on(dev);
1174		}
1175		if (netif_msg_link(lp))
1176			netdev_info(dev, "link %s\n",
1177				    new_carrier ? "up" : "down");
1178	}
1179}
1180
1181static void smc_eph_interrupt(struct net_device *dev)
1182{
1183	struct smc_local *lp = netdev_priv(dev);
1184	void __iomem *ioaddr = lp->base;
1185	unsigned int ctl;
1186
1187	smc_10bt_check_media(dev, 0);
1188
1189	SMC_SELECT_BANK(lp, 1);
1190	ctl = SMC_GET_CTL(lp);
1191	SMC_SET_CTL(lp, ctl & ~CTL_LE_ENABLE);
1192	SMC_SET_CTL(lp, ctl);
1193	SMC_SELECT_BANK(lp, 2);
1194}
1195
1196/*
1197 * This is the main routine of the driver, to handle the device when
1198 * it needs some attention.
1199 */
1200static irqreturn_t smc_interrupt(int irq, void *dev_id)
1201{
1202	struct net_device *dev = dev_id;
1203	struct smc_local *lp = netdev_priv(dev);
1204	void __iomem *ioaddr = lp->base;
1205	int status, mask, timeout, card_stats;
1206	int saved_pointer;
1207
1208	DBG(3, dev, "%s\n", __func__);
1209
1210	spin_lock(&lp->lock);
1211
1212	/* A preamble may be used when there is a potential race
1213	 * between the interruptible transmit functions and this
1214	 * ISR. */
1215	SMC_INTERRUPT_PREAMBLE;
1216
1217	saved_pointer = SMC_GET_PTR(lp);
1218	mask = SMC_GET_INT_MASK(lp);
1219	SMC_SET_INT_MASK(lp, 0);
1220
1221	/* set a timeout value, so I don't stay here forever */
1222	timeout = MAX_IRQ_LOOPS;
1223
1224	do {
1225		status = SMC_GET_INT(lp);
1226
1227		DBG(2, dev, "INT 0x%02x MASK 0x%02x MEM 0x%04x FIFO 0x%04x\n",
1228		    status, mask,
1229		    ({ int meminfo; SMC_SELECT_BANK(lp, 0);
1230		       meminfo = SMC_GET_MIR(lp);
1231		       SMC_SELECT_BANK(lp, 2); meminfo; }),
1232		    SMC_GET_FIFO(lp));
1233
1234		status &= mask;
1235		if (!status)
1236			break;
1237
1238		if (status & IM_TX_INT) {
1239			/* do this before RX as it will free memory quickly */
1240			DBG(3, dev, "TX int\n");
1241			smc_tx(dev);
1242			SMC_ACK_INT(lp, IM_TX_INT);
1243			if (THROTTLE_TX_PKTS)
1244				netif_wake_queue(dev);
1245		} else if (status & IM_RCV_INT) {
1246			DBG(3, dev, "RX irq\n");
1247			smc_rcv(dev);
1248		} else if (status & IM_ALLOC_INT) {
1249			DBG(3, dev, "Allocation irq\n");
1250			tasklet_hi_schedule(&lp->tx_task);
1251			mask &= ~IM_ALLOC_INT;
1252		} else if (status & IM_TX_EMPTY_INT) {
1253			DBG(3, dev, "TX empty\n");
1254			mask &= ~IM_TX_EMPTY_INT;
1255
1256			/* update stats */
1257			SMC_SELECT_BANK(lp, 0);
1258			card_stats = SMC_GET_COUNTER(lp);
1259			SMC_SELECT_BANK(lp, 2);
1260
1261			/* single collisions */
1262			dev->stats.collisions += card_stats & 0xF;
1263			card_stats >>= 4;
1264
1265			/* multiple collisions */
1266			dev->stats.collisions += card_stats & 0xF;
1267		} else if (status & IM_RX_OVRN_INT) {
1268			DBG(1, dev, "RX overrun (EPH_ST 0x%04x)\n",
1269			    ({ int eph_st; SMC_SELECT_BANK(lp, 0);
1270			       eph_st = SMC_GET_EPH_STATUS(lp);
1271			       SMC_SELECT_BANK(lp, 2); eph_st; }));
1272			SMC_ACK_INT(lp, IM_RX_OVRN_INT);
1273			dev->stats.rx_errors++;
1274			dev->stats.rx_fifo_errors++;
1275		} else if (status & IM_EPH_INT) {
1276			smc_eph_interrupt(dev);
1277		} else if (status & IM_MDINT) {
1278			SMC_ACK_INT(lp, IM_MDINT);
1279			smc_phy_interrupt(dev);
1280		} else if (status & IM_ERCV_INT) {
1281			SMC_ACK_INT(lp, IM_ERCV_INT);
1282			PRINTK(dev, "UNSUPPORTED: ERCV INTERRUPT\n");
1283		}
1284	} while (--timeout);
1285
1286	/* restore register states */
1287	SMC_SET_PTR(lp, saved_pointer);
1288	SMC_SET_INT_MASK(lp, mask);
1289	spin_unlock(&lp->lock);
1290
1291#ifndef CONFIG_NET_POLL_CONTROLLER
1292	if (timeout == MAX_IRQ_LOOPS)
1293		PRINTK(dev, "spurious interrupt (mask = 0x%02x)\n",
1294		       mask);
1295#endif
1296	DBG(3, dev, "Interrupt done (%d loops)\n",
1297	    MAX_IRQ_LOOPS - timeout);
1298
1299	/*
1300	 * We return IRQ_HANDLED unconditionally here even if there was
1301	 * nothing to do.  There is a possibility that a packet might
1302	 * get enqueued into the chip right after TX_EMPTY_INT is raised
1303	 * but just before the CPU acknowledges the IRQ.
1304	 * Better take an unneeded IRQ in some occasions than complexifying
1305	 * the code for all cases.
1306	 */
1307	return IRQ_HANDLED;
1308}
1309
1310#ifdef CONFIG_NET_POLL_CONTROLLER
1311/*
1312 * Polling receive - used by netconsole and other diagnostic tools
1313 * to allow network i/o with interrupts disabled.
1314 */
1315static void smc_poll_controller(struct net_device *dev)
1316{
1317	disable_irq(dev->irq);
1318	smc_interrupt(dev->irq, dev);
1319	enable_irq(dev->irq);
1320}
1321#endif
1322
1323/* Our watchdog timed out. Called by the networking layer */
1324static void smc_timeout(struct net_device *dev, unsigned int txqueue)
1325{
1326	struct smc_local *lp = netdev_priv(dev);
1327	void __iomem *ioaddr = lp->base;
1328	int status, mask, eph_st, meminfo, fifo;
1329
1330	DBG(2, dev, "%s\n", __func__);
1331
1332	spin_lock_irq(&lp->lock);
1333	status = SMC_GET_INT(lp);
1334	mask = SMC_GET_INT_MASK(lp);
1335	fifo = SMC_GET_FIFO(lp);
1336	SMC_SELECT_BANK(lp, 0);
1337	eph_st = SMC_GET_EPH_STATUS(lp);
1338	meminfo = SMC_GET_MIR(lp);
1339	SMC_SELECT_BANK(lp, 2);
1340	spin_unlock_irq(&lp->lock);
1341	PRINTK(dev, "TX timeout (INT 0x%02x INTMASK 0x%02x MEM 0x%04x FIFO 0x%04x EPH_ST 0x%04x)\n",
1342	       status, mask, meminfo, fifo, eph_st);
1343
1344	smc_reset(dev);
1345	smc_enable(dev);
1346
1347	/*
1348	 * Reconfiguring the PHY doesn't seem like a bad idea here, but
1349	 * smc_phy_configure() calls msleep() which calls schedule_timeout()
1350	 * which calls schedule().  Hence we use a work queue.
1351	 */
1352	if (lp->phy_type != 0)
1353		schedule_work(&lp->phy_configure);
1354
1355	/* We can accept TX packets again */
1356	netif_trans_update(dev); /* prevent tx timeout */
1357	netif_wake_queue(dev);
1358}
1359
1360/*
1361 * This routine will, depending on the values passed to it,
1362 * either make it accept multicast packets, go into
1363 * promiscuous mode (for TCPDUMP and cousins) or accept
1364 * a select set of multicast packets
1365 */
1366static void smc_set_multicast_list(struct net_device *dev)
1367{
1368	struct smc_local *lp = netdev_priv(dev);
1369	void __iomem *ioaddr = lp->base;
1370	unsigned char multicast_table[8];
1371	int update_multicast = 0;
1372
1373	DBG(2, dev, "%s\n", __func__);
1374
1375	if (dev->flags & IFF_PROMISC) {
1376		DBG(2, dev, "RCR_PRMS\n");
1377		lp->rcr_cur_mode |= RCR_PRMS;
1378	}
1379
1380/* BUG?  I never disable promiscuous mode if multicasting was turned on.
1381   Now, I turn off promiscuous mode, but I don't do anything to multicasting
1382   when promiscuous mode is turned on.
1383*/
1384
1385	/*
1386	 * Here, I am setting this to accept all multicast packets.
1387	 * I don't need to zero the multicast table, because the flag is
1388	 * checked before the table is
1389	 */
1390	else if (dev->flags & IFF_ALLMULTI || netdev_mc_count(dev) > 16) {
1391		DBG(2, dev, "RCR_ALMUL\n");
1392		lp->rcr_cur_mode |= RCR_ALMUL;
1393	}
1394
1395	/*
1396	 * This sets the internal hardware table to filter out unwanted
1397	 * multicast packets before they take up memory.
1398	 *
1399	 * The SMC chip uses a hash table where the high 6 bits of the CRC of
1400	 * address are the offset into the table.  If that bit is 1, then the
1401	 * multicast packet is accepted.  Otherwise, it's dropped silently.
1402	 *
1403	 * To use the 6 bits as an offset into the table, the high 3 bits are
1404	 * the number of the 8 bit register, while the low 3 bits are the bit
1405	 * within that register.
1406	 */
1407	else if (!netdev_mc_empty(dev)) {
1408		struct netdev_hw_addr *ha;
1409
1410		/* table for flipping the order of 3 bits */
1411		static const unsigned char invert3[] = {0, 4, 2, 6, 1, 5, 3, 7};
1412
1413		/* start with a table of all zeros: reject all */
1414		memset(multicast_table, 0, sizeof(multicast_table));
1415
1416		netdev_for_each_mc_addr(ha, dev) {
1417			int position;
1418
1419			/* only use the low order bits */
1420			position = crc32_le(~0, ha->addr, 6) & 0x3f;
1421
1422			/* do some messy swapping to put the bit in the right spot */
1423			multicast_table[invert3[position&7]] |=
1424				(1<<invert3[(position>>3)&7]);
1425		}
1426
1427		/* be sure I get rid of flags I might have set */
1428		lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL);
1429
1430		/* now, the table can be loaded into the chipset */
1431		update_multicast = 1;
1432	} else  {
1433		DBG(2, dev, "~(RCR_PRMS|RCR_ALMUL)\n");
1434		lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL);
1435
1436		/*
1437		 * since I'm disabling all multicast entirely, I need to
1438		 * clear the multicast list
1439		 */
1440		memset(multicast_table, 0, sizeof(multicast_table));
1441		update_multicast = 1;
1442	}
1443
1444	spin_lock_irq(&lp->lock);
1445	SMC_SELECT_BANK(lp, 0);
1446	SMC_SET_RCR(lp, lp->rcr_cur_mode);
1447	if (update_multicast) {
1448		SMC_SELECT_BANK(lp, 3);
1449		SMC_SET_MCAST(lp, multicast_table);
1450	}
1451	SMC_SELECT_BANK(lp, 2);
1452	spin_unlock_irq(&lp->lock);
1453}
1454
1455
1456/*
1457 * Open and Initialize the board
1458 *
1459 * Set up everything, reset the card, etc..
1460 */
1461static int
1462smc_open(struct net_device *dev)
1463{
1464	struct smc_local *lp = netdev_priv(dev);
1465
1466	DBG(2, dev, "%s\n", __func__);
1467
1468	/* Setup the default Register Modes */
1469	lp->tcr_cur_mode = TCR_DEFAULT;
1470	lp->rcr_cur_mode = RCR_DEFAULT;
1471	lp->rpc_cur_mode = RPC_DEFAULT |
1472				lp->cfg.leda << RPC_LSXA_SHFT |
1473				lp->cfg.ledb << RPC_LSXB_SHFT;
1474
1475	/*
1476	 * If we are not using a MII interface, we need to
1477	 * monitor our own carrier signal to detect faults.
1478	 */
1479	if (lp->phy_type == 0)
1480		lp->tcr_cur_mode |= TCR_MON_CSN;
1481
1482	/* reset the hardware */
1483	smc_reset(dev);
1484	smc_enable(dev);
1485
1486	/* Configure the PHY, initialize the link state */
1487	if (lp->phy_type != 0)
1488		smc_phy_configure(&lp->phy_configure);
1489	else {
1490		spin_lock_irq(&lp->lock);
1491		smc_10bt_check_media(dev, 1);
1492		spin_unlock_irq(&lp->lock);
1493	}
1494
1495	netif_start_queue(dev);
1496	return 0;
1497}
1498
1499/*
1500 * smc_close
1501 *
1502 * this makes the board clean up everything that it can
1503 * and not talk to the outside world.   Caused by
1504 * an 'ifconfig ethX down'
1505 */
1506static int smc_close(struct net_device *dev)
1507{
1508	struct smc_local *lp = netdev_priv(dev);
1509
1510	DBG(2, dev, "%s\n", __func__);
1511
1512	netif_stop_queue(dev);
1513	netif_carrier_off(dev);
1514
1515	/* clear everything */
1516	smc_shutdown(dev);
1517	tasklet_kill(&lp->tx_task);
1518	smc_phy_powerdown(dev);
1519	return 0;
1520}
1521
1522/*
1523 * Ethtool support
1524 */
1525static int
1526smc_ethtool_get_link_ksettings(struct net_device *dev,
1527			       struct ethtool_link_ksettings *cmd)
1528{
1529	struct smc_local *lp = netdev_priv(dev);
1530
1531	if (lp->phy_type != 0) {
1532		spin_lock_irq(&lp->lock);
1533		mii_ethtool_get_link_ksettings(&lp->mii, cmd);
1534		spin_unlock_irq(&lp->lock);
1535	} else {
1536		u32 supported = SUPPORTED_10baseT_Half |
1537				 SUPPORTED_10baseT_Full |
1538				 SUPPORTED_TP | SUPPORTED_AUI;
1539
1540		if (lp->ctl_rspeed == 10)
1541			cmd->base.speed = SPEED_10;
1542		else if (lp->ctl_rspeed == 100)
1543			cmd->base.speed = SPEED_100;
1544
1545		cmd->base.autoneg = AUTONEG_DISABLE;
1546		cmd->base.port = 0;
1547		cmd->base.duplex = lp->tcr_cur_mode & TCR_SWFDUP ?
1548			DUPLEX_FULL : DUPLEX_HALF;
1549
1550		ethtool_convert_legacy_u32_to_link_mode(
1551			cmd->link_modes.supported, supported);
1552	}
1553
1554	return 0;
1555}
1556
1557static int
1558smc_ethtool_set_link_ksettings(struct net_device *dev,
1559			       const struct ethtool_link_ksettings *cmd)
1560{
1561	struct smc_local *lp = netdev_priv(dev);
1562	int ret;
1563
1564	if (lp->phy_type != 0) {
1565		spin_lock_irq(&lp->lock);
1566		ret = mii_ethtool_set_link_ksettings(&lp->mii, cmd);
1567		spin_unlock_irq(&lp->lock);
1568	} else {
1569		if (cmd->base.autoneg != AUTONEG_DISABLE ||
1570		    cmd->base.speed != SPEED_10 ||
1571		    (cmd->base.duplex != DUPLEX_HALF &&
1572		     cmd->base.duplex != DUPLEX_FULL) ||
1573		    (cmd->base.port != PORT_TP && cmd->base.port != PORT_AUI))
1574			return -EINVAL;
1575
1576//		lp->port = cmd->base.port;
1577		lp->ctl_rfduplx = cmd->base.duplex == DUPLEX_FULL;
1578
1579//		if (netif_running(dev))
1580//			smc_set_port(dev);
1581
1582		ret = 0;
1583	}
1584
1585	return ret;
1586}
1587
1588static void
1589smc_ethtool_getdrvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1590{
1591	strscpy(info->driver, CARDNAME, sizeof(info->driver));
1592	strscpy(info->version, version, sizeof(info->version));
1593	strscpy(info->bus_info, dev_name(dev->dev.parent),
1594		sizeof(info->bus_info));
1595}
1596
1597static int smc_ethtool_nwayreset(struct net_device *dev)
1598{
1599	struct smc_local *lp = netdev_priv(dev);
1600	int ret = -EINVAL;
1601
1602	if (lp->phy_type != 0) {
1603		spin_lock_irq(&lp->lock);
1604		ret = mii_nway_restart(&lp->mii);
1605		spin_unlock_irq(&lp->lock);
1606	}
1607
1608	return ret;
1609}
1610
1611static u32 smc_ethtool_getmsglevel(struct net_device *dev)
1612{
1613	struct smc_local *lp = netdev_priv(dev);
1614	return lp->msg_enable;
1615}
1616
1617static void smc_ethtool_setmsglevel(struct net_device *dev, u32 level)
1618{
1619	struct smc_local *lp = netdev_priv(dev);
1620	lp->msg_enable = level;
1621}
1622
1623static int smc_write_eeprom_word(struct net_device *dev, u16 addr, u16 word)
1624{
1625	u16 ctl;
1626	struct smc_local *lp = netdev_priv(dev);
1627	void __iomem *ioaddr = lp->base;
1628
1629	spin_lock_irq(&lp->lock);
1630	/* load word into GP register */
1631	SMC_SELECT_BANK(lp, 1);
1632	SMC_SET_GP(lp, word);
1633	/* set the address to put the data in EEPROM */
1634	SMC_SELECT_BANK(lp, 2);
1635	SMC_SET_PTR(lp, addr);
1636	/* tell it to write */
1637	SMC_SELECT_BANK(lp, 1);
1638	ctl = SMC_GET_CTL(lp);
1639	SMC_SET_CTL(lp, ctl | (CTL_EEPROM_SELECT | CTL_STORE));
1640	/* wait for it to finish */
1641	do {
1642		udelay(1);
1643	} while (SMC_GET_CTL(lp) & CTL_STORE);
1644	/* clean up */
1645	SMC_SET_CTL(lp, ctl);
1646	SMC_SELECT_BANK(lp, 2);
1647	spin_unlock_irq(&lp->lock);
1648	return 0;
1649}
1650
1651static int smc_read_eeprom_word(struct net_device *dev, u16 addr, u16 *word)
1652{
1653	u16 ctl;
1654	struct smc_local *lp = netdev_priv(dev);
1655	void __iomem *ioaddr = lp->base;
1656
1657	spin_lock_irq(&lp->lock);
1658	/* set the EEPROM address to get the data from */
1659	SMC_SELECT_BANK(lp, 2);
1660	SMC_SET_PTR(lp, addr | PTR_READ);
1661	/* tell it to load */
1662	SMC_SELECT_BANK(lp, 1);
1663	SMC_SET_GP(lp, 0xffff);	/* init to known */
1664	ctl = SMC_GET_CTL(lp);
1665	SMC_SET_CTL(lp, ctl | (CTL_EEPROM_SELECT | CTL_RELOAD));
1666	/* wait for it to finish */
1667	do {
1668		udelay(1);
1669	} while (SMC_GET_CTL(lp) & CTL_RELOAD);
1670	/* read word from GP register */
1671	*word = SMC_GET_GP(lp);
1672	/* clean up */
1673	SMC_SET_CTL(lp, ctl);
1674	SMC_SELECT_BANK(lp, 2);
1675	spin_unlock_irq(&lp->lock);
1676	return 0;
1677}
1678
1679static int smc_ethtool_geteeprom_len(struct net_device *dev)
1680{
1681	return 0x23 * 2;
1682}
1683
1684static int smc_ethtool_geteeprom(struct net_device *dev,
1685		struct ethtool_eeprom *eeprom, u8 *data)
1686{
1687	int i;
1688	int imax;
1689
1690	DBG(1, dev, "Reading %d bytes at %d(0x%x)\n",
1691		eeprom->len, eeprom->offset, eeprom->offset);
1692	imax = smc_ethtool_geteeprom_len(dev);
1693	for (i = 0; i < eeprom->len; i += 2) {
1694		int ret;
1695		u16 wbuf;
1696		int offset = i + eeprom->offset;
1697		if (offset > imax)
1698			break;
1699		ret = smc_read_eeprom_word(dev, offset >> 1, &wbuf);
1700		if (ret != 0)
1701			return ret;
1702		DBG(2, dev, "Read 0x%x from 0x%x\n", wbuf, offset >> 1);
1703		data[i] = (wbuf >> 8) & 0xff;
1704		data[i+1] = wbuf & 0xff;
1705	}
1706	return 0;
1707}
1708
1709static int smc_ethtool_seteeprom(struct net_device *dev,
1710		struct ethtool_eeprom *eeprom, u8 *data)
1711{
1712	int i;
1713	int imax;
1714
1715	DBG(1, dev, "Writing %d bytes to %d(0x%x)\n",
1716	    eeprom->len, eeprom->offset, eeprom->offset);
1717	imax = smc_ethtool_geteeprom_len(dev);
1718	for (i = 0; i < eeprom->len; i += 2) {
1719		int ret;
1720		u16 wbuf;
1721		int offset = i + eeprom->offset;
1722		if (offset > imax)
1723			break;
1724		wbuf = (data[i] << 8) | data[i + 1];
1725		DBG(2, dev, "Writing 0x%x to 0x%x\n", wbuf, offset >> 1);
1726		ret = smc_write_eeprom_word(dev, offset >> 1, wbuf);
1727		if (ret != 0)
1728			return ret;
1729	}
1730	return 0;
1731}
1732
1733
1734static const struct ethtool_ops smc_ethtool_ops = {
1735	.get_drvinfo	= smc_ethtool_getdrvinfo,
1736
1737	.get_msglevel	= smc_ethtool_getmsglevel,
1738	.set_msglevel	= smc_ethtool_setmsglevel,
1739	.nway_reset	= smc_ethtool_nwayreset,
1740	.get_link	= ethtool_op_get_link,
1741	.get_eeprom_len = smc_ethtool_geteeprom_len,
1742	.get_eeprom	= smc_ethtool_geteeprom,
1743	.set_eeprom	= smc_ethtool_seteeprom,
1744	.get_link_ksettings	= smc_ethtool_get_link_ksettings,
1745	.set_link_ksettings	= smc_ethtool_set_link_ksettings,
1746};
1747
1748static const struct net_device_ops smc_netdev_ops = {
1749	.ndo_open		= smc_open,
1750	.ndo_stop		= smc_close,
1751	.ndo_start_xmit		= smc_hard_start_xmit,
1752	.ndo_tx_timeout		= smc_timeout,
1753	.ndo_set_rx_mode	= smc_set_multicast_list,
1754	.ndo_validate_addr	= eth_validate_addr,
1755	.ndo_set_mac_address 	= eth_mac_addr,
1756#ifdef CONFIG_NET_POLL_CONTROLLER
1757	.ndo_poll_controller	= smc_poll_controller,
1758#endif
1759};
1760
1761/*
1762 * smc_findirq
1763 *
1764 * This routine has a simple purpose -- make the SMC chip generate an
1765 * interrupt, so an auto-detect routine can detect it, and find the IRQ,
1766 */
1767/*
1768 * does this still work?
1769 *
1770 * I just deleted auto_irq.c, since it was never built...
1771 *   --jgarzik
1772 */
1773static int smc_findirq(struct smc_local *lp)
1774{
1775	void __iomem *ioaddr = lp->base;
1776	int timeout = 20;
1777	unsigned long cookie;
1778
1779	DBG(2, lp->dev, "%s: %s\n", CARDNAME, __func__);
1780
1781	cookie = probe_irq_on();
1782
1783	/*
1784	 * What I try to do here is trigger an ALLOC_INT. This is done
1785	 * by allocating a small chunk of memory, which will give an interrupt
1786	 * when done.
1787	 */
1788	/* enable ALLOCation interrupts ONLY */
1789	SMC_SELECT_BANK(lp, 2);
1790	SMC_SET_INT_MASK(lp, IM_ALLOC_INT);
1791
1792	/*
1793	 * Allocate 512 bytes of memory.  Note that the chip was just
1794	 * reset so all the memory is available
1795	 */
1796	SMC_SET_MMU_CMD(lp, MC_ALLOC | 1);
1797
1798	/*
1799	 * Wait until positive that the interrupt has been generated
1800	 */
1801	do {
1802		int int_status;
1803		udelay(10);
1804		int_status = SMC_GET_INT(lp);
1805		if (int_status & IM_ALLOC_INT)
1806			break;		/* got the interrupt */
1807	} while (--timeout);
1808
1809	/*
1810	 * there is really nothing that I can do here if timeout fails,
1811	 * as autoirq_report will return a 0 anyway, which is what I
1812	 * want in this case.   Plus, the clean up is needed in both
1813	 * cases.
1814	 */
1815
1816	/* and disable all interrupts again */
1817	SMC_SET_INT_MASK(lp, 0);
1818
1819	/* and return what I found */
1820	return probe_irq_off(cookie);
1821}
1822
1823/*
1824 * Function: smc_probe(unsigned long ioaddr)
1825 *
1826 * Purpose:
1827 *	Tests to see if a given ioaddr points to an SMC91x chip.
1828 *	Returns a 0 on success
1829 *
1830 * Algorithm:
1831 *	(1) see if the high byte of BANK_SELECT is 0x33
1832 * 	(2) compare the ioaddr with the base register's address
1833 *	(3) see if I recognize the chip ID in the appropriate register
1834 *
1835 * Here I do typical initialization tasks.
1836 *
1837 * o  Initialize the structure if needed
1838 * o  print out my vanity message if not done so already
1839 * o  print out what type of hardware is detected
1840 * o  print out the ethernet address
1841 * o  find the IRQ
1842 * o  set up my private data
1843 * o  configure the dev structure with my subroutines
1844 * o  actually GRAB the irq.
1845 * o  GRAB the region
1846 */
1847static int smc_probe(struct net_device *dev, void __iomem *ioaddr,
1848		     unsigned long irq_flags)
1849{
1850	struct smc_local *lp = netdev_priv(dev);
1851	int retval;
1852	unsigned int val, revision_register;
1853	const char *version_string;
1854	u8 addr[ETH_ALEN];
1855
1856	DBG(2, dev, "%s: %s\n", CARDNAME, __func__);
1857
1858	/* First, see if the high byte is 0x33 */
1859	val = SMC_CURRENT_BANK(lp);
1860	DBG(2, dev, "%s: bank signature probe returned 0x%04x\n",
1861	    CARDNAME, val);
1862	if ((val & 0xFF00) != 0x3300) {
1863		if ((val & 0xFF) == 0x33) {
1864			netdev_warn(dev,
1865				    "%s: Detected possible byte-swapped interface at IOADDR %p\n",
1866				    CARDNAME, ioaddr);
1867		}
1868		retval = -ENODEV;
1869		goto err_out;
1870	}
1871
1872	/*
1873	 * The above MIGHT indicate a device, but I need to write to
1874	 * further test this.
1875	 */
1876	SMC_SELECT_BANK(lp, 0);
1877	val = SMC_CURRENT_BANK(lp);
1878	if ((val & 0xFF00) != 0x3300) {
1879		retval = -ENODEV;
1880		goto err_out;
1881	}
1882
1883	/*
1884	 * well, we've already written once, so hopefully another
1885	 * time won't hurt.  This time, I need to switch the bank
1886	 * register to bank 1, so I can access the base address
1887	 * register
1888	 */
1889	SMC_SELECT_BANK(lp, 1);
1890	val = SMC_GET_BASE(lp);
1891	val = ((val & 0x1F00) >> 3) << SMC_IO_SHIFT;
1892	if (((unsigned long)ioaddr & (0x3e0 << SMC_IO_SHIFT)) != val) {
1893		netdev_warn(dev, "%s: IOADDR %p doesn't match configuration (%x).\n",
1894			    CARDNAME, ioaddr, val);
1895	}
1896
1897	/*
1898	 * check if the revision register is something that I
1899	 * recognize.  These might need to be added to later,
1900	 * as future revisions could be added.
1901	 */
1902	SMC_SELECT_BANK(lp, 3);
1903	revision_register = SMC_GET_REV(lp);
1904	DBG(2, dev, "%s: revision = 0x%04x\n", CARDNAME, revision_register);
1905	version_string = chip_ids[ (revision_register >> 4) & 0xF];
1906	if (!version_string || (revision_register & 0xff00) != 0x3300) {
1907		/* I don't recognize this chip, so... */
1908		netdev_warn(dev, "%s: IO %p: Unrecognized revision register 0x%04x, Contact author.\n",
1909			    CARDNAME, ioaddr, revision_register);
1910
1911		retval = -ENODEV;
1912		goto err_out;
1913	}
1914
1915	/* At this point I'll assume that the chip is an SMC91x. */
1916	pr_info_once("%s\n", version);
1917
1918	/* fill in some of the fields */
1919	dev->base_addr = (unsigned long)ioaddr;
1920	lp->base = ioaddr;
1921	lp->version = revision_register & 0xff;
1922	spin_lock_init(&lp->lock);
1923
1924	/* Get the MAC address */
1925	SMC_SELECT_BANK(lp, 1);
1926	SMC_GET_MAC_ADDR(lp, addr);
1927	eth_hw_addr_set(dev, addr);
1928
1929	/* now, reset the chip, and put it into a known state */
1930	smc_reset(dev);
1931
1932	/*
1933	 * If dev->irq is 0, then the device has to be banged on to see
1934	 * what the IRQ is.
1935	 *
1936	 * This banging doesn't always detect the IRQ, for unknown reasons.
1937	 * a workaround is to reset the chip and try again.
1938	 *
1939	 * Interestingly, the DOS packet driver *SETS* the IRQ on the card to
1940	 * be what is requested on the command line.   I don't do that, mostly
1941	 * because the card that I have uses a non-standard method of accessing
1942	 * the IRQs, and because this _should_ work in most configurations.
1943	 *
1944	 * Specifying an IRQ is done with the assumption that the user knows
1945	 * what (s)he is doing.  No checking is done!!!!
1946	 */
1947	if (dev->irq < 1) {
1948		int trials;
1949
1950		trials = 3;
1951		while (trials--) {
1952			dev->irq = smc_findirq(lp);
1953			if (dev->irq)
1954				break;
1955			/* kick the card and try again */
1956			smc_reset(dev);
1957		}
1958	}
1959	if (dev->irq == 0) {
1960		netdev_warn(dev, "Couldn't autodetect your IRQ. Use irq=xx.\n");
1961		retval = -ENODEV;
1962		goto err_out;
1963	}
1964	dev->irq = irq_canonicalize(dev->irq);
1965
1966	dev->watchdog_timeo = msecs_to_jiffies(watchdog);
1967	dev->netdev_ops = &smc_netdev_ops;
1968	dev->ethtool_ops = &smc_ethtool_ops;
1969
1970	tasklet_setup(&lp->tx_task, smc_hardware_send_pkt);
1971	INIT_WORK(&lp->phy_configure, smc_phy_configure);
1972	lp->dev = dev;
1973	lp->mii.phy_id_mask = 0x1f;
1974	lp->mii.reg_num_mask = 0x1f;
1975	lp->mii.force_media = 0;
1976	lp->mii.full_duplex = 0;
1977	lp->mii.dev = dev;
1978	lp->mii.mdio_read = smc_phy_read;
1979	lp->mii.mdio_write = smc_phy_write;
1980
1981	/*
1982	 * Locate the phy, if any.
1983	 */
1984	if (lp->version >= (CHIP_91100 << 4))
1985		smc_phy_detect(dev);
1986
1987	/* then shut everything down to save power */
1988	smc_shutdown(dev);
1989	smc_phy_powerdown(dev);
1990
1991	/* Set default parameters */
1992	lp->msg_enable = NETIF_MSG_LINK;
1993	lp->ctl_rfduplx = 0;
1994	lp->ctl_rspeed = 10;
1995
1996	if (lp->version >= (CHIP_91100 << 4)) {
1997		lp->ctl_rfduplx = 1;
1998		lp->ctl_rspeed = 100;
1999	}
2000
2001	/* Grab the IRQ */
2002	retval = request_irq(dev->irq, smc_interrupt, irq_flags, dev->name, dev);
2003	if (retval)
2004		goto err_out;
2005
2006#ifdef CONFIG_ARCH_PXA
2007#  ifdef SMC_USE_PXA_DMA
2008	lp->cfg.flags |= SMC91X_USE_DMA;
2009#  endif
2010	if (lp->cfg.flags & SMC91X_USE_DMA) {
2011		dma_cap_mask_t mask;
2012
2013		dma_cap_zero(mask);
2014		dma_cap_set(DMA_SLAVE, mask);
2015		lp->dma_chan = dma_request_channel(mask, NULL, NULL);
2016	}
2017#endif
2018
2019	retval = register_netdev(dev);
2020	if (retval == 0) {
2021		/* now, print out the card info, in a short format.. */
2022		netdev_info(dev, "%s (rev %d) at %p IRQ %d",
2023			    version_string, revision_register & 0x0f,
2024			    lp->base, dev->irq);
2025
2026		if (lp->dma_chan)
2027			pr_cont(" DMA %p", lp->dma_chan);
2028
2029		pr_cont("%s%s\n",
2030			lp->cfg.flags & SMC91X_NOWAIT ? " [nowait]" : "",
2031			THROTTLE_TX_PKTS ? " [throttle_tx]" : "");
2032
2033		if (!is_valid_ether_addr(dev->dev_addr)) {
2034			netdev_warn(dev, "Invalid ethernet MAC address. Please set using ifconfig\n");
2035		} else {
2036			/* Print the Ethernet address */
2037			netdev_info(dev, "Ethernet addr: %pM\n",
2038				    dev->dev_addr);
2039		}
2040
2041		if (lp->phy_type == 0) {
2042			PRINTK(dev, "No PHY found\n");
2043		} else if ((lp->phy_type & 0xfffffff0) == 0x0016f840) {
2044			PRINTK(dev, "PHY LAN83C183 (LAN91C111 Internal)\n");
2045		} else if ((lp->phy_type & 0xfffffff0) == 0x02821c50) {
2046			PRINTK(dev, "PHY LAN83C180\n");
2047		}
2048	}
2049
2050err_out:
2051#ifdef CONFIG_ARCH_PXA
2052	if (retval && lp->dma_chan)
2053		dma_release_channel(lp->dma_chan);
2054#endif
2055	return retval;
2056}
2057
2058static int smc_enable_device(struct platform_device *pdev)
2059{
2060	struct net_device *ndev = platform_get_drvdata(pdev);
2061	struct smc_local *lp = netdev_priv(ndev);
2062	unsigned long flags;
2063	unsigned char ecor, ecsr;
2064	void __iomem *addr;
2065	struct resource * res;
2066
2067	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2068	if (!res)
2069		return 0;
2070
2071	/*
2072	 * Map the attribute space.  This is overkill, but clean.
2073	 */
2074	addr = ioremap(res->start, ATTRIB_SIZE);
2075	if (!addr)
2076		return -ENOMEM;
2077
2078	/*
2079	 * Reset the device.  We must disable IRQs around this
2080	 * since a reset causes the IRQ line become active.
2081	 */
2082	local_irq_save(flags);
2083	ecor = readb(addr + (ECOR << SMC_IO_SHIFT)) & ~ECOR_RESET;
2084	writeb(ecor | ECOR_RESET, addr + (ECOR << SMC_IO_SHIFT));
2085	readb(addr + (ECOR << SMC_IO_SHIFT));
2086
2087	/*
2088	 * Wait 100us for the chip to reset.
2089	 */
2090	udelay(100);
2091
2092	/*
2093	 * The device will ignore all writes to the enable bit while
2094	 * reset is asserted, even if the reset bit is cleared in the
2095	 * same write.  Must clear reset first, then enable the device.
2096	 */
2097	writeb(ecor, addr + (ECOR << SMC_IO_SHIFT));
2098	writeb(ecor | ECOR_ENABLE, addr + (ECOR << SMC_IO_SHIFT));
2099
2100	/*
2101	 * Set the appropriate byte/word mode.
2102	 */
2103	ecsr = readb(addr + (ECSR << SMC_IO_SHIFT)) & ~ECSR_IOIS8;
2104	if (!SMC_16BIT(lp))
2105		ecsr |= ECSR_IOIS8;
2106	writeb(ecsr, addr + (ECSR << SMC_IO_SHIFT));
2107	local_irq_restore(flags);
2108
2109	iounmap(addr);
2110
2111	/*
2112	 * Wait for the chip to wake up.  We could poll the control
2113	 * register in the main register space, but that isn't mapped
2114	 * yet.  We know this is going to take 750us.
2115	 */
2116	msleep(1);
2117
2118	return 0;
2119}
2120
2121static int smc_request_attrib(struct platform_device *pdev,
2122			      struct net_device *ndev)
2123{
2124	struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2125	struct smc_local *lp __maybe_unused = netdev_priv(ndev);
2126
2127	if (!res)
2128		return 0;
2129
2130	if (!request_mem_region(res->start, ATTRIB_SIZE, CARDNAME))
2131		return -EBUSY;
2132
2133	return 0;
2134}
2135
2136static void smc_release_attrib(struct platform_device *pdev,
2137			       struct net_device *ndev)
2138{
2139	struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2140	struct smc_local *lp __maybe_unused = netdev_priv(ndev);
2141
2142	if (res)
2143		release_mem_region(res->start, ATTRIB_SIZE);
2144}
2145
2146static inline void smc_request_datacs(struct platform_device *pdev, struct net_device *ndev)
2147{
2148	if (SMC_CAN_USE_DATACS) {
2149		struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32");
2150		struct smc_local *lp = netdev_priv(ndev);
2151
2152		if (!res)
2153			return;
2154
2155		if(!request_mem_region(res->start, SMC_DATA_EXTENT, CARDNAME)) {
2156			netdev_info(ndev, "%s: failed to request datacs memory region.\n",
2157				    CARDNAME);
2158			return;
2159		}
2160
2161		lp->datacs = ioremap(res->start, SMC_DATA_EXTENT);
2162	}
2163}
2164
2165static void smc_release_datacs(struct platform_device *pdev, struct net_device *ndev)
2166{
2167	if (SMC_CAN_USE_DATACS) {
2168		struct smc_local *lp = netdev_priv(ndev);
2169		struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32");
2170
2171		if (lp->datacs)
2172			iounmap(lp->datacs);
2173
2174		lp->datacs = NULL;
2175
2176		if (res)
2177			release_mem_region(res->start, SMC_DATA_EXTENT);
2178	}
2179}
2180
2181static const struct acpi_device_id smc91x_acpi_match[] = {
2182	{ "LNRO0003", 0 },
2183	{ }
2184};
2185MODULE_DEVICE_TABLE(acpi, smc91x_acpi_match);
2186
2187#if IS_BUILTIN(CONFIG_OF)
2188static const struct of_device_id smc91x_match[] = {
2189	{ .compatible = "smsc,lan91c94", },
2190	{ .compatible = "smsc,lan91c111", },
2191	{},
2192};
2193MODULE_DEVICE_TABLE(of, smc91x_match);
2194
2195/**
2196 * try_toggle_control_gpio - configure a gpio if it exists
2197 * @dev: net device
2198 * @desc: where to store the GPIO descriptor, if it exists
2199 * @name: name of the GPIO in DT
2200 * @index: index of the GPIO in DT
2201 * @value: set the GPIO to this value
2202 * @nsdelay: delay before setting the GPIO
2203 */
2204static int try_toggle_control_gpio(struct device *dev,
2205				   struct gpio_desc **desc,
2206				   const char *name, int index,
2207				   int value, unsigned int nsdelay)
2208{
2209	struct gpio_desc *gpio;
2210	enum gpiod_flags flags = value ? GPIOD_OUT_LOW : GPIOD_OUT_HIGH;
2211
2212	gpio = devm_gpiod_get_index_optional(dev, name, index, flags);
2213	if (IS_ERR(gpio))
2214		return PTR_ERR(gpio);
2215
2216	if (gpio) {
2217		if (nsdelay)
2218			usleep_range(nsdelay, 2 * nsdelay);
2219		gpiod_set_value_cansleep(gpio, value);
2220	}
2221	*desc = gpio;
2222
2223	return 0;
2224}
2225#endif
2226
2227/*
2228 * smc_init(void)
2229 *   Input parameters:
2230 *	dev->base_addr == 0, try to find all possible locations
2231 *	dev->base_addr > 0x1ff, this is the address to check
2232 *	dev->base_addr == <anything else>, return failure code
2233 *
2234 *   Output:
2235 *	0 --> there is a device
2236 *	anything else, error
2237 */
2238static int smc_drv_probe(struct platform_device *pdev)
2239{
2240	struct smc91x_platdata *pd = dev_get_platdata(&pdev->dev);
2241	const struct of_device_id *match = NULL;
2242	struct smc_local *lp;
2243	struct net_device *ndev;
2244	struct resource *res;
2245	unsigned int __iomem *addr;
2246	unsigned long irq_flags = SMC_IRQ_FLAGS;
2247	unsigned long irq_resflags;
2248	int ret;
2249
2250	ndev = alloc_etherdev(sizeof(struct smc_local));
2251	if (!ndev) {
2252		ret = -ENOMEM;
2253		goto out;
2254	}
2255	SET_NETDEV_DEV(ndev, &pdev->dev);
2256
2257	/* get configuration from platform data, only allow use of
2258	 * bus width if both SMC_CAN_USE_xxx and SMC91X_USE_xxx are set.
2259	 */
2260
2261	lp = netdev_priv(ndev);
2262	lp->cfg.flags = 0;
2263
2264	if (pd) {
2265		memcpy(&lp->cfg, pd, sizeof(lp->cfg));
2266		lp->io_shift = SMC91X_IO_SHIFT(lp->cfg.flags);
2267
2268		if (!SMC_8BIT(lp) && !SMC_16BIT(lp)) {
2269			dev_err(&pdev->dev,
2270				"at least one of 8-bit or 16-bit access support is required.\n");
2271			ret = -ENXIO;
2272			goto out_free_netdev;
2273		}
2274	}
2275
2276#if IS_BUILTIN(CONFIG_OF)
2277	match = of_match_device(of_match_ptr(smc91x_match), &pdev->dev);
2278	if (match) {
2279		u32 val;
2280
2281		/* Optional pwrdwn GPIO configured? */
2282		ret = try_toggle_control_gpio(&pdev->dev, &lp->power_gpio,
2283					      "power", 0, 0, 100);
2284		if (ret)
2285			goto out_free_netdev;
2286
2287		/*
2288		 * Optional reset GPIO configured? Minimum 100 ns reset needed
2289		 * according to LAN91C96 datasheet page 14.
2290		 */
2291		ret = try_toggle_control_gpio(&pdev->dev, &lp->reset_gpio,
2292					      "reset", 0, 0, 100);
2293		if (ret)
2294			goto out_free_netdev;
2295
2296		/*
2297		 * Need to wait for optional EEPROM to load, max 750 us according
2298		 * to LAN91C96 datasheet page 55.
2299		 */
2300		if (lp->reset_gpio)
2301			usleep_range(750, 1000);
2302
2303		/* Combination of IO widths supported, default to 16-bit */
2304		if (!device_property_read_u32(&pdev->dev, "reg-io-width",
2305					      &val)) {
2306			if (val & 1)
2307				lp->cfg.flags |= SMC91X_USE_8BIT;
2308			if ((val == 0) || (val & 2))
2309				lp->cfg.flags |= SMC91X_USE_16BIT;
2310			if (val & 4)
2311				lp->cfg.flags |= SMC91X_USE_32BIT;
2312		} else {
2313			lp->cfg.flags |= SMC91X_USE_16BIT;
2314		}
2315		if (!device_property_read_u32(&pdev->dev, "reg-shift",
2316					      &val))
2317			lp->io_shift = val;
2318		lp->cfg.pxa_u16_align4 =
2319			device_property_read_bool(&pdev->dev, "pxa-u16-align4");
2320	}
2321#endif
2322
2323	if (!pd && !match) {
2324		lp->cfg.flags |= (SMC_CAN_USE_8BIT)  ? SMC91X_USE_8BIT  : 0;
2325		lp->cfg.flags |= (SMC_CAN_USE_16BIT) ? SMC91X_USE_16BIT : 0;
2326		lp->cfg.flags |= (SMC_CAN_USE_32BIT) ? SMC91X_USE_32BIT : 0;
2327		lp->cfg.flags |= (nowait) ? SMC91X_NOWAIT : 0;
2328	}
2329
2330	if (!lp->cfg.leda && !lp->cfg.ledb) {
2331		lp->cfg.leda = RPC_LSA_DEFAULT;
2332		lp->cfg.ledb = RPC_LSB_DEFAULT;
2333	}
2334
2335	ndev->dma = (unsigned char)-1;
2336
2337	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs");
2338	if (!res)
2339		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2340	if (!res) {
2341		ret = -ENODEV;
2342		goto out_free_netdev;
2343	}
2344
2345
2346	if (!request_mem_region(res->start, SMC_IO_EXTENT, CARDNAME)) {
2347		ret = -EBUSY;
2348		goto out_free_netdev;
2349	}
2350
2351	ndev->irq = platform_get_irq(pdev, 0);
2352	if (ndev->irq < 0) {
2353		ret = ndev->irq;
2354		goto out_release_io;
2355	}
2356	/*
2357	 * If this platform does not specify any special irqflags, or if
2358	 * the resource supplies a trigger, override the irqflags with
2359	 * the trigger flags from the resource.
2360	 */
2361	irq_resflags = irqd_get_trigger_type(irq_get_irq_data(ndev->irq));
2362	if (irq_flags == -1 || irq_resflags & IRQF_TRIGGER_MASK)
2363		irq_flags = irq_resflags & IRQF_TRIGGER_MASK;
2364
2365	ret = smc_request_attrib(pdev, ndev);
2366	if (ret)
2367		goto out_release_io;
2368#if defined(CONFIG_ASSABET_NEPONSET)
2369	if (machine_is_assabet() && machine_has_neponset())
2370		neponset_ncr_set(NCR_ENET_OSC_EN);
2371#endif
2372	platform_set_drvdata(pdev, ndev);
2373	ret = smc_enable_device(pdev);
2374	if (ret)
2375		goto out_release_attrib;
2376
2377	addr = ioremap(res->start, SMC_IO_EXTENT);
2378	if (!addr) {
2379		ret = -ENOMEM;
2380		goto out_release_attrib;
2381	}
2382
2383#ifdef CONFIG_ARCH_PXA
2384	{
2385		struct smc_local *lp = netdev_priv(ndev);
2386		lp->device = &pdev->dev;
2387		lp->physaddr = res->start;
2388
2389	}
2390#endif
2391
2392	ret = smc_probe(ndev, addr, irq_flags);
2393	if (ret != 0)
2394		goto out_iounmap;
2395
2396	smc_request_datacs(pdev, ndev);
2397
2398	return 0;
2399
2400 out_iounmap:
2401	iounmap(addr);
2402 out_release_attrib:
2403	smc_release_attrib(pdev, ndev);
2404 out_release_io:
2405	release_mem_region(res->start, SMC_IO_EXTENT);
2406 out_free_netdev:
2407	free_netdev(ndev);
2408 out:
2409	pr_info("%s: not found (%d).\n", CARDNAME, ret);
2410
2411	return ret;
2412}
2413
2414static int smc_drv_remove(struct platform_device *pdev)
2415{
2416	struct net_device *ndev = platform_get_drvdata(pdev);
2417	struct smc_local *lp = netdev_priv(ndev);
2418	struct resource *res;
2419
2420	unregister_netdev(ndev);
2421
2422	free_irq(ndev->irq, ndev);
2423
2424#ifdef CONFIG_ARCH_PXA
2425	if (lp->dma_chan)
2426		dma_release_channel(lp->dma_chan);
2427#endif
2428	iounmap(lp->base);
2429
2430	smc_release_datacs(pdev,ndev);
2431	smc_release_attrib(pdev,ndev);
2432
2433	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs");
2434	if (!res)
2435		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2436	release_mem_region(res->start, SMC_IO_EXTENT);
2437
2438	free_netdev(ndev);
2439
2440	return 0;
2441}
2442
2443static int smc_drv_suspend(struct device *dev)
2444{
2445	struct net_device *ndev = dev_get_drvdata(dev);
2446
2447	if (ndev) {
2448		if (netif_running(ndev)) {
2449			netif_device_detach(ndev);
2450			smc_shutdown(ndev);
2451			smc_phy_powerdown(ndev);
2452		}
2453	}
2454	return 0;
2455}
2456
2457static int smc_drv_resume(struct device *dev)
2458{
2459	struct platform_device *pdev = to_platform_device(dev);
2460	struct net_device *ndev = platform_get_drvdata(pdev);
2461
2462	if (ndev) {
2463		struct smc_local *lp = netdev_priv(ndev);
2464		smc_enable_device(pdev);
2465		if (netif_running(ndev)) {
2466			smc_reset(ndev);
2467			smc_enable(ndev);
2468			if (lp->phy_type != 0)
2469				smc_phy_configure(&lp->phy_configure);
2470			netif_device_attach(ndev);
2471		}
2472	}
2473	return 0;
2474}
2475
2476static const struct dev_pm_ops smc_drv_pm_ops = {
2477	.suspend	= smc_drv_suspend,
2478	.resume		= smc_drv_resume,
2479};
2480
2481static struct platform_driver smc_driver = {
2482	.probe		= smc_drv_probe,
2483	.remove		= smc_drv_remove,
2484	.driver		= {
2485		.name	= CARDNAME,
2486		.pm	= &smc_drv_pm_ops,
2487		.of_match_table   = of_match_ptr(smc91x_match),
2488		.acpi_match_table = smc91x_acpi_match,
2489	},
2490};
2491
2492module_platform_driver(smc_driver);
2493