1// SPDX-License-Identifier: GPL-2.0-only
2/****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2018 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11#include "net_driver.h"
12#include <linux/module.h>
13#include <linux/iommu.h>
14#include "efx.h"
15#include "nic.h"
16#include "rx_common.h"
17
18/* This is the percentage fill level below which new RX descriptors
19 * will be added to the RX descriptor ring.
20 */
21static unsigned int rx_refill_threshold;
22module_param(rx_refill_threshold, uint, 0444);
23MODULE_PARM_DESC(rx_refill_threshold,
24		 "RX descriptor ring refill threshold (%)");
25
26/* RX maximum head room required.
27 *
28 * This must be at least 1 to prevent overflow, plus one packet-worth
29 * to allow pipelined receives.
30 */
31#define EFX_RXD_HEAD_ROOM (1 + EFX_RX_MAX_FRAGS)
32
33/* Check the RX page recycle ring for a page that can be reused. */
34static struct page *efx_reuse_page(struct efx_rx_queue *rx_queue)
35{
36	struct efx_nic *efx = rx_queue->efx;
37	struct efx_rx_page_state *state;
38	unsigned int index;
39	struct page *page;
40
41	if (unlikely(!rx_queue->page_ring))
42		return NULL;
43	index = rx_queue->page_remove & rx_queue->page_ptr_mask;
44	page = rx_queue->page_ring[index];
45	if (page == NULL)
46		return NULL;
47
48	rx_queue->page_ring[index] = NULL;
49	/* page_remove cannot exceed page_add. */
50	if (rx_queue->page_remove != rx_queue->page_add)
51		++rx_queue->page_remove;
52
53	/* If page_count is 1 then we hold the only reference to this page. */
54	if (page_count(page) == 1) {
55		++rx_queue->page_recycle_count;
56		return page;
57	} else {
58		state = page_address(page);
59		dma_unmap_page(&efx->pci_dev->dev, state->dma_addr,
60			       PAGE_SIZE << efx->rx_buffer_order,
61			       DMA_FROM_DEVICE);
62		put_page(page);
63		++rx_queue->page_recycle_failed;
64	}
65
66	return NULL;
67}
68
69/* Attempt to recycle the page if there is an RX recycle ring; the page can
70 * only be added if this is the final RX buffer, to prevent pages being used in
71 * the descriptor ring and appearing in the recycle ring simultaneously.
72 */
73static void efx_recycle_rx_page(struct efx_channel *channel,
74				struct efx_rx_buffer *rx_buf)
75{
76	struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
77	struct efx_nic *efx = rx_queue->efx;
78	struct page *page = rx_buf->page;
79	unsigned int index;
80
81	/* Only recycle the page after processing the final buffer. */
82	if (!(rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE))
83		return;
84
85	index = rx_queue->page_add & rx_queue->page_ptr_mask;
86	if (rx_queue->page_ring[index] == NULL) {
87		unsigned int read_index = rx_queue->page_remove &
88			rx_queue->page_ptr_mask;
89
90		/* The next slot in the recycle ring is available, but
91		 * increment page_remove if the read pointer currently
92		 * points here.
93		 */
94		if (read_index == index)
95			++rx_queue->page_remove;
96		rx_queue->page_ring[index] = page;
97		++rx_queue->page_add;
98		return;
99	}
100	++rx_queue->page_recycle_full;
101	efx_unmap_rx_buffer(efx, rx_buf);
102	put_page(rx_buf->page);
103}
104
105/* Recycle the pages that are used by buffers that have just been received. */
106void efx_recycle_rx_pages(struct efx_channel *channel,
107			  struct efx_rx_buffer *rx_buf,
108			  unsigned int n_frags)
109{
110	struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
111
112	if (unlikely(!rx_queue->page_ring))
113		return;
114
115	do {
116		efx_recycle_rx_page(channel, rx_buf);
117		rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
118	} while (--n_frags);
119}
120
121void efx_discard_rx_packet(struct efx_channel *channel,
122			   struct efx_rx_buffer *rx_buf,
123			   unsigned int n_frags)
124{
125	struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
126
127	efx_recycle_rx_pages(channel, rx_buf, n_frags);
128
129	efx_free_rx_buffers(rx_queue, rx_buf, n_frags);
130}
131
132static void efx_init_rx_recycle_ring(struct efx_rx_queue *rx_queue)
133{
134	unsigned int bufs_in_recycle_ring, page_ring_size;
135	struct efx_nic *efx = rx_queue->efx;
136
137	bufs_in_recycle_ring = efx_rx_recycle_ring_size(efx);
138	page_ring_size = roundup_pow_of_two(bufs_in_recycle_ring /
139					    efx->rx_bufs_per_page);
140	rx_queue->page_ring = kcalloc(page_ring_size,
141				      sizeof(*rx_queue->page_ring), GFP_KERNEL);
142	if (!rx_queue->page_ring)
143		rx_queue->page_ptr_mask = 0;
144	else
145		rx_queue->page_ptr_mask = page_ring_size - 1;
146}
147
148static void efx_fini_rx_recycle_ring(struct efx_rx_queue *rx_queue)
149{
150	struct efx_nic *efx = rx_queue->efx;
151	int i;
152
153	if (unlikely(!rx_queue->page_ring))
154		return;
155
156	/* Unmap and release the pages in the recycle ring. Remove the ring. */
157	for (i = 0; i <= rx_queue->page_ptr_mask; i++) {
158		struct page *page = rx_queue->page_ring[i];
159		struct efx_rx_page_state *state;
160
161		if (page == NULL)
162			continue;
163
164		state = page_address(page);
165		dma_unmap_page(&efx->pci_dev->dev, state->dma_addr,
166			       PAGE_SIZE << efx->rx_buffer_order,
167			       DMA_FROM_DEVICE);
168		put_page(page);
169	}
170	kfree(rx_queue->page_ring);
171	rx_queue->page_ring = NULL;
172}
173
174static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue,
175			       struct efx_rx_buffer *rx_buf)
176{
177	/* Release the page reference we hold for the buffer. */
178	if (rx_buf->page)
179		put_page(rx_buf->page);
180
181	/* If this is the last buffer in a page, unmap and free it. */
182	if (rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE) {
183		efx_unmap_rx_buffer(rx_queue->efx, rx_buf);
184		efx_free_rx_buffers(rx_queue, rx_buf, 1);
185	}
186	rx_buf->page = NULL;
187}
188
189int efx_probe_rx_queue(struct efx_rx_queue *rx_queue)
190{
191	struct efx_nic *efx = rx_queue->efx;
192	unsigned int entries;
193	int rc;
194
195	/* Create the smallest power-of-two aligned ring */
196	entries = max(roundup_pow_of_two(efx->rxq_entries), EFX_MIN_DMAQ_SIZE);
197	EFX_WARN_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
198	rx_queue->ptr_mask = entries - 1;
199
200	netif_dbg(efx, probe, efx->net_dev,
201		  "creating RX queue %d size %#x mask %#x\n",
202		  efx_rx_queue_index(rx_queue), efx->rxq_entries,
203		  rx_queue->ptr_mask);
204
205	/* Allocate RX buffers */
206	rx_queue->buffer = kcalloc(entries, sizeof(*rx_queue->buffer),
207				   GFP_KERNEL);
208	if (!rx_queue->buffer)
209		return -ENOMEM;
210
211	rc = efx_nic_probe_rx(rx_queue);
212	if (rc) {
213		kfree(rx_queue->buffer);
214		rx_queue->buffer = NULL;
215	}
216
217	return rc;
218}
219
220void efx_init_rx_queue(struct efx_rx_queue *rx_queue)
221{
222	unsigned int max_fill, trigger, max_trigger;
223	struct efx_nic *efx = rx_queue->efx;
224	int rc = 0;
225
226	netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
227		  "initialising RX queue %d\n", efx_rx_queue_index(rx_queue));
228
229	/* Initialise ptr fields */
230	rx_queue->added_count = 0;
231	rx_queue->notified_count = 0;
232	rx_queue->granted_count = 0;
233	rx_queue->removed_count = 0;
234	rx_queue->min_fill = -1U;
235	efx_init_rx_recycle_ring(rx_queue);
236
237	rx_queue->page_remove = 0;
238	rx_queue->page_add = rx_queue->page_ptr_mask + 1;
239	rx_queue->page_recycle_count = 0;
240	rx_queue->page_recycle_failed = 0;
241	rx_queue->page_recycle_full = 0;
242
243	/* Initialise limit fields */
244	max_fill = efx->rxq_entries - EFX_RXD_HEAD_ROOM;
245	max_trigger =
246		max_fill - efx->rx_pages_per_batch * efx->rx_bufs_per_page;
247	if (rx_refill_threshold != 0) {
248		trigger = max_fill * min(rx_refill_threshold, 100U) / 100U;
249		if (trigger > max_trigger)
250			trigger = max_trigger;
251	} else {
252		trigger = max_trigger;
253	}
254
255	rx_queue->max_fill = max_fill;
256	rx_queue->fast_fill_trigger = trigger;
257	rx_queue->refill_enabled = true;
258
259	/* Initialise XDP queue information */
260	rc = xdp_rxq_info_reg(&rx_queue->xdp_rxq_info, efx->net_dev,
261			      rx_queue->core_index, 0);
262
263	if (rc) {
264		netif_err(efx, rx_err, efx->net_dev,
265			  "Failure to initialise XDP queue information rc=%d\n",
266			  rc);
267		efx->xdp_rxq_info_failed = true;
268	} else {
269		rx_queue->xdp_rxq_info_valid = true;
270	}
271
272	/* Set up RX descriptor ring */
273	efx_nic_init_rx(rx_queue);
274}
275
276void efx_fini_rx_queue(struct efx_rx_queue *rx_queue)
277{
278	struct efx_rx_buffer *rx_buf;
279	int i;
280
281	netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
282		  "shutting down RX queue %d\n", efx_rx_queue_index(rx_queue));
283
284	del_timer_sync(&rx_queue->slow_fill);
285	if (rx_queue->grant_credits)
286		flush_work(&rx_queue->grant_work);
287
288	/* Release RX buffers from the current read ptr to the write ptr */
289	if (rx_queue->buffer) {
290		for (i = rx_queue->removed_count; i < rx_queue->added_count;
291		     i++) {
292			unsigned int index = i & rx_queue->ptr_mask;
293
294			rx_buf = efx_rx_buffer(rx_queue, index);
295			efx_fini_rx_buffer(rx_queue, rx_buf);
296		}
297	}
298
299	efx_fini_rx_recycle_ring(rx_queue);
300
301	if (rx_queue->xdp_rxq_info_valid)
302		xdp_rxq_info_unreg(&rx_queue->xdp_rxq_info);
303
304	rx_queue->xdp_rxq_info_valid = false;
305}
306
307void efx_remove_rx_queue(struct efx_rx_queue *rx_queue)
308{
309	netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
310		  "destroying RX queue %d\n", efx_rx_queue_index(rx_queue));
311
312	efx_nic_remove_rx(rx_queue);
313
314	kfree(rx_queue->buffer);
315	rx_queue->buffer = NULL;
316}
317
318/* Unmap a DMA-mapped page.  This function is only called for the final RX
319 * buffer in a page.
320 */
321void efx_unmap_rx_buffer(struct efx_nic *efx,
322			 struct efx_rx_buffer *rx_buf)
323{
324	struct page *page = rx_buf->page;
325
326	if (page) {
327		struct efx_rx_page_state *state = page_address(page);
328
329		dma_unmap_page(&efx->pci_dev->dev,
330			       state->dma_addr,
331			       PAGE_SIZE << efx->rx_buffer_order,
332			       DMA_FROM_DEVICE);
333	}
334}
335
336void efx_free_rx_buffers(struct efx_rx_queue *rx_queue,
337			 struct efx_rx_buffer *rx_buf,
338			 unsigned int num_bufs)
339{
340	do {
341		if (rx_buf->page) {
342			put_page(rx_buf->page);
343			rx_buf->page = NULL;
344		}
345		rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
346	} while (--num_bufs);
347}
348
349void efx_rx_slow_fill(struct timer_list *t)
350{
351	struct efx_rx_queue *rx_queue = from_timer(rx_queue, t, slow_fill);
352
353	/* Post an event to cause NAPI to run and refill the queue */
354	efx_nic_generate_fill_event(rx_queue);
355	++rx_queue->slow_fill_count;
356}
357
358void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
359{
360	mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(10));
361}
362
363/* efx_init_rx_buffers - create EFX_RX_BATCH page-based RX buffers
364 *
365 * @rx_queue:		Efx RX queue
366 *
367 * This allocates a batch of pages, maps them for DMA, and populates
368 * struct efx_rx_buffers for each one. Return a negative error code or
369 * 0 on success. If a single page can be used for multiple buffers,
370 * then the page will either be inserted fully, or not at all.
371 */
372static int efx_init_rx_buffers(struct efx_rx_queue *rx_queue, bool atomic)
373{
374	unsigned int page_offset, index, count;
375	struct efx_nic *efx = rx_queue->efx;
376	struct efx_rx_page_state *state;
377	struct efx_rx_buffer *rx_buf;
378	dma_addr_t dma_addr;
379	struct page *page;
380
381	count = 0;
382	do {
383		page = efx_reuse_page(rx_queue);
384		if (page == NULL) {
385			page = alloc_pages(__GFP_COMP |
386					   (atomic ? GFP_ATOMIC : GFP_KERNEL),
387					   efx->rx_buffer_order);
388			if (unlikely(page == NULL))
389				return -ENOMEM;
390			dma_addr =
391				dma_map_page(&efx->pci_dev->dev, page, 0,
392					     PAGE_SIZE << efx->rx_buffer_order,
393					     DMA_FROM_DEVICE);
394			if (unlikely(dma_mapping_error(&efx->pci_dev->dev,
395						       dma_addr))) {
396				__free_pages(page, efx->rx_buffer_order);
397				return -EIO;
398			}
399			state = page_address(page);
400			state->dma_addr = dma_addr;
401		} else {
402			state = page_address(page);
403			dma_addr = state->dma_addr;
404		}
405
406		dma_addr += sizeof(struct efx_rx_page_state);
407		page_offset = sizeof(struct efx_rx_page_state);
408
409		do {
410			index = rx_queue->added_count & rx_queue->ptr_mask;
411			rx_buf = efx_rx_buffer(rx_queue, index);
412			rx_buf->dma_addr = dma_addr + efx->rx_ip_align +
413					   EFX_XDP_HEADROOM;
414			rx_buf->page = page;
415			rx_buf->page_offset = page_offset + efx->rx_ip_align +
416					      EFX_XDP_HEADROOM;
417			rx_buf->len = efx->rx_dma_len;
418			rx_buf->flags = 0;
419			++rx_queue->added_count;
420			get_page(page);
421			dma_addr += efx->rx_page_buf_step;
422			page_offset += efx->rx_page_buf_step;
423		} while (page_offset + efx->rx_page_buf_step <= PAGE_SIZE);
424
425		rx_buf->flags = EFX_RX_BUF_LAST_IN_PAGE;
426	} while (++count < efx->rx_pages_per_batch);
427
428	return 0;
429}
430
431void efx_rx_config_page_split(struct efx_nic *efx)
432{
433	efx->rx_page_buf_step = ALIGN(efx->rx_dma_len + efx->rx_ip_align +
434				      EFX_XDP_HEADROOM + EFX_XDP_TAILROOM,
435				      EFX_RX_BUF_ALIGNMENT);
436	efx->rx_bufs_per_page = efx->rx_buffer_order ? 1 :
437		((PAGE_SIZE - sizeof(struct efx_rx_page_state)) /
438		efx->rx_page_buf_step);
439	efx->rx_buffer_truesize = (PAGE_SIZE << efx->rx_buffer_order) /
440		efx->rx_bufs_per_page;
441	efx->rx_pages_per_batch = DIV_ROUND_UP(EFX_RX_PREFERRED_BATCH,
442					       efx->rx_bufs_per_page);
443}
444
445/* efx_fast_push_rx_descriptors - push new RX descriptors quickly
446 * @rx_queue:		RX descriptor queue
447 *
448 * This will aim to fill the RX descriptor queue up to
449 * @rx_queue->@max_fill. If there is insufficient atomic
450 * memory to do so, a slow fill will be scheduled.
451 *
452 * The caller must provide serialisation (none is used here). In practise,
453 * this means this function must run from the NAPI handler, or be called
454 * when NAPI is disabled.
455 */
456void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue, bool atomic)
457{
458	struct efx_nic *efx = rx_queue->efx;
459	unsigned int fill_level, batch_size;
460	int space, rc = 0;
461
462	if (!rx_queue->refill_enabled)
463		return;
464
465	/* Calculate current fill level, and exit if we don't need to fill */
466	fill_level = (rx_queue->added_count - rx_queue->removed_count);
467	EFX_WARN_ON_ONCE_PARANOID(fill_level > rx_queue->efx->rxq_entries);
468	if (fill_level >= rx_queue->fast_fill_trigger)
469		goto out;
470
471	/* Record minimum fill level */
472	if (unlikely(fill_level < rx_queue->min_fill)) {
473		if (fill_level)
474			rx_queue->min_fill = fill_level;
475	}
476
477	batch_size = efx->rx_pages_per_batch * efx->rx_bufs_per_page;
478	space = rx_queue->max_fill - fill_level;
479	EFX_WARN_ON_ONCE_PARANOID(space < batch_size);
480
481	netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
482		   "RX queue %d fast-filling descriptor ring from"
483		   " level %d to level %d\n",
484		   efx_rx_queue_index(rx_queue), fill_level,
485		   rx_queue->max_fill);
486
487	do {
488		rc = efx_init_rx_buffers(rx_queue, atomic);
489		if (unlikely(rc)) {
490			/* Ensure that we don't leave the rx queue empty */
491			efx_schedule_slow_fill(rx_queue);
492			goto out;
493		}
494	} while ((space -= batch_size) >= batch_size);
495
496	netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
497		   "RX queue %d fast-filled descriptor ring "
498		   "to level %d\n", efx_rx_queue_index(rx_queue),
499		   rx_queue->added_count - rx_queue->removed_count);
500
501 out:
502	if (rx_queue->notified_count != rx_queue->added_count)
503		efx_nic_notify_rx_desc(rx_queue);
504}
505
506/* Pass a received packet up through GRO.  GRO can handle pages
507 * regardless of checksum state and skbs with a good checksum.
508 */
509void
510efx_rx_packet_gro(struct efx_channel *channel, struct efx_rx_buffer *rx_buf,
511		  unsigned int n_frags, u8 *eh, __wsum csum)
512{
513	struct napi_struct *napi = &channel->napi_str;
514	struct efx_nic *efx = channel->efx;
515	struct sk_buff *skb;
516
517	skb = napi_get_frags(napi);
518	if (unlikely(!skb)) {
519		struct efx_rx_queue *rx_queue;
520
521		rx_queue = efx_channel_get_rx_queue(channel);
522		efx_free_rx_buffers(rx_queue, rx_buf, n_frags);
523		return;
524	}
525
526	if (efx->net_dev->features & NETIF_F_RXHASH &&
527	    efx_rx_buf_hash_valid(efx, eh))
528		skb_set_hash(skb, efx_rx_buf_hash(efx, eh),
529			     PKT_HASH_TYPE_L3);
530	if (csum) {
531		skb->csum = csum;
532		skb->ip_summed = CHECKSUM_COMPLETE;
533	} else {
534		skb->ip_summed = ((rx_buf->flags & EFX_RX_PKT_CSUMMED) ?
535				  CHECKSUM_UNNECESSARY : CHECKSUM_NONE);
536	}
537	skb->csum_level = !!(rx_buf->flags & EFX_RX_PKT_CSUM_LEVEL);
538
539	for (;;) {
540		skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
541				   rx_buf->page, rx_buf->page_offset,
542				   rx_buf->len);
543		rx_buf->page = NULL;
544		skb->len += rx_buf->len;
545		if (skb_shinfo(skb)->nr_frags == n_frags)
546			break;
547
548		rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf);
549	}
550
551	skb->data_len = skb->len;
552	skb->truesize += n_frags * efx->rx_buffer_truesize;
553
554	skb_record_rx_queue(skb, channel->rx_queue.core_index);
555
556	napi_gro_frags(napi);
557}
558
559/* RSS contexts.  We're using linked lists and crappy O(n) algorithms, because
560 * (a) this is an infrequent control-plane operation and (b) n is small (max 64)
561 */
562struct efx_rss_context *efx_alloc_rss_context_entry(struct efx_nic *efx)
563{
564	struct list_head *head = &efx->rss_context.list;
565	struct efx_rss_context *ctx, *new;
566	u32 id = 1; /* Don't use zero, that refers to the master RSS context */
567
568	WARN_ON(!mutex_is_locked(&efx->rss_lock));
569
570	/* Search for first gap in the numbering */
571	list_for_each_entry(ctx, head, list) {
572		if (ctx->user_id != id)
573			break;
574		id++;
575		/* Check for wrap.  If this happens, we have nearly 2^32
576		 * allocated RSS contexts, which seems unlikely.
577		 */
578		if (WARN_ON_ONCE(!id))
579			return NULL;
580	}
581
582	/* Create the new entry */
583	new = kmalloc(sizeof(*new), GFP_KERNEL);
584	if (!new)
585		return NULL;
586	new->context_id = EFX_MCDI_RSS_CONTEXT_INVALID;
587	new->rx_hash_udp_4tuple = false;
588
589	/* Insert the new entry into the gap */
590	new->user_id = id;
591	list_add_tail(&new->list, &ctx->list);
592	return new;
593}
594
595struct efx_rss_context *efx_find_rss_context_entry(struct efx_nic *efx, u32 id)
596{
597	struct list_head *head = &efx->rss_context.list;
598	struct efx_rss_context *ctx;
599
600	WARN_ON(!mutex_is_locked(&efx->rss_lock));
601
602	list_for_each_entry(ctx, head, list)
603		if (ctx->user_id == id)
604			return ctx;
605	return NULL;
606}
607
608void efx_free_rss_context_entry(struct efx_rss_context *ctx)
609{
610	list_del(&ctx->list);
611	kfree(ctx);
612}
613
614void efx_set_default_rx_indir_table(struct efx_nic *efx,
615				    struct efx_rss_context *ctx)
616{
617	size_t i;
618
619	for (i = 0; i < ARRAY_SIZE(ctx->rx_indir_table); i++)
620		ctx->rx_indir_table[i] =
621			ethtool_rxfh_indir_default(i, efx->rss_spread);
622}
623
624/**
625 * efx_filter_is_mc_recipient - test whether spec is a multicast recipient
626 * @spec: Specification to test
627 *
628 * Return: %true if the specification is a non-drop RX filter that
629 * matches a local MAC address I/G bit value of 1 or matches a local
630 * IPv4 or IPv6 address value in the respective multicast address
631 * range.  Otherwise %false.
632 */
633bool efx_filter_is_mc_recipient(const struct efx_filter_spec *spec)
634{
635	if (!(spec->flags & EFX_FILTER_FLAG_RX) ||
636	    spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP)
637		return false;
638
639	if (spec->match_flags &
640	    (EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_LOC_MAC_IG) &&
641	    is_multicast_ether_addr(spec->loc_mac))
642		return true;
643
644	if ((spec->match_flags &
645	     (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) ==
646	    (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) {
647		if (spec->ether_type == htons(ETH_P_IP) &&
648		    ipv4_is_multicast(spec->loc_host[0]))
649			return true;
650		if (spec->ether_type == htons(ETH_P_IPV6) &&
651		    ((const u8 *)spec->loc_host)[0] == 0xff)
652			return true;
653	}
654
655	return false;
656}
657
658bool efx_filter_spec_equal(const struct efx_filter_spec *left,
659			   const struct efx_filter_spec *right)
660{
661	if ((left->match_flags ^ right->match_flags) |
662	    ((left->flags ^ right->flags) &
663	     (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)))
664		return false;
665
666	return memcmp(&left->vport_id, &right->vport_id,
667		      sizeof(struct efx_filter_spec) -
668		      offsetof(struct efx_filter_spec, vport_id)) == 0;
669}
670
671u32 efx_filter_spec_hash(const struct efx_filter_spec *spec)
672{
673	BUILD_BUG_ON(offsetof(struct efx_filter_spec, vport_id) & 3);
674	return jhash2((const u32 *)&spec->vport_id,
675		      (sizeof(struct efx_filter_spec) -
676		       offsetof(struct efx_filter_spec, vport_id)) / 4,
677		      0);
678}
679
680#ifdef CONFIG_RFS_ACCEL
681bool efx_rps_check_rule(struct efx_arfs_rule *rule, unsigned int filter_idx,
682			bool *force)
683{
684	if (rule->filter_id == EFX_ARFS_FILTER_ID_PENDING) {
685		/* ARFS is currently updating this entry, leave it */
686		return false;
687	}
688	if (rule->filter_id == EFX_ARFS_FILTER_ID_ERROR) {
689		/* ARFS tried and failed to update this, so it's probably out
690		 * of date.  Remove the filter and the ARFS rule entry.
691		 */
692		rule->filter_id = EFX_ARFS_FILTER_ID_REMOVING;
693		*force = true;
694		return true;
695	} else if (WARN_ON(rule->filter_id != filter_idx)) { /* can't happen */
696		/* ARFS has moved on, so old filter is not needed.  Since we did
697		 * not mark the rule with EFX_ARFS_FILTER_ID_REMOVING, it will
698		 * not be removed by efx_rps_hash_del() subsequently.
699		 */
700		*force = true;
701		return true;
702	}
703	/* Remove it iff ARFS wants to. */
704	return true;
705}
706
707static
708struct hlist_head *efx_rps_hash_bucket(struct efx_nic *efx,
709				       const struct efx_filter_spec *spec)
710{
711	u32 hash = efx_filter_spec_hash(spec);
712
713	lockdep_assert_held(&efx->rps_hash_lock);
714	if (!efx->rps_hash_table)
715		return NULL;
716	return &efx->rps_hash_table[hash % EFX_ARFS_HASH_TABLE_SIZE];
717}
718
719struct efx_arfs_rule *efx_rps_hash_find(struct efx_nic *efx,
720					const struct efx_filter_spec *spec)
721{
722	struct efx_arfs_rule *rule;
723	struct hlist_head *head;
724	struct hlist_node *node;
725
726	head = efx_rps_hash_bucket(efx, spec);
727	if (!head)
728		return NULL;
729	hlist_for_each(node, head) {
730		rule = container_of(node, struct efx_arfs_rule, node);
731		if (efx_filter_spec_equal(spec, &rule->spec))
732			return rule;
733	}
734	return NULL;
735}
736
737struct efx_arfs_rule *efx_rps_hash_add(struct efx_nic *efx,
738				       const struct efx_filter_spec *spec,
739				       bool *new)
740{
741	struct efx_arfs_rule *rule;
742	struct hlist_head *head;
743	struct hlist_node *node;
744
745	head = efx_rps_hash_bucket(efx, spec);
746	if (!head)
747		return NULL;
748	hlist_for_each(node, head) {
749		rule = container_of(node, struct efx_arfs_rule, node);
750		if (efx_filter_spec_equal(spec, &rule->spec)) {
751			*new = false;
752			return rule;
753		}
754	}
755	rule = kmalloc(sizeof(*rule), GFP_ATOMIC);
756	*new = true;
757	if (rule) {
758		memcpy(&rule->spec, spec, sizeof(rule->spec));
759		hlist_add_head(&rule->node, head);
760	}
761	return rule;
762}
763
764void efx_rps_hash_del(struct efx_nic *efx, const struct efx_filter_spec *spec)
765{
766	struct efx_arfs_rule *rule;
767	struct hlist_head *head;
768	struct hlist_node *node;
769
770	head = efx_rps_hash_bucket(efx, spec);
771	if (WARN_ON(!head))
772		return;
773	hlist_for_each(node, head) {
774		rule = container_of(node, struct efx_arfs_rule, node);
775		if (efx_filter_spec_equal(spec, &rule->spec)) {
776			/* Someone already reused the entry.  We know that if
777			 * this check doesn't fire (i.e. filter_id == REMOVING)
778			 * then the REMOVING mark was put there by our caller,
779			 * because caller is holding a lock on filter table and
780			 * only holders of that lock set REMOVING.
781			 */
782			if (rule->filter_id != EFX_ARFS_FILTER_ID_REMOVING)
783				return;
784			hlist_del(node);
785			kfree(rule);
786			return;
787		}
788	}
789	/* We didn't find it. */
790	WARN_ON(1);
791}
792#endif
793
794int efx_probe_filters(struct efx_nic *efx)
795{
796	int rc;
797
798	mutex_lock(&efx->mac_lock);
799	rc = efx->type->filter_table_probe(efx);
800	if (rc)
801		goto out_unlock;
802
803#ifdef CONFIG_RFS_ACCEL
804	if (efx->type->offload_features & NETIF_F_NTUPLE) {
805		struct efx_channel *channel;
806		int i, success = 1;
807
808		efx_for_each_channel(channel, efx) {
809			channel->rps_flow_id =
810				kcalloc(efx->type->max_rx_ip_filters,
811					sizeof(*channel->rps_flow_id),
812					GFP_KERNEL);
813			if (!channel->rps_flow_id)
814				success = 0;
815			else
816				for (i = 0;
817				     i < efx->type->max_rx_ip_filters;
818				     ++i)
819					channel->rps_flow_id[i] =
820						RPS_FLOW_ID_INVALID;
821			channel->rfs_expire_index = 0;
822			channel->rfs_filter_count = 0;
823		}
824
825		if (!success) {
826			efx_for_each_channel(channel, efx) {
827				kfree(channel->rps_flow_id);
828				channel->rps_flow_id = NULL;
829			}
830			efx->type->filter_table_remove(efx);
831			rc = -ENOMEM;
832			goto out_unlock;
833		}
834	}
835#endif
836out_unlock:
837	mutex_unlock(&efx->mac_lock);
838	return rc;
839}
840
841void efx_remove_filters(struct efx_nic *efx)
842{
843#ifdef CONFIG_RFS_ACCEL
844	struct efx_channel *channel;
845
846	efx_for_each_channel(channel, efx) {
847		cancel_delayed_work_sync(&channel->filter_work);
848		kfree(channel->rps_flow_id);
849		channel->rps_flow_id = NULL;
850	}
851#endif
852	efx->type->filter_table_remove(efx);
853}
854
855#ifdef CONFIG_RFS_ACCEL
856
857static void efx_filter_rfs_work(struct work_struct *data)
858{
859	struct efx_async_filter_insertion *req = container_of(data, struct efx_async_filter_insertion,
860							      work);
861	struct efx_nic *efx = efx_netdev_priv(req->net_dev);
862	struct efx_channel *channel = efx_get_channel(efx, req->rxq_index);
863	int slot_idx = req - efx->rps_slot;
864	struct efx_arfs_rule *rule;
865	u16 arfs_id = 0;
866	int rc;
867
868	rc = efx->type->filter_insert(efx, &req->spec, true);
869	if (rc >= 0)
870		/* Discard 'priority' part of EF10+ filter ID (mcdi_filters) */
871		rc %= efx->type->max_rx_ip_filters;
872	if (efx->rps_hash_table) {
873		spin_lock_bh(&efx->rps_hash_lock);
874		rule = efx_rps_hash_find(efx, &req->spec);
875		/* The rule might have already gone, if someone else's request
876		 * for the same spec was already worked and then expired before
877		 * we got around to our work.  In that case we have nothing
878		 * tying us to an arfs_id, meaning that as soon as the filter
879		 * is considered for expiry it will be removed.
880		 */
881		if (rule) {
882			if (rc < 0)
883				rule->filter_id = EFX_ARFS_FILTER_ID_ERROR;
884			else
885				rule->filter_id = rc;
886			arfs_id = rule->arfs_id;
887		}
888		spin_unlock_bh(&efx->rps_hash_lock);
889	}
890	if (rc >= 0) {
891		/* Remember this so we can check whether to expire the filter
892		 * later.
893		 */
894		mutex_lock(&efx->rps_mutex);
895		if (channel->rps_flow_id[rc] == RPS_FLOW_ID_INVALID)
896			channel->rfs_filter_count++;
897		channel->rps_flow_id[rc] = req->flow_id;
898		mutex_unlock(&efx->rps_mutex);
899
900		if (req->spec.ether_type == htons(ETH_P_IP))
901			netif_info(efx, rx_status, efx->net_dev,
902				   "steering %s %pI4:%u:%pI4:%u to queue %u [flow %u filter %d id %u]\n",
903				   (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
904				   req->spec.rem_host, ntohs(req->spec.rem_port),
905				   req->spec.loc_host, ntohs(req->spec.loc_port),
906				   req->rxq_index, req->flow_id, rc, arfs_id);
907		else
908			netif_info(efx, rx_status, efx->net_dev,
909				   "steering %s [%pI6]:%u:[%pI6]:%u to queue %u [flow %u filter %d id %u]\n",
910				   (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
911				   req->spec.rem_host, ntohs(req->spec.rem_port),
912				   req->spec.loc_host, ntohs(req->spec.loc_port),
913				   req->rxq_index, req->flow_id, rc, arfs_id);
914		channel->n_rfs_succeeded++;
915	} else {
916		if (req->spec.ether_type == htons(ETH_P_IP))
917			netif_dbg(efx, rx_status, efx->net_dev,
918				  "failed to steer %s %pI4:%u:%pI4:%u to queue %u [flow %u rc %d id %u]\n",
919				  (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
920				  req->spec.rem_host, ntohs(req->spec.rem_port),
921				  req->spec.loc_host, ntohs(req->spec.loc_port),
922				  req->rxq_index, req->flow_id, rc, arfs_id);
923		else
924			netif_dbg(efx, rx_status, efx->net_dev,
925				  "failed to steer %s [%pI6]:%u:[%pI6]:%u to queue %u [flow %u rc %d id %u]\n",
926				  (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
927				  req->spec.rem_host, ntohs(req->spec.rem_port),
928				  req->spec.loc_host, ntohs(req->spec.loc_port),
929				  req->rxq_index, req->flow_id, rc, arfs_id);
930		channel->n_rfs_failed++;
931		/* We're overloading the NIC's filter tables, so let's do a
932		 * chunk of extra expiry work.
933		 */
934		__efx_filter_rfs_expire(channel, min(channel->rfs_filter_count,
935						     100u));
936	}
937
938	/* Release references */
939	clear_bit(slot_idx, &efx->rps_slot_map);
940	dev_put(req->net_dev);
941}
942
943int efx_filter_rfs(struct net_device *net_dev, const struct sk_buff *skb,
944		   u16 rxq_index, u32 flow_id)
945{
946	struct efx_nic *efx = efx_netdev_priv(net_dev);
947	struct efx_async_filter_insertion *req;
948	struct efx_arfs_rule *rule;
949	struct flow_keys fk;
950	int slot_idx;
951	bool new;
952	int rc;
953
954	/* find a free slot */
955	for (slot_idx = 0; slot_idx < EFX_RPS_MAX_IN_FLIGHT; slot_idx++)
956		if (!test_and_set_bit(slot_idx, &efx->rps_slot_map))
957			break;
958	if (slot_idx >= EFX_RPS_MAX_IN_FLIGHT)
959		return -EBUSY;
960
961	if (flow_id == RPS_FLOW_ID_INVALID) {
962		rc = -EINVAL;
963		goto out_clear;
964	}
965
966	if (!skb_flow_dissect_flow_keys(skb, &fk, 0)) {
967		rc = -EPROTONOSUPPORT;
968		goto out_clear;
969	}
970
971	if (fk.basic.n_proto != htons(ETH_P_IP) && fk.basic.n_proto != htons(ETH_P_IPV6)) {
972		rc = -EPROTONOSUPPORT;
973		goto out_clear;
974	}
975	if (fk.control.flags & FLOW_DIS_IS_FRAGMENT) {
976		rc = -EPROTONOSUPPORT;
977		goto out_clear;
978	}
979
980	req = efx->rps_slot + slot_idx;
981	efx_filter_init_rx(&req->spec, EFX_FILTER_PRI_HINT,
982			   efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0,
983			   rxq_index);
984	req->spec.match_flags =
985		EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
986		EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT |
987		EFX_FILTER_MATCH_REM_HOST | EFX_FILTER_MATCH_REM_PORT;
988	req->spec.ether_type = fk.basic.n_proto;
989	req->spec.ip_proto = fk.basic.ip_proto;
990
991	if (fk.basic.n_proto == htons(ETH_P_IP)) {
992		req->spec.rem_host[0] = fk.addrs.v4addrs.src;
993		req->spec.loc_host[0] = fk.addrs.v4addrs.dst;
994	} else {
995		memcpy(req->spec.rem_host, &fk.addrs.v6addrs.src,
996		       sizeof(struct in6_addr));
997		memcpy(req->spec.loc_host, &fk.addrs.v6addrs.dst,
998		       sizeof(struct in6_addr));
999	}
1000
1001	req->spec.rem_port = fk.ports.src;
1002	req->spec.loc_port = fk.ports.dst;
1003
1004	if (efx->rps_hash_table) {
1005		/* Add it to ARFS hash table */
1006		spin_lock(&efx->rps_hash_lock);
1007		rule = efx_rps_hash_add(efx, &req->spec, &new);
1008		if (!rule) {
1009			rc = -ENOMEM;
1010			goto out_unlock;
1011		}
1012		if (new)
1013			rule->arfs_id = efx->rps_next_id++ % RPS_NO_FILTER;
1014		rc = rule->arfs_id;
1015		/* Skip if existing or pending filter already does the right thing */
1016		if (!new && rule->rxq_index == rxq_index &&
1017		    rule->filter_id >= EFX_ARFS_FILTER_ID_PENDING)
1018			goto out_unlock;
1019		rule->rxq_index = rxq_index;
1020		rule->filter_id = EFX_ARFS_FILTER_ID_PENDING;
1021		spin_unlock(&efx->rps_hash_lock);
1022	} else {
1023		/* Without an ARFS hash table, we just use arfs_id 0 for all
1024		 * filters.  This means if multiple flows hash to the same
1025		 * flow_id, all but the most recently touched will be eligible
1026		 * for expiry.
1027		 */
1028		rc = 0;
1029	}
1030
1031	/* Queue the request */
1032	dev_hold(req->net_dev = net_dev);
1033	INIT_WORK(&req->work, efx_filter_rfs_work);
1034	req->rxq_index = rxq_index;
1035	req->flow_id = flow_id;
1036	schedule_work(&req->work);
1037	return rc;
1038out_unlock:
1039	spin_unlock(&efx->rps_hash_lock);
1040out_clear:
1041	clear_bit(slot_idx, &efx->rps_slot_map);
1042	return rc;
1043}
1044
1045bool __efx_filter_rfs_expire(struct efx_channel *channel, unsigned int quota)
1046{
1047	bool (*expire_one)(struct efx_nic *efx, u32 flow_id, unsigned int index);
1048	struct efx_nic *efx = channel->efx;
1049	unsigned int index, size, start;
1050	u32 flow_id;
1051
1052	if (!mutex_trylock(&efx->rps_mutex))
1053		return false;
1054	expire_one = efx->type->filter_rfs_expire_one;
1055	index = channel->rfs_expire_index;
1056	start = index;
1057	size = efx->type->max_rx_ip_filters;
1058	while (quota) {
1059		flow_id = channel->rps_flow_id[index];
1060
1061		if (flow_id != RPS_FLOW_ID_INVALID) {
1062			quota--;
1063			if (expire_one(efx, flow_id, index)) {
1064				netif_info(efx, rx_status, efx->net_dev,
1065					   "expired filter %d [channel %u flow %u]\n",
1066					   index, channel->channel, flow_id);
1067				channel->rps_flow_id[index] = RPS_FLOW_ID_INVALID;
1068				channel->rfs_filter_count--;
1069			}
1070		}
1071		if (++index == size)
1072			index = 0;
1073		/* If we were called with a quota that exceeds the total number
1074		 * of filters in the table (which shouldn't happen, but could
1075		 * if two callers race), ensure that we don't loop forever -
1076		 * stop when we've examined every row of the table.
1077		 */
1078		if (index == start)
1079			break;
1080	}
1081
1082	channel->rfs_expire_index = index;
1083	mutex_unlock(&efx->rps_mutex);
1084	return true;
1085}
1086
1087#endif /* CONFIG_RFS_ACCEL */
1088