1// SPDX-License-Identifier: GPL-2.0-only
2/* Copyright (c) 2013-2016, The Linux Foundation. All rights reserved.
3 */
4
5/* Qualcomm Technologies, Inc. EMAC Ethernet Controller MAC layer support
6 */
7
8#include <linux/tcp.h>
9#include <linux/ip.h>
10#include <linux/ipv6.h>
11#include <linux/crc32.h>
12#include <linux/if_vlan.h>
13#include <linux/jiffies.h>
14#include <linux/phy.h>
15#include <linux/of.h>
16#include <net/ip6_checksum.h>
17#include "emac.h"
18#include "emac-sgmii.h"
19
20/* EMAC_MAC_CTRL */
21#define SINGLE_PAUSE_MODE       	0x10000000
22#define DEBUG_MODE                      0x08000000
23#define BROAD_EN                        0x04000000
24#define MULTI_ALL                       0x02000000
25#define RX_CHKSUM_EN                    0x01000000
26#define HUGE                            0x00800000
27#define SPEED(x)			(((x) & 0x3) << 20)
28#define SPEED_MASK			SPEED(0x3)
29#define SIMR                            0x00080000
30#define TPAUSE                          0x00010000
31#define PROM_MODE                       0x00008000
32#define VLAN_STRIP                      0x00004000
33#define PRLEN_BMSK                      0x00003c00
34#define PRLEN_SHFT                      10
35#define HUGEN                           0x00000200
36#define FLCHK                           0x00000100
37#define PCRCE                           0x00000080
38#define CRCE                            0x00000040
39#define FULLD                           0x00000020
40#define MAC_LP_EN                       0x00000010
41#define RXFC                            0x00000008
42#define TXFC                            0x00000004
43#define RXEN                            0x00000002
44#define TXEN                            0x00000001
45
46/* EMAC_DESC_CTRL_3 */
47#define RFD_RING_SIZE_BMSK                                       0xfff
48
49/* EMAC_DESC_CTRL_4 */
50#define RX_BUFFER_SIZE_BMSK                                     0xffff
51
52/* EMAC_DESC_CTRL_6 */
53#define RRD_RING_SIZE_BMSK                                       0xfff
54
55/* EMAC_DESC_CTRL_9 */
56#define TPD_RING_SIZE_BMSK                                      0xffff
57
58/* EMAC_TXQ_CTRL_0 */
59#define NUM_TXF_BURST_PREF_BMSK                             0xffff0000
60#define NUM_TXF_BURST_PREF_SHFT                                     16
61#define LS_8023_SP                                                0x80
62#define TXQ_MODE                                                  0x40
63#define TXQ_EN                                                    0x20
64#define IP_OP_SP                                                  0x10
65#define NUM_TPD_BURST_PREF_BMSK                                    0xf
66#define NUM_TPD_BURST_PREF_SHFT                                      0
67
68/* EMAC_TXQ_CTRL_1 */
69#define JUMBO_TASK_OFFLOAD_THRESHOLD_BMSK                        0x7ff
70
71/* EMAC_TXQ_CTRL_2 */
72#define TXF_HWM_BMSK                                         0xfff0000
73#define TXF_LWM_BMSK                                             0xfff
74
75/* EMAC_RXQ_CTRL_0 */
76#define RXQ_EN                                                 BIT(31)
77#define CUT_THRU_EN                                            BIT(30)
78#define RSS_HASH_EN                                            BIT(29)
79#define NUM_RFD_BURST_PREF_BMSK                              0x3f00000
80#define NUM_RFD_BURST_PREF_SHFT                                     20
81#define IDT_TABLE_SIZE_BMSK                                    0x1ff00
82#define IDT_TABLE_SIZE_SHFT                                          8
83#define SP_IPV6                                                   0x80
84
85/* EMAC_RXQ_CTRL_1 */
86#define JUMBO_1KAH_BMSK                                         0xf000
87#define JUMBO_1KAH_SHFT                                             12
88#define RFD_PREF_LOW_TH                                           0x10
89#define RFD_PREF_LOW_THRESHOLD_BMSK                              0xfc0
90#define RFD_PREF_LOW_THRESHOLD_SHFT                                  6
91#define RFD_PREF_UP_TH                                            0x10
92#define RFD_PREF_UP_THRESHOLD_BMSK                                0x3f
93#define RFD_PREF_UP_THRESHOLD_SHFT                                   0
94
95/* EMAC_RXQ_CTRL_2 */
96#define RXF_DOF_THRESFHOLD                                       0x1a0
97#define RXF_DOF_THRESHOLD_BMSK                               0xfff0000
98#define RXF_DOF_THRESHOLD_SHFT                                      16
99#define RXF_UOF_THRESFHOLD                                        0xbe
100#define RXF_UOF_THRESHOLD_BMSK                                   0xfff
101#define RXF_UOF_THRESHOLD_SHFT                                       0
102
103/* EMAC_RXQ_CTRL_3 */
104#define RXD_TIMER_BMSK                                      0xffff0000
105#define RXD_THRESHOLD_BMSK                                       0xfff
106#define RXD_THRESHOLD_SHFT                                           0
107
108/* EMAC_DMA_CTRL */
109#define DMAW_DLY_CNT_BMSK                                      0xf0000
110#define DMAW_DLY_CNT_SHFT                                           16
111#define DMAR_DLY_CNT_BMSK                                       0xf800
112#define DMAR_DLY_CNT_SHFT                                           11
113#define DMAR_REQ_PRI                                             0x400
114#define REGWRBLEN_BMSK                                           0x380
115#define REGWRBLEN_SHFT                                               7
116#define REGRDBLEN_BMSK                                            0x70
117#define REGRDBLEN_SHFT                                               4
118#define OUT_ORDER_MODE                                             0x4
119#define ENH_ORDER_MODE                                             0x2
120#define IN_ORDER_MODE                                              0x1
121
122/* EMAC_MAILBOX_13 */
123#define RFD3_PROC_IDX_BMSK                                   0xfff0000
124#define RFD3_PROC_IDX_SHFT                                          16
125#define RFD3_PROD_IDX_BMSK                                       0xfff
126#define RFD3_PROD_IDX_SHFT                                           0
127
128/* EMAC_MAILBOX_2 */
129#define NTPD_CONS_IDX_BMSK                                  0xffff0000
130#define NTPD_CONS_IDX_SHFT                                          16
131
132/* EMAC_MAILBOX_3 */
133#define RFD0_CONS_IDX_BMSK                                       0xfff
134#define RFD0_CONS_IDX_SHFT                                           0
135
136/* EMAC_MAILBOX_11 */
137#define H3TPD_PROD_IDX_BMSK                                 0xffff0000
138#define H3TPD_PROD_IDX_SHFT                                         16
139
140/* EMAC_AXI_MAST_CTRL */
141#define DATA_BYTE_SWAP                                             0x8
142#define MAX_BOUND                                                  0x2
143#define MAX_BTYPE                                                  0x1
144
145/* EMAC_MAILBOX_12 */
146#define H3TPD_CONS_IDX_BMSK                                 0xffff0000
147#define H3TPD_CONS_IDX_SHFT                                         16
148
149/* EMAC_MAILBOX_9 */
150#define H2TPD_PROD_IDX_BMSK                                     0xffff
151#define H2TPD_PROD_IDX_SHFT                                          0
152
153/* EMAC_MAILBOX_10 */
154#define H1TPD_CONS_IDX_BMSK                                 0xffff0000
155#define H1TPD_CONS_IDX_SHFT                                         16
156#define H2TPD_CONS_IDX_BMSK                                     0xffff
157#define H2TPD_CONS_IDX_SHFT                                          0
158
159/* EMAC_ATHR_HEADER_CTRL */
160#define HEADER_CNT_EN                                              0x2
161#define HEADER_ENABLE                                              0x1
162
163/* EMAC_MAILBOX_0 */
164#define RFD0_PROC_IDX_BMSK                                   0xfff0000
165#define RFD0_PROC_IDX_SHFT                                          16
166#define RFD0_PROD_IDX_BMSK                                       0xfff
167#define RFD0_PROD_IDX_SHFT                                           0
168
169/* EMAC_MAILBOX_5 */
170#define RFD1_PROC_IDX_BMSK                                   0xfff0000
171#define RFD1_PROC_IDX_SHFT                                          16
172#define RFD1_PROD_IDX_BMSK                                       0xfff
173#define RFD1_PROD_IDX_SHFT                                           0
174
175/* EMAC_MISC_CTRL */
176#define RX_UNCPL_INT_EN                                            0x1
177
178/* EMAC_MAILBOX_7 */
179#define RFD2_CONS_IDX_BMSK                                   0xfff0000
180#define RFD2_CONS_IDX_SHFT                                          16
181#define RFD1_CONS_IDX_BMSK                                       0xfff
182#define RFD1_CONS_IDX_SHFT                                           0
183
184/* EMAC_MAILBOX_8 */
185#define RFD3_CONS_IDX_BMSK                                       0xfff
186#define RFD3_CONS_IDX_SHFT                                           0
187
188/* EMAC_MAILBOX_15 */
189#define NTPD_PROD_IDX_BMSK                                      0xffff
190#define NTPD_PROD_IDX_SHFT                                           0
191
192/* EMAC_MAILBOX_16 */
193#define H1TPD_PROD_IDX_BMSK                                     0xffff
194#define H1TPD_PROD_IDX_SHFT                                          0
195
196#define RXQ0_RSS_HSTYP_IPV6_TCP_EN                                0x20
197#define RXQ0_RSS_HSTYP_IPV6_EN                                    0x10
198#define RXQ0_RSS_HSTYP_IPV4_TCP_EN                                 0x8
199#define RXQ0_RSS_HSTYP_IPV4_EN                                     0x4
200
201/* EMAC_EMAC_WRAPPER_TX_TS_INX */
202#define EMAC_WRAPPER_TX_TS_EMPTY                               BIT(31)
203#define EMAC_WRAPPER_TX_TS_INX_BMSK                             0xffff
204
205struct emac_skb_cb {
206	u32           tpd_idx;
207	unsigned long jiffies;
208};
209
210#define EMAC_SKB_CB(skb)	((struct emac_skb_cb *)(skb)->cb)
211#define EMAC_RSS_IDT_SIZE	256
212#define JUMBO_1KAH		0x4
213#define RXD_TH			0x100
214#define EMAC_TPD_LAST_FRAGMENT	0x80000000
215#define EMAC_TPD_TSTAMP_SAVE	0x80000000
216
217/* EMAC Errors in emac_rrd.word[3] */
218#define EMAC_RRD_L4F		BIT(14)
219#define EMAC_RRD_IPF		BIT(15)
220#define EMAC_RRD_CRC		BIT(21)
221#define EMAC_RRD_FAE		BIT(22)
222#define EMAC_RRD_TRN		BIT(23)
223#define EMAC_RRD_RNT		BIT(24)
224#define EMAC_RRD_INC		BIT(25)
225#define EMAC_RRD_FOV		BIT(29)
226#define EMAC_RRD_LEN		BIT(30)
227
228/* Error bits that will result in a received frame being discarded */
229#define EMAC_RRD_ERROR (EMAC_RRD_IPF | EMAC_RRD_CRC | EMAC_RRD_FAE | \
230			EMAC_RRD_TRN | EMAC_RRD_RNT | EMAC_RRD_INC | \
231			EMAC_RRD_FOV | EMAC_RRD_LEN)
232#define EMAC_RRD_STATS_DW_IDX 3
233
234#define EMAC_RRD(RXQ, SIZE, IDX)	((RXQ)->rrd.v_addr + (SIZE * (IDX)))
235#define EMAC_RFD(RXQ, SIZE, IDX)	((RXQ)->rfd.v_addr + (SIZE * (IDX)))
236#define EMAC_TPD(TXQ, SIZE, IDX)	((TXQ)->tpd.v_addr + (SIZE * (IDX)))
237
238#define GET_RFD_BUFFER(RXQ, IDX)	(&((RXQ)->rfd.rfbuff[(IDX)]))
239#define GET_TPD_BUFFER(RTQ, IDX)	(&((RTQ)->tpd.tpbuff[(IDX)]))
240
241#define EMAC_TX_POLL_HWTXTSTAMP_THRESHOLD	8
242
243#define ISR_RX_PKT      (\
244	RX_PKT_INT0     |\
245	RX_PKT_INT1     |\
246	RX_PKT_INT2     |\
247	RX_PKT_INT3)
248
249void emac_mac_multicast_addr_set(struct emac_adapter *adpt, u8 *addr)
250{
251	u32 crc32, bit, reg, mta;
252
253	/* Calculate the CRC of the MAC address */
254	crc32 = ether_crc(ETH_ALEN, addr);
255
256	/* The HASH Table is an array of 2 32-bit registers. It is
257	 * treated like an array of 64 bits (BitArray[hash_value]).
258	 * Use the upper 6 bits of the above CRC as the hash value.
259	 */
260	reg = (crc32 >> 31) & 0x1;
261	bit = (crc32 >> 26) & 0x1F;
262
263	mta = readl(adpt->base + EMAC_HASH_TAB_REG0 + (reg << 2));
264	mta |= BIT(bit);
265	writel(mta, adpt->base + EMAC_HASH_TAB_REG0 + (reg << 2));
266}
267
268void emac_mac_multicast_addr_clear(struct emac_adapter *adpt)
269{
270	writel(0, adpt->base + EMAC_HASH_TAB_REG0);
271	writel(0, adpt->base + EMAC_HASH_TAB_REG1);
272}
273
274/* definitions for RSS */
275#define EMAC_RSS_KEY(_i, _type) \
276		(EMAC_RSS_KEY0 + ((_i) * sizeof(_type)))
277#define EMAC_RSS_TBL(_i, _type) \
278		(EMAC_IDT_TABLE0 + ((_i) * sizeof(_type)))
279
280/* Config MAC modes */
281void emac_mac_mode_config(struct emac_adapter *adpt)
282{
283	struct net_device *netdev = adpt->netdev;
284	u32 mac;
285
286	mac = readl(adpt->base + EMAC_MAC_CTRL);
287	mac &= ~(VLAN_STRIP | PROM_MODE | MULTI_ALL | MAC_LP_EN);
288
289	if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
290		mac |= VLAN_STRIP;
291
292	if (netdev->flags & IFF_PROMISC)
293		mac |= PROM_MODE;
294
295	if (netdev->flags & IFF_ALLMULTI)
296		mac |= MULTI_ALL;
297
298	writel(mac, adpt->base + EMAC_MAC_CTRL);
299}
300
301/* Config descriptor rings */
302static void emac_mac_dma_rings_config(struct emac_adapter *adpt)
303{
304	/* TPD (Transmit Packet Descriptor) */
305	writel(upper_32_bits(adpt->tx_q.tpd.dma_addr),
306	       adpt->base + EMAC_DESC_CTRL_1);
307
308	writel(lower_32_bits(adpt->tx_q.tpd.dma_addr),
309	       adpt->base + EMAC_DESC_CTRL_8);
310
311	writel(adpt->tx_q.tpd.count & TPD_RING_SIZE_BMSK,
312	       adpt->base + EMAC_DESC_CTRL_9);
313
314	/* RFD (Receive Free Descriptor) & RRD (Receive Return Descriptor) */
315	writel(upper_32_bits(adpt->rx_q.rfd.dma_addr),
316	       adpt->base + EMAC_DESC_CTRL_0);
317
318	writel(lower_32_bits(adpt->rx_q.rfd.dma_addr),
319	       adpt->base + EMAC_DESC_CTRL_2);
320	writel(lower_32_bits(adpt->rx_q.rrd.dma_addr),
321	       adpt->base + EMAC_DESC_CTRL_5);
322
323	writel(adpt->rx_q.rfd.count & RFD_RING_SIZE_BMSK,
324	       adpt->base + EMAC_DESC_CTRL_3);
325	writel(adpt->rx_q.rrd.count & RRD_RING_SIZE_BMSK,
326	       adpt->base + EMAC_DESC_CTRL_6);
327
328	writel(adpt->rxbuf_size & RX_BUFFER_SIZE_BMSK,
329	       adpt->base + EMAC_DESC_CTRL_4);
330
331	writel(0, adpt->base + EMAC_DESC_CTRL_11);
332
333	/* Load all of the base addresses above and ensure that triggering HW to
334	 * read ring pointers is flushed
335	 */
336	writel(1, adpt->base + EMAC_INTER_SRAM_PART9);
337}
338
339/* Config transmit parameters */
340static void emac_mac_tx_config(struct emac_adapter *adpt)
341{
342	u32 val;
343
344	writel((EMAC_MAX_TX_OFFLOAD_THRESH >> 3) &
345	       JUMBO_TASK_OFFLOAD_THRESHOLD_BMSK, adpt->base + EMAC_TXQ_CTRL_1);
346
347	val = (adpt->tpd_burst << NUM_TPD_BURST_PREF_SHFT) &
348	       NUM_TPD_BURST_PREF_BMSK;
349
350	val |= TXQ_MODE | LS_8023_SP;
351	val |= (0x0100 << NUM_TXF_BURST_PREF_SHFT) &
352		NUM_TXF_BURST_PREF_BMSK;
353
354	writel(val, adpt->base + EMAC_TXQ_CTRL_0);
355	emac_reg_update32(adpt->base + EMAC_TXQ_CTRL_2,
356			  (TXF_HWM_BMSK | TXF_LWM_BMSK), 0);
357}
358
359/* Config receive parameters */
360static void emac_mac_rx_config(struct emac_adapter *adpt)
361{
362	u32 val;
363
364	val = (adpt->rfd_burst << NUM_RFD_BURST_PREF_SHFT) &
365	       NUM_RFD_BURST_PREF_BMSK;
366	val |= (SP_IPV6 | CUT_THRU_EN);
367
368	writel(val, adpt->base + EMAC_RXQ_CTRL_0);
369
370	val = readl(adpt->base + EMAC_RXQ_CTRL_1);
371	val &= ~(JUMBO_1KAH_BMSK | RFD_PREF_LOW_THRESHOLD_BMSK |
372		 RFD_PREF_UP_THRESHOLD_BMSK);
373	val |= (JUMBO_1KAH << JUMBO_1KAH_SHFT) |
374		(RFD_PREF_LOW_TH << RFD_PREF_LOW_THRESHOLD_SHFT) |
375		(RFD_PREF_UP_TH  << RFD_PREF_UP_THRESHOLD_SHFT);
376	writel(val, adpt->base + EMAC_RXQ_CTRL_1);
377
378	val = readl(adpt->base + EMAC_RXQ_CTRL_2);
379	val &= ~(RXF_DOF_THRESHOLD_BMSK | RXF_UOF_THRESHOLD_BMSK);
380	val |= (RXF_DOF_THRESFHOLD  << RXF_DOF_THRESHOLD_SHFT) |
381		(RXF_UOF_THRESFHOLD << RXF_UOF_THRESHOLD_SHFT);
382	writel(val, adpt->base + EMAC_RXQ_CTRL_2);
383
384	val = readl(adpt->base + EMAC_RXQ_CTRL_3);
385	val &= ~(RXD_TIMER_BMSK | RXD_THRESHOLD_BMSK);
386	val |= RXD_TH << RXD_THRESHOLD_SHFT;
387	writel(val, adpt->base + EMAC_RXQ_CTRL_3);
388}
389
390/* Config dma */
391static void emac_mac_dma_config(struct emac_adapter *adpt)
392{
393	u32 dma_ctrl = DMAR_REQ_PRI;
394
395	switch (adpt->dma_order) {
396	case emac_dma_ord_in:
397		dma_ctrl |= IN_ORDER_MODE;
398		break;
399	case emac_dma_ord_enh:
400		dma_ctrl |= ENH_ORDER_MODE;
401		break;
402	case emac_dma_ord_out:
403		dma_ctrl |= OUT_ORDER_MODE;
404		break;
405	default:
406		break;
407	}
408
409	dma_ctrl |= (((u32)adpt->dmar_block) << REGRDBLEN_SHFT) &
410						REGRDBLEN_BMSK;
411	dma_ctrl |= (((u32)adpt->dmaw_block) << REGWRBLEN_SHFT) &
412						REGWRBLEN_BMSK;
413	dma_ctrl |= (((u32)adpt->dmar_dly_cnt) << DMAR_DLY_CNT_SHFT) &
414						DMAR_DLY_CNT_BMSK;
415	dma_ctrl |= (((u32)adpt->dmaw_dly_cnt) << DMAW_DLY_CNT_SHFT) &
416						DMAW_DLY_CNT_BMSK;
417
418	/* config DMA and ensure that configuration is flushed to HW */
419	writel(dma_ctrl, adpt->base + EMAC_DMA_CTRL);
420}
421
422/* set MAC address */
423static void emac_set_mac_address(struct emac_adapter *adpt, const u8 *addr)
424{
425	u32 sta;
426
427	/* for example: 00-A0-C6-11-22-33
428	 * 0<-->C6112233, 1<-->00A0.
429	 */
430
431	/* low 32bit word */
432	sta = (((u32)addr[2]) << 24) | (((u32)addr[3]) << 16) |
433	      (((u32)addr[4]) << 8)  | (((u32)addr[5]));
434	writel(sta, adpt->base + EMAC_MAC_STA_ADDR0);
435
436	/* hight 32bit word */
437	sta = (((u32)addr[0]) << 8) | (u32)addr[1];
438	writel(sta, adpt->base + EMAC_MAC_STA_ADDR1);
439}
440
441static void emac_mac_config(struct emac_adapter *adpt)
442{
443	struct net_device *netdev = adpt->netdev;
444	unsigned int max_frame;
445	u32 val;
446
447	emac_set_mac_address(adpt, netdev->dev_addr);
448
449	max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
450	adpt->rxbuf_size = netdev->mtu > EMAC_DEF_RX_BUF_SIZE ?
451		ALIGN(max_frame, 8) : EMAC_DEF_RX_BUF_SIZE;
452
453	emac_mac_dma_rings_config(adpt);
454
455	writel(netdev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
456	       adpt->base + EMAC_MAX_FRAM_LEN_CTRL);
457
458	emac_mac_tx_config(adpt);
459	emac_mac_rx_config(adpt);
460	emac_mac_dma_config(adpt);
461
462	val = readl(adpt->base + EMAC_AXI_MAST_CTRL);
463	val &= ~(DATA_BYTE_SWAP | MAX_BOUND);
464	val |= MAX_BTYPE;
465	writel(val, adpt->base + EMAC_AXI_MAST_CTRL);
466	writel(0, adpt->base + EMAC_CLK_GATE_CTRL);
467	writel(RX_UNCPL_INT_EN, adpt->base + EMAC_MISC_CTRL);
468}
469
470void emac_mac_reset(struct emac_adapter *adpt)
471{
472	emac_mac_stop(adpt);
473
474	emac_reg_update32(adpt->base + EMAC_DMA_MAS_CTRL, 0, SOFT_RST);
475	usleep_range(100, 150); /* reset may take up to 100usec */
476
477	/* interrupt clear-on-read */
478	emac_reg_update32(adpt->base + EMAC_DMA_MAS_CTRL, 0, INT_RD_CLR_EN);
479}
480
481static void emac_mac_start(struct emac_adapter *adpt)
482{
483	struct phy_device *phydev = adpt->phydev;
484	u32 mac, csr1;
485
486	/* enable tx queue */
487	emac_reg_update32(adpt->base + EMAC_TXQ_CTRL_0, 0, TXQ_EN);
488
489	/* enable rx queue */
490	emac_reg_update32(adpt->base + EMAC_RXQ_CTRL_0, 0, RXQ_EN);
491
492	/* enable mac control */
493	mac = readl(adpt->base + EMAC_MAC_CTRL);
494	csr1 = readl(adpt->csr + EMAC_EMAC_WRAPPER_CSR1);
495
496	mac |= TXEN | RXEN;     /* enable RX/TX */
497
498	/* Configure MAC flow control. If set to automatic, then match
499	 * whatever the PHY does. Otherwise, enable or disable it, depending
500	 * on what the user configured via ethtool.
501	 */
502	mac &= ~(RXFC | TXFC);
503
504	if (adpt->automatic) {
505		/* If it's set to automatic, then update our local values */
506		adpt->rx_flow_control = phydev->pause;
507		adpt->tx_flow_control = phydev->pause != phydev->asym_pause;
508	}
509	mac |= adpt->rx_flow_control ? RXFC : 0;
510	mac |= adpt->tx_flow_control ? TXFC : 0;
511
512	/* setup link speed */
513	mac &= ~SPEED_MASK;
514	if (phydev->speed == SPEED_1000) {
515		mac |= SPEED(2);
516		csr1 |= FREQ_MODE;
517	} else {
518		mac |= SPEED(1);
519		csr1 &= ~FREQ_MODE;
520	}
521
522	if (phydev->duplex == DUPLEX_FULL)
523		mac |= FULLD;
524	else
525		mac &= ~FULLD;
526
527	/* other parameters */
528	mac |= (CRCE | PCRCE);
529	mac |= ((adpt->preamble << PRLEN_SHFT) & PRLEN_BMSK);
530	mac |= BROAD_EN;
531	mac |= FLCHK;
532	mac &= ~RX_CHKSUM_EN;
533	mac &= ~(HUGEN | VLAN_STRIP | TPAUSE | SIMR | HUGE | MULTI_ALL |
534		 DEBUG_MODE | SINGLE_PAUSE_MODE);
535
536	/* Enable single-pause-frame mode if requested.
537	 *
538	 * If enabled, the EMAC will send a single pause frame when the RX
539	 * queue is full.  This normally leads to packet loss because
540	 * the pause frame disables the remote MAC only for 33ms (the quanta),
541	 * and then the remote MAC continues sending packets even though
542	 * the RX queue is still full.
543	 *
544	 * If disabled, the EMAC sends a pause frame every 31ms until the RX
545	 * queue is no longer full.  Normally, this is the preferred
546	 * method of operation.  However, when the system is hung (e.g.
547	 * cores are halted), the EMAC interrupt handler is never called
548	 * and so the RX queue fills up quickly and stays full.  The resuling
549	 * non-stop "flood" of pause frames sometimes has the effect of
550	 * disabling nearby switches.  In some cases, other nearby switches
551	 * are also affected, shutting down the entire network.
552	 *
553	 * The user can enable or disable single-pause-frame mode
554	 * via ethtool.
555	 */
556	mac |= adpt->single_pause_mode ? SINGLE_PAUSE_MODE : 0;
557
558	writel_relaxed(csr1, adpt->csr + EMAC_EMAC_WRAPPER_CSR1);
559
560	writel_relaxed(mac, adpt->base + EMAC_MAC_CTRL);
561
562	/* enable interrupt read clear, low power sleep mode and
563	 * the irq moderators
564	 */
565
566	writel_relaxed(adpt->irq_mod, adpt->base + EMAC_IRQ_MOD_TIM_INIT);
567	writel_relaxed(INT_RD_CLR_EN | LPW_MODE | IRQ_MODERATOR_EN |
568			IRQ_MODERATOR2_EN, adpt->base + EMAC_DMA_MAS_CTRL);
569
570	emac_mac_mode_config(adpt);
571
572	emac_reg_update32(adpt->base + EMAC_ATHR_HEADER_CTRL,
573			  (HEADER_ENABLE | HEADER_CNT_EN), 0);
574}
575
576void emac_mac_stop(struct emac_adapter *adpt)
577{
578	emac_reg_update32(adpt->base + EMAC_RXQ_CTRL_0, RXQ_EN, 0);
579	emac_reg_update32(adpt->base + EMAC_TXQ_CTRL_0, TXQ_EN, 0);
580	emac_reg_update32(adpt->base + EMAC_MAC_CTRL, TXEN | RXEN, 0);
581	usleep_range(1000, 1050); /* stopping mac may take upto 1msec */
582}
583
584/* Free all descriptors of given transmit queue */
585static void emac_tx_q_descs_free(struct emac_adapter *adpt)
586{
587	struct emac_tx_queue *tx_q = &adpt->tx_q;
588	unsigned int i;
589	size_t size;
590
591	/* ring already cleared, nothing to do */
592	if (!tx_q->tpd.tpbuff)
593		return;
594
595	for (i = 0; i < tx_q->tpd.count; i++) {
596		struct emac_buffer *tpbuf = GET_TPD_BUFFER(tx_q, i);
597
598		if (tpbuf->dma_addr) {
599			dma_unmap_single(adpt->netdev->dev.parent,
600					 tpbuf->dma_addr, tpbuf->length,
601					 DMA_TO_DEVICE);
602			tpbuf->dma_addr = 0;
603		}
604		if (tpbuf->skb) {
605			dev_kfree_skb_any(tpbuf->skb);
606			tpbuf->skb = NULL;
607		}
608	}
609
610	size = sizeof(struct emac_buffer) * tx_q->tpd.count;
611	memset(tx_q->tpd.tpbuff, 0, size);
612
613	/* clear the descriptor ring */
614	memset(tx_q->tpd.v_addr, 0, tx_q->tpd.size);
615
616	tx_q->tpd.consume_idx = 0;
617	tx_q->tpd.produce_idx = 0;
618}
619
620/* Free all descriptors of given receive queue */
621static void emac_rx_q_free_descs(struct emac_adapter *adpt)
622{
623	struct device *dev = adpt->netdev->dev.parent;
624	struct emac_rx_queue *rx_q = &adpt->rx_q;
625	unsigned int i;
626	size_t size;
627
628	/* ring already cleared, nothing to do */
629	if (!rx_q->rfd.rfbuff)
630		return;
631
632	for (i = 0; i < rx_q->rfd.count; i++) {
633		struct emac_buffer *rfbuf = GET_RFD_BUFFER(rx_q, i);
634
635		if (rfbuf->dma_addr) {
636			dma_unmap_single(dev, rfbuf->dma_addr, rfbuf->length,
637					 DMA_FROM_DEVICE);
638			rfbuf->dma_addr = 0;
639		}
640		if (rfbuf->skb) {
641			dev_kfree_skb(rfbuf->skb);
642			rfbuf->skb = NULL;
643		}
644	}
645
646	size =  sizeof(struct emac_buffer) * rx_q->rfd.count;
647	memset(rx_q->rfd.rfbuff, 0, size);
648
649	/* clear the descriptor rings */
650	memset(rx_q->rrd.v_addr, 0, rx_q->rrd.size);
651	rx_q->rrd.produce_idx = 0;
652	rx_q->rrd.consume_idx = 0;
653
654	memset(rx_q->rfd.v_addr, 0, rx_q->rfd.size);
655	rx_q->rfd.produce_idx = 0;
656	rx_q->rfd.consume_idx = 0;
657}
658
659/* Free all buffers associated with given transmit queue */
660static void emac_tx_q_bufs_free(struct emac_adapter *adpt)
661{
662	struct emac_tx_queue *tx_q = &adpt->tx_q;
663
664	emac_tx_q_descs_free(adpt);
665
666	kfree(tx_q->tpd.tpbuff);
667	tx_q->tpd.tpbuff = NULL;
668	tx_q->tpd.v_addr = NULL;
669	tx_q->tpd.dma_addr = 0;
670	tx_q->tpd.size = 0;
671}
672
673/* Allocate TX descriptor ring for the given transmit queue */
674static int emac_tx_q_desc_alloc(struct emac_adapter *adpt,
675				struct emac_tx_queue *tx_q)
676{
677	struct emac_ring_header *ring_header = &adpt->ring_header;
678	int node = dev_to_node(adpt->netdev->dev.parent);
679	size_t size;
680
681	size = sizeof(struct emac_buffer) * tx_q->tpd.count;
682	tx_q->tpd.tpbuff = kzalloc_node(size, GFP_KERNEL, node);
683	if (!tx_q->tpd.tpbuff)
684		return -ENOMEM;
685
686	tx_q->tpd.size = tx_q->tpd.count * (adpt->tpd_size * 4);
687	tx_q->tpd.dma_addr = ring_header->dma_addr + ring_header->used;
688	tx_q->tpd.v_addr = ring_header->v_addr + ring_header->used;
689	ring_header->used += ALIGN(tx_q->tpd.size, 8);
690	tx_q->tpd.produce_idx = 0;
691	tx_q->tpd.consume_idx = 0;
692
693	return 0;
694}
695
696/* Free all buffers associated with given transmit queue */
697static void emac_rx_q_bufs_free(struct emac_adapter *adpt)
698{
699	struct emac_rx_queue *rx_q = &adpt->rx_q;
700
701	emac_rx_q_free_descs(adpt);
702
703	kfree(rx_q->rfd.rfbuff);
704	rx_q->rfd.rfbuff   = NULL;
705
706	rx_q->rfd.v_addr   = NULL;
707	rx_q->rfd.dma_addr = 0;
708	rx_q->rfd.size     = 0;
709
710	rx_q->rrd.v_addr   = NULL;
711	rx_q->rrd.dma_addr = 0;
712	rx_q->rrd.size     = 0;
713}
714
715/* Allocate RX descriptor rings for the given receive queue */
716static int emac_rx_descs_alloc(struct emac_adapter *adpt)
717{
718	struct emac_ring_header *ring_header = &adpt->ring_header;
719	int node = dev_to_node(adpt->netdev->dev.parent);
720	struct emac_rx_queue *rx_q = &adpt->rx_q;
721	size_t size;
722
723	size = sizeof(struct emac_buffer) * rx_q->rfd.count;
724	rx_q->rfd.rfbuff = kzalloc_node(size, GFP_KERNEL, node);
725	if (!rx_q->rfd.rfbuff)
726		return -ENOMEM;
727
728	rx_q->rrd.size = rx_q->rrd.count * (adpt->rrd_size * 4);
729	rx_q->rfd.size = rx_q->rfd.count * (adpt->rfd_size * 4);
730
731	rx_q->rrd.dma_addr = ring_header->dma_addr + ring_header->used;
732	rx_q->rrd.v_addr   = ring_header->v_addr + ring_header->used;
733	ring_header->used += ALIGN(rx_q->rrd.size, 8);
734
735	rx_q->rfd.dma_addr = ring_header->dma_addr + ring_header->used;
736	rx_q->rfd.v_addr   = ring_header->v_addr + ring_header->used;
737	ring_header->used += ALIGN(rx_q->rfd.size, 8);
738
739	rx_q->rrd.produce_idx = 0;
740	rx_q->rrd.consume_idx = 0;
741
742	rx_q->rfd.produce_idx = 0;
743	rx_q->rfd.consume_idx = 0;
744
745	return 0;
746}
747
748/* Allocate all TX and RX descriptor rings */
749int emac_mac_rx_tx_rings_alloc_all(struct emac_adapter *adpt)
750{
751	struct emac_ring_header *ring_header = &adpt->ring_header;
752	struct device *dev = adpt->netdev->dev.parent;
753	unsigned int num_tx_descs = adpt->tx_desc_cnt;
754	unsigned int num_rx_descs = adpt->rx_desc_cnt;
755	int ret;
756
757	adpt->tx_q.tpd.count = adpt->tx_desc_cnt;
758
759	adpt->rx_q.rrd.count = adpt->rx_desc_cnt;
760	adpt->rx_q.rfd.count = adpt->rx_desc_cnt;
761
762	/* Ring DMA buffer. Each ring may need up to 8 bytes for alignment,
763	 * hence the additional padding bytes are allocated.
764	 */
765	ring_header->size = num_tx_descs * (adpt->tpd_size * 4) +
766			    num_rx_descs * (adpt->rfd_size * 4) +
767			    num_rx_descs * (adpt->rrd_size * 4) +
768			    8 + 2 * 8; /* 8 byte per one Tx and two Rx rings */
769
770	ring_header->used = 0;
771	ring_header->v_addr = dma_alloc_coherent(dev, ring_header->size,
772						 &ring_header->dma_addr,
773						 GFP_KERNEL);
774	if (!ring_header->v_addr)
775		return -ENOMEM;
776
777	ring_header->used = ALIGN(ring_header->dma_addr, 8) -
778							ring_header->dma_addr;
779
780	ret = emac_tx_q_desc_alloc(adpt, &adpt->tx_q);
781	if (ret) {
782		netdev_err(adpt->netdev, "error: Tx Queue alloc failed\n");
783		goto err_alloc_tx;
784	}
785
786	ret = emac_rx_descs_alloc(adpt);
787	if (ret) {
788		netdev_err(adpt->netdev, "error: Rx Queue alloc failed\n");
789		goto err_alloc_rx;
790	}
791
792	return 0;
793
794err_alloc_rx:
795	emac_tx_q_bufs_free(adpt);
796err_alloc_tx:
797	dma_free_coherent(dev, ring_header->size,
798			  ring_header->v_addr, ring_header->dma_addr);
799
800	ring_header->v_addr   = NULL;
801	ring_header->dma_addr = 0;
802	ring_header->size     = 0;
803	ring_header->used     = 0;
804
805	return ret;
806}
807
808/* Free all TX and RX descriptor rings */
809void emac_mac_rx_tx_rings_free_all(struct emac_adapter *adpt)
810{
811	struct emac_ring_header *ring_header = &adpt->ring_header;
812	struct device *dev = adpt->netdev->dev.parent;
813
814	emac_tx_q_bufs_free(adpt);
815	emac_rx_q_bufs_free(adpt);
816
817	dma_free_coherent(dev, ring_header->size,
818			  ring_header->v_addr, ring_header->dma_addr);
819
820	ring_header->v_addr   = NULL;
821	ring_header->dma_addr = 0;
822	ring_header->size     = 0;
823	ring_header->used     = 0;
824}
825
826/* Initialize descriptor rings */
827static void emac_mac_rx_tx_ring_reset_all(struct emac_adapter *adpt)
828{
829	unsigned int i;
830
831	adpt->tx_q.tpd.produce_idx = 0;
832	adpt->tx_q.tpd.consume_idx = 0;
833	for (i = 0; i < adpt->tx_q.tpd.count; i++)
834		adpt->tx_q.tpd.tpbuff[i].dma_addr = 0;
835
836	adpt->rx_q.rrd.produce_idx = 0;
837	adpt->rx_q.rrd.consume_idx = 0;
838	adpt->rx_q.rfd.produce_idx = 0;
839	adpt->rx_q.rfd.consume_idx = 0;
840	for (i = 0; i < adpt->rx_q.rfd.count; i++)
841		adpt->rx_q.rfd.rfbuff[i].dma_addr = 0;
842}
843
844/* Produce new receive free descriptor */
845static void emac_mac_rx_rfd_create(struct emac_adapter *adpt,
846				   struct emac_rx_queue *rx_q,
847				   dma_addr_t addr)
848{
849	u32 *hw_rfd = EMAC_RFD(rx_q, adpt->rfd_size, rx_q->rfd.produce_idx);
850
851	*(hw_rfd++) = lower_32_bits(addr);
852	*hw_rfd = upper_32_bits(addr);
853
854	if (++rx_q->rfd.produce_idx == rx_q->rfd.count)
855		rx_q->rfd.produce_idx = 0;
856}
857
858/* Fill up receive queue's RFD with preallocated receive buffers */
859static void emac_mac_rx_descs_refill(struct emac_adapter *adpt,
860				    struct emac_rx_queue *rx_q)
861{
862	struct emac_buffer *curr_rxbuf;
863	struct emac_buffer *next_rxbuf;
864	unsigned int count = 0;
865	u32 next_produce_idx;
866
867	next_produce_idx = rx_q->rfd.produce_idx + 1;
868	if (next_produce_idx == rx_q->rfd.count)
869		next_produce_idx = 0;
870
871	curr_rxbuf = GET_RFD_BUFFER(rx_q, rx_q->rfd.produce_idx);
872	next_rxbuf = GET_RFD_BUFFER(rx_q, next_produce_idx);
873
874	/* this always has a blank rx_buffer*/
875	while (!next_rxbuf->dma_addr) {
876		struct sk_buff *skb;
877		int ret;
878
879		skb = netdev_alloc_skb_ip_align(adpt->netdev, adpt->rxbuf_size);
880		if (!skb)
881			break;
882
883		curr_rxbuf->dma_addr =
884			dma_map_single(adpt->netdev->dev.parent, skb->data,
885				       adpt->rxbuf_size, DMA_FROM_DEVICE);
886
887		ret = dma_mapping_error(adpt->netdev->dev.parent,
888					curr_rxbuf->dma_addr);
889		if (ret) {
890			dev_kfree_skb(skb);
891			break;
892		}
893		curr_rxbuf->skb = skb;
894		curr_rxbuf->length = adpt->rxbuf_size;
895
896		emac_mac_rx_rfd_create(adpt, rx_q, curr_rxbuf->dma_addr);
897		next_produce_idx = rx_q->rfd.produce_idx + 1;
898		if (next_produce_idx == rx_q->rfd.count)
899			next_produce_idx = 0;
900
901		curr_rxbuf = GET_RFD_BUFFER(rx_q, rx_q->rfd.produce_idx);
902		next_rxbuf = GET_RFD_BUFFER(rx_q, next_produce_idx);
903		count++;
904	}
905
906	if (count) {
907		u32 prod_idx = (rx_q->rfd.produce_idx << rx_q->produce_shift) &
908				rx_q->produce_mask;
909		emac_reg_update32(adpt->base + rx_q->produce_reg,
910				  rx_q->produce_mask, prod_idx);
911	}
912}
913
914static void emac_adjust_link(struct net_device *netdev)
915{
916	struct emac_adapter *adpt = netdev_priv(netdev);
917	struct phy_device *phydev = netdev->phydev;
918
919	if (phydev->link) {
920		emac_mac_start(adpt);
921		emac_sgmii_link_change(adpt, true);
922	} else {
923		emac_sgmii_link_change(adpt, false);
924		emac_mac_stop(adpt);
925	}
926
927	phy_print_status(phydev);
928}
929
930/* Bringup the interface/HW */
931int emac_mac_up(struct emac_adapter *adpt)
932{
933	struct net_device *netdev = adpt->netdev;
934	int ret;
935
936	emac_mac_rx_tx_ring_reset_all(adpt);
937	emac_mac_config(adpt);
938	emac_mac_rx_descs_refill(adpt, &adpt->rx_q);
939
940	adpt->phydev->irq = PHY_POLL;
941	ret = phy_connect_direct(netdev, adpt->phydev, emac_adjust_link,
942				 PHY_INTERFACE_MODE_SGMII);
943	if (ret) {
944		netdev_err(adpt->netdev, "could not connect phy\n");
945		return ret;
946	}
947
948	phy_attached_print(adpt->phydev, NULL);
949
950	/* enable mac irq */
951	writel((u32)~DIS_INT, adpt->base + EMAC_INT_STATUS);
952	writel(adpt->irq.mask, adpt->base + EMAC_INT_MASK);
953
954	phy_start(adpt->phydev);
955
956	napi_enable(&adpt->rx_q.napi);
957	netif_start_queue(netdev);
958
959	return 0;
960}
961
962/* Bring down the interface/HW */
963void emac_mac_down(struct emac_adapter *adpt)
964{
965	struct net_device *netdev = adpt->netdev;
966
967	netif_stop_queue(netdev);
968	napi_disable(&adpt->rx_q.napi);
969
970	phy_stop(adpt->phydev);
971
972	/* Interrupts must be disabled before the PHY is disconnected, to
973	 * avoid a race condition where adjust_link is null when we get
974	 * an interrupt.
975	 */
976	writel(DIS_INT, adpt->base + EMAC_INT_STATUS);
977	writel(0, adpt->base + EMAC_INT_MASK);
978	synchronize_irq(adpt->irq.irq);
979
980	phy_disconnect(adpt->phydev);
981
982	emac_mac_reset(adpt);
983
984	emac_tx_q_descs_free(adpt);
985	netdev_reset_queue(adpt->netdev);
986	emac_rx_q_free_descs(adpt);
987}
988
989/* Consume next received packet descriptor */
990static bool emac_rx_process_rrd(struct emac_adapter *adpt,
991				struct emac_rx_queue *rx_q,
992				struct emac_rrd *rrd)
993{
994	u32 *hw_rrd = EMAC_RRD(rx_q, adpt->rrd_size, rx_q->rrd.consume_idx);
995
996	rrd->word[3] = *(hw_rrd + 3);
997
998	if (!RRD_UPDT(rrd))
999		return false;
1000
1001	rrd->word[4] = 0;
1002	rrd->word[5] = 0;
1003
1004	rrd->word[0] = *(hw_rrd++);
1005	rrd->word[1] = *(hw_rrd++);
1006	rrd->word[2] = *(hw_rrd++);
1007
1008	if (unlikely(RRD_NOR(rrd) != 1)) {
1009		netdev_err(adpt->netdev,
1010			   "error: multi-RFD not support yet! nor:%lu\n",
1011			   RRD_NOR(rrd));
1012	}
1013
1014	/* mark rrd as processed */
1015	RRD_UPDT_SET(rrd, 0);
1016	*hw_rrd = rrd->word[3];
1017
1018	if (++rx_q->rrd.consume_idx == rx_q->rrd.count)
1019		rx_q->rrd.consume_idx = 0;
1020
1021	return true;
1022}
1023
1024/* Produce new transmit descriptor */
1025static void emac_tx_tpd_create(struct emac_adapter *adpt,
1026			       struct emac_tx_queue *tx_q, struct emac_tpd *tpd)
1027{
1028	u32 *hw_tpd;
1029
1030	tx_q->tpd.last_produce_idx = tx_q->tpd.produce_idx;
1031	hw_tpd = EMAC_TPD(tx_q, adpt->tpd_size, tx_q->tpd.produce_idx);
1032
1033	if (++tx_q->tpd.produce_idx == tx_q->tpd.count)
1034		tx_q->tpd.produce_idx = 0;
1035
1036	*(hw_tpd++) = tpd->word[0];
1037	*(hw_tpd++) = tpd->word[1];
1038	*(hw_tpd++) = tpd->word[2];
1039	*hw_tpd = tpd->word[3];
1040}
1041
1042/* Mark the last transmit descriptor as such (for the transmit packet) */
1043static void emac_tx_tpd_mark_last(struct emac_adapter *adpt,
1044				  struct emac_tx_queue *tx_q)
1045{
1046	u32 *hw_tpd =
1047		EMAC_TPD(tx_q, adpt->tpd_size, tx_q->tpd.last_produce_idx);
1048	u32 tmp_tpd;
1049
1050	tmp_tpd = *(hw_tpd + 1);
1051	tmp_tpd |= EMAC_TPD_LAST_FRAGMENT;
1052	*(hw_tpd + 1) = tmp_tpd;
1053}
1054
1055static void emac_rx_rfd_clean(struct emac_rx_queue *rx_q, struct emac_rrd *rrd)
1056{
1057	struct emac_buffer *rfbuf = rx_q->rfd.rfbuff;
1058	u32 consume_idx = RRD_SI(rrd);
1059	unsigned int i;
1060
1061	for (i = 0; i < RRD_NOR(rrd); i++) {
1062		rfbuf[consume_idx].skb = NULL;
1063		if (++consume_idx == rx_q->rfd.count)
1064			consume_idx = 0;
1065	}
1066
1067	rx_q->rfd.consume_idx = consume_idx;
1068	rx_q->rfd.process_idx = consume_idx;
1069}
1070
1071/* Push the received skb to upper layers */
1072static void emac_receive_skb(struct emac_rx_queue *rx_q,
1073			     struct sk_buff *skb,
1074			     u16 vlan_tag, bool vlan_flag)
1075{
1076	if (vlan_flag) {
1077		u16 vlan;
1078
1079		EMAC_TAG_TO_VLAN(vlan_tag, vlan);
1080		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan);
1081	}
1082
1083	napi_gro_receive(&rx_q->napi, skb);
1084}
1085
1086/* Process receive event */
1087void emac_mac_rx_process(struct emac_adapter *adpt, struct emac_rx_queue *rx_q,
1088			 int *num_pkts, int max_pkts)
1089{
1090	u32 proc_idx, hw_consume_idx, num_consume_pkts;
1091	struct net_device *netdev  = adpt->netdev;
1092	struct emac_buffer *rfbuf;
1093	unsigned int count = 0;
1094	struct emac_rrd rrd;
1095	struct sk_buff *skb;
1096	u32 reg;
1097
1098	reg = readl_relaxed(adpt->base + rx_q->consume_reg);
1099
1100	hw_consume_idx = (reg & rx_q->consume_mask) >> rx_q->consume_shift;
1101	num_consume_pkts = (hw_consume_idx >= rx_q->rrd.consume_idx) ?
1102		(hw_consume_idx -  rx_q->rrd.consume_idx) :
1103		(hw_consume_idx + rx_q->rrd.count - rx_q->rrd.consume_idx);
1104
1105	do {
1106		if (!num_consume_pkts)
1107			break;
1108
1109		if (!emac_rx_process_rrd(adpt, rx_q, &rrd))
1110			break;
1111
1112		if (likely(RRD_NOR(&rrd) == 1)) {
1113			/* good receive */
1114			rfbuf = GET_RFD_BUFFER(rx_q, RRD_SI(&rrd));
1115			dma_unmap_single(adpt->netdev->dev.parent,
1116					 rfbuf->dma_addr, rfbuf->length,
1117					 DMA_FROM_DEVICE);
1118			rfbuf->dma_addr = 0;
1119			skb = rfbuf->skb;
1120		} else {
1121			netdev_err(adpt->netdev,
1122				   "error: multi-RFD not support yet!\n");
1123			break;
1124		}
1125		emac_rx_rfd_clean(rx_q, &rrd);
1126		num_consume_pkts--;
1127		count++;
1128
1129		/* Due to a HW issue in L4 check sum detection (UDP/TCP frags
1130		 * with DF set are marked as error), drop packets based on the
1131		 * error mask rather than the summary bit (ignoring L4F errors)
1132		 */
1133		if (rrd.word[EMAC_RRD_STATS_DW_IDX] & EMAC_RRD_ERROR) {
1134			netif_dbg(adpt, rx_status, adpt->netdev,
1135				  "Drop error packet[RRD: 0x%x:0x%x:0x%x:0x%x]\n",
1136				  rrd.word[0], rrd.word[1],
1137				  rrd.word[2], rrd.word[3]);
1138
1139			dev_kfree_skb(skb);
1140			continue;
1141		}
1142
1143		skb_put(skb, RRD_PKT_SIZE(&rrd) - ETH_FCS_LEN);
1144		skb->dev = netdev;
1145		skb->protocol = eth_type_trans(skb, skb->dev);
1146		if (netdev->features & NETIF_F_RXCSUM)
1147			skb->ip_summed = RRD_L4F(&rrd) ?
1148					  CHECKSUM_NONE : CHECKSUM_UNNECESSARY;
1149		else
1150			skb_checksum_none_assert(skb);
1151
1152		emac_receive_skb(rx_q, skb, (u16)RRD_CVALN_TAG(&rrd),
1153				 (bool)RRD_CVTAG(&rrd));
1154
1155		(*num_pkts)++;
1156	} while (*num_pkts < max_pkts);
1157
1158	if (count) {
1159		proc_idx = (rx_q->rfd.process_idx << rx_q->process_shft) &
1160				rx_q->process_mask;
1161		emac_reg_update32(adpt->base + rx_q->process_reg,
1162				  rx_q->process_mask, proc_idx);
1163		emac_mac_rx_descs_refill(adpt, rx_q);
1164	}
1165}
1166
1167/* get the number of free transmit descriptors */
1168static unsigned int emac_tpd_num_free_descs(struct emac_tx_queue *tx_q)
1169{
1170	u32 produce_idx = tx_q->tpd.produce_idx;
1171	u32 consume_idx = tx_q->tpd.consume_idx;
1172
1173	return (consume_idx > produce_idx) ?
1174		(consume_idx - produce_idx - 1) :
1175		(tx_q->tpd.count + consume_idx - produce_idx - 1);
1176}
1177
1178/* Process transmit event */
1179void emac_mac_tx_process(struct emac_adapter *adpt, struct emac_tx_queue *tx_q)
1180{
1181	u32 reg = readl_relaxed(adpt->base + tx_q->consume_reg);
1182	u32 hw_consume_idx, pkts_compl = 0, bytes_compl = 0;
1183	struct emac_buffer *tpbuf;
1184
1185	hw_consume_idx = (reg & tx_q->consume_mask) >> tx_q->consume_shift;
1186
1187	while (tx_q->tpd.consume_idx != hw_consume_idx) {
1188		tpbuf = GET_TPD_BUFFER(tx_q, tx_q->tpd.consume_idx);
1189		if (tpbuf->dma_addr) {
1190			dma_unmap_page(adpt->netdev->dev.parent,
1191				       tpbuf->dma_addr, tpbuf->length,
1192				       DMA_TO_DEVICE);
1193			tpbuf->dma_addr = 0;
1194		}
1195
1196		if (tpbuf->skb) {
1197			pkts_compl++;
1198			bytes_compl += tpbuf->skb->len;
1199			dev_consume_skb_irq(tpbuf->skb);
1200			tpbuf->skb = NULL;
1201		}
1202
1203		if (++tx_q->tpd.consume_idx == tx_q->tpd.count)
1204			tx_q->tpd.consume_idx = 0;
1205	}
1206
1207	netdev_completed_queue(adpt->netdev, pkts_compl, bytes_compl);
1208
1209	if (netif_queue_stopped(adpt->netdev))
1210		if (emac_tpd_num_free_descs(tx_q) > (MAX_SKB_FRAGS + 1))
1211			netif_wake_queue(adpt->netdev);
1212}
1213
1214/* Initialize all queue data structures */
1215void emac_mac_rx_tx_ring_init_all(struct platform_device *pdev,
1216				  struct emac_adapter *adpt)
1217{
1218	adpt->rx_q.netdev = adpt->netdev;
1219
1220	adpt->rx_q.produce_reg  = EMAC_MAILBOX_0;
1221	adpt->rx_q.produce_mask = RFD0_PROD_IDX_BMSK;
1222	adpt->rx_q.produce_shift = RFD0_PROD_IDX_SHFT;
1223
1224	adpt->rx_q.process_reg  = EMAC_MAILBOX_0;
1225	adpt->rx_q.process_mask = RFD0_PROC_IDX_BMSK;
1226	adpt->rx_q.process_shft = RFD0_PROC_IDX_SHFT;
1227
1228	adpt->rx_q.consume_reg  = EMAC_MAILBOX_3;
1229	adpt->rx_q.consume_mask = RFD0_CONS_IDX_BMSK;
1230	adpt->rx_q.consume_shift = RFD0_CONS_IDX_SHFT;
1231
1232	adpt->rx_q.irq          = &adpt->irq;
1233	adpt->rx_q.intr         = adpt->irq.mask & ISR_RX_PKT;
1234
1235	adpt->tx_q.produce_reg  = EMAC_MAILBOX_15;
1236	adpt->tx_q.produce_mask = NTPD_PROD_IDX_BMSK;
1237	adpt->tx_q.produce_shift = NTPD_PROD_IDX_SHFT;
1238
1239	adpt->tx_q.consume_reg  = EMAC_MAILBOX_2;
1240	adpt->tx_q.consume_mask = NTPD_CONS_IDX_BMSK;
1241	adpt->tx_q.consume_shift = NTPD_CONS_IDX_SHFT;
1242}
1243
1244/* Fill up transmit descriptors with TSO and Checksum offload information */
1245static int emac_tso_csum(struct emac_adapter *adpt,
1246			 struct emac_tx_queue *tx_q,
1247			 struct sk_buff *skb,
1248			 struct emac_tpd *tpd)
1249{
1250	unsigned int hdr_len;
1251	int ret;
1252
1253	if (skb_is_gso(skb)) {
1254		if (skb_header_cloned(skb)) {
1255			ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1256			if (unlikely(ret))
1257				return ret;
1258		}
1259
1260		if (skb->protocol == htons(ETH_P_IP)) {
1261			u32 pkt_len = ((unsigned char *)ip_hdr(skb) - skb->data)
1262				       + ntohs(ip_hdr(skb)->tot_len);
1263			if (skb->len > pkt_len) {
1264				ret = pskb_trim(skb, pkt_len);
1265				if (unlikely(ret))
1266					return ret;
1267			}
1268		}
1269
1270		hdr_len = skb_tcp_all_headers(skb);
1271		if (unlikely(skb->len == hdr_len)) {
1272			/* we only need to do csum */
1273			netif_warn(adpt, tx_err, adpt->netdev,
1274				   "tso not needed for packet with 0 data\n");
1275			goto do_csum;
1276		}
1277
1278		if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
1279			ip_hdr(skb)->check = 0;
1280			tcp_hdr(skb)->check =
1281				~csum_tcpudp_magic(ip_hdr(skb)->saddr,
1282						   ip_hdr(skb)->daddr,
1283						   0, IPPROTO_TCP, 0);
1284			TPD_IPV4_SET(tpd, 1);
1285		}
1286
1287		if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
1288			/* ipv6 tso need an extra tpd */
1289			struct emac_tpd extra_tpd;
1290
1291			memset(tpd, 0, sizeof(*tpd));
1292			memset(&extra_tpd, 0, sizeof(extra_tpd));
1293
1294			tcp_v6_gso_csum_prep(skb);
1295
1296			TPD_PKT_LEN_SET(&extra_tpd, skb->len);
1297			TPD_LSO_SET(&extra_tpd, 1);
1298			TPD_LSOV_SET(&extra_tpd, 1);
1299			emac_tx_tpd_create(adpt, tx_q, &extra_tpd);
1300			TPD_LSOV_SET(tpd, 1);
1301		}
1302
1303		TPD_LSO_SET(tpd, 1);
1304		TPD_TCPHDR_OFFSET_SET(tpd, skb_transport_offset(skb));
1305		TPD_MSS_SET(tpd, skb_shinfo(skb)->gso_size);
1306		return 0;
1307	}
1308
1309do_csum:
1310	if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
1311		unsigned int css, cso;
1312
1313		cso = skb_transport_offset(skb);
1314		if (unlikely(cso & 0x1)) {
1315			netdev_err(adpt->netdev,
1316				   "error: payload offset should be even\n");
1317			return -EINVAL;
1318		}
1319		css = cso + skb->csum_offset;
1320
1321		TPD_PAYLOAD_OFFSET_SET(tpd, cso >> 1);
1322		TPD_CXSUM_OFFSET_SET(tpd, css >> 1);
1323		TPD_CSX_SET(tpd, 1);
1324	}
1325
1326	return 0;
1327}
1328
1329/* Fill up transmit descriptors */
1330static void emac_tx_fill_tpd(struct emac_adapter *adpt,
1331			     struct emac_tx_queue *tx_q, struct sk_buff *skb,
1332			     struct emac_tpd *tpd)
1333{
1334	unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
1335	unsigned int first = tx_q->tpd.produce_idx;
1336	unsigned int len = skb_headlen(skb);
1337	struct emac_buffer *tpbuf = NULL;
1338	unsigned int mapped_len = 0;
1339	unsigned int i;
1340	int count = 0;
1341	int ret;
1342
1343	/* if Large Segment Offload is (in TCP Segmentation Offload struct) */
1344	if (TPD_LSO(tpd)) {
1345		mapped_len = skb_tcp_all_headers(skb);
1346
1347		tpbuf = GET_TPD_BUFFER(tx_q, tx_q->tpd.produce_idx);
1348		tpbuf->length = mapped_len;
1349		tpbuf->dma_addr = dma_map_page(adpt->netdev->dev.parent,
1350					       virt_to_page(skb->data),
1351					       offset_in_page(skb->data),
1352					       tpbuf->length,
1353					       DMA_TO_DEVICE);
1354		ret = dma_mapping_error(adpt->netdev->dev.parent,
1355					tpbuf->dma_addr);
1356		if (ret)
1357			goto error;
1358
1359		TPD_BUFFER_ADDR_L_SET(tpd, lower_32_bits(tpbuf->dma_addr));
1360		TPD_BUFFER_ADDR_H_SET(tpd, upper_32_bits(tpbuf->dma_addr));
1361		TPD_BUF_LEN_SET(tpd, tpbuf->length);
1362		emac_tx_tpd_create(adpt, tx_q, tpd);
1363		count++;
1364	}
1365
1366	if (mapped_len < len) {
1367		tpbuf = GET_TPD_BUFFER(tx_q, tx_q->tpd.produce_idx);
1368		tpbuf->length = len - mapped_len;
1369		tpbuf->dma_addr = dma_map_page(adpt->netdev->dev.parent,
1370					       virt_to_page(skb->data +
1371							    mapped_len),
1372					       offset_in_page(skb->data +
1373							      mapped_len),
1374					       tpbuf->length, DMA_TO_DEVICE);
1375		ret = dma_mapping_error(adpt->netdev->dev.parent,
1376					tpbuf->dma_addr);
1377		if (ret)
1378			goto error;
1379
1380		TPD_BUFFER_ADDR_L_SET(tpd, lower_32_bits(tpbuf->dma_addr));
1381		TPD_BUFFER_ADDR_H_SET(tpd, upper_32_bits(tpbuf->dma_addr));
1382		TPD_BUF_LEN_SET(tpd, tpbuf->length);
1383		emac_tx_tpd_create(adpt, tx_q, tpd);
1384		count++;
1385	}
1386
1387	for (i = 0; i < nr_frags; i++) {
1388		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1389
1390		tpbuf = GET_TPD_BUFFER(tx_q, tx_q->tpd.produce_idx);
1391		tpbuf->length = skb_frag_size(frag);
1392		tpbuf->dma_addr = skb_frag_dma_map(adpt->netdev->dev.parent,
1393						   frag, 0, tpbuf->length,
1394						   DMA_TO_DEVICE);
1395		ret = dma_mapping_error(adpt->netdev->dev.parent,
1396					tpbuf->dma_addr);
1397		if (ret)
1398			goto error;
1399
1400		TPD_BUFFER_ADDR_L_SET(tpd, lower_32_bits(tpbuf->dma_addr));
1401		TPD_BUFFER_ADDR_H_SET(tpd, upper_32_bits(tpbuf->dma_addr));
1402		TPD_BUF_LEN_SET(tpd, tpbuf->length);
1403		emac_tx_tpd_create(adpt, tx_q, tpd);
1404		count++;
1405	}
1406
1407	/* The last tpd */
1408	wmb();
1409	emac_tx_tpd_mark_last(adpt, tx_q);
1410
1411	/* The last buffer info contain the skb address,
1412	 * so it will be freed after unmap
1413	 */
1414	tpbuf->skb = skb;
1415
1416	return;
1417
1418error:
1419	/* One of the memory mappings failed, so undo everything */
1420	tx_q->tpd.produce_idx = first;
1421
1422	while (count--) {
1423		tpbuf = GET_TPD_BUFFER(tx_q, first);
1424		dma_unmap_page(adpt->netdev->dev.parent, tpbuf->dma_addr,
1425			       tpbuf->length, DMA_TO_DEVICE);
1426		tpbuf->dma_addr = 0;
1427		tpbuf->length = 0;
1428
1429		if (++first == tx_q->tpd.count)
1430			first = 0;
1431	}
1432
1433	dev_kfree_skb(skb);
1434}
1435
1436/* Transmit the packet using specified transmit queue */
1437netdev_tx_t emac_mac_tx_buf_send(struct emac_adapter *adpt,
1438				 struct emac_tx_queue *tx_q,
1439				 struct sk_buff *skb)
1440{
1441	struct emac_tpd tpd;
1442	u32 prod_idx;
1443	int len;
1444
1445	memset(&tpd, 0, sizeof(tpd));
1446
1447	if (emac_tso_csum(adpt, tx_q, skb, &tpd) != 0) {
1448		dev_kfree_skb_any(skb);
1449		return NETDEV_TX_OK;
1450	}
1451
1452	if (skb_vlan_tag_present(skb)) {
1453		u16 tag;
1454
1455		EMAC_VLAN_TO_TAG(skb_vlan_tag_get(skb), tag);
1456		TPD_CVLAN_TAG_SET(&tpd, tag);
1457		TPD_INSTC_SET(&tpd, 1);
1458	}
1459
1460	if (skb_network_offset(skb) != ETH_HLEN)
1461		TPD_TYP_SET(&tpd, 1);
1462
1463	len = skb->len;
1464	emac_tx_fill_tpd(adpt, tx_q, skb, &tpd);
1465
1466	netdev_sent_queue(adpt->netdev, len);
1467
1468	/* Make sure the are enough free descriptors to hold one
1469	 * maximum-sized SKB.  We need one desc for each fragment,
1470	 * one for the checksum (emac_tso_csum), one for TSO, and
1471	 * one for the SKB header.
1472	 */
1473	if (emac_tpd_num_free_descs(tx_q) < (MAX_SKB_FRAGS + 3))
1474		netif_stop_queue(adpt->netdev);
1475
1476	/* update produce idx */
1477	prod_idx = (tx_q->tpd.produce_idx << tx_q->produce_shift) &
1478		    tx_q->produce_mask;
1479	emac_reg_update32(adpt->base + tx_q->produce_reg,
1480			  tx_q->produce_mask, prod_idx);
1481
1482	return NETDEV_TX_OK;
1483}
1484