1// SPDX-License-Identifier: GPL-2.0-only
2/****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2011-2013 Solarflare Communications Inc.
5 */
6
7/* Theory of operation:
8 *
9 * PTP support is assisted by firmware running on the MC, which provides
10 * the hardware timestamping capabilities.  Both transmitted and received
11 * PTP event packets are queued onto internal queues for subsequent processing;
12 * this is because the MC operations are relatively long and would block
13 * block NAPI/interrupt operation.
14 *
15 * Receive event processing:
16 *	The event contains the packet's UUID and sequence number, together
17 *	with the hardware timestamp.  The PTP receive packet queue is searched
18 *	for this UUID/sequence number and, if found, put on a pending queue.
19 *	Packets not matching are delivered without timestamps (MCDI events will
20 *	always arrive after the actual packet).
21 *	It is important for the operation of the PTP protocol that the ordering
22 *	of packets between the event and general port is maintained.
23 *
24 * Work queue processing:
25 *	If work waiting, synchronise host/hardware time
26 *
27 *	Transmit: send packet through MC, which returns the transmission time
28 *	that is converted to an appropriate timestamp.
29 *
30 *	Receive: the packet's reception time is converted to an appropriate
31 *	timestamp.
32 */
33#include <linux/ip.h>
34#include <linux/udp.h>
35#include <linux/time.h>
36#include <linux/errno.h>
37#include <linux/ktime.h>
38#include <linux/module.h>
39#include <linux/pps_kernel.h>
40#include <linux/ptp_clock_kernel.h>
41#include "net_driver.h"
42#include "efx.h"
43#include "mcdi.h"
44#include "mcdi_pcol.h"
45#include "io.h"
46#include "tx.h"
47#include "nic.h" /* indirectly includes ptp.h */
48#include "efx_channels.h"
49
50/* Maximum number of events expected to make up a PTP event */
51#define	MAX_EVENT_FRAGS			3
52
53/* Maximum delay, ms, to begin synchronisation */
54#define	MAX_SYNCHRONISE_WAIT_MS		2
55
56/* How long, at most, to spend synchronising */
57#define	SYNCHRONISE_PERIOD_NS		250000
58
59/* How often to update the shared memory time */
60#define	SYNCHRONISATION_GRANULARITY_NS	200
61
62/* Minimum permitted length of a (corrected) synchronisation time */
63#define	DEFAULT_MIN_SYNCHRONISATION_NS	120
64
65/* Maximum permitted length of a (corrected) synchronisation time */
66#define	MAX_SYNCHRONISATION_NS		1000
67
68/* How many (MC) receive events that can be queued */
69#define	MAX_RECEIVE_EVENTS		8
70
71/* Length of (modified) moving average. */
72#define	AVERAGE_LENGTH			16
73
74/* How long an unmatched event or packet can be held */
75#define PKT_EVENT_LIFETIME_MS		10
76
77/* How long unused unicast filters can be held */
78#define UCAST_FILTER_EXPIRY_JIFFIES	msecs_to_jiffies(30000)
79
80/* Offsets into PTP packet for identification.  These offsets are from the
81 * start of the IP header, not the MAC header.  Note that neither PTP V1 nor
82 * PTP V2 permit the use of IPV4 options.
83 */
84#define PTP_DPORT_OFFSET	22
85
86#define PTP_V1_VERSION_LENGTH	2
87#define PTP_V1_VERSION_OFFSET	28
88
89#define PTP_V1_SEQUENCE_LENGTH	2
90#define PTP_V1_SEQUENCE_OFFSET	58
91
92/* The minimum length of a PTP V1 packet for offsets, etc. to be valid:
93 * includes IP header.
94 */
95#define	PTP_V1_MIN_LENGTH	64
96
97#define PTP_V2_VERSION_LENGTH	1
98#define PTP_V2_VERSION_OFFSET	29
99
100#define PTP_V2_SEQUENCE_LENGTH	2
101#define PTP_V2_SEQUENCE_OFFSET	58
102
103/* The minimum length of a PTP V2 packet for offsets, etc. to be valid:
104 * includes IP header.
105 */
106#define	PTP_V2_MIN_LENGTH	63
107
108#define	PTP_MIN_LENGTH		63
109
110#define PTP_ADDR_IPV4		0xe0000181	/* 224.0.1.129 */
111#define PTP_ADDR_IPV6		{0xff, 0x0e, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
112				0, 0x01, 0x81}	/* ff0e::181 */
113#define PTP_EVENT_PORT		319
114#define PTP_GENERAL_PORT	320
115#define PTP_ADDR_ETHER		{0x01, 0x1b, 0x19, 0, 0, 0} /* 01-1B-19-00-00-00 */
116
117/* Annoyingly the format of the version numbers are different between
118 * versions 1 and 2 so it isn't possible to simply look for 1 or 2.
119 */
120#define	PTP_VERSION_V1		1
121
122#define	PTP_VERSION_V2		2
123#define	PTP_VERSION_V2_MASK	0x0f
124
125enum ptp_packet_state {
126	PTP_PACKET_STATE_UNMATCHED = 0,
127	PTP_PACKET_STATE_MATCHED,
128	PTP_PACKET_STATE_TIMED_OUT,
129	PTP_PACKET_STATE_MATCH_UNWANTED
130};
131
132/* NIC synchronised with single word of time only comprising
133 * partial seconds and full nanoseconds: 10^9 ~ 2^30 so 2 bits for seconds.
134 */
135#define	MC_NANOSECOND_BITS	30
136#define	MC_NANOSECOND_MASK	((1 << MC_NANOSECOND_BITS) - 1)
137#define	MC_SECOND_MASK		((1 << (32 - MC_NANOSECOND_BITS)) - 1)
138
139/* Maximum parts-per-billion adjustment that is acceptable */
140#define MAX_PPB			1000000
141
142/* Precalculate scale word to avoid long long division at runtime */
143/* This is equivalent to 2^66 / 10^9. */
144#define PPB_SCALE_WORD  ((1LL << (57)) / 1953125LL)
145
146/* How much to shift down after scaling to convert to FP40 */
147#define PPB_SHIFT_FP40		26
148/* ... and FP44. */
149#define PPB_SHIFT_FP44		22
150
151#define PTP_SYNC_ATTEMPTS	4
152
153/**
154 * struct efx_ptp_match - Matching structure, stored in sk_buff's cb area.
155 * @expiry: Time after which the packet should be delivered irrespective of
156 *            event arrival.
157 * @state: The state of the packet - whether it is ready for processing or
158 *         whether that is of no interest.
159 */
160struct efx_ptp_match {
161	unsigned long expiry;
162	enum ptp_packet_state state;
163};
164
165/**
166 * struct efx_ptp_event_rx - A PTP receive event (from MC)
167 * @link: list of events
168 * @seq0: First part of (PTP) UUID
169 * @seq1: Second part of (PTP) UUID and sequence number
170 * @hwtimestamp: Event timestamp
171 * @expiry: Time which the packet arrived
172 */
173struct efx_ptp_event_rx {
174	struct list_head link;
175	u32 seq0;
176	u32 seq1;
177	ktime_t hwtimestamp;
178	unsigned long expiry;
179};
180
181/**
182 * struct efx_ptp_timeset - Synchronisation between host and MC
183 * @host_start: Host time immediately before hardware timestamp taken
184 * @major: Hardware timestamp, major
185 * @minor: Hardware timestamp, minor
186 * @host_end: Host time immediately after hardware timestamp taken
187 * @wait: Number of NIC clock ticks between hardware timestamp being read and
188 *          host end time being seen
189 * @window: Difference of host_end and host_start
190 * @valid: Whether this timeset is valid
191 */
192struct efx_ptp_timeset {
193	u32 host_start;
194	u32 major;
195	u32 minor;
196	u32 host_end;
197	u32 wait;
198	u32 window;	/* Derived: end - start, allowing for wrap */
199};
200
201/**
202 * struct efx_ptp_rxfilter - Filter for PTP packets
203 * @list: Node of the list where the filter is added
204 * @ether_type: Network protocol of the filter (ETHER_P_IP / ETHER_P_IPV6)
205 * @loc_port: UDP port of the filter (PTP_EVENT_PORT / PTP_GENERAL_PORT)
206 * @loc_host: IPv4/v6 address of the filter
207 * @expiry: time when the filter expires, in jiffies
208 * @handle: Handle ID for the MCDI filters table
209 */
210struct efx_ptp_rxfilter {
211	struct list_head list;
212	__be16 ether_type;
213	__be16 loc_port;
214	__be32 loc_host[4];
215	unsigned long expiry;
216	int handle;
217};
218
219/**
220 * struct efx_ptp_data - Precision Time Protocol (PTP) state
221 * @efx: The NIC context
222 * @channel: The PTP channel (for Medford and Medford2)
223 * @rxq: Receive SKB queue (awaiting timestamps)
224 * @txq: Transmit SKB queue
225 * @workwq: Work queue for processing pending PTP operations
226 * @work: Work task
227 * @cleanup_work: Work task for periodic cleanup
228 * @reset_required: A serious error has occurred and the PTP task needs to be
229 *                  reset (disable, enable).
230 * @rxfilters_mcast: Receive filters for multicast PTP packets
231 * @rxfilters_ucast: Receive filters for unicast PTP packets
232 * @config: Current timestamp configuration
233 * @enabled: PTP operation enabled
234 * @mode: Mode in which PTP operating (PTP version)
235 * @ns_to_nic_time: Function to convert from scalar nanoseconds to NIC time
236 * @nic_to_kernel_time: Function to convert from NIC to kernel time
237 * @nic_time: contains time details
238 * @nic_time.minor_max: Wrap point for NIC minor times
239 * @nic_time.sync_event_diff_min: Minimum acceptable difference between time
240 * in packet prefix and last MCDI time sync event i.e. how much earlier than
241 * the last sync event time a packet timestamp can be.
242 * @nic_time.sync_event_diff_max: Maximum acceptable difference between time
243 * in packet prefix and last MCDI time sync event i.e. how much later than
244 * the last sync event time a packet timestamp can be.
245 * @nic_time.sync_event_minor_shift: Shift required to make minor time from
246 * field in MCDI time sync event.
247 * @min_synchronisation_ns: Minimum acceptable corrected sync window
248 * @capabilities: Capabilities flags from the NIC
249 * @ts_corrections: contains corrections details
250 * @ts_corrections.ptp_tx: Required driver correction of PTP packet transmit
251 *                         timestamps
252 * @ts_corrections.ptp_rx: Required driver correction of PTP packet receive
253 *                         timestamps
254 * @ts_corrections.pps_out: PPS output error (information only)
255 * @ts_corrections.pps_in: Required driver correction of PPS input timestamps
256 * @ts_corrections.general_tx: Required driver correction of general packet
257 *                             transmit timestamps
258 * @ts_corrections.general_rx: Required driver correction of general packet
259 *                             receive timestamps
260 * @evt_frags: Partly assembled PTP events
261 * @evt_frag_idx: Current fragment number
262 * @evt_code: Last event code
263 * @start: Address at which MC indicates ready for synchronisation
264 * @host_time_pps: Host time at last PPS
265 * @adjfreq_ppb_shift: Shift required to convert scaled parts-per-billion
266 * frequency adjustment into a fixed point fractional nanosecond format.
267 * @current_adjfreq: Current ppb adjustment.
268 * @phc_clock: Pointer to registered phc device (if primary function)
269 * @phc_clock_info: Registration structure for phc device
270 * @pps_work: pps work task for handling pps events
271 * @pps_workwq: pps work queue
272 * @nic_ts_enabled: Flag indicating if NIC generated TS events are handled
273 * @txbuf: Buffer for use when transmitting (PTP) packets to MC (avoids
274 *         allocations in main data path).
275 * @good_syncs: Number of successful synchronisations.
276 * @fast_syncs: Number of synchronisations requiring short delay
277 * @bad_syncs: Number of failed synchronisations.
278 * @sync_timeouts: Number of synchronisation timeouts
279 * @no_time_syncs: Number of synchronisations with no good times.
280 * @invalid_sync_windows: Number of sync windows with bad durations.
281 * @undersize_sync_windows: Number of corrected sync windows that are too small
282 * @oversize_sync_windows: Number of corrected sync windows that are too large
283 * @rx_no_timestamp: Number of packets received without a timestamp.
284 * @timeset: Last set of synchronisation statistics.
285 * @xmit_skb: Transmit SKB function.
286 */
287struct efx_ptp_data {
288	struct efx_nic *efx;
289	struct efx_channel *channel;
290	struct sk_buff_head rxq;
291	struct sk_buff_head txq;
292	struct workqueue_struct *workwq;
293	struct work_struct work;
294	struct delayed_work cleanup_work;
295	bool reset_required;
296	struct list_head rxfilters_mcast;
297	struct list_head rxfilters_ucast;
298	struct hwtstamp_config config;
299	bool enabled;
300	unsigned int mode;
301	void (*ns_to_nic_time)(s64 ns, u32 *nic_major, u32 *nic_minor);
302	ktime_t (*nic_to_kernel_time)(u32 nic_major, u32 nic_minor,
303				      s32 correction);
304	struct {
305		u32 minor_max;
306		u32 sync_event_diff_min;
307		u32 sync_event_diff_max;
308		unsigned int sync_event_minor_shift;
309	} nic_time;
310	unsigned int min_synchronisation_ns;
311	unsigned int capabilities;
312	struct {
313		s32 ptp_tx;
314		s32 ptp_rx;
315		s32 pps_out;
316		s32 pps_in;
317		s32 general_tx;
318		s32 general_rx;
319	} ts_corrections;
320	efx_qword_t evt_frags[MAX_EVENT_FRAGS];
321	int evt_frag_idx;
322	int evt_code;
323	struct efx_buffer start;
324	struct pps_event_time host_time_pps;
325	unsigned int adjfreq_ppb_shift;
326	s64 current_adjfreq;
327	struct ptp_clock *phc_clock;
328	struct ptp_clock_info phc_clock_info;
329	struct work_struct pps_work;
330	struct workqueue_struct *pps_workwq;
331	bool nic_ts_enabled;
332	efx_dword_t txbuf[MCDI_TX_BUF_LEN(MC_CMD_PTP_IN_TRANSMIT_LENMAX)];
333
334	unsigned int good_syncs;
335	unsigned int fast_syncs;
336	unsigned int bad_syncs;
337	unsigned int sync_timeouts;
338	unsigned int no_time_syncs;
339	unsigned int invalid_sync_windows;
340	unsigned int undersize_sync_windows;
341	unsigned int oversize_sync_windows;
342	unsigned int rx_no_timestamp;
343	struct efx_ptp_timeset
344	timeset[MC_CMD_PTP_OUT_SYNCHRONIZE_TIMESET_MAXNUM];
345	void (*xmit_skb)(struct efx_nic *efx, struct sk_buff *skb);
346};
347
348static int efx_phc_adjfine(struct ptp_clock_info *ptp, long scaled_ppm);
349static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta);
350static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts);
351static int efx_phc_settime(struct ptp_clock_info *ptp,
352			   const struct timespec64 *e_ts);
353static int efx_phc_enable(struct ptp_clock_info *ptp,
354			  struct ptp_clock_request *request, int on);
355static int efx_ptp_insert_unicast_filter(struct efx_nic *efx,
356					 struct sk_buff *skb);
357
358bool efx_ptp_use_mac_tx_timestamps(struct efx_nic *efx)
359{
360	return efx_has_cap(efx, TX_MAC_TIMESTAMPING);
361}
362
363/* PTP 'extra' channel is still a traffic channel, but we only create TX queues
364 * if PTP uses MAC TX timestamps, not if PTP uses the MC directly to transmit.
365 */
366static bool efx_ptp_want_txqs(struct efx_channel *channel)
367{
368	return efx_ptp_use_mac_tx_timestamps(channel->efx);
369}
370
371#define PTP_SW_STAT(ext_name, field_name)				\
372	{ #ext_name, 0, offsetof(struct efx_ptp_data, field_name) }
373#define PTP_MC_STAT(ext_name, mcdi_name)				\
374	{ #ext_name, 32, MC_CMD_PTP_OUT_STATUS_STATS_ ## mcdi_name ## _OFST }
375static const struct efx_hw_stat_desc efx_ptp_stat_desc[] = {
376	PTP_SW_STAT(ptp_good_syncs, good_syncs),
377	PTP_SW_STAT(ptp_fast_syncs, fast_syncs),
378	PTP_SW_STAT(ptp_bad_syncs, bad_syncs),
379	PTP_SW_STAT(ptp_sync_timeouts, sync_timeouts),
380	PTP_SW_STAT(ptp_no_time_syncs, no_time_syncs),
381	PTP_SW_STAT(ptp_invalid_sync_windows, invalid_sync_windows),
382	PTP_SW_STAT(ptp_undersize_sync_windows, undersize_sync_windows),
383	PTP_SW_STAT(ptp_oversize_sync_windows, oversize_sync_windows),
384	PTP_SW_STAT(ptp_rx_no_timestamp, rx_no_timestamp),
385	PTP_MC_STAT(ptp_tx_timestamp_packets, TX),
386	PTP_MC_STAT(ptp_rx_timestamp_packets, RX),
387	PTP_MC_STAT(ptp_timestamp_packets, TS),
388	PTP_MC_STAT(ptp_filter_matches, FM),
389	PTP_MC_STAT(ptp_non_filter_matches, NFM),
390};
391#define PTP_STAT_COUNT ARRAY_SIZE(efx_ptp_stat_desc)
392static const unsigned long efx_ptp_stat_mask[] = {
393	[0 ... BITS_TO_LONGS(PTP_STAT_COUNT) - 1] = ~0UL,
394};
395
396size_t efx_ptp_describe_stats(struct efx_nic *efx, u8 *strings)
397{
398	if (!efx->ptp_data)
399		return 0;
400
401	return efx_nic_describe_stats(efx_ptp_stat_desc, PTP_STAT_COUNT,
402				      efx_ptp_stat_mask, strings);
403}
404
405size_t efx_ptp_update_stats(struct efx_nic *efx, u64 *stats)
406{
407	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_STATUS_LEN);
408	MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_STATUS_LEN);
409	size_t i;
410	int rc;
411
412	if (!efx->ptp_data)
413		return 0;
414
415	/* Copy software statistics */
416	for (i = 0; i < PTP_STAT_COUNT; i++) {
417		if (efx_ptp_stat_desc[i].dma_width)
418			continue;
419		stats[i] = *(unsigned int *)((char *)efx->ptp_data +
420					     efx_ptp_stat_desc[i].offset);
421	}
422
423	/* Fetch MC statistics.  We *must* fill in all statistics or
424	 * risk leaking kernel memory to userland, so if the MCDI
425	 * request fails we pretend we got zeroes.
426	 */
427	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_STATUS);
428	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
429	rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
430			  outbuf, sizeof(outbuf), NULL);
431	if (rc)
432		memset(outbuf, 0, sizeof(outbuf));
433	efx_nic_update_stats(efx_ptp_stat_desc, PTP_STAT_COUNT,
434			     efx_ptp_stat_mask,
435			     stats, _MCDI_PTR(outbuf, 0), false);
436
437	return PTP_STAT_COUNT;
438}
439
440/* To convert from s27 format to ns we multiply then divide by a power of 2.
441 * For the conversion from ns to s27, the operation is also converted to a
442 * multiply and shift.
443 */
444#define S27_TO_NS_SHIFT	(27)
445#define NS_TO_S27_MULT	(((1ULL << 63) + NSEC_PER_SEC / 2) / NSEC_PER_SEC)
446#define NS_TO_S27_SHIFT	(63 - S27_TO_NS_SHIFT)
447#define S27_MINOR_MAX	(1 << S27_TO_NS_SHIFT)
448
449/* For Huntington platforms NIC time is in seconds and fractions of a second
450 * where the minor register only uses 27 bits in units of 2^-27s.
451 */
452static void efx_ptp_ns_to_s27(s64 ns, u32 *nic_major, u32 *nic_minor)
453{
454	struct timespec64 ts = ns_to_timespec64(ns);
455	u32 maj = (u32)ts.tv_sec;
456	u32 min = (u32)(((u64)ts.tv_nsec * NS_TO_S27_MULT +
457			 (1ULL << (NS_TO_S27_SHIFT - 1))) >> NS_TO_S27_SHIFT);
458
459	/* The conversion can result in the minor value exceeding the maximum.
460	 * In this case, round up to the next second.
461	 */
462	if (min >= S27_MINOR_MAX) {
463		min -= S27_MINOR_MAX;
464		maj++;
465	}
466
467	*nic_major = maj;
468	*nic_minor = min;
469}
470
471static inline ktime_t efx_ptp_s27_to_ktime(u32 nic_major, u32 nic_minor)
472{
473	u32 ns = (u32)(((u64)nic_minor * NSEC_PER_SEC +
474			(1ULL << (S27_TO_NS_SHIFT - 1))) >> S27_TO_NS_SHIFT);
475	return ktime_set(nic_major, ns);
476}
477
478static ktime_t efx_ptp_s27_to_ktime_correction(u32 nic_major, u32 nic_minor,
479					       s32 correction)
480{
481	/* Apply the correction and deal with carry */
482	nic_minor += correction;
483	if ((s32)nic_minor < 0) {
484		nic_minor += S27_MINOR_MAX;
485		nic_major--;
486	} else if (nic_minor >= S27_MINOR_MAX) {
487		nic_minor -= S27_MINOR_MAX;
488		nic_major++;
489	}
490
491	return efx_ptp_s27_to_ktime(nic_major, nic_minor);
492}
493
494/* For Medford2 platforms the time is in seconds and quarter nanoseconds. */
495static void efx_ptp_ns_to_s_qns(s64 ns, u32 *nic_major, u32 *nic_minor)
496{
497	struct timespec64 ts = ns_to_timespec64(ns);
498
499	*nic_major = (u32)ts.tv_sec;
500	*nic_minor = ts.tv_nsec * 4;
501}
502
503static ktime_t efx_ptp_s_qns_to_ktime_correction(u32 nic_major, u32 nic_minor,
504						 s32 correction)
505{
506	ktime_t kt;
507
508	nic_minor = DIV_ROUND_CLOSEST(nic_minor, 4);
509	correction = DIV_ROUND_CLOSEST(correction, 4);
510
511	kt = ktime_set(nic_major, nic_minor);
512
513	if (correction >= 0)
514		kt = ktime_add_ns(kt, (u64)correction);
515	else
516		kt = ktime_sub_ns(kt, (u64)-correction);
517	return kt;
518}
519
520struct efx_channel *efx_ptp_channel(struct efx_nic *efx)
521{
522	return efx->ptp_data ? efx->ptp_data->channel : NULL;
523}
524
525void efx_ptp_update_channel(struct efx_nic *efx, struct efx_channel *channel)
526{
527	if (efx->ptp_data)
528		efx->ptp_data->channel = channel;
529}
530
531static u32 last_sync_timestamp_major(struct efx_nic *efx)
532{
533	struct efx_channel *channel = efx_ptp_channel(efx);
534	u32 major = 0;
535
536	if (channel)
537		major = channel->sync_timestamp_major;
538	return major;
539}
540
541/* The 8000 series and later can provide the time from the MAC, which is only
542 * 48 bits long and provides meta-information in the top 2 bits.
543 */
544static ktime_t
545efx_ptp_mac_nic_to_ktime_correction(struct efx_nic *efx,
546				    struct efx_ptp_data *ptp,
547				    u32 nic_major, u32 nic_minor,
548				    s32 correction)
549{
550	u32 sync_timestamp;
551	ktime_t kt = { 0 };
552	s16 delta;
553
554	if (!(nic_major & 0x80000000)) {
555		WARN_ON_ONCE(nic_major >> 16);
556
557		/* Medford provides 48 bits of timestamp, so we must get the top
558		 * 16 bits from the timesync event state.
559		 *
560		 * We only have the lower 16 bits of the time now, but we do
561		 * have a full resolution timestamp at some point in past. As
562		 * long as the difference between the (real) now and the sync
563		 * is less than 2^15, then we can reconstruct the difference
564		 * between those two numbers using only the lower 16 bits of
565		 * each.
566		 *
567		 * Put another way
568		 *
569		 * a - b = ((a mod k) - b) mod k
570		 *
571		 * when -k/2 < (a-b) < k/2. In our case k is 2^16. We know
572		 * (a mod k) and b, so can calculate the delta, a - b.
573		 *
574		 */
575		sync_timestamp = last_sync_timestamp_major(efx);
576
577		/* Because delta is s16 this does an implicit mask down to
578		 * 16 bits which is what we need, assuming
579		 * MEDFORD_TX_SECS_EVENT_BITS is 16. delta is signed so that
580		 * we can deal with the (unlikely) case of sync timestamps
581		 * arriving from the future.
582		 */
583		delta = nic_major - sync_timestamp;
584
585		/* Recover the fully specified time now, by applying the offset
586		 * to the (fully specified) sync time.
587		 */
588		nic_major = sync_timestamp + delta;
589
590		kt = ptp->nic_to_kernel_time(nic_major, nic_minor,
591					     correction);
592	}
593	return kt;
594}
595
596ktime_t efx_ptp_nic_to_kernel_time(struct efx_tx_queue *tx_queue)
597{
598	struct efx_nic *efx = tx_queue->efx;
599	struct efx_ptp_data *ptp = efx->ptp_data;
600	ktime_t kt;
601
602	if (efx_ptp_use_mac_tx_timestamps(efx))
603		kt = efx_ptp_mac_nic_to_ktime_correction(efx, ptp,
604				tx_queue->completed_timestamp_major,
605				tx_queue->completed_timestamp_minor,
606				ptp->ts_corrections.general_tx);
607	else
608		kt = ptp->nic_to_kernel_time(
609				tx_queue->completed_timestamp_major,
610				tx_queue->completed_timestamp_minor,
611				ptp->ts_corrections.general_tx);
612	return kt;
613}
614
615/* Get PTP attributes and set up time conversions */
616static int efx_ptp_get_attributes(struct efx_nic *efx)
617{
618	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_GET_ATTRIBUTES_LEN);
619	MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN);
620	struct efx_ptp_data *ptp = efx->ptp_data;
621	int rc;
622	u32 fmt;
623	size_t out_len;
624
625	/* Get the PTP attributes. If the NIC doesn't support the operation we
626	 * use the default format for compatibility with older NICs i.e.
627	 * seconds and nanoseconds.
628	 */
629	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_GET_ATTRIBUTES);
630	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
631	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
632				outbuf, sizeof(outbuf), &out_len);
633	if (rc == 0) {
634		fmt = MCDI_DWORD(outbuf, PTP_OUT_GET_ATTRIBUTES_TIME_FORMAT);
635	} else if (rc == -EINVAL) {
636		fmt = MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_NANOSECONDS;
637	} else if (rc == -EPERM) {
638		pci_info(efx->pci_dev, "no PTP support\n");
639		return rc;
640	} else {
641		efx_mcdi_display_error(efx, MC_CMD_PTP, sizeof(inbuf),
642				       outbuf, sizeof(outbuf), rc);
643		return rc;
644	}
645
646	switch (fmt) {
647	case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_27FRACTION:
648		ptp->ns_to_nic_time = efx_ptp_ns_to_s27;
649		ptp->nic_to_kernel_time = efx_ptp_s27_to_ktime_correction;
650		ptp->nic_time.minor_max = 1 << 27;
651		ptp->nic_time.sync_event_minor_shift = 19;
652		break;
653	case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_QTR_NANOSECONDS:
654		ptp->ns_to_nic_time = efx_ptp_ns_to_s_qns;
655		ptp->nic_to_kernel_time = efx_ptp_s_qns_to_ktime_correction;
656		ptp->nic_time.minor_max = 4000000000UL;
657		ptp->nic_time.sync_event_minor_shift = 24;
658		break;
659	default:
660		return -ERANGE;
661	}
662
663	/* Precalculate acceptable difference between the minor time in the
664	 * packet prefix and the last MCDI time sync event. We expect the
665	 * packet prefix timestamp to be after of sync event by up to one
666	 * sync event interval (0.25s) but we allow it to exceed this by a
667	 * fuzz factor of (0.1s)
668	 */
669	ptp->nic_time.sync_event_diff_min = ptp->nic_time.minor_max
670		- (ptp->nic_time.minor_max / 10);
671	ptp->nic_time.sync_event_diff_max = (ptp->nic_time.minor_max / 4)
672		+ (ptp->nic_time.minor_max / 10);
673
674	/* MC_CMD_PTP_OP_GET_ATTRIBUTES has been extended twice from an older
675	 * operation MC_CMD_PTP_OP_GET_TIME_FORMAT. The function now may return
676	 * a value to use for the minimum acceptable corrected synchronization
677	 * window and may return further capabilities.
678	 * If we have the extra information store it. For older firmware that
679	 * does not implement the extended command use the default value.
680	 */
681	if (rc == 0 &&
682	    out_len >= MC_CMD_PTP_OUT_GET_ATTRIBUTES_CAPABILITIES_OFST)
683		ptp->min_synchronisation_ns =
684			MCDI_DWORD(outbuf,
685				   PTP_OUT_GET_ATTRIBUTES_SYNC_WINDOW_MIN);
686	else
687		ptp->min_synchronisation_ns = DEFAULT_MIN_SYNCHRONISATION_NS;
688
689	if (rc == 0 &&
690	    out_len >= MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN)
691		ptp->capabilities = MCDI_DWORD(outbuf,
692					PTP_OUT_GET_ATTRIBUTES_CAPABILITIES);
693	else
694		ptp->capabilities = 0;
695
696	/* Set up the shift for conversion between frequency
697	 * adjustments in parts-per-billion and the fixed-point
698	 * fractional ns format that the adapter uses.
699	 */
700	if (ptp->capabilities & (1 << MC_CMD_PTP_OUT_GET_ATTRIBUTES_FP44_FREQ_ADJ_LBN))
701		ptp->adjfreq_ppb_shift = PPB_SHIFT_FP44;
702	else
703		ptp->adjfreq_ppb_shift = PPB_SHIFT_FP40;
704
705	return 0;
706}
707
708/* Get PTP timestamp corrections */
709static int efx_ptp_get_timestamp_corrections(struct efx_nic *efx)
710{
711	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_GET_TIMESTAMP_CORRECTIONS_LEN);
712	MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_LEN);
713	int rc;
714	size_t out_len;
715
716	/* Get the timestamp corrections from the NIC. If this operation is
717	 * not supported (older NICs) then no correction is required.
718	 */
719	MCDI_SET_DWORD(inbuf, PTP_IN_OP,
720		       MC_CMD_PTP_OP_GET_TIMESTAMP_CORRECTIONS);
721	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
722
723	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
724				outbuf, sizeof(outbuf), &out_len);
725	if (rc == 0) {
726		efx->ptp_data->ts_corrections.ptp_tx = MCDI_DWORD(outbuf,
727			PTP_OUT_GET_TIMESTAMP_CORRECTIONS_TRANSMIT);
728		efx->ptp_data->ts_corrections.ptp_rx = MCDI_DWORD(outbuf,
729			PTP_OUT_GET_TIMESTAMP_CORRECTIONS_RECEIVE);
730		efx->ptp_data->ts_corrections.pps_out = MCDI_DWORD(outbuf,
731			PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_OUT);
732		efx->ptp_data->ts_corrections.pps_in = MCDI_DWORD(outbuf,
733			PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_IN);
734
735		if (out_len >= MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_LEN) {
736			efx->ptp_data->ts_corrections.general_tx = MCDI_DWORD(
737				outbuf,
738				PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_GENERAL_TX);
739			efx->ptp_data->ts_corrections.general_rx = MCDI_DWORD(
740				outbuf,
741				PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_GENERAL_RX);
742		} else {
743			efx->ptp_data->ts_corrections.general_tx =
744				efx->ptp_data->ts_corrections.ptp_tx;
745			efx->ptp_data->ts_corrections.general_rx =
746				efx->ptp_data->ts_corrections.ptp_rx;
747		}
748	} else if (rc == -EINVAL) {
749		efx->ptp_data->ts_corrections.ptp_tx = 0;
750		efx->ptp_data->ts_corrections.ptp_rx = 0;
751		efx->ptp_data->ts_corrections.pps_out = 0;
752		efx->ptp_data->ts_corrections.pps_in = 0;
753		efx->ptp_data->ts_corrections.general_tx = 0;
754		efx->ptp_data->ts_corrections.general_rx = 0;
755	} else {
756		efx_mcdi_display_error(efx, MC_CMD_PTP, sizeof(inbuf), outbuf,
757				       sizeof(outbuf), rc);
758		return rc;
759	}
760
761	return 0;
762}
763
764/* Enable MCDI PTP support. */
765static int efx_ptp_enable(struct efx_nic *efx)
766{
767	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ENABLE_LEN);
768	MCDI_DECLARE_BUF_ERR(outbuf);
769	int rc;
770
771	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ENABLE);
772	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
773	MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_QUEUE,
774		       efx->ptp_data->channel ?
775		       efx->ptp_data->channel->channel : 0);
776	MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_MODE, efx->ptp_data->mode);
777
778	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
779				outbuf, sizeof(outbuf), NULL);
780	rc = (rc == -EALREADY) ? 0 : rc;
781	if (rc)
782		efx_mcdi_display_error(efx, MC_CMD_PTP,
783				       MC_CMD_PTP_IN_ENABLE_LEN,
784				       outbuf, sizeof(outbuf), rc);
785	return rc;
786}
787
788/* Disable MCDI PTP support.
789 *
790 * Note that this function should never rely on the presence of ptp_data -
791 * may be called before that exists.
792 */
793static int efx_ptp_disable(struct efx_nic *efx)
794{
795	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_DISABLE_LEN);
796	MCDI_DECLARE_BUF_ERR(outbuf);
797	int rc;
798
799	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_DISABLE);
800	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
801	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
802				outbuf, sizeof(outbuf), NULL);
803	rc = (rc == -EALREADY) ? 0 : rc;
804	/* If we get ENOSYS, the NIC doesn't support PTP, and thus this function
805	 * should only have been called during probe.
806	 */
807	if (rc == -ENOSYS || rc == -EPERM)
808		pci_info(efx->pci_dev, "no PTP support\n");
809	else if (rc)
810		efx_mcdi_display_error(efx, MC_CMD_PTP,
811				       MC_CMD_PTP_IN_DISABLE_LEN,
812				       outbuf, sizeof(outbuf), rc);
813	return rc;
814}
815
816static void efx_ptp_deliver_rx_queue(struct sk_buff_head *q)
817{
818	struct sk_buff *skb;
819
820	while ((skb = skb_dequeue(q))) {
821		local_bh_disable();
822		netif_receive_skb(skb);
823		local_bh_enable();
824	}
825}
826
827static void efx_ptp_handle_no_channel(struct efx_nic *efx)
828{
829	netif_err(efx, drv, efx->net_dev,
830		  "ERROR: PTP requires MSI-X and 1 additional interrupt"
831		  "vector. PTP disabled\n");
832}
833
834/* Repeatedly send the host time to the MC which will capture the hardware
835 * time.
836 */
837static void efx_ptp_send_times(struct efx_nic *efx,
838			       struct pps_event_time *last_time)
839{
840	struct pps_event_time now;
841	struct timespec64 limit;
842	struct efx_ptp_data *ptp = efx->ptp_data;
843	int *mc_running = ptp->start.addr;
844
845	pps_get_ts(&now);
846	limit = now.ts_real;
847	timespec64_add_ns(&limit, SYNCHRONISE_PERIOD_NS);
848
849	/* Write host time for specified period or until MC is done */
850	while ((timespec64_compare(&now.ts_real, &limit) < 0) &&
851	       READ_ONCE(*mc_running)) {
852		struct timespec64 update_time;
853		unsigned int host_time;
854
855		/* Don't update continuously to avoid saturating the PCIe bus */
856		update_time = now.ts_real;
857		timespec64_add_ns(&update_time, SYNCHRONISATION_GRANULARITY_NS);
858		do {
859			pps_get_ts(&now);
860		} while ((timespec64_compare(&now.ts_real, &update_time) < 0) &&
861			 READ_ONCE(*mc_running));
862
863		/* Synchronise NIC with single word of time only */
864		host_time = (now.ts_real.tv_sec << MC_NANOSECOND_BITS |
865			     now.ts_real.tv_nsec);
866		/* Update host time in NIC memory */
867		efx->type->ptp_write_host_time(efx, host_time);
868	}
869	*last_time = now;
870}
871
872/* Read a timeset from the MC's results and partial process. */
873static void efx_ptp_read_timeset(MCDI_DECLARE_STRUCT_PTR(data),
874				 struct efx_ptp_timeset *timeset)
875{
876	unsigned start_ns, end_ns;
877
878	timeset->host_start = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTSTART);
879	timeset->major = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_MAJOR);
880	timeset->minor = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_MINOR);
881	timeset->host_end = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTEND),
882	timeset->wait = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_WAITNS);
883
884	/* Ignore seconds */
885	start_ns = timeset->host_start & MC_NANOSECOND_MASK;
886	end_ns = timeset->host_end & MC_NANOSECOND_MASK;
887	/* Allow for rollover */
888	if (end_ns < start_ns)
889		end_ns += NSEC_PER_SEC;
890	/* Determine duration of operation */
891	timeset->window = end_ns - start_ns;
892}
893
894/* Process times received from MC.
895 *
896 * Extract times from returned results, and establish the minimum value
897 * seen.  The minimum value represents the "best" possible time and events
898 * too much greater than this are rejected - the machine is, perhaps, too
899 * busy. A number of readings are taken so that, hopefully, at least one good
900 * synchronisation will be seen in the results.
901 */
902static int
903efx_ptp_process_times(struct efx_nic *efx, MCDI_DECLARE_STRUCT_PTR(synch_buf),
904		      size_t response_length,
905		      const struct pps_event_time *last_time)
906{
907	unsigned number_readings =
908		MCDI_VAR_ARRAY_LEN(response_length,
909				   PTP_OUT_SYNCHRONIZE_TIMESET);
910	unsigned i;
911	unsigned ngood = 0;
912	unsigned last_good = 0;
913	struct efx_ptp_data *ptp = efx->ptp_data;
914	u32 last_sec;
915	u32 start_sec;
916	struct timespec64 delta;
917	ktime_t mc_time;
918
919	if (number_readings == 0)
920		return -EAGAIN;
921
922	/* Read the set of results and find the last good host-MC
923	 * synchronization result. The MC times when it finishes reading the
924	 * host time so the corrected window time should be fairly constant
925	 * for a given platform. Increment stats for any results that appear
926	 * to be erroneous.
927	 */
928	for (i = 0; i < number_readings; i++) {
929		s32 window, corrected;
930		struct timespec64 wait;
931
932		efx_ptp_read_timeset(
933			MCDI_ARRAY_STRUCT_PTR(synch_buf,
934					      PTP_OUT_SYNCHRONIZE_TIMESET, i),
935			&ptp->timeset[i]);
936
937		wait = ktime_to_timespec64(
938			ptp->nic_to_kernel_time(0, ptp->timeset[i].wait, 0));
939		window = ptp->timeset[i].window;
940		corrected = window - wait.tv_nsec;
941
942		/* We expect the uncorrected synchronization window to be at
943		 * least as large as the interval between host start and end
944		 * times. If it is smaller than this then this is mostly likely
945		 * to be a consequence of the host's time being adjusted.
946		 * Check that the corrected sync window is in a reasonable
947		 * range. If it is out of range it is likely to be because an
948		 * interrupt or other delay occurred between reading the system
949		 * time and writing it to MC memory.
950		 */
951		if (window < SYNCHRONISATION_GRANULARITY_NS) {
952			++ptp->invalid_sync_windows;
953		} else if (corrected >= MAX_SYNCHRONISATION_NS) {
954			++ptp->oversize_sync_windows;
955		} else if (corrected < ptp->min_synchronisation_ns) {
956			++ptp->undersize_sync_windows;
957		} else {
958			ngood++;
959			last_good = i;
960		}
961	}
962
963	if (ngood == 0) {
964		netif_warn(efx, drv, efx->net_dev,
965			   "PTP no suitable synchronisations\n");
966		return -EAGAIN;
967	}
968
969	/* Calculate delay from last good sync (host time) to last_time.
970	 * It is possible that the seconds rolled over between taking
971	 * the start reading and the last value written by the host.  The
972	 * timescales are such that a gap of more than one second is never
973	 * expected.  delta is *not* normalised.
974	 */
975	start_sec = ptp->timeset[last_good].host_start >> MC_NANOSECOND_BITS;
976	last_sec = last_time->ts_real.tv_sec & MC_SECOND_MASK;
977	if (start_sec != last_sec &&
978	    ((start_sec + 1) & MC_SECOND_MASK) != last_sec) {
979		netif_warn(efx, hw, efx->net_dev,
980			   "PTP bad synchronisation seconds\n");
981		return -EAGAIN;
982	}
983	delta.tv_sec = (last_sec - start_sec) & 1;
984	delta.tv_nsec =
985		last_time->ts_real.tv_nsec -
986		(ptp->timeset[last_good].host_start & MC_NANOSECOND_MASK);
987
988	/* Convert the NIC time at last good sync into kernel time.
989	 * No correction is required - this time is the output of a
990	 * firmware process.
991	 */
992	mc_time = ptp->nic_to_kernel_time(ptp->timeset[last_good].major,
993					  ptp->timeset[last_good].minor, 0);
994
995	/* Calculate delay from NIC top of second to last_time */
996	delta.tv_nsec += ktime_to_timespec64(mc_time).tv_nsec;
997
998	/* Set PPS timestamp to match NIC top of second */
999	ptp->host_time_pps = *last_time;
1000	pps_sub_ts(&ptp->host_time_pps, delta);
1001
1002	return 0;
1003}
1004
1005/* Synchronize times between the host and the MC */
1006static int efx_ptp_synchronize(struct efx_nic *efx, unsigned int num_readings)
1007{
1008	struct efx_ptp_data *ptp = efx->ptp_data;
1009	MCDI_DECLARE_BUF(synch_buf, MC_CMD_PTP_OUT_SYNCHRONIZE_LENMAX);
1010	size_t response_length;
1011	int rc;
1012	unsigned long timeout;
1013	struct pps_event_time last_time = {};
1014	unsigned int loops = 0;
1015	int *start = ptp->start.addr;
1016
1017	MCDI_SET_DWORD(synch_buf, PTP_IN_OP, MC_CMD_PTP_OP_SYNCHRONIZE);
1018	MCDI_SET_DWORD(synch_buf, PTP_IN_PERIPH_ID, 0);
1019	MCDI_SET_DWORD(synch_buf, PTP_IN_SYNCHRONIZE_NUMTIMESETS,
1020		       num_readings);
1021	MCDI_SET_QWORD(synch_buf, PTP_IN_SYNCHRONIZE_START_ADDR,
1022		       ptp->start.dma_addr);
1023
1024	/* Clear flag that signals MC ready */
1025	WRITE_ONCE(*start, 0);
1026	rc = efx_mcdi_rpc_start(efx, MC_CMD_PTP, synch_buf,
1027				MC_CMD_PTP_IN_SYNCHRONIZE_LEN);
1028	EFX_WARN_ON_ONCE_PARANOID(rc);
1029
1030	/* Wait for start from MCDI (or timeout) */
1031	timeout = jiffies + msecs_to_jiffies(MAX_SYNCHRONISE_WAIT_MS);
1032	while (!READ_ONCE(*start) && (time_before(jiffies, timeout))) {
1033		udelay(20);	/* Usually start MCDI execution quickly */
1034		loops++;
1035	}
1036
1037	if (loops <= 1)
1038		++ptp->fast_syncs;
1039	if (!time_before(jiffies, timeout))
1040		++ptp->sync_timeouts;
1041
1042	if (READ_ONCE(*start))
1043		efx_ptp_send_times(efx, &last_time);
1044
1045	/* Collect results */
1046	rc = efx_mcdi_rpc_finish(efx, MC_CMD_PTP,
1047				 MC_CMD_PTP_IN_SYNCHRONIZE_LEN,
1048				 synch_buf, sizeof(synch_buf),
1049				 &response_length);
1050	if (rc == 0) {
1051		rc = efx_ptp_process_times(efx, synch_buf, response_length,
1052					   &last_time);
1053		if (rc == 0)
1054			++ptp->good_syncs;
1055		else
1056			++ptp->no_time_syncs;
1057	}
1058
1059	/* Increment the bad syncs counter if the synchronize fails, whatever
1060	 * the reason.
1061	 */
1062	if (rc != 0)
1063		++ptp->bad_syncs;
1064
1065	return rc;
1066}
1067
1068/* Transmit a PTP packet via the dedicated hardware timestamped queue. */
1069static void efx_ptp_xmit_skb_queue(struct efx_nic *efx, struct sk_buff *skb)
1070{
1071	struct efx_ptp_data *ptp_data = efx->ptp_data;
1072	u8 type = efx_tx_csum_type_skb(skb);
1073	struct efx_tx_queue *tx_queue;
1074
1075	tx_queue = efx_channel_get_tx_queue(ptp_data->channel, type);
1076	if (tx_queue && tx_queue->timestamping) {
1077		skb_get(skb);
1078
1079		/* This code invokes normal driver TX code which is always
1080		 * protected from softirqs when called from generic TX code,
1081		 * which in turn disables preemption. Look at __dev_queue_xmit
1082		 * which uses rcu_read_lock_bh disabling preemption for RCU
1083		 * plus disabling softirqs. We do not need RCU reader
1084		 * protection here.
1085		 *
1086		 * Although it is theoretically safe for current PTP TX/RX code
1087		 * running without disabling softirqs, there are three good
1088		 * reasond for doing so:
1089		 *
1090		 *      1) The code invoked is mainly implemented for non-PTP
1091		 *         packets and it is always executed with softirqs
1092		 *         disabled.
1093		 *      2) This being a single PTP packet, better to not
1094		 *         interrupt its processing by softirqs which can lead
1095		 *         to high latencies.
1096		 *      3) netdev_xmit_more checks preemption is disabled and
1097		 *         triggers a BUG_ON if not.
1098		 */
1099		local_bh_disable();
1100		efx_enqueue_skb(tx_queue, skb);
1101		local_bh_enable();
1102
1103		/* We need to add the filters after enqueuing the packet.
1104		 * Otherwise, there's high latency in sending back the
1105		 * timestamp, causing ptp4l timeouts
1106		 */
1107		efx_ptp_insert_unicast_filter(efx, skb);
1108		dev_consume_skb_any(skb);
1109	} else {
1110		WARN_ONCE(1, "PTP channel has no timestamped tx queue\n");
1111		dev_kfree_skb_any(skb);
1112	}
1113}
1114
1115/* Transmit a PTP packet, via the MCDI interface, to the wire. */
1116static void efx_ptp_xmit_skb_mc(struct efx_nic *efx, struct sk_buff *skb)
1117{
1118	MCDI_DECLARE_BUF(txtime, MC_CMD_PTP_OUT_TRANSMIT_LEN);
1119	struct efx_ptp_data *ptp_data = efx->ptp_data;
1120	struct skb_shared_hwtstamps timestamps;
1121	size_t len;
1122	int rc;
1123
1124	MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_OP, MC_CMD_PTP_OP_TRANSMIT);
1125	MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_PERIPH_ID, 0);
1126	MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_TRANSMIT_LENGTH, skb->len);
1127	if (skb_shinfo(skb)->nr_frags != 0) {
1128		rc = skb_linearize(skb);
1129		if (rc != 0)
1130			goto fail;
1131	}
1132
1133	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1134		rc = skb_checksum_help(skb);
1135		if (rc != 0)
1136			goto fail;
1137	}
1138	skb_copy_from_linear_data(skb,
1139				  MCDI_PTR(ptp_data->txbuf,
1140					   PTP_IN_TRANSMIT_PACKET),
1141				  skb->len);
1142	rc = efx_mcdi_rpc(efx, MC_CMD_PTP,
1143			  ptp_data->txbuf, MC_CMD_PTP_IN_TRANSMIT_LEN(skb->len),
1144			  txtime, sizeof(txtime), &len);
1145	if (rc != 0)
1146		goto fail;
1147
1148	memset(&timestamps, 0, sizeof(timestamps));
1149	timestamps.hwtstamp = ptp_data->nic_to_kernel_time(
1150		MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_MAJOR),
1151		MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_MINOR),
1152		ptp_data->ts_corrections.ptp_tx);
1153
1154	skb_tstamp_tx(skb, &timestamps);
1155
1156	/* Add the filters after sending back the timestamp to avoid delaying it
1157	 * or ptp4l may timeout.
1158	 */
1159	efx_ptp_insert_unicast_filter(efx, skb);
1160
1161fail:
1162	dev_kfree_skb_any(skb);
1163
1164	return;
1165}
1166
1167/* Process any queued receive events and corresponding packets
1168 *
1169 * q is returned with all the packets that are ready for delivery.
1170 */
1171static void efx_ptp_process_events(struct efx_nic *efx, struct sk_buff_head *q)
1172{
1173	struct efx_ptp_data *ptp = efx->ptp_data;
1174	struct sk_buff *skb;
1175
1176	while ((skb = skb_dequeue(&ptp->rxq))) {
1177		struct efx_ptp_match *match;
1178
1179		match = (struct efx_ptp_match *)skb->cb;
1180		if (match->state == PTP_PACKET_STATE_MATCH_UNWANTED) {
1181			__skb_queue_tail(q, skb);
1182		} else if (time_after(jiffies, match->expiry)) {
1183			match->state = PTP_PACKET_STATE_TIMED_OUT;
1184			++ptp->rx_no_timestamp;
1185			__skb_queue_tail(q, skb);
1186		} else {
1187			/* Replace unprocessed entry and stop */
1188			skb_queue_head(&ptp->rxq, skb);
1189			break;
1190		}
1191	}
1192}
1193
1194/* Complete processing of a received packet */
1195static inline void efx_ptp_process_rx(struct efx_nic *efx, struct sk_buff *skb)
1196{
1197	local_bh_disable();
1198	netif_receive_skb(skb);
1199	local_bh_enable();
1200}
1201
1202static struct efx_ptp_rxfilter *
1203efx_ptp_find_filter(struct list_head *filter_list, struct efx_filter_spec *spec)
1204{
1205	struct efx_ptp_rxfilter *rxfilter;
1206
1207	list_for_each_entry(rxfilter, filter_list, list) {
1208		if (rxfilter->ether_type == spec->ether_type &&
1209		    rxfilter->loc_port == spec->loc_port &&
1210		    !memcmp(rxfilter->loc_host, spec->loc_host, sizeof(spec->loc_host)))
1211			return rxfilter;
1212	}
1213
1214	return NULL;
1215}
1216
1217static void efx_ptp_remove_one_filter(struct efx_nic *efx,
1218				      struct efx_ptp_rxfilter *rxfilter)
1219{
1220	efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
1221				  rxfilter->handle);
1222	list_del(&rxfilter->list);
1223	kfree(rxfilter);
1224}
1225
1226static void efx_ptp_remove_filters(struct efx_nic *efx,
1227				   struct list_head *filter_list)
1228{
1229	struct efx_ptp_rxfilter *rxfilter, *tmp;
1230
1231	list_for_each_entry_safe(rxfilter, tmp, filter_list, list)
1232		efx_ptp_remove_one_filter(efx, rxfilter);
1233}
1234
1235static void efx_ptp_init_filter(struct efx_nic *efx,
1236				struct efx_filter_spec *rxfilter)
1237{
1238	struct efx_channel *channel = efx->ptp_data->channel;
1239	struct efx_rx_queue *queue = efx_channel_get_rx_queue(channel);
1240
1241	efx_filter_init_rx(rxfilter, EFX_FILTER_PRI_REQUIRED, 0,
1242			   efx_rx_queue_index(queue));
1243}
1244
1245static int efx_ptp_insert_filter(struct efx_nic *efx,
1246				 struct list_head *filter_list,
1247				 struct efx_filter_spec *spec,
1248				 unsigned long expiry)
1249{
1250	struct efx_ptp_data *ptp = efx->ptp_data;
1251	struct efx_ptp_rxfilter *rxfilter;
1252	int rc;
1253
1254	rxfilter = efx_ptp_find_filter(filter_list, spec);
1255	if (rxfilter) {
1256		rxfilter->expiry = expiry;
1257		return 0;
1258	}
1259
1260	rxfilter = kzalloc(sizeof(*rxfilter), GFP_KERNEL);
1261	if (!rxfilter)
1262		return -ENOMEM;
1263
1264	rc = efx_filter_insert_filter(efx, spec, true);
1265	if (rc < 0)
1266		goto fail;
1267
1268	rxfilter->handle = rc;
1269	rxfilter->ether_type = spec->ether_type;
1270	rxfilter->loc_port = spec->loc_port;
1271	memcpy(rxfilter->loc_host, spec->loc_host, sizeof(spec->loc_host));
1272	rxfilter->expiry = expiry;
1273	list_add(&rxfilter->list, filter_list);
1274
1275	queue_delayed_work(ptp->workwq, &ptp->cleanup_work,
1276			   UCAST_FILTER_EXPIRY_JIFFIES + 1);
1277
1278	return 0;
1279
1280fail:
1281	kfree(rxfilter);
1282	return rc;
1283}
1284
1285static int efx_ptp_insert_ipv4_filter(struct efx_nic *efx,
1286				      struct list_head *filter_list,
1287				      __be32 addr, u16 port,
1288				      unsigned long expiry)
1289{
1290	struct efx_filter_spec spec;
1291
1292	efx_ptp_init_filter(efx, &spec);
1293	efx_filter_set_ipv4_local(&spec, IPPROTO_UDP, addr, htons(port));
1294	return efx_ptp_insert_filter(efx, filter_list, &spec, expiry);
1295}
1296
1297static int efx_ptp_insert_ipv6_filter(struct efx_nic *efx,
1298				      struct list_head *filter_list,
1299				      struct in6_addr *addr, u16 port,
1300				      unsigned long expiry)
1301{
1302	struct efx_filter_spec spec;
1303
1304	efx_ptp_init_filter(efx, &spec);
1305	efx_filter_set_ipv6_local(&spec, IPPROTO_UDP, addr, htons(port));
1306	return efx_ptp_insert_filter(efx, filter_list, &spec, expiry);
1307}
1308
1309static int efx_ptp_insert_eth_multicast_filter(struct efx_nic *efx)
1310{
1311	struct efx_ptp_data *ptp = efx->ptp_data;
1312	const u8 addr[ETH_ALEN] = PTP_ADDR_ETHER;
1313	struct efx_filter_spec spec;
1314
1315	efx_ptp_init_filter(efx, &spec);
1316	efx_filter_set_eth_local(&spec, EFX_FILTER_VID_UNSPEC, addr);
1317	spec.match_flags |= EFX_FILTER_MATCH_ETHER_TYPE;
1318	spec.ether_type = htons(ETH_P_1588);
1319	return efx_ptp_insert_filter(efx, &ptp->rxfilters_mcast, &spec, 0);
1320}
1321
1322static int efx_ptp_insert_multicast_filters(struct efx_nic *efx)
1323{
1324	struct efx_ptp_data *ptp = efx->ptp_data;
1325	int rc;
1326
1327	if (!ptp->channel || !list_empty(&ptp->rxfilters_mcast))
1328		return 0;
1329
1330	/* Must filter on both event and general ports to ensure
1331	 * that there is no packet re-ordering.
1332	 */
1333	rc = efx_ptp_insert_ipv4_filter(efx, &ptp->rxfilters_mcast,
1334					htonl(PTP_ADDR_IPV4), PTP_EVENT_PORT,
1335					0);
1336	if (rc < 0)
1337		goto fail;
1338
1339	rc = efx_ptp_insert_ipv4_filter(efx, &ptp->rxfilters_mcast,
1340					htonl(PTP_ADDR_IPV4), PTP_GENERAL_PORT,
1341					0);
1342	if (rc < 0)
1343		goto fail;
1344
1345	/* if the NIC supports hw timestamps by the MAC, we can support
1346	 * PTP over IPv6 and Ethernet
1347	 */
1348	if (efx_ptp_use_mac_tx_timestamps(efx)) {
1349		struct in6_addr ipv6_addr = {{PTP_ADDR_IPV6}};
1350
1351		rc = efx_ptp_insert_ipv6_filter(efx, &ptp->rxfilters_mcast,
1352						&ipv6_addr, PTP_EVENT_PORT, 0);
1353		if (rc < 0)
1354			goto fail;
1355
1356		rc = efx_ptp_insert_ipv6_filter(efx, &ptp->rxfilters_mcast,
1357						&ipv6_addr, PTP_GENERAL_PORT, 0);
1358		if (rc < 0)
1359			goto fail;
1360
1361		rc = efx_ptp_insert_eth_multicast_filter(efx);
1362
1363		/* Not all firmware variants support this filter */
1364		if (rc < 0 && rc != -EPROTONOSUPPORT)
1365			goto fail;
1366	}
1367
1368	return 0;
1369
1370fail:
1371	efx_ptp_remove_filters(efx, &ptp->rxfilters_mcast);
1372	return rc;
1373}
1374
1375static bool efx_ptp_valid_unicast_event_pkt(struct sk_buff *skb)
1376{
1377	if (skb->protocol == htons(ETH_P_IP)) {
1378		return ip_hdr(skb)->daddr != htonl(PTP_ADDR_IPV4) &&
1379			ip_hdr(skb)->protocol == IPPROTO_UDP &&
1380			udp_hdr(skb)->source == htons(PTP_EVENT_PORT);
1381	} else if (skb->protocol == htons(ETH_P_IPV6)) {
1382		struct in6_addr mcast_addr = {{PTP_ADDR_IPV6}};
1383
1384		return !ipv6_addr_equal(&ipv6_hdr(skb)->daddr, &mcast_addr) &&
1385			ipv6_hdr(skb)->nexthdr == IPPROTO_UDP &&
1386			udp_hdr(skb)->source == htons(PTP_EVENT_PORT);
1387	}
1388	return false;
1389}
1390
1391static int efx_ptp_insert_unicast_filter(struct efx_nic *efx,
1392					 struct sk_buff *skb)
1393{
1394	struct efx_ptp_data *ptp = efx->ptp_data;
1395	unsigned long expiry;
1396	int rc;
1397
1398	if (!efx_ptp_valid_unicast_event_pkt(skb))
1399		return -EINVAL;
1400
1401	expiry = jiffies + UCAST_FILTER_EXPIRY_JIFFIES;
1402
1403	if (skb->protocol == htons(ETH_P_IP)) {
1404		__be32 addr = ip_hdr(skb)->saddr;
1405
1406		rc = efx_ptp_insert_ipv4_filter(efx, &ptp->rxfilters_ucast,
1407						addr, PTP_EVENT_PORT, expiry);
1408		if (rc < 0)
1409			goto out;
1410
1411		rc = efx_ptp_insert_ipv4_filter(efx, &ptp->rxfilters_ucast,
1412						addr, PTP_GENERAL_PORT, expiry);
1413	} else if (efx_ptp_use_mac_tx_timestamps(efx)) {
1414		/* IPv6 PTP only supported by devices with MAC hw timestamp */
1415		struct in6_addr *addr = &ipv6_hdr(skb)->saddr;
1416
1417		rc = efx_ptp_insert_ipv6_filter(efx, &ptp->rxfilters_ucast,
1418						addr, PTP_EVENT_PORT, expiry);
1419		if (rc < 0)
1420			goto out;
1421
1422		rc = efx_ptp_insert_ipv6_filter(efx, &ptp->rxfilters_ucast,
1423						addr, PTP_GENERAL_PORT, expiry);
1424	} else {
1425		return -EOPNOTSUPP;
1426	}
1427
1428out:
1429	return rc;
1430}
1431
1432static int efx_ptp_start(struct efx_nic *efx)
1433{
1434	struct efx_ptp_data *ptp = efx->ptp_data;
1435	int rc;
1436
1437	ptp->reset_required = false;
1438
1439	rc = efx_ptp_insert_multicast_filters(efx);
1440	if (rc)
1441		return rc;
1442
1443	rc = efx_ptp_enable(efx);
1444	if (rc != 0)
1445		goto fail;
1446
1447	ptp->evt_frag_idx = 0;
1448	ptp->current_adjfreq = 0;
1449
1450	return 0;
1451
1452fail:
1453	efx_ptp_remove_filters(efx, &ptp->rxfilters_mcast);
1454	return rc;
1455}
1456
1457static int efx_ptp_stop(struct efx_nic *efx)
1458{
1459	struct efx_ptp_data *ptp = efx->ptp_data;
1460	int rc;
1461
1462	if (ptp == NULL)
1463		return 0;
1464
1465	rc = efx_ptp_disable(efx);
1466
1467	efx_ptp_remove_filters(efx, &ptp->rxfilters_mcast);
1468	efx_ptp_remove_filters(efx, &ptp->rxfilters_ucast);
1469
1470	/* Make sure RX packets are really delivered */
1471	efx_ptp_deliver_rx_queue(&efx->ptp_data->rxq);
1472	skb_queue_purge(&efx->ptp_data->txq);
1473
1474	return rc;
1475}
1476
1477static int efx_ptp_restart(struct efx_nic *efx)
1478{
1479	if (efx->ptp_data && efx->ptp_data->enabled)
1480		return efx_ptp_start(efx);
1481	return 0;
1482}
1483
1484static void efx_ptp_pps_worker(struct work_struct *work)
1485{
1486	struct efx_ptp_data *ptp =
1487		container_of(work, struct efx_ptp_data, pps_work);
1488	struct efx_nic *efx = ptp->efx;
1489	struct ptp_clock_event ptp_evt;
1490
1491	if (efx_ptp_synchronize(efx, PTP_SYNC_ATTEMPTS))
1492		return;
1493
1494	ptp_evt.type = PTP_CLOCK_PPSUSR;
1495	ptp_evt.pps_times = ptp->host_time_pps;
1496	ptp_clock_event(ptp->phc_clock, &ptp_evt);
1497}
1498
1499static void efx_ptp_worker(struct work_struct *work)
1500{
1501	struct efx_ptp_data *ptp_data =
1502		container_of(work, struct efx_ptp_data, work);
1503	struct efx_nic *efx = ptp_data->efx;
1504	struct sk_buff *skb;
1505	struct sk_buff_head tempq;
1506
1507	if (ptp_data->reset_required) {
1508		efx_ptp_stop(efx);
1509		efx_ptp_start(efx);
1510		return;
1511	}
1512
1513	__skb_queue_head_init(&tempq);
1514	efx_ptp_process_events(efx, &tempq);
1515
1516	while ((skb = skb_dequeue(&ptp_data->txq)))
1517		ptp_data->xmit_skb(efx, skb);
1518
1519	while ((skb = __skb_dequeue(&tempq)))
1520		efx_ptp_process_rx(efx, skb);
1521}
1522
1523static void efx_ptp_cleanup_worker(struct work_struct *work)
1524{
1525	struct efx_ptp_data *ptp =
1526		container_of(work, struct efx_ptp_data, cleanup_work.work);
1527	struct efx_ptp_rxfilter *rxfilter, *tmp;
1528
1529	list_for_each_entry_safe(rxfilter, tmp, &ptp->rxfilters_ucast, list) {
1530		if (time_is_before_jiffies(rxfilter->expiry))
1531			efx_ptp_remove_one_filter(ptp->efx, rxfilter);
1532	}
1533
1534	if (!list_empty(&ptp->rxfilters_ucast)) {
1535		queue_delayed_work(ptp->workwq, &ptp->cleanup_work,
1536				   UCAST_FILTER_EXPIRY_JIFFIES + 1);
1537	}
1538}
1539
1540static const struct ptp_clock_info efx_phc_clock_info = {
1541	.owner		= THIS_MODULE,
1542	.name		= "sfc",
1543	.max_adj	= MAX_PPB,
1544	.n_alarm	= 0,
1545	.n_ext_ts	= 0,
1546	.n_per_out	= 0,
1547	.n_pins		= 0,
1548	.pps		= 1,
1549	.adjfine	= efx_phc_adjfine,
1550	.adjtime	= efx_phc_adjtime,
1551	.gettime64	= efx_phc_gettime,
1552	.settime64	= efx_phc_settime,
1553	.enable		= efx_phc_enable,
1554};
1555
1556/* Initialise PTP state. */
1557int efx_ptp_probe(struct efx_nic *efx, struct efx_channel *channel)
1558{
1559	struct efx_ptp_data *ptp;
1560	int rc = 0;
1561
1562	if (efx->ptp_data) {
1563		efx->ptp_data->channel = channel;
1564		return 0;
1565	}
1566
1567	ptp = kzalloc(sizeof(struct efx_ptp_data), GFP_KERNEL);
1568	efx->ptp_data = ptp;
1569	if (!efx->ptp_data)
1570		return -ENOMEM;
1571
1572	ptp->efx = efx;
1573	ptp->channel = channel;
1574
1575	rc = efx_nic_alloc_buffer(efx, &ptp->start, sizeof(int), GFP_KERNEL);
1576	if (rc != 0)
1577		goto fail1;
1578
1579	skb_queue_head_init(&ptp->rxq);
1580	skb_queue_head_init(&ptp->txq);
1581	ptp->workwq = create_singlethread_workqueue("sfc_ptp");
1582	if (!ptp->workwq) {
1583		rc = -ENOMEM;
1584		goto fail2;
1585	}
1586
1587	if (efx_ptp_use_mac_tx_timestamps(efx)) {
1588		ptp->xmit_skb = efx_ptp_xmit_skb_queue;
1589		/* Request sync events on this channel. */
1590		channel->sync_events_state = SYNC_EVENTS_QUIESCENT;
1591	} else {
1592		ptp->xmit_skb = efx_ptp_xmit_skb_mc;
1593	}
1594
1595	INIT_WORK(&ptp->work, efx_ptp_worker);
1596	INIT_DELAYED_WORK(&ptp->cleanup_work, efx_ptp_cleanup_worker);
1597	ptp->config.flags = 0;
1598	ptp->config.tx_type = HWTSTAMP_TX_OFF;
1599	ptp->config.rx_filter = HWTSTAMP_FILTER_NONE;
1600	INIT_LIST_HEAD(&ptp->rxfilters_mcast);
1601	INIT_LIST_HEAD(&ptp->rxfilters_ucast);
1602
1603	/* Get the NIC PTP attributes and set up time conversions */
1604	rc = efx_ptp_get_attributes(efx);
1605	if (rc < 0)
1606		goto fail3;
1607
1608	/* Get the timestamp corrections */
1609	rc = efx_ptp_get_timestamp_corrections(efx);
1610	if (rc < 0)
1611		goto fail3;
1612
1613	if (efx->mcdi->fn_flags &
1614	    (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY)) {
1615		ptp->phc_clock_info = efx_phc_clock_info;
1616		ptp->phc_clock = ptp_clock_register(&ptp->phc_clock_info,
1617						    &efx->pci_dev->dev);
1618		if (IS_ERR(ptp->phc_clock)) {
1619			rc = PTR_ERR(ptp->phc_clock);
1620			goto fail3;
1621		} else if (ptp->phc_clock) {
1622			INIT_WORK(&ptp->pps_work, efx_ptp_pps_worker);
1623			ptp->pps_workwq = create_singlethread_workqueue("sfc_pps");
1624			if (!ptp->pps_workwq) {
1625				rc = -ENOMEM;
1626				goto fail4;
1627			}
1628		}
1629	}
1630	ptp->nic_ts_enabled = false;
1631
1632	return 0;
1633fail4:
1634	ptp_clock_unregister(efx->ptp_data->phc_clock);
1635
1636fail3:
1637	destroy_workqueue(efx->ptp_data->workwq);
1638
1639fail2:
1640	efx_nic_free_buffer(efx, &ptp->start);
1641
1642fail1:
1643	kfree(efx->ptp_data);
1644	efx->ptp_data = NULL;
1645
1646	return rc;
1647}
1648
1649/* Initialise PTP channel.
1650 *
1651 * Setting core_index to zero causes the queue to be initialised and doesn't
1652 * overlap with 'rxq0' because ptp.c doesn't use skb_record_rx_queue.
1653 */
1654static int efx_ptp_probe_channel(struct efx_channel *channel)
1655{
1656	struct efx_nic *efx = channel->efx;
1657	int rc;
1658
1659	channel->irq_moderation_us = 0;
1660	channel->rx_queue.core_index = 0;
1661
1662	rc = efx_ptp_probe(efx, channel);
1663	/* Failure to probe PTP is not fatal; this channel will just not be
1664	 * used for anything.
1665	 * In the case of EPERM, efx_ptp_probe will print its own message (in
1666	 * efx_ptp_get_attributes()), so we don't need to.
1667	 */
1668	if (rc && rc != -EPERM)
1669		netif_warn(efx, drv, efx->net_dev,
1670			   "Failed to probe PTP, rc=%d\n", rc);
1671	return 0;
1672}
1673
1674void efx_ptp_remove(struct efx_nic *efx)
1675{
1676	if (!efx->ptp_data)
1677		return;
1678
1679	(void)efx_ptp_disable(efx);
1680
1681	cancel_work_sync(&efx->ptp_data->work);
1682	cancel_delayed_work_sync(&efx->ptp_data->cleanup_work);
1683	if (efx->ptp_data->pps_workwq)
1684		cancel_work_sync(&efx->ptp_data->pps_work);
1685
1686	skb_queue_purge(&efx->ptp_data->rxq);
1687	skb_queue_purge(&efx->ptp_data->txq);
1688
1689	if (efx->ptp_data->phc_clock) {
1690		destroy_workqueue(efx->ptp_data->pps_workwq);
1691		ptp_clock_unregister(efx->ptp_data->phc_clock);
1692	}
1693
1694	destroy_workqueue(efx->ptp_data->workwq);
1695
1696	efx_nic_free_buffer(efx, &efx->ptp_data->start);
1697	kfree(efx->ptp_data);
1698	efx->ptp_data = NULL;
1699}
1700
1701static void efx_ptp_remove_channel(struct efx_channel *channel)
1702{
1703	efx_ptp_remove(channel->efx);
1704}
1705
1706static void efx_ptp_get_channel_name(struct efx_channel *channel,
1707				     char *buf, size_t len)
1708{
1709	snprintf(buf, len, "%s-ptp", channel->efx->name);
1710}
1711
1712/* Determine whether this packet should be processed by the PTP module
1713 * or transmitted conventionally.
1714 */
1715bool efx_ptp_is_ptp_tx(struct efx_nic *efx, struct sk_buff *skb)
1716{
1717	return efx->ptp_data &&
1718		efx->ptp_data->enabled &&
1719		skb->len >= PTP_MIN_LENGTH &&
1720		skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM &&
1721		likely(skb->protocol == htons(ETH_P_IP)) &&
1722		skb_transport_header_was_set(skb) &&
1723		skb_network_header_len(skb) >= sizeof(struct iphdr) &&
1724		ip_hdr(skb)->protocol == IPPROTO_UDP &&
1725		skb_headlen(skb) >=
1726		skb_transport_offset(skb) + sizeof(struct udphdr) &&
1727		udp_hdr(skb)->dest == htons(PTP_EVENT_PORT);
1728}
1729
1730/* Receive a PTP packet.  Packets are queued until the arrival of
1731 * the receive timestamp from the MC - this will probably occur after the
1732 * packet arrival because of the processing in the MC.
1733 */
1734static bool efx_ptp_rx(struct efx_channel *channel, struct sk_buff *skb)
1735{
1736	struct efx_nic *efx = channel->efx;
1737	struct efx_ptp_data *ptp = efx->ptp_data;
1738	struct efx_ptp_match *match = (struct efx_ptp_match *)skb->cb;
1739	unsigned int version;
1740	u8 *data;
1741
1742	match->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS);
1743
1744	/* Correct version? */
1745	if (ptp->mode == MC_CMD_PTP_MODE_V1) {
1746		if (!pskb_may_pull(skb, PTP_V1_MIN_LENGTH)) {
1747			return false;
1748		}
1749		data = skb->data;
1750		version = ntohs(*(__be16 *)&data[PTP_V1_VERSION_OFFSET]);
1751		if (version != PTP_VERSION_V1) {
1752			return false;
1753		}
1754	} else {
1755		if (!pskb_may_pull(skb, PTP_V2_MIN_LENGTH)) {
1756			return false;
1757		}
1758		data = skb->data;
1759		version = data[PTP_V2_VERSION_OFFSET];
1760		if ((version & PTP_VERSION_V2_MASK) != PTP_VERSION_V2) {
1761			return false;
1762		}
1763	}
1764
1765	/* Does this packet require timestamping? */
1766	if (ntohs(*(__be16 *)&data[PTP_DPORT_OFFSET]) == PTP_EVENT_PORT) {
1767		match->state = PTP_PACKET_STATE_UNMATCHED;
1768
1769		/* We expect the sequence number to be in the same position in
1770		 * the packet for PTP V1 and V2
1771		 */
1772		BUILD_BUG_ON(PTP_V1_SEQUENCE_OFFSET != PTP_V2_SEQUENCE_OFFSET);
1773		BUILD_BUG_ON(PTP_V1_SEQUENCE_LENGTH != PTP_V2_SEQUENCE_LENGTH);
1774	} else {
1775		match->state = PTP_PACKET_STATE_MATCH_UNWANTED;
1776	}
1777
1778	skb_queue_tail(&ptp->rxq, skb);
1779	queue_work(ptp->workwq, &ptp->work);
1780
1781	return true;
1782}
1783
1784/* Transmit a PTP packet.  This has to be transmitted by the MC
1785 * itself, through an MCDI call.  MCDI calls aren't permitted
1786 * in the transmit path so defer the actual transmission to a suitable worker.
1787 */
1788int efx_ptp_tx(struct efx_nic *efx, struct sk_buff *skb)
1789{
1790	struct efx_ptp_data *ptp = efx->ptp_data;
1791
1792	skb_queue_tail(&ptp->txq, skb);
1793
1794	if ((udp_hdr(skb)->dest == htons(PTP_EVENT_PORT)) &&
1795	    (skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM))
1796		efx_xmit_hwtstamp_pending(skb);
1797	queue_work(ptp->workwq, &ptp->work);
1798
1799	return NETDEV_TX_OK;
1800}
1801
1802int efx_ptp_get_mode(struct efx_nic *efx)
1803{
1804	return efx->ptp_data->mode;
1805}
1806
1807int efx_ptp_change_mode(struct efx_nic *efx, bool enable_wanted,
1808			unsigned int new_mode)
1809{
1810	if ((enable_wanted != efx->ptp_data->enabled) ||
1811	    (enable_wanted && (efx->ptp_data->mode != new_mode))) {
1812		int rc = 0;
1813
1814		if (enable_wanted) {
1815			/* Change of mode requires disable */
1816			if (efx->ptp_data->enabled &&
1817			    (efx->ptp_data->mode != new_mode)) {
1818				efx->ptp_data->enabled = false;
1819				rc = efx_ptp_stop(efx);
1820				if (rc != 0)
1821					return rc;
1822			}
1823
1824			/* Set new operating mode and establish
1825			 * baseline synchronisation, which must
1826			 * succeed.
1827			 */
1828			efx->ptp_data->mode = new_mode;
1829			if (netif_running(efx->net_dev))
1830				rc = efx_ptp_start(efx);
1831			if (rc == 0) {
1832				rc = efx_ptp_synchronize(efx,
1833							 PTP_SYNC_ATTEMPTS * 2);
1834				if (rc != 0)
1835					efx_ptp_stop(efx);
1836			}
1837		} else {
1838			rc = efx_ptp_stop(efx);
1839		}
1840
1841		if (rc != 0)
1842			return rc;
1843
1844		efx->ptp_data->enabled = enable_wanted;
1845	}
1846
1847	return 0;
1848}
1849
1850static int efx_ptp_ts_init(struct efx_nic *efx, struct hwtstamp_config *init)
1851{
1852	int rc;
1853
1854	if ((init->tx_type != HWTSTAMP_TX_OFF) &&
1855	    (init->tx_type != HWTSTAMP_TX_ON))
1856		return -ERANGE;
1857
1858	rc = efx->type->ptp_set_ts_config(efx, init);
1859	if (rc)
1860		return rc;
1861
1862	efx->ptp_data->config = *init;
1863	return 0;
1864}
1865
1866void efx_ptp_get_ts_info(struct efx_nic *efx, struct ethtool_ts_info *ts_info)
1867{
1868	struct efx_ptp_data *ptp = efx->ptp_data;
1869	struct efx_nic *primary = efx->primary;
1870
1871	ASSERT_RTNL();
1872
1873	if (!ptp)
1874		return;
1875
1876	ts_info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
1877				     SOF_TIMESTAMPING_RX_HARDWARE |
1878				     SOF_TIMESTAMPING_RAW_HARDWARE);
1879	/* Check licensed features.  If we don't have the license for TX
1880	 * timestamps, the NIC will not support them.
1881	 */
1882	if (efx_ptp_use_mac_tx_timestamps(efx)) {
1883		struct efx_ef10_nic_data *nic_data = efx->nic_data;
1884
1885		if (!(nic_data->licensed_features &
1886		      (1 << LICENSED_V3_FEATURES_TX_TIMESTAMPS_LBN)))
1887			ts_info->so_timestamping &=
1888				~SOF_TIMESTAMPING_TX_HARDWARE;
1889	}
1890	if (primary && primary->ptp_data && primary->ptp_data->phc_clock)
1891		ts_info->phc_index =
1892			ptp_clock_index(primary->ptp_data->phc_clock);
1893	ts_info->tx_types = 1 << HWTSTAMP_TX_OFF | 1 << HWTSTAMP_TX_ON;
1894	ts_info->rx_filters = ptp->efx->type->hwtstamp_filters;
1895}
1896
1897int efx_ptp_set_ts_config(struct efx_nic *efx, struct ifreq *ifr)
1898{
1899	struct hwtstamp_config config;
1900	int rc;
1901
1902	/* Not a PTP enabled port */
1903	if (!efx->ptp_data)
1904		return -EOPNOTSUPP;
1905
1906	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1907		return -EFAULT;
1908
1909	rc = efx_ptp_ts_init(efx, &config);
1910	if (rc != 0)
1911		return rc;
1912
1913	return copy_to_user(ifr->ifr_data, &config, sizeof(config))
1914		? -EFAULT : 0;
1915}
1916
1917int efx_ptp_get_ts_config(struct efx_nic *efx, struct ifreq *ifr)
1918{
1919	if (!efx->ptp_data)
1920		return -EOPNOTSUPP;
1921
1922	return copy_to_user(ifr->ifr_data, &efx->ptp_data->config,
1923			    sizeof(efx->ptp_data->config)) ? -EFAULT : 0;
1924}
1925
1926static void ptp_event_failure(struct efx_nic *efx, int expected_frag_len)
1927{
1928	struct efx_ptp_data *ptp = efx->ptp_data;
1929
1930	netif_err(efx, hw, efx->net_dev,
1931		"PTP unexpected event length: got %d expected %d\n",
1932		ptp->evt_frag_idx, expected_frag_len);
1933	ptp->reset_required = true;
1934	queue_work(ptp->workwq, &ptp->work);
1935}
1936
1937static void ptp_event_fault(struct efx_nic *efx, struct efx_ptp_data *ptp)
1938{
1939	int code = EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA);
1940	if (ptp->evt_frag_idx != 1) {
1941		ptp_event_failure(efx, 1);
1942		return;
1943	}
1944
1945	netif_err(efx, hw, efx->net_dev, "PTP error %d\n", code);
1946}
1947
1948static void ptp_event_pps(struct efx_nic *efx, struct efx_ptp_data *ptp)
1949{
1950	if (ptp->nic_ts_enabled)
1951		queue_work(ptp->pps_workwq, &ptp->pps_work);
1952}
1953
1954void efx_ptp_event(struct efx_nic *efx, efx_qword_t *ev)
1955{
1956	struct efx_ptp_data *ptp = efx->ptp_data;
1957	int code = EFX_QWORD_FIELD(*ev, MCDI_EVENT_CODE);
1958
1959	if (!ptp) {
1960		if (!efx->ptp_warned) {
1961			netif_warn(efx, drv, efx->net_dev,
1962				   "Received PTP event but PTP not set up\n");
1963			efx->ptp_warned = true;
1964		}
1965		return;
1966	}
1967
1968	if (!ptp->enabled)
1969		return;
1970
1971	if (ptp->evt_frag_idx == 0) {
1972		ptp->evt_code = code;
1973	} else if (ptp->evt_code != code) {
1974		netif_err(efx, hw, efx->net_dev,
1975			  "PTP out of sequence event %d\n", code);
1976		ptp->evt_frag_idx = 0;
1977	}
1978
1979	ptp->evt_frags[ptp->evt_frag_idx++] = *ev;
1980	if (!MCDI_EVENT_FIELD(*ev, CONT)) {
1981		/* Process resulting event */
1982		switch (code) {
1983		case MCDI_EVENT_CODE_PTP_FAULT:
1984			ptp_event_fault(efx, ptp);
1985			break;
1986		case MCDI_EVENT_CODE_PTP_PPS:
1987			ptp_event_pps(efx, ptp);
1988			break;
1989		default:
1990			netif_err(efx, hw, efx->net_dev,
1991				  "PTP unknown event %d\n", code);
1992			break;
1993		}
1994		ptp->evt_frag_idx = 0;
1995	} else if (MAX_EVENT_FRAGS == ptp->evt_frag_idx) {
1996		netif_err(efx, hw, efx->net_dev,
1997			  "PTP too many event fragments\n");
1998		ptp->evt_frag_idx = 0;
1999	}
2000}
2001
2002void efx_time_sync_event(struct efx_channel *channel, efx_qword_t *ev)
2003{
2004	struct efx_nic *efx = channel->efx;
2005	struct efx_ptp_data *ptp = efx->ptp_data;
2006
2007	/* When extracting the sync timestamp minor value, we should discard
2008	 * the least significant two bits. These are not required in order
2009	 * to reconstruct full-range timestamps and they are optionally used
2010	 * to report status depending on the options supplied when subscribing
2011	 * for sync events.
2012	 */
2013	channel->sync_timestamp_major = MCDI_EVENT_FIELD(*ev, PTP_TIME_MAJOR);
2014	channel->sync_timestamp_minor =
2015		(MCDI_EVENT_FIELD(*ev, PTP_TIME_MINOR_MS_8BITS) & 0xFC)
2016			<< ptp->nic_time.sync_event_minor_shift;
2017
2018	/* if sync events have been disabled then we want to silently ignore
2019	 * this event, so throw away result.
2020	 */
2021	(void) cmpxchg(&channel->sync_events_state, SYNC_EVENTS_REQUESTED,
2022		       SYNC_EVENTS_VALID);
2023}
2024
2025static inline u32 efx_rx_buf_timestamp_minor(struct efx_nic *efx, const u8 *eh)
2026{
2027#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
2028	return __le32_to_cpup((const __le32 *)(eh + efx->rx_packet_ts_offset));
2029#else
2030	const u8 *data = eh + efx->rx_packet_ts_offset;
2031	return (u32)data[0]       |
2032	       (u32)data[1] << 8  |
2033	       (u32)data[2] << 16 |
2034	       (u32)data[3] << 24;
2035#endif
2036}
2037
2038void __efx_rx_skb_attach_timestamp(struct efx_channel *channel,
2039				   struct sk_buff *skb)
2040{
2041	struct efx_nic *efx = channel->efx;
2042	struct efx_ptp_data *ptp = efx->ptp_data;
2043	u32 pkt_timestamp_major, pkt_timestamp_minor;
2044	u32 diff, carry;
2045	struct skb_shared_hwtstamps *timestamps;
2046
2047	if (channel->sync_events_state != SYNC_EVENTS_VALID)
2048		return;
2049
2050	pkt_timestamp_minor = efx_rx_buf_timestamp_minor(efx, skb_mac_header(skb));
2051
2052	/* get the difference between the packet and sync timestamps,
2053	 * modulo one second
2054	 */
2055	diff = pkt_timestamp_minor - channel->sync_timestamp_minor;
2056	if (pkt_timestamp_minor < channel->sync_timestamp_minor)
2057		diff += ptp->nic_time.minor_max;
2058
2059	/* do we roll over a second boundary and need to carry the one? */
2060	carry = (channel->sync_timestamp_minor >= ptp->nic_time.minor_max - diff) ?
2061		1 : 0;
2062
2063	if (diff <= ptp->nic_time.sync_event_diff_max) {
2064		/* packet is ahead of the sync event by a quarter of a second or
2065		 * less (allowing for fuzz)
2066		 */
2067		pkt_timestamp_major = channel->sync_timestamp_major + carry;
2068	} else if (diff >= ptp->nic_time.sync_event_diff_min) {
2069		/* packet is behind the sync event but within the fuzz factor.
2070		 * This means the RX packet and sync event crossed as they were
2071		 * placed on the event queue, which can sometimes happen.
2072		 */
2073		pkt_timestamp_major = channel->sync_timestamp_major - 1 + carry;
2074	} else {
2075		/* it's outside tolerance in both directions. this might be
2076		 * indicative of us missing sync events for some reason, so
2077		 * we'll call it an error rather than risk giving a bogus
2078		 * timestamp.
2079		 */
2080		netif_vdbg(efx, drv, efx->net_dev,
2081			  "packet timestamp %x too far from sync event %x:%x\n",
2082			  pkt_timestamp_minor, channel->sync_timestamp_major,
2083			  channel->sync_timestamp_minor);
2084		return;
2085	}
2086
2087	/* attach the timestamps to the skb */
2088	timestamps = skb_hwtstamps(skb);
2089	timestamps->hwtstamp =
2090		ptp->nic_to_kernel_time(pkt_timestamp_major,
2091					pkt_timestamp_minor,
2092					ptp->ts_corrections.general_rx);
2093}
2094
2095static int efx_phc_adjfine(struct ptp_clock_info *ptp, long scaled_ppm)
2096{
2097	struct efx_ptp_data *ptp_data = container_of(ptp,
2098						     struct efx_ptp_data,
2099						     phc_clock_info);
2100	s32 delta = scaled_ppm_to_ppb(scaled_ppm);
2101	struct efx_nic *efx = ptp_data->efx;
2102	MCDI_DECLARE_BUF(inadj, MC_CMD_PTP_IN_ADJUST_LEN);
2103	s64 adjustment_ns;
2104	int rc;
2105
2106	if (delta > MAX_PPB)
2107		delta = MAX_PPB;
2108	else if (delta < -MAX_PPB)
2109		delta = -MAX_PPB;
2110
2111	/* Convert ppb to fixed point ns taking care to round correctly. */
2112	adjustment_ns = ((s64)delta * PPB_SCALE_WORD +
2113			 (1 << (ptp_data->adjfreq_ppb_shift - 1))) >>
2114			ptp_data->adjfreq_ppb_shift;
2115
2116	MCDI_SET_DWORD(inadj, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST);
2117	MCDI_SET_DWORD(inadj, PTP_IN_PERIPH_ID, 0);
2118	MCDI_SET_QWORD(inadj, PTP_IN_ADJUST_FREQ, adjustment_ns);
2119	MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_SECONDS, 0);
2120	MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_NANOSECONDS, 0);
2121	rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inadj, sizeof(inadj),
2122			  NULL, 0, NULL);
2123	if (rc != 0)
2124		return rc;
2125
2126	ptp_data->current_adjfreq = adjustment_ns;
2127	return 0;
2128}
2129
2130static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta)
2131{
2132	u32 nic_major, nic_minor;
2133	struct efx_ptp_data *ptp_data = container_of(ptp,
2134						     struct efx_ptp_data,
2135						     phc_clock_info);
2136	struct efx_nic *efx = ptp_data->efx;
2137	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ADJUST_LEN);
2138
2139	efx->ptp_data->ns_to_nic_time(delta, &nic_major, &nic_minor);
2140
2141	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST);
2142	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
2143	MCDI_SET_QWORD(inbuf, PTP_IN_ADJUST_FREQ, ptp_data->current_adjfreq);
2144	MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_MAJOR, nic_major);
2145	MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_MINOR, nic_minor);
2146	return efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
2147			    NULL, 0, NULL);
2148}
2149
2150static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
2151{
2152	struct efx_ptp_data *ptp_data = container_of(ptp,
2153						     struct efx_ptp_data,
2154						     phc_clock_info);
2155	struct efx_nic *efx = ptp_data->efx;
2156	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_READ_NIC_TIME_LEN);
2157	MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_READ_NIC_TIME_LEN);
2158	int rc;
2159	ktime_t kt;
2160
2161	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_READ_NIC_TIME);
2162	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
2163
2164	rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
2165			  outbuf, sizeof(outbuf), NULL);
2166	if (rc != 0)
2167		return rc;
2168
2169	kt = ptp_data->nic_to_kernel_time(
2170		MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_MAJOR),
2171		MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_MINOR), 0);
2172	*ts = ktime_to_timespec64(kt);
2173	return 0;
2174}
2175
2176static int efx_phc_settime(struct ptp_clock_info *ptp,
2177			   const struct timespec64 *e_ts)
2178{
2179	/* Get the current NIC time, efx_phc_gettime.
2180	 * Subtract from the desired time to get the offset
2181	 * call efx_phc_adjtime with the offset
2182	 */
2183	int rc;
2184	struct timespec64 time_now;
2185	struct timespec64 delta;
2186
2187	rc = efx_phc_gettime(ptp, &time_now);
2188	if (rc != 0)
2189		return rc;
2190
2191	delta = timespec64_sub(*e_ts, time_now);
2192
2193	rc = efx_phc_adjtime(ptp, timespec64_to_ns(&delta));
2194	if (rc != 0)
2195		return rc;
2196
2197	return 0;
2198}
2199
2200static int efx_phc_enable(struct ptp_clock_info *ptp,
2201			  struct ptp_clock_request *request,
2202			  int enable)
2203{
2204	struct efx_ptp_data *ptp_data = container_of(ptp,
2205						     struct efx_ptp_data,
2206						     phc_clock_info);
2207	if (request->type != PTP_CLK_REQ_PPS)
2208		return -EOPNOTSUPP;
2209
2210	ptp_data->nic_ts_enabled = !!enable;
2211	return 0;
2212}
2213
2214static const struct efx_channel_type efx_ptp_channel_type = {
2215	.handle_no_channel	= efx_ptp_handle_no_channel,
2216	.pre_probe		= efx_ptp_probe_channel,
2217	.post_remove		= efx_ptp_remove_channel,
2218	.get_name		= efx_ptp_get_channel_name,
2219	.copy                   = efx_copy_channel,
2220	.receive_skb		= efx_ptp_rx,
2221	.want_txqs		= efx_ptp_want_txqs,
2222	.keep_eventq		= false,
2223};
2224
2225void efx_ptp_defer_probe_with_channel(struct efx_nic *efx)
2226{
2227	/* Check whether PTP is implemented on this NIC.  The DISABLE
2228	 * operation will succeed if and only if it is implemented.
2229	 */
2230	if (efx_ptp_disable(efx) == 0)
2231		efx->extra_channel_type[EFX_EXTRA_CHANNEL_PTP] =
2232			&efx_ptp_channel_type;
2233}
2234
2235void efx_ptp_start_datapath(struct efx_nic *efx)
2236{
2237	if (efx_ptp_restart(efx))
2238		netif_err(efx, drv, efx->net_dev, "Failed to restart PTP.\n");
2239	/* re-enable timestamping if it was previously enabled */
2240	if (efx->type->ptp_set_ts_sync_events)
2241		efx->type->ptp_set_ts_sync_events(efx, true, true);
2242}
2243
2244void efx_ptp_stop_datapath(struct efx_nic *efx)
2245{
2246	/* temporarily disable timestamping */
2247	if (efx->type->ptp_set_ts_sync_events)
2248		efx->type->ptp_set_ts_sync_events(efx, false, true);
2249	efx_ptp_stop(efx);
2250}
2251