1// SPDX-License-Identifier: GPL-2.0-only
2/****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2018 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11#include "net_driver.h"
12#include <linux/module.h>
13#include <linux/iommu.h>
14#include "efx.h"
15#include "nic.h"
16#include "rx_common.h"
17
18/* This is the percentage fill level below which new RX descriptors
19 * will be added to the RX descriptor ring.
20 */
21static unsigned int rx_refill_threshold;
22module_param(rx_refill_threshold, uint, 0444);
23MODULE_PARM_DESC(rx_refill_threshold,
24		 "RX descriptor ring refill threshold (%)");
25
26/* RX maximum head room required.
27 *
28 * This must be at least 1 to prevent overflow, plus one packet-worth
29 * to allow pipelined receives.
30 */
31#define EFX_RXD_HEAD_ROOM (1 + EFX_RX_MAX_FRAGS)
32
33static void efx_unmap_rx_buffer(struct efx_nic *efx,
34				struct efx_rx_buffer *rx_buf);
35
36/* Check the RX page recycle ring for a page that can be reused. */
37static struct page *efx_reuse_page(struct efx_rx_queue *rx_queue)
38{
39	struct efx_nic *efx = rx_queue->efx;
40	struct efx_rx_page_state *state;
41	unsigned int index;
42	struct page *page;
43
44	if (unlikely(!rx_queue->page_ring))
45		return NULL;
46	index = rx_queue->page_remove & rx_queue->page_ptr_mask;
47	page = rx_queue->page_ring[index];
48	if (page == NULL)
49		return NULL;
50
51	rx_queue->page_ring[index] = NULL;
52	/* page_remove cannot exceed page_add. */
53	if (rx_queue->page_remove != rx_queue->page_add)
54		++rx_queue->page_remove;
55
56	/* If page_count is 1 then we hold the only reference to this page. */
57	if (page_count(page) == 1) {
58		++rx_queue->page_recycle_count;
59		return page;
60	} else {
61		state = page_address(page);
62		dma_unmap_page(&efx->pci_dev->dev, state->dma_addr,
63			       PAGE_SIZE << efx->rx_buffer_order,
64			       DMA_FROM_DEVICE);
65		put_page(page);
66		++rx_queue->page_recycle_failed;
67	}
68
69	return NULL;
70}
71
72/* Attempt to recycle the page if there is an RX recycle ring; the page can
73 * only be added if this is the final RX buffer, to prevent pages being used in
74 * the descriptor ring and appearing in the recycle ring simultaneously.
75 */
76static void efx_recycle_rx_page(struct efx_channel *channel,
77				struct efx_rx_buffer *rx_buf)
78{
79	struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
80	struct efx_nic *efx = rx_queue->efx;
81	struct page *page = rx_buf->page;
82	unsigned int index;
83
84	/* Only recycle the page after processing the final buffer. */
85	if (!(rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE))
86		return;
87
88	index = rx_queue->page_add & rx_queue->page_ptr_mask;
89	if (rx_queue->page_ring[index] == NULL) {
90		unsigned int read_index = rx_queue->page_remove &
91			rx_queue->page_ptr_mask;
92
93		/* The next slot in the recycle ring is available, but
94		 * increment page_remove if the read pointer currently
95		 * points here.
96		 */
97		if (read_index == index)
98			++rx_queue->page_remove;
99		rx_queue->page_ring[index] = page;
100		++rx_queue->page_add;
101		return;
102	}
103	++rx_queue->page_recycle_full;
104	efx_unmap_rx_buffer(efx, rx_buf);
105	put_page(rx_buf->page);
106}
107
108/* Recycle the pages that are used by buffers that have just been received. */
109void efx_siena_recycle_rx_pages(struct efx_channel *channel,
110				struct efx_rx_buffer *rx_buf,
111				unsigned int n_frags)
112{
113	struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
114
115	if (unlikely(!rx_queue->page_ring))
116		return;
117
118	do {
119		efx_recycle_rx_page(channel, rx_buf);
120		rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
121	} while (--n_frags);
122}
123
124void efx_siena_discard_rx_packet(struct efx_channel *channel,
125				 struct efx_rx_buffer *rx_buf,
126				 unsigned int n_frags)
127{
128	struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
129
130	efx_siena_recycle_rx_pages(channel, rx_buf, n_frags);
131
132	efx_siena_free_rx_buffers(rx_queue, rx_buf, n_frags);
133}
134
135static void efx_init_rx_recycle_ring(struct efx_rx_queue *rx_queue)
136{
137	unsigned int bufs_in_recycle_ring, page_ring_size;
138	struct efx_nic *efx = rx_queue->efx;
139
140	bufs_in_recycle_ring = efx_rx_recycle_ring_size(efx);
141	page_ring_size = roundup_pow_of_two(bufs_in_recycle_ring /
142					    efx->rx_bufs_per_page);
143	rx_queue->page_ring = kcalloc(page_ring_size,
144				      sizeof(*rx_queue->page_ring), GFP_KERNEL);
145	if (!rx_queue->page_ring)
146		rx_queue->page_ptr_mask = 0;
147	else
148		rx_queue->page_ptr_mask = page_ring_size - 1;
149}
150
151static void efx_fini_rx_recycle_ring(struct efx_rx_queue *rx_queue)
152{
153	struct efx_nic *efx = rx_queue->efx;
154	int i;
155
156	if (unlikely(!rx_queue->page_ring))
157		return;
158
159	/* Unmap and release the pages in the recycle ring. Remove the ring. */
160	for (i = 0; i <= rx_queue->page_ptr_mask; i++) {
161		struct page *page = rx_queue->page_ring[i];
162		struct efx_rx_page_state *state;
163
164		if (page == NULL)
165			continue;
166
167		state = page_address(page);
168		dma_unmap_page(&efx->pci_dev->dev, state->dma_addr,
169			       PAGE_SIZE << efx->rx_buffer_order,
170			       DMA_FROM_DEVICE);
171		put_page(page);
172	}
173	kfree(rx_queue->page_ring);
174	rx_queue->page_ring = NULL;
175}
176
177static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue,
178			       struct efx_rx_buffer *rx_buf)
179{
180	/* Release the page reference we hold for the buffer. */
181	if (rx_buf->page)
182		put_page(rx_buf->page);
183
184	/* If this is the last buffer in a page, unmap and free it. */
185	if (rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE) {
186		efx_unmap_rx_buffer(rx_queue->efx, rx_buf);
187		efx_siena_free_rx_buffers(rx_queue, rx_buf, 1);
188	}
189	rx_buf->page = NULL;
190}
191
192int efx_siena_probe_rx_queue(struct efx_rx_queue *rx_queue)
193{
194	struct efx_nic *efx = rx_queue->efx;
195	unsigned int entries;
196	int rc;
197
198	/* Create the smallest power-of-two aligned ring */
199	entries = max(roundup_pow_of_two(efx->rxq_entries), EFX_MIN_DMAQ_SIZE);
200	EFX_WARN_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
201	rx_queue->ptr_mask = entries - 1;
202
203	netif_dbg(efx, probe, efx->net_dev,
204		  "creating RX queue %d size %#x mask %#x\n",
205		  efx_rx_queue_index(rx_queue), efx->rxq_entries,
206		  rx_queue->ptr_mask);
207
208	/* Allocate RX buffers */
209	rx_queue->buffer = kcalloc(entries, sizeof(*rx_queue->buffer),
210				   GFP_KERNEL);
211	if (!rx_queue->buffer)
212		return -ENOMEM;
213
214	rc = efx_nic_probe_rx(rx_queue);
215	if (rc) {
216		kfree(rx_queue->buffer);
217		rx_queue->buffer = NULL;
218	}
219
220	return rc;
221}
222
223void efx_siena_init_rx_queue(struct efx_rx_queue *rx_queue)
224{
225	unsigned int max_fill, trigger, max_trigger;
226	struct efx_nic *efx = rx_queue->efx;
227	int rc = 0;
228
229	netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
230		  "initialising RX queue %d\n", efx_rx_queue_index(rx_queue));
231
232	/* Initialise ptr fields */
233	rx_queue->added_count = 0;
234	rx_queue->notified_count = 0;
235	rx_queue->removed_count = 0;
236	rx_queue->min_fill = -1U;
237	efx_init_rx_recycle_ring(rx_queue);
238
239	rx_queue->page_remove = 0;
240	rx_queue->page_add = rx_queue->page_ptr_mask + 1;
241	rx_queue->page_recycle_count = 0;
242	rx_queue->page_recycle_failed = 0;
243	rx_queue->page_recycle_full = 0;
244
245	/* Initialise limit fields */
246	max_fill = efx->rxq_entries - EFX_RXD_HEAD_ROOM;
247	max_trigger =
248		max_fill - efx->rx_pages_per_batch * efx->rx_bufs_per_page;
249	if (rx_refill_threshold != 0) {
250		trigger = max_fill * min(rx_refill_threshold, 100U) / 100U;
251		if (trigger > max_trigger)
252			trigger = max_trigger;
253	} else {
254		trigger = max_trigger;
255	}
256
257	rx_queue->max_fill = max_fill;
258	rx_queue->fast_fill_trigger = trigger;
259	rx_queue->refill_enabled = true;
260
261	/* Initialise XDP queue information */
262	rc = xdp_rxq_info_reg(&rx_queue->xdp_rxq_info, efx->net_dev,
263			      rx_queue->core_index, 0);
264
265	if (rc) {
266		netif_err(efx, rx_err, efx->net_dev,
267			  "Failure to initialise XDP queue information rc=%d\n",
268			  rc);
269		efx->xdp_rxq_info_failed = true;
270	} else {
271		rx_queue->xdp_rxq_info_valid = true;
272	}
273
274	/* Set up RX descriptor ring */
275	efx_nic_init_rx(rx_queue);
276}
277
278void efx_siena_fini_rx_queue(struct efx_rx_queue *rx_queue)
279{
280	struct efx_rx_buffer *rx_buf;
281	int i;
282
283	netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
284		  "shutting down RX queue %d\n", efx_rx_queue_index(rx_queue));
285
286	del_timer_sync(&rx_queue->slow_fill);
287
288	/* Release RX buffers from the current read ptr to the write ptr */
289	if (rx_queue->buffer) {
290		for (i = rx_queue->removed_count; i < rx_queue->added_count;
291		     i++) {
292			unsigned int index = i & rx_queue->ptr_mask;
293
294			rx_buf = efx_rx_buffer(rx_queue, index);
295			efx_fini_rx_buffer(rx_queue, rx_buf);
296		}
297	}
298
299	efx_fini_rx_recycle_ring(rx_queue);
300
301	if (rx_queue->xdp_rxq_info_valid)
302		xdp_rxq_info_unreg(&rx_queue->xdp_rxq_info);
303
304	rx_queue->xdp_rxq_info_valid = false;
305}
306
307void efx_siena_remove_rx_queue(struct efx_rx_queue *rx_queue)
308{
309	netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
310		  "destroying RX queue %d\n", efx_rx_queue_index(rx_queue));
311
312	efx_nic_remove_rx(rx_queue);
313
314	kfree(rx_queue->buffer);
315	rx_queue->buffer = NULL;
316}
317
318/* Unmap a DMA-mapped page.  This function is only called for the final RX
319 * buffer in a page.
320 */
321static void efx_unmap_rx_buffer(struct efx_nic *efx,
322				struct efx_rx_buffer *rx_buf)
323{
324	struct page *page = rx_buf->page;
325
326	if (page) {
327		struct efx_rx_page_state *state = page_address(page);
328
329		dma_unmap_page(&efx->pci_dev->dev,
330			       state->dma_addr,
331			       PAGE_SIZE << efx->rx_buffer_order,
332			       DMA_FROM_DEVICE);
333	}
334}
335
336void efx_siena_free_rx_buffers(struct efx_rx_queue *rx_queue,
337			       struct efx_rx_buffer *rx_buf,
338			       unsigned int num_bufs)
339{
340	do {
341		if (rx_buf->page) {
342			put_page(rx_buf->page);
343			rx_buf->page = NULL;
344		}
345		rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
346	} while (--num_bufs);
347}
348
349void efx_siena_rx_slow_fill(struct timer_list *t)
350{
351	struct efx_rx_queue *rx_queue = from_timer(rx_queue, t, slow_fill);
352
353	/* Post an event to cause NAPI to run and refill the queue */
354	efx_nic_generate_fill_event(rx_queue);
355	++rx_queue->slow_fill_count;
356}
357
358static void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
359{
360	mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(10));
361}
362
363/* efx_init_rx_buffers - create EFX_RX_BATCH page-based RX buffers
364 *
365 * @rx_queue:		Efx RX queue
366 *
367 * This allocates a batch of pages, maps them for DMA, and populates
368 * struct efx_rx_buffers for each one. Return a negative error code or
369 * 0 on success. If a single page can be used for multiple buffers,
370 * then the page will either be inserted fully, or not at all.
371 */
372static int efx_init_rx_buffers(struct efx_rx_queue *rx_queue, bool atomic)
373{
374	unsigned int page_offset, index, count;
375	struct efx_nic *efx = rx_queue->efx;
376	struct efx_rx_page_state *state;
377	struct efx_rx_buffer *rx_buf;
378	dma_addr_t dma_addr;
379	struct page *page;
380
381	count = 0;
382	do {
383		page = efx_reuse_page(rx_queue);
384		if (page == NULL) {
385			page = alloc_pages(__GFP_COMP |
386					   (atomic ? GFP_ATOMIC : GFP_KERNEL),
387					   efx->rx_buffer_order);
388			if (unlikely(page == NULL))
389				return -ENOMEM;
390			dma_addr =
391				dma_map_page(&efx->pci_dev->dev, page, 0,
392					     PAGE_SIZE << efx->rx_buffer_order,
393					     DMA_FROM_DEVICE);
394			if (unlikely(dma_mapping_error(&efx->pci_dev->dev,
395						       dma_addr))) {
396				__free_pages(page, efx->rx_buffer_order);
397				return -EIO;
398			}
399			state = page_address(page);
400			state->dma_addr = dma_addr;
401		} else {
402			state = page_address(page);
403			dma_addr = state->dma_addr;
404		}
405
406		dma_addr += sizeof(struct efx_rx_page_state);
407		page_offset = sizeof(struct efx_rx_page_state);
408
409		do {
410			index = rx_queue->added_count & rx_queue->ptr_mask;
411			rx_buf = efx_rx_buffer(rx_queue, index);
412			rx_buf->dma_addr = dma_addr + efx->rx_ip_align +
413					   EFX_XDP_HEADROOM;
414			rx_buf->page = page;
415			rx_buf->page_offset = page_offset + efx->rx_ip_align +
416					      EFX_XDP_HEADROOM;
417			rx_buf->len = efx->rx_dma_len;
418			rx_buf->flags = 0;
419			++rx_queue->added_count;
420			get_page(page);
421			dma_addr += efx->rx_page_buf_step;
422			page_offset += efx->rx_page_buf_step;
423		} while (page_offset + efx->rx_page_buf_step <= PAGE_SIZE);
424
425		rx_buf->flags = EFX_RX_BUF_LAST_IN_PAGE;
426	} while (++count < efx->rx_pages_per_batch);
427
428	return 0;
429}
430
431void efx_siena_rx_config_page_split(struct efx_nic *efx)
432{
433	efx->rx_page_buf_step = ALIGN(efx->rx_dma_len + efx->rx_ip_align +
434				      EFX_XDP_HEADROOM + EFX_XDP_TAILROOM,
435				      EFX_RX_BUF_ALIGNMENT);
436	efx->rx_bufs_per_page = efx->rx_buffer_order ? 1 :
437		((PAGE_SIZE - sizeof(struct efx_rx_page_state)) /
438		efx->rx_page_buf_step);
439	efx->rx_buffer_truesize = (PAGE_SIZE << efx->rx_buffer_order) /
440		efx->rx_bufs_per_page;
441	efx->rx_pages_per_batch = DIV_ROUND_UP(EFX_RX_PREFERRED_BATCH,
442					       efx->rx_bufs_per_page);
443}
444
445/* efx_siena_fast_push_rx_descriptors - push new RX descriptors quickly
446 * @rx_queue:		RX descriptor queue
447 *
448 * This will aim to fill the RX descriptor queue up to
449 * @rx_queue->@max_fill. If there is insufficient atomic
450 * memory to do so, a slow fill will be scheduled.
451 *
452 * The caller must provide serialisation (none is used here). In practise,
453 * this means this function must run from the NAPI handler, or be called
454 * when NAPI is disabled.
455 */
456void efx_siena_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue,
457					bool atomic)
458{
459	struct efx_nic *efx = rx_queue->efx;
460	unsigned int fill_level, batch_size;
461	int space, rc = 0;
462
463	if (!rx_queue->refill_enabled)
464		return;
465
466	/* Calculate current fill level, and exit if we don't need to fill */
467	fill_level = (rx_queue->added_count - rx_queue->removed_count);
468	EFX_WARN_ON_ONCE_PARANOID(fill_level > rx_queue->efx->rxq_entries);
469	if (fill_level >= rx_queue->fast_fill_trigger)
470		goto out;
471
472	/* Record minimum fill level */
473	if (unlikely(fill_level < rx_queue->min_fill)) {
474		if (fill_level)
475			rx_queue->min_fill = fill_level;
476	}
477
478	batch_size = efx->rx_pages_per_batch * efx->rx_bufs_per_page;
479	space = rx_queue->max_fill - fill_level;
480	EFX_WARN_ON_ONCE_PARANOID(space < batch_size);
481
482	netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
483		   "RX queue %d fast-filling descriptor ring from"
484		   " level %d to level %d\n",
485		   efx_rx_queue_index(rx_queue), fill_level,
486		   rx_queue->max_fill);
487
488	do {
489		rc = efx_init_rx_buffers(rx_queue, atomic);
490		if (unlikely(rc)) {
491			/* Ensure that we don't leave the rx queue empty */
492			efx_schedule_slow_fill(rx_queue);
493			goto out;
494		}
495	} while ((space -= batch_size) >= batch_size);
496
497	netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
498		   "RX queue %d fast-filled descriptor ring "
499		   "to level %d\n", efx_rx_queue_index(rx_queue),
500		   rx_queue->added_count - rx_queue->removed_count);
501
502 out:
503	if (rx_queue->notified_count != rx_queue->added_count)
504		efx_nic_notify_rx_desc(rx_queue);
505}
506
507/* Pass a received packet up through GRO.  GRO can handle pages
508 * regardless of checksum state and skbs with a good checksum.
509 */
510void
511efx_siena_rx_packet_gro(struct efx_channel *channel,
512			struct efx_rx_buffer *rx_buf,
513			unsigned int n_frags, u8 *eh, __wsum csum)
514{
515	struct napi_struct *napi = &channel->napi_str;
516	struct efx_nic *efx = channel->efx;
517	struct sk_buff *skb;
518
519	skb = napi_get_frags(napi);
520	if (unlikely(!skb)) {
521		struct efx_rx_queue *rx_queue;
522
523		rx_queue = efx_channel_get_rx_queue(channel);
524		efx_siena_free_rx_buffers(rx_queue, rx_buf, n_frags);
525		return;
526	}
527
528	if (efx->net_dev->features & NETIF_F_RXHASH)
529		skb_set_hash(skb, efx_rx_buf_hash(efx, eh),
530			     PKT_HASH_TYPE_L3);
531	if (csum) {
532		skb->csum = csum;
533		skb->ip_summed = CHECKSUM_COMPLETE;
534	} else {
535		skb->ip_summed = ((rx_buf->flags & EFX_RX_PKT_CSUMMED) ?
536				  CHECKSUM_UNNECESSARY : CHECKSUM_NONE);
537	}
538	skb->csum_level = !!(rx_buf->flags & EFX_RX_PKT_CSUM_LEVEL);
539
540	for (;;) {
541		skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
542				   rx_buf->page, rx_buf->page_offset,
543				   rx_buf->len);
544		rx_buf->page = NULL;
545		skb->len += rx_buf->len;
546		if (skb_shinfo(skb)->nr_frags == n_frags)
547			break;
548
549		rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf);
550	}
551
552	skb->data_len = skb->len;
553	skb->truesize += n_frags * efx->rx_buffer_truesize;
554
555	skb_record_rx_queue(skb, channel->rx_queue.core_index);
556
557	napi_gro_frags(napi);
558}
559
560/* RSS contexts.  We're using linked lists and crappy O(n) algorithms, because
561 * (a) this is an infrequent control-plane operation and (b) n is small (max 64)
562 */
563struct efx_rss_context *efx_siena_alloc_rss_context_entry(struct efx_nic *efx)
564{
565	struct list_head *head = &efx->rss_context.list;
566	struct efx_rss_context *ctx, *new;
567	u32 id = 1; /* Don't use zero, that refers to the master RSS context */
568
569	WARN_ON(!mutex_is_locked(&efx->rss_lock));
570
571	/* Search for first gap in the numbering */
572	list_for_each_entry(ctx, head, list) {
573		if (ctx->user_id != id)
574			break;
575		id++;
576		/* Check for wrap.  If this happens, we have nearly 2^32
577		 * allocated RSS contexts, which seems unlikely.
578		 */
579		if (WARN_ON_ONCE(!id))
580			return NULL;
581	}
582
583	/* Create the new entry */
584	new = kmalloc(sizeof(*new), GFP_KERNEL);
585	if (!new)
586		return NULL;
587	new->context_id = EFX_MCDI_RSS_CONTEXT_INVALID;
588	new->rx_hash_udp_4tuple = false;
589
590	/* Insert the new entry into the gap */
591	new->user_id = id;
592	list_add_tail(&new->list, &ctx->list);
593	return new;
594}
595
596struct efx_rss_context *efx_siena_find_rss_context_entry(struct efx_nic *efx,
597							 u32 id)
598{
599	struct list_head *head = &efx->rss_context.list;
600	struct efx_rss_context *ctx;
601
602	WARN_ON(!mutex_is_locked(&efx->rss_lock));
603
604	list_for_each_entry(ctx, head, list)
605		if (ctx->user_id == id)
606			return ctx;
607	return NULL;
608}
609
610void efx_siena_free_rss_context_entry(struct efx_rss_context *ctx)
611{
612	list_del(&ctx->list);
613	kfree(ctx);
614}
615
616void efx_siena_set_default_rx_indir_table(struct efx_nic *efx,
617					  struct efx_rss_context *ctx)
618{
619	size_t i;
620
621	for (i = 0; i < ARRAY_SIZE(ctx->rx_indir_table); i++)
622		ctx->rx_indir_table[i] =
623			ethtool_rxfh_indir_default(i, efx->rss_spread);
624}
625
626/**
627 * efx_siena_filter_is_mc_recipient - test whether spec is a multicast recipient
628 * @spec: Specification to test
629 *
630 * Return: %true if the specification is a non-drop RX filter that
631 * matches a local MAC address I/G bit value of 1 or matches a local
632 * IPv4 or IPv6 address value in the respective multicast address
633 * range.  Otherwise %false.
634 */
635bool efx_siena_filter_is_mc_recipient(const struct efx_filter_spec *spec)
636{
637	if (!(spec->flags & EFX_FILTER_FLAG_RX) ||
638	    spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP)
639		return false;
640
641	if (spec->match_flags &
642	    (EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_LOC_MAC_IG) &&
643	    is_multicast_ether_addr(spec->loc_mac))
644		return true;
645
646	if ((spec->match_flags &
647	     (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) ==
648	    (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) {
649		if (spec->ether_type == htons(ETH_P_IP) &&
650		    ipv4_is_multicast(spec->loc_host[0]))
651			return true;
652		if (spec->ether_type == htons(ETH_P_IPV6) &&
653		    ((const u8 *)spec->loc_host)[0] == 0xff)
654			return true;
655	}
656
657	return false;
658}
659
660bool efx_siena_filter_spec_equal(const struct efx_filter_spec *left,
661				 const struct efx_filter_spec *right)
662{
663	if ((left->match_flags ^ right->match_flags) |
664	    ((left->flags ^ right->flags) &
665	     (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)))
666		return false;
667
668	return memcmp(&left->outer_vid, &right->outer_vid,
669		      sizeof(struct efx_filter_spec) -
670		      offsetof(struct efx_filter_spec, outer_vid)) == 0;
671}
672
673u32 efx_siena_filter_spec_hash(const struct efx_filter_spec *spec)
674{
675	BUILD_BUG_ON(offsetof(struct efx_filter_spec, outer_vid) & 3);
676	return jhash2((const u32 *)&spec->outer_vid,
677		      (sizeof(struct efx_filter_spec) -
678		       offsetof(struct efx_filter_spec, outer_vid)) / 4,
679		      0);
680}
681
682#ifdef CONFIG_RFS_ACCEL
683bool efx_siena_rps_check_rule(struct efx_arfs_rule *rule,
684			      unsigned int filter_idx, bool *force)
685{
686	if (rule->filter_id == EFX_ARFS_FILTER_ID_PENDING) {
687		/* ARFS is currently updating this entry, leave it */
688		return false;
689	}
690	if (rule->filter_id == EFX_ARFS_FILTER_ID_ERROR) {
691		/* ARFS tried and failed to update this, so it's probably out
692		 * of date.  Remove the filter and the ARFS rule entry.
693		 */
694		rule->filter_id = EFX_ARFS_FILTER_ID_REMOVING;
695		*force = true;
696		return true;
697	} else if (WARN_ON(rule->filter_id != filter_idx)) { /* can't happen */
698		/* ARFS has moved on, so old filter is not needed.  Since we did
699		 * not mark the rule with EFX_ARFS_FILTER_ID_REMOVING, it will
700		 * not be removed by efx_siena_rps_hash_del() subsequently.
701		 */
702		*force = true;
703		return true;
704	}
705	/* Remove it iff ARFS wants to. */
706	return true;
707}
708
709static
710struct hlist_head *efx_rps_hash_bucket(struct efx_nic *efx,
711				       const struct efx_filter_spec *spec)
712{
713	u32 hash = efx_siena_filter_spec_hash(spec);
714
715	lockdep_assert_held(&efx->rps_hash_lock);
716	if (!efx->rps_hash_table)
717		return NULL;
718	return &efx->rps_hash_table[hash % EFX_ARFS_HASH_TABLE_SIZE];
719}
720
721struct efx_arfs_rule *efx_siena_rps_hash_find(struct efx_nic *efx,
722					const struct efx_filter_spec *spec)
723{
724	struct efx_arfs_rule *rule;
725	struct hlist_head *head;
726	struct hlist_node *node;
727
728	head = efx_rps_hash_bucket(efx, spec);
729	if (!head)
730		return NULL;
731	hlist_for_each(node, head) {
732		rule = container_of(node, struct efx_arfs_rule, node);
733		if (efx_siena_filter_spec_equal(spec, &rule->spec))
734			return rule;
735	}
736	return NULL;
737}
738
739static struct efx_arfs_rule *efx_rps_hash_add(struct efx_nic *efx,
740					const struct efx_filter_spec *spec,
741					bool *new)
742{
743	struct efx_arfs_rule *rule;
744	struct hlist_head *head;
745	struct hlist_node *node;
746
747	head = efx_rps_hash_bucket(efx, spec);
748	if (!head)
749		return NULL;
750	hlist_for_each(node, head) {
751		rule = container_of(node, struct efx_arfs_rule, node);
752		if (efx_siena_filter_spec_equal(spec, &rule->spec)) {
753			*new = false;
754			return rule;
755		}
756	}
757	rule = kmalloc(sizeof(*rule), GFP_ATOMIC);
758	*new = true;
759	if (rule) {
760		memcpy(&rule->spec, spec, sizeof(rule->spec));
761		hlist_add_head(&rule->node, head);
762	}
763	return rule;
764}
765
766void efx_siena_rps_hash_del(struct efx_nic *efx,
767			    const struct efx_filter_spec *spec)
768{
769	struct efx_arfs_rule *rule;
770	struct hlist_head *head;
771	struct hlist_node *node;
772
773	head = efx_rps_hash_bucket(efx, spec);
774	if (WARN_ON(!head))
775		return;
776	hlist_for_each(node, head) {
777		rule = container_of(node, struct efx_arfs_rule, node);
778		if (efx_siena_filter_spec_equal(spec, &rule->spec)) {
779			/* Someone already reused the entry.  We know that if
780			 * this check doesn't fire (i.e. filter_id == REMOVING)
781			 * then the REMOVING mark was put there by our caller,
782			 * because caller is holding a lock on filter table and
783			 * only holders of that lock set REMOVING.
784			 */
785			if (rule->filter_id != EFX_ARFS_FILTER_ID_REMOVING)
786				return;
787			hlist_del(node);
788			kfree(rule);
789			return;
790		}
791	}
792	/* We didn't find it. */
793	WARN_ON(1);
794}
795#endif
796
797int efx_siena_probe_filters(struct efx_nic *efx)
798{
799	int rc;
800
801	mutex_lock(&efx->mac_lock);
802	down_write(&efx->filter_sem);
803	rc = efx->type->filter_table_probe(efx);
804	if (rc)
805		goto out_unlock;
806
807#ifdef CONFIG_RFS_ACCEL
808	if (efx->type->offload_features & NETIF_F_NTUPLE) {
809		struct efx_channel *channel;
810		int i, success = 1;
811
812		efx_for_each_channel(channel, efx) {
813			channel->rps_flow_id =
814				kcalloc(efx->type->max_rx_ip_filters,
815					sizeof(*channel->rps_flow_id),
816					GFP_KERNEL);
817			if (!channel->rps_flow_id)
818				success = 0;
819			else
820				for (i = 0;
821				     i < efx->type->max_rx_ip_filters;
822				     ++i)
823					channel->rps_flow_id[i] =
824						RPS_FLOW_ID_INVALID;
825			channel->rfs_expire_index = 0;
826			channel->rfs_filter_count = 0;
827		}
828
829		if (!success) {
830			efx_for_each_channel(channel, efx)
831				kfree(channel->rps_flow_id);
832			efx->type->filter_table_remove(efx);
833			rc = -ENOMEM;
834			goto out_unlock;
835		}
836	}
837#endif
838out_unlock:
839	up_write(&efx->filter_sem);
840	mutex_unlock(&efx->mac_lock);
841	return rc;
842}
843
844void efx_siena_remove_filters(struct efx_nic *efx)
845{
846#ifdef CONFIG_RFS_ACCEL
847	struct efx_channel *channel;
848
849	efx_for_each_channel(channel, efx) {
850		cancel_delayed_work_sync(&channel->filter_work);
851		kfree(channel->rps_flow_id);
852		channel->rps_flow_id = NULL;
853	}
854#endif
855	down_write(&efx->filter_sem);
856	efx->type->filter_table_remove(efx);
857	up_write(&efx->filter_sem);
858}
859
860#ifdef CONFIG_RFS_ACCEL
861
862static void efx_filter_rfs_work(struct work_struct *data)
863{
864	struct efx_async_filter_insertion *req = container_of(data, struct efx_async_filter_insertion,
865							      work);
866	struct efx_nic *efx = netdev_priv(req->net_dev);
867	struct efx_channel *channel = efx_get_channel(efx, req->rxq_index);
868	int slot_idx = req - efx->rps_slot;
869	struct efx_arfs_rule *rule;
870	u16 arfs_id = 0;
871	int rc;
872
873	rc = efx->type->filter_insert(efx, &req->spec, true);
874	if (rc >= 0)
875		/* Discard 'priority' part of EF10+ filter ID (mcdi_filters) */
876		rc %= efx->type->max_rx_ip_filters;
877	if (efx->rps_hash_table) {
878		spin_lock_bh(&efx->rps_hash_lock);
879		rule = efx_siena_rps_hash_find(efx, &req->spec);
880		/* The rule might have already gone, if someone else's request
881		 * for the same spec was already worked and then expired before
882		 * we got around to our work.  In that case we have nothing
883		 * tying us to an arfs_id, meaning that as soon as the filter
884		 * is considered for expiry it will be removed.
885		 */
886		if (rule) {
887			if (rc < 0)
888				rule->filter_id = EFX_ARFS_FILTER_ID_ERROR;
889			else
890				rule->filter_id = rc;
891			arfs_id = rule->arfs_id;
892		}
893		spin_unlock_bh(&efx->rps_hash_lock);
894	}
895	if (rc >= 0) {
896		/* Remember this so we can check whether to expire the filter
897		 * later.
898		 */
899		mutex_lock(&efx->rps_mutex);
900		if (channel->rps_flow_id[rc] == RPS_FLOW_ID_INVALID)
901			channel->rfs_filter_count++;
902		channel->rps_flow_id[rc] = req->flow_id;
903		mutex_unlock(&efx->rps_mutex);
904
905		if (req->spec.ether_type == htons(ETH_P_IP))
906			netif_info(efx, rx_status, efx->net_dev,
907				   "steering %s %pI4:%u:%pI4:%u to queue %u [flow %u filter %d id %u]\n",
908				   (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
909				   req->spec.rem_host, ntohs(req->spec.rem_port),
910				   req->spec.loc_host, ntohs(req->spec.loc_port),
911				   req->rxq_index, req->flow_id, rc, arfs_id);
912		else
913			netif_info(efx, rx_status, efx->net_dev,
914				   "steering %s [%pI6]:%u:[%pI6]:%u to queue %u [flow %u filter %d id %u]\n",
915				   (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
916				   req->spec.rem_host, ntohs(req->spec.rem_port),
917				   req->spec.loc_host, ntohs(req->spec.loc_port),
918				   req->rxq_index, req->flow_id, rc, arfs_id);
919		channel->n_rfs_succeeded++;
920	} else {
921		if (req->spec.ether_type == htons(ETH_P_IP))
922			netif_dbg(efx, rx_status, efx->net_dev,
923				  "failed to steer %s %pI4:%u:%pI4:%u to queue %u [flow %u rc %d id %u]\n",
924				  (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
925				  req->spec.rem_host, ntohs(req->spec.rem_port),
926				  req->spec.loc_host, ntohs(req->spec.loc_port),
927				  req->rxq_index, req->flow_id, rc, arfs_id);
928		else
929			netif_dbg(efx, rx_status, efx->net_dev,
930				  "failed to steer %s [%pI6]:%u:[%pI6]:%u to queue %u [flow %u rc %d id %u]\n",
931				  (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
932				  req->spec.rem_host, ntohs(req->spec.rem_port),
933				  req->spec.loc_host, ntohs(req->spec.loc_port),
934				  req->rxq_index, req->flow_id, rc, arfs_id);
935		channel->n_rfs_failed++;
936		/* We're overloading the NIC's filter tables, so let's do a
937		 * chunk of extra expiry work.
938		 */
939		__efx_siena_filter_rfs_expire(channel,
940					      min(channel->rfs_filter_count,
941						  100u));
942	}
943
944	/* Release references */
945	clear_bit(slot_idx, &efx->rps_slot_map);
946	dev_put(req->net_dev);
947}
948
949int efx_siena_filter_rfs(struct net_device *net_dev, const struct sk_buff *skb,
950			 u16 rxq_index, u32 flow_id)
951{
952	struct efx_nic *efx = netdev_priv(net_dev);
953	struct efx_async_filter_insertion *req;
954	struct efx_arfs_rule *rule;
955	struct flow_keys fk;
956	int slot_idx;
957	bool new;
958	int rc;
959
960	/* find a free slot */
961	for (slot_idx = 0; slot_idx < EFX_RPS_MAX_IN_FLIGHT; slot_idx++)
962		if (!test_and_set_bit(slot_idx, &efx->rps_slot_map))
963			break;
964	if (slot_idx >= EFX_RPS_MAX_IN_FLIGHT)
965		return -EBUSY;
966
967	if (flow_id == RPS_FLOW_ID_INVALID) {
968		rc = -EINVAL;
969		goto out_clear;
970	}
971
972	if (!skb_flow_dissect_flow_keys(skb, &fk, 0)) {
973		rc = -EPROTONOSUPPORT;
974		goto out_clear;
975	}
976
977	if (fk.basic.n_proto != htons(ETH_P_IP) && fk.basic.n_proto != htons(ETH_P_IPV6)) {
978		rc = -EPROTONOSUPPORT;
979		goto out_clear;
980	}
981	if (fk.control.flags & FLOW_DIS_IS_FRAGMENT) {
982		rc = -EPROTONOSUPPORT;
983		goto out_clear;
984	}
985
986	req = efx->rps_slot + slot_idx;
987	efx_filter_init_rx(&req->spec, EFX_FILTER_PRI_HINT,
988			   efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0,
989			   rxq_index);
990	req->spec.match_flags =
991		EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
992		EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT |
993		EFX_FILTER_MATCH_REM_HOST | EFX_FILTER_MATCH_REM_PORT;
994	req->spec.ether_type = fk.basic.n_proto;
995	req->spec.ip_proto = fk.basic.ip_proto;
996
997	if (fk.basic.n_proto == htons(ETH_P_IP)) {
998		req->spec.rem_host[0] = fk.addrs.v4addrs.src;
999		req->spec.loc_host[0] = fk.addrs.v4addrs.dst;
1000	} else {
1001		memcpy(req->spec.rem_host, &fk.addrs.v6addrs.src,
1002		       sizeof(struct in6_addr));
1003		memcpy(req->spec.loc_host, &fk.addrs.v6addrs.dst,
1004		       sizeof(struct in6_addr));
1005	}
1006
1007	req->spec.rem_port = fk.ports.src;
1008	req->spec.loc_port = fk.ports.dst;
1009
1010	if (efx->rps_hash_table) {
1011		/* Add it to ARFS hash table */
1012		spin_lock(&efx->rps_hash_lock);
1013		rule = efx_rps_hash_add(efx, &req->spec, &new);
1014		if (!rule) {
1015			rc = -ENOMEM;
1016			goto out_unlock;
1017		}
1018		if (new)
1019			rule->arfs_id = efx->rps_next_id++ % RPS_NO_FILTER;
1020		rc = rule->arfs_id;
1021		/* Skip if existing or pending filter already does the right thing */
1022		if (!new && rule->rxq_index == rxq_index &&
1023		    rule->filter_id >= EFX_ARFS_FILTER_ID_PENDING)
1024			goto out_unlock;
1025		rule->rxq_index = rxq_index;
1026		rule->filter_id = EFX_ARFS_FILTER_ID_PENDING;
1027		spin_unlock(&efx->rps_hash_lock);
1028	} else {
1029		/* Without an ARFS hash table, we just use arfs_id 0 for all
1030		 * filters.  This means if multiple flows hash to the same
1031		 * flow_id, all but the most recently touched will be eligible
1032		 * for expiry.
1033		 */
1034		rc = 0;
1035	}
1036
1037	/* Queue the request */
1038	dev_hold(req->net_dev = net_dev);
1039	INIT_WORK(&req->work, efx_filter_rfs_work);
1040	req->rxq_index = rxq_index;
1041	req->flow_id = flow_id;
1042	schedule_work(&req->work);
1043	return rc;
1044out_unlock:
1045	spin_unlock(&efx->rps_hash_lock);
1046out_clear:
1047	clear_bit(slot_idx, &efx->rps_slot_map);
1048	return rc;
1049}
1050
1051bool __efx_siena_filter_rfs_expire(struct efx_channel *channel,
1052				   unsigned int quota)
1053{
1054	bool (*expire_one)(struct efx_nic *efx, u32 flow_id, unsigned int index);
1055	struct efx_nic *efx = channel->efx;
1056	unsigned int index, size, start;
1057	u32 flow_id;
1058
1059	if (!mutex_trylock(&efx->rps_mutex))
1060		return false;
1061	expire_one = efx->type->filter_rfs_expire_one;
1062	index = channel->rfs_expire_index;
1063	start = index;
1064	size = efx->type->max_rx_ip_filters;
1065	while (quota) {
1066		flow_id = channel->rps_flow_id[index];
1067
1068		if (flow_id != RPS_FLOW_ID_INVALID) {
1069			quota--;
1070			if (expire_one(efx, flow_id, index)) {
1071				netif_info(efx, rx_status, efx->net_dev,
1072					   "expired filter %d [channel %u flow %u]\n",
1073					   index, channel->channel, flow_id);
1074				channel->rps_flow_id[index] = RPS_FLOW_ID_INVALID;
1075				channel->rfs_filter_count--;
1076			}
1077		}
1078		if (++index == size)
1079			index = 0;
1080		/* If we were called with a quota that exceeds the total number
1081		 * of filters in the table (which shouldn't happen, but could
1082		 * if two callers race), ensure that we don't loop forever -
1083		 * stop when we've examined every row of the table.
1084		 */
1085		if (index == start)
1086			break;
1087	}
1088
1089	channel->rfs_expire_index = index;
1090	mutex_unlock(&efx->rps_mutex);
1091	return true;
1092}
1093
1094#endif /* CONFIG_RFS_ACCEL */
1095