1/************************************************************************
2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3 * Copyright(c) 2002-2010 Exar Corp.
4 *
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice.  This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
12 *
13 * Credits:
14 * Jeff Garzik		: For pointing out the improper error condition
15 *			  check in the s2io_xmit routine and also some
16 *			  issues in the Tx watch dog function. Also for
17 *			  patiently answering all those innumerable
18 *			  questions regaring the 2.6 porting issues.
19 * Stephen Hemminger	: Providing proper 2.6 porting mechanism for some
20 *			  macros available only in 2.6 Kernel.
21 * Francois Romieu	: For pointing out all code part that were
22 *			  deprecated and also styling related comments.
23 * Grant Grundler	: For helping me get rid of some Architecture
24 *			  dependent code.
25 * Christopher Hellwig	: Some more 2.6 specific issues in the driver.
26 *
27 * The module loadable parameters that are supported by the driver and a brief
28 * explanation of all the variables.
29 *
30 * rx_ring_num : This can be used to program the number of receive rings used
31 * in the driver.
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 *     This is also an array of size 8.
34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35 *		values are 1, 2.
36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
38 * Tx descriptors that can be associated with each corresponding FIFO.
39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40 *     2(MSI_X). Default value is '2(MSI_X)'
41 * lro_max_pkts: This parameter defines maximum number of packets can be
42 *     aggregated as a single large packet
43 * napi: This parameter used to enable/disable NAPI (polling Rx)
44 *     Possible values '1' for enable and '0' for disable. Default is '1'
45 * vlan_tag_strip: This can be used to enable or disable vlan stripping.
46 *                 Possible values '1' for enable , '0' for disable.
47 *                 Default is '2' - which means disable in promisc mode
48 *                 and enable in non-promiscuous mode.
49 * multiq: This parameter used to enable/disable MULTIQUEUE support.
50 *      Possible values '1' for enable and '0' for disable. Default is '0'
51 ************************************************************************/
52
53#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
54
55#include <linux/module.h>
56#include <linux/types.h>
57#include <linux/errno.h>
58#include <linux/ioport.h>
59#include <linux/pci.h>
60#include <linux/dma-mapping.h>
61#include <linux/kernel.h>
62#include <linux/netdevice.h>
63#include <linux/etherdevice.h>
64#include <linux/mdio.h>
65#include <linux/skbuff.h>
66#include <linux/init.h>
67#include <linux/delay.h>
68#include <linux/stddef.h>
69#include <linux/ioctl.h>
70#include <linux/timex.h>
71#include <linux/ethtool.h>
72#include <linux/workqueue.h>
73#include <linux/if_vlan.h>
74#include <linux/ip.h>
75#include <linux/tcp.h>
76#include <linux/uaccess.h>
77#include <linux/io.h>
78#include <linux/io-64-nonatomic-lo-hi.h>
79#include <linux/slab.h>
80#include <linux/prefetch.h>
81#include <net/tcp.h>
82#include <net/checksum.h>
83
84#include <asm/div64.h>
85#include <asm/irq.h>
86
87/* local include */
88#include "s2io.h"
89#include "s2io-regs.h"
90
91#define DRV_VERSION "2.0.26.28"
92
93/* S2io Driver name & version. */
94static const char s2io_driver_name[] = "Neterion";
95static const char s2io_driver_version[] = DRV_VERSION;
96
97static const int rxd_size[2] = {32, 48};
98static const int rxd_count[2] = {127, 85};
99
100static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
101{
102	int ret;
103
104	ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
105	       (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
106
107	return ret;
108}
109
110/*
111 * Cards with following subsystem_id have a link state indication
112 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
113 * macro below identifies these cards given the subsystem_id.
114 */
115#define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid)		\
116	(dev_type == XFRAME_I_DEVICE) ?					\
117	((((subid >= 0x600B) && (subid <= 0x600D)) ||			\
118	  ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
119
120#define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
121				      ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
122
123static inline int is_s2io_card_up(const struct s2io_nic *sp)
124{
125	return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
126}
127
128/* Ethtool related variables and Macros. */
129static const char s2io_gstrings[][ETH_GSTRING_LEN] = {
130	"Register test\t(offline)",
131	"Eeprom test\t(offline)",
132	"Link test\t(online)",
133	"RLDRAM test\t(offline)",
134	"BIST Test\t(offline)"
135};
136
137static const char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
138	{"tmac_frms"},
139	{"tmac_data_octets"},
140	{"tmac_drop_frms"},
141	{"tmac_mcst_frms"},
142	{"tmac_bcst_frms"},
143	{"tmac_pause_ctrl_frms"},
144	{"tmac_ttl_octets"},
145	{"tmac_ucst_frms"},
146	{"tmac_nucst_frms"},
147	{"tmac_any_err_frms"},
148	{"tmac_ttl_less_fb_octets"},
149	{"tmac_vld_ip_octets"},
150	{"tmac_vld_ip"},
151	{"tmac_drop_ip"},
152	{"tmac_icmp"},
153	{"tmac_rst_tcp"},
154	{"tmac_tcp"},
155	{"tmac_udp"},
156	{"rmac_vld_frms"},
157	{"rmac_data_octets"},
158	{"rmac_fcs_err_frms"},
159	{"rmac_drop_frms"},
160	{"rmac_vld_mcst_frms"},
161	{"rmac_vld_bcst_frms"},
162	{"rmac_in_rng_len_err_frms"},
163	{"rmac_out_rng_len_err_frms"},
164	{"rmac_long_frms"},
165	{"rmac_pause_ctrl_frms"},
166	{"rmac_unsup_ctrl_frms"},
167	{"rmac_ttl_octets"},
168	{"rmac_accepted_ucst_frms"},
169	{"rmac_accepted_nucst_frms"},
170	{"rmac_discarded_frms"},
171	{"rmac_drop_events"},
172	{"rmac_ttl_less_fb_octets"},
173	{"rmac_ttl_frms"},
174	{"rmac_usized_frms"},
175	{"rmac_osized_frms"},
176	{"rmac_frag_frms"},
177	{"rmac_jabber_frms"},
178	{"rmac_ttl_64_frms"},
179	{"rmac_ttl_65_127_frms"},
180	{"rmac_ttl_128_255_frms"},
181	{"rmac_ttl_256_511_frms"},
182	{"rmac_ttl_512_1023_frms"},
183	{"rmac_ttl_1024_1518_frms"},
184	{"rmac_ip"},
185	{"rmac_ip_octets"},
186	{"rmac_hdr_err_ip"},
187	{"rmac_drop_ip"},
188	{"rmac_icmp"},
189	{"rmac_tcp"},
190	{"rmac_udp"},
191	{"rmac_err_drp_udp"},
192	{"rmac_xgmii_err_sym"},
193	{"rmac_frms_q0"},
194	{"rmac_frms_q1"},
195	{"rmac_frms_q2"},
196	{"rmac_frms_q3"},
197	{"rmac_frms_q4"},
198	{"rmac_frms_q5"},
199	{"rmac_frms_q6"},
200	{"rmac_frms_q7"},
201	{"rmac_full_q0"},
202	{"rmac_full_q1"},
203	{"rmac_full_q2"},
204	{"rmac_full_q3"},
205	{"rmac_full_q4"},
206	{"rmac_full_q5"},
207	{"rmac_full_q6"},
208	{"rmac_full_q7"},
209	{"rmac_pause_cnt"},
210	{"rmac_xgmii_data_err_cnt"},
211	{"rmac_xgmii_ctrl_err_cnt"},
212	{"rmac_accepted_ip"},
213	{"rmac_err_tcp"},
214	{"rd_req_cnt"},
215	{"new_rd_req_cnt"},
216	{"new_rd_req_rtry_cnt"},
217	{"rd_rtry_cnt"},
218	{"wr_rtry_rd_ack_cnt"},
219	{"wr_req_cnt"},
220	{"new_wr_req_cnt"},
221	{"new_wr_req_rtry_cnt"},
222	{"wr_rtry_cnt"},
223	{"wr_disc_cnt"},
224	{"rd_rtry_wr_ack_cnt"},
225	{"txp_wr_cnt"},
226	{"txd_rd_cnt"},
227	{"txd_wr_cnt"},
228	{"rxd_rd_cnt"},
229	{"rxd_wr_cnt"},
230	{"txf_rd_cnt"},
231	{"rxf_wr_cnt"}
232};
233
234static const char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
235	{"rmac_ttl_1519_4095_frms"},
236	{"rmac_ttl_4096_8191_frms"},
237	{"rmac_ttl_8192_max_frms"},
238	{"rmac_ttl_gt_max_frms"},
239	{"rmac_osized_alt_frms"},
240	{"rmac_jabber_alt_frms"},
241	{"rmac_gt_max_alt_frms"},
242	{"rmac_vlan_frms"},
243	{"rmac_len_discard"},
244	{"rmac_fcs_discard"},
245	{"rmac_pf_discard"},
246	{"rmac_da_discard"},
247	{"rmac_red_discard"},
248	{"rmac_rts_discard"},
249	{"rmac_ingm_full_discard"},
250	{"link_fault_cnt"}
251};
252
253static const char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
254	{"\n DRIVER STATISTICS"},
255	{"single_bit_ecc_errs"},
256	{"double_bit_ecc_errs"},
257	{"parity_err_cnt"},
258	{"serious_err_cnt"},
259	{"soft_reset_cnt"},
260	{"fifo_full_cnt"},
261	{"ring_0_full_cnt"},
262	{"ring_1_full_cnt"},
263	{"ring_2_full_cnt"},
264	{"ring_3_full_cnt"},
265	{"ring_4_full_cnt"},
266	{"ring_5_full_cnt"},
267	{"ring_6_full_cnt"},
268	{"ring_7_full_cnt"},
269	{"alarm_transceiver_temp_high"},
270	{"alarm_transceiver_temp_low"},
271	{"alarm_laser_bias_current_high"},
272	{"alarm_laser_bias_current_low"},
273	{"alarm_laser_output_power_high"},
274	{"alarm_laser_output_power_low"},
275	{"warn_transceiver_temp_high"},
276	{"warn_transceiver_temp_low"},
277	{"warn_laser_bias_current_high"},
278	{"warn_laser_bias_current_low"},
279	{"warn_laser_output_power_high"},
280	{"warn_laser_output_power_low"},
281	{"lro_aggregated_pkts"},
282	{"lro_flush_both_count"},
283	{"lro_out_of_sequence_pkts"},
284	{"lro_flush_due_to_max_pkts"},
285	{"lro_avg_aggr_pkts"},
286	{"mem_alloc_fail_cnt"},
287	{"pci_map_fail_cnt"},
288	{"watchdog_timer_cnt"},
289	{"mem_allocated"},
290	{"mem_freed"},
291	{"link_up_cnt"},
292	{"link_down_cnt"},
293	{"link_up_time"},
294	{"link_down_time"},
295	{"tx_tcode_buf_abort_cnt"},
296	{"tx_tcode_desc_abort_cnt"},
297	{"tx_tcode_parity_err_cnt"},
298	{"tx_tcode_link_loss_cnt"},
299	{"tx_tcode_list_proc_err_cnt"},
300	{"rx_tcode_parity_err_cnt"},
301	{"rx_tcode_abort_cnt"},
302	{"rx_tcode_parity_abort_cnt"},
303	{"rx_tcode_rda_fail_cnt"},
304	{"rx_tcode_unkn_prot_cnt"},
305	{"rx_tcode_fcs_err_cnt"},
306	{"rx_tcode_buf_size_err_cnt"},
307	{"rx_tcode_rxd_corrupt_cnt"},
308	{"rx_tcode_unkn_err_cnt"},
309	{"tda_err_cnt"},
310	{"pfc_err_cnt"},
311	{"pcc_err_cnt"},
312	{"tti_err_cnt"},
313	{"tpa_err_cnt"},
314	{"sm_err_cnt"},
315	{"lso_err_cnt"},
316	{"mac_tmac_err_cnt"},
317	{"mac_rmac_err_cnt"},
318	{"xgxs_txgxs_err_cnt"},
319	{"xgxs_rxgxs_err_cnt"},
320	{"rc_err_cnt"},
321	{"prc_pcix_err_cnt"},
322	{"rpa_err_cnt"},
323	{"rda_err_cnt"},
324	{"rti_err_cnt"},
325	{"mc_err_cnt"}
326};
327
328#define S2IO_XENA_STAT_LEN	ARRAY_SIZE(ethtool_xena_stats_keys)
329#define S2IO_ENHANCED_STAT_LEN	ARRAY_SIZE(ethtool_enhanced_stats_keys)
330#define S2IO_DRIVER_STAT_LEN	ARRAY_SIZE(ethtool_driver_stats_keys)
331
332#define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN)
333#define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN)
334
335#define XFRAME_I_STAT_STRINGS_LEN (XFRAME_I_STAT_LEN * ETH_GSTRING_LEN)
336#define XFRAME_II_STAT_STRINGS_LEN (XFRAME_II_STAT_LEN * ETH_GSTRING_LEN)
337
338#define S2IO_TEST_LEN	ARRAY_SIZE(s2io_gstrings)
339#define S2IO_STRINGS_LEN	(S2IO_TEST_LEN * ETH_GSTRING_LEN)
340
341/* copy mac addr to def_mac_addr array */
342static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
343{
344	sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
345	sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
346	sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
347	sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
348	sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
349	sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
350}
351
352/*
353 * Constants to be programmed into the Xena's registers, to configure
354 * the XAUI.
355 */
356
357#define	END_SIGN	0x0
358static const u64 herc_act_dtx_cfg[] = {
359	/* Set address */
360	0x8000051536750000ULL, 0x80000515367500E0ULL,
361	/* Write data */
362	0x8000051536750004ULL, 0x80000515367500E4ULL,
363	/* Set address */
364	0x80010515003F0000ULL, 0x80010515003F00E0ULL,
365	/* Write data */
366	0x80010515003F0004ULL, 0x80010515003F00E4ULL,
367	/* Set address */
368	0x801205150D440000ULL, 0x801205150D4400E0ULL,
369	/* Write data */
370	0x801205150D440004ULL, 0x801205150D4400E4ULL,
371	/* Set address */
372	0x80020515F2100000ULL, 0x80020515F21000E0ULL,
373	/* Write data */
374	0x80020515F2100004ULL, 0x80020515F21000E4ULL,
375	/* Done */
376	END_SIGN
377};
378
379static const u64 xena_dtx_cfg[] = {
380	/* Set address */
381	0x8000051500000000ULL, 0x80000515000000E0ULL,
382	/* Write data */
383	0x80000515D9350004ULL, 0x80000515D93500E4ULL,
384	/* Set address */
385	0x8001051500000000ULL, 0x80010515000000E0ULL,
386	/* Write data */
387	0x80010515001E0004ULL, 0x80010515001E00E4ULL,
388	/* Set address */
389	0x8002051500000000ULL, 0x80020515000000E0ULL,
390	/* Write data */
391	0x80020515F2100004ULL, 0x80020515F21000E4ULL,
392	END_SIGN
393};
394
395/*
396 * Constants for Fixing the MacAddress problem seen mostly on
397 * Alpha machines.
398 */
399static const u64 fix_mac[] = {
400	0x0060000000000000ULL, 0x0060600000000000ULL,
401	0x0040600000000000ULL, 0x0000600000000000ULL,
402	0x0020600000000000ULL, 0x0060600000000000ULL,
403	0x0020600000000000ULL, 0x0060600000000000ULL,
404	0x0020600000000000ULL, 0x0060600000000000ULL,
405	0x0020600000000000ULL, 0x0060600000000000ULL,
406	0x0020600000000000ULL, 0x0060600000000000ULL,
407	0x0020600000000000ULL, 0x0060600000000000ULL,
408	0x0020600000000000ULL, 0x0060600000000000ULL,
409	0x0020600000000000ULL, 0x0060600000000000ULL,
410	0x0020600000000000ULL, 0x0060600000000000ULL,
411	0x0020600000000000ULL, 0x0060600000000000ULL,
412	0x0020600000000000ULL, 0x0000600000000000ULL,
413	0x0040600000000000ULL, 0x0060600000000000ULL,
414	END_SIGN
415};
416
417MODULE_LICENSE("GPL");
418MODULE_VERSION(DRV_VERSION);
419
420
421/* Module Loadable parameters. */
422S2IO_PARM_INT(tx_fifo_num, FIFO_DEFAULT_NUM);
423S2IO_PARM_INT(rx_ring_num, 1);
424S2IO_PARM_INT(multiq, 0);
425S2IO_PARM_INT(rx_ring_mode, 1);
426S2IO_PARM_INT(use_continuous_tx_intrs, 1);
427S2IO_PARM_INT(rmac_pause_time, 0x100);
428S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
429S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
430S2IO_PARM_INT(shared_splits, 0);
431S2IO_PARM_INT(tmac_util_period, 5);
432S2IO_PARM_INT(rmac_util_period, 5);
433S2IO_PARM_INT(l3l4hdr_size, 128);
434/* 0 is no steering, 1 is Priority steering, 2 is Default steering */
435S2IO_PARM_INT(tx_steering_type, TX_DEFAULT_STEERING);
436/* Frequency of Rx desc syncs expressed as power of 2 */
437S2IO_PARM_INT(rxsync_frequency, 3);
438/* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
439S2IO_PARM_INT(intr_type, 2);
440/* Large receive offload feature */
441
442/* Max pkts to be aggregated by LRO at one time. If not specified,
443 * aggregation happens until we hit max IP pkt size(64K)
444 */
445S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
446S2IO_PARM_INT(indicate_max_pkts, 0);
447
448S2IO_PARM_INT(napi, 1);
449S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
450
451static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
452{DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
453static unsigned int rx_ring_sz[MAX_RX_RINGS] =
454{[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
455static unsigned int rts_frm_len[MAX_RX_RINGS] =
456{[0 ...(MAX_RX_RINGS - 1)] = 0 };
457
458module_param_array(tx_fifo_len, uint, NULL, 0);
459module_param_array(rx_ring_sz, uint, NULL, 0);
460module_param_array(rts_frm_len, uint, NULL, 0);
461
462/*
463 * S2IO device table.
464 * This table lists all the devices that this driver supports.
465 */
466static const struct pci_device_id s2io_tbl[] = {
467	{PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
468	 PCI_ANY_ID, PCI_ANY_ID},
469	{PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
470	 PCI_ANY_ID, PCI_ANY_ID},
471	{PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
472	 PCI_ANY_ID, PCI_ANY_ID},
473	{PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
474	 PCI_ANY_ID, PCI_ANY_ID},
475	{0,}
476};
477
478MODULE_DEVICE_TABLE(pci, s2io_tbl);
479
480static const struct pci_error_handlers s2io_err_handler = {
481	.error_detected = s2io_io_error_detected,
482	.slot_reset = s2io_io_slot_reset,
483	.resume = s2io_io_resume,
484};
485
486static struct pci_driver s2io_driver = {
487	.name = "S2IO",
488	.id_table = s2io_tbl,
489	.probe = s2io_init_nic,
490	.remove = s2io_rem_nic,
491	.err_handler = &s2io_err_handler,
492};
493
494/* A simplifier macro used both by init and free shared_mem Fns(). */
495#define TXD_MEM_PAGE_CNT(len, per_each) DIV_ROUND_UP(len, per_each)
496
497/* netqueue manipulation helper functions */
498static inline void s2io_stop_all_tx_queue(struct s2io_nic *sp)
499{
500	if (!sp->config.multiq) {
501		int i;
502
503		for (i = 0; i < sp->config.tx_fifo_num; i++)
504			sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_STOP;
505	}
506	netif_tx_stop_all_queues(sp->dev);
507}
508
509static inline void s2io_stop_tx_queue(struct s2io_nic *sp, int fifo_no)
510{
511	if (!sp->config.multiq)
512		sp->mac_control.fifos[fifo_no].queue_state =
513			FIFO_QUEUE_STOP;
514
515	netif_tx_stop_all_queues(sp->dev);
516}
517
518static inline void s2io_start_all_tx_queue(struct s2io_nic *sp)
519{
520	if (!sp->config.multiq) {
521		int i;
522
523		for (i = 0; i < sp->config.tx_fifo_num; i++)
524			sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
525	}
526	netif_tx_start_all_queues(sp->dev);
527}
528
529static inline void s2io_wake_all_tx_queue(struct s2io_nic *sp)
530{
531	if (!sp->config.multiq) {
532		int i;
533
534		for (i = 0; i < sp->config.tx_fifo_num; i++)
535			sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
536	}
537	netif_tx_wake_all_queues(sp->dev);
538}
539
540static inline void s2io_wake_tx_queue(
541	struct fifo_info *fifo, int cnt, u8 multiq)
542{
543
544	if (multiq) {
545		if (cnt && __netif_subqueue_stopped(fifo->dev, fifo->fifo_no))
546			netif_wake_subqueue(fifo->dev, fifo->fifo_no);
547	} else if (cnt && (fifo->queue_state == FIFO_QUEUE_STOP)) {
548		if (netif_queue_stopped(fifo->dev)) {
549			fifo->queue_state = FIFO_QUEUE_START;
550			netif_wake_queue(fifo->dev);
551		}
552	}
553}
554
555/**
556 * init_shared_mem - Allocation and Initialization of Memory
557 * @nic: Device private variable.
558 * Description: The function allocates all the memory areas shared
559 * between the NIC and the driver. This includes Tx descriptors,
560 * Rx descriptors and the statistics block.
561 */
562
563static int init_shared_mem(struct s2io_nic *nic)
564{
565	u32 size;
566	void *tmp_v_addr, *tmp_v_addr_next;
567	dma_addr_t tmp_p_addr, tmp_p_addr_next;
568	struct RxD_block *pre_rxd_blk = NULL;
569	int i, j, blk_cnt;
570	int lst_size, lst_per_page;
571	struct net_device *dev = nic->dev;
572	unsigned long tmp;
573	struct buffAdd *ba;
574	struct config_param *config = &nic->config;
575	struct mac_info *mac_control = &nic->mac_control;
576	unsigned long long mem_allocated = 0;
577
578	/* Allocation and initialization of TXDLs in FIFOs */
579	size = 0;
580	for (i = 0; i < config->tx_fifo_num; i++) {
581		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
582
583		size += tx_cfg->fifo_len;
584	}
585	if (size > MAX_AVAILABLE_TXDS) {
586		DBG_PRINT(ERR_DBG,
587			  "Too many TxDs requested: %d, max supported: %d\n",
588			  size, MAX_AVAILABLE_TXDS);
589		return -EINVAL;
590	}
591
592	size = 0;
593	for (i = 0; i < config->tx_fifo_num; i++) {
594		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
595
596		size = tx_cfg->fifo_len;
597		/*
598		 * Legal values are from 2 to 8192
599		 */
600		if (size < 2) {
601			DBG_PRINT(ERR_DBG, "Fifo %d: Invalid length (%d) - "
602				  "Valid lengths are 2 through 8192\n",
603				  i, size);
604			return -EINVAL;
605		}
606	}
607
608	lst_size = (sizeof(struct TxD) * config->max_txds);
609	lst_per_page = PAGE_SIZE / lst_size;
610
611	for (i = 0; i < config->tx_fifo_num; i++) {
612		struct fifo_info *fifo = &mac_control->fifos[i];
613		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
614		int fifo_len = tx_cfg->fifo_len;
615		int list_holder_size = fifo_len * sizeof(struct list_info_hold);
616
617		fifo->list_info = kzalloc(list_holder_size, GFP_KERNEL);
618		if (!fifo->list_info) {
619			DBG_PRINT(INFO_DBG, "Malloc failed for list_info\n");
620			return -ENOMEM;
621		}
622		mem_allocated += list_holder_size;
623	}
624	for (i = 0; i < config->tx_fifo_num; i++) {
625		int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
626						lst_per_page);
627		struct fifo_info *fifo = &mac_control->fifos[i];
628		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
629
630		fifo->tx_curr_put_info.offset = 0;
631		fifo->tx_curr_put_info.fifo_len = tx_cfg->fifo_len - 1;
632		fifo->tx_curr_get_info.offset = 0;
633		fifo->tx_curr_get_info.fifo_len = tx_cfg->fifo_len - 1;
634		fifo->fifo_no = i;
635		fifo->nic = nic;
636		fifo->max_txds = MAX_SKB_FRAGS + 2;
637		fifo->dev = dev;
638
639		for (j = 0; j < page_num; j++) {
640			int k = 0;
641			dma_addr_t tmp_p;
642			void *tmp_v;
643			tmp_v = dma_alloc_coherent(&nic->pdev->dev, PAGE_SIZE,
644						   &tmp_p, GFP_KERNEL);
645			if (!tmp_v) {
646				DBG_PRINT(INFO_DBG,
647					  "dma_alloc_coherent failed for TxDL\n");
648				return -ENOMEM;
649			}
650			/* If we got a zero DMA address(can happen on
651			 * certain platforms like PPC), reallocate.
652			 * Store virtual address of page we don't want,
653			 * to be freed later.
654			 */
655			if (!tmp_p) {
656				mac_control->zerodma_virt_addr = tmp_v;
657				DBG_PRINT(INIT_DBG,
658					  "%s: Zero DMA address for TxDL. "
659					  "Virtual address %p\n",
660					  dev->name, tmp_v);
661				tmp_v = dma_alloc_coherent(&nic->pdev->dev,
662							   PAGE_SIZE, &tmp_p,
663							   GFP_KERNEL);
664				if (!tmp_v) {
665					DBG_PRINT(INFO_DBG,
666						  "dma_alloc_coherent failed for TxDL\n");
667					return -ENOMEM;
668				}
669				mem_allocated += PAGE_SIZE;
670			}
671			while (k < lst_per_page) {
672				int l = (j * lst_per_page) + k;
673				if (l == tx_cfg->fifo_len)
674					break;
675				fifo->list_info[l].list_virt_addr =
676					tmp_v + (k * lst_size);
677				fifo->list_info[l].list_phy_addr =
678					tmp_p + (k * lst_size);
679				k++;
680			}
681		}
682	}
683
684	for (i = 0; i < config->tx_fifo_num; i++) {
685		struct fifo_info *fifo = &mac_control->fifos[i];
686		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
687
688		size = tx_cfg->fifo_len;
689		fifo->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
690		if (!fifo->ufo_in_band_v)
691			return -ENOMEM;
692		mem_allocated += (size * sizeof(u64));
693	}
694
695	/* Allocation and initialization of RXDs in Rings */
696	size = 0;
697	for (i = 0; i < config->rx_ring_num; i++) {
698		struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
699		struct ring_info *ring = &mac_control->rings[i];
700
701		if (rx_cfg->num_rxd % (rxd_count[nic->rxd_mode] + 1)) {
702			DBG_PRINT(ERR_DBG, "%s: Ring%d RxD count is not a "
703				  "multiple of RxDs per Block\n",
704				  dev->name, i);
705			return FAILURE;
706		}
707		size += rx_cfg->num_rxd;
708		ring->block_count = rx_cfg->num_rxd /
709			(rxd_count[nic->rxd_mode] + 1);
710		ring->pkt_cnt = rx_cfg->num_rxd - ring->block_count;
711	}
712	if (nic->rxd_mode == RXD_MODE_1)
713		size = (size * (sizeof(struct RxD1)));
714	else
715		size = (size * (sizeof(struct RxD3)));
716
717	for (i = 0; i < config->rx_ring_num; i++) {
718		struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
719		struct ring_info *ring = &mac_control->rings[i];
720
721		ring->rx_curr_get_info.block_index = 0;
722		ring->rx_curr_get_info.offset = 0;
723		ring->rx_curr_get_info.ring_len = rx_cfg->num_rxd - 1;
724		ring->rx_curr_put_info.block_index = 0;
725		ring->rx_curr_put_info.offset = 0;
726		ring->rx_curr_put_info.ring_len = rx_cfg->num_rxd - 1;
727		ring->nic = nic;
728		ring->ring_no = i;
729
730		blk_cnt = rx_cfg->num_rxd / (rxd_count[nic->rxd_mode] + 1);
731		/*  Allocating all the Rx blocks */
732		for (j = 0; j < blk_cnt; j++) {
733			struct rx_block_info *rx_blocks;
734			int l;
735
736			rx_blocks = &ring->rx_blocks[j];
737			size = SIZE_OF_BLOCK;	/* size is always page size */
738			tmp_v_addr = dma_alloc_coherent(&nic->pdev->dev, size,
739							&tmp_p_addr, GFP_KERNEL);
740			if (tmp_v_addr == NULL) {
741				/*
742				 * In case of failure, free_shared_mem()
743				 * is called, which should free any
744				 * memory that was alloced till the
745				 * failure happened.
746				 */
747				rx_blocks->block_virt_addr = tmp_v_addr;
748				return -ENOMEM;
749			}
750			mem_allocated += size;
751
752			size = sizeof(struct rxd_info) *
753				rxd_count[nic->rxd_mode];
754			rx_blocks->block_virt_addr = tmp_v_addr;
755			rx_blocks->block_dma_addr = tmp_p_addr;
756			rx_blocks->rxds = kmalloc(size,  GFP_KERNEL);
757			if (!rx_blocks->rxds)
758				return -ENOMEM;
759			mem_allocated += size;
760			for (l = 0; l < rxd_count[nic->rxd_mode]; l++) {
761				rx_blocks->rxds[l].virt_addr =
762					rx_blocks->block_virt_addr +
763					(rxd_size[nic->rxd_mode] * l);
764				rx_blocks->rxds[l].dma_addr =
765					rx_blocks->block_dma_addr +
766					(rxd_size[nic->rxd_mode] * l);
767			}
768		}
769		/* Interlinking all Rx Blocks */
770		for (j = 0; j < blk_cnt; j++) {
771			int next = (j + 1) % blk_cnt;
772			tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
773			tmp_v_addr_next = ring->rx_blocks[next].block_virt_addr;
774			tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
775			tmp_p_addr_next = ring->rx_blocks[next].block_dma_addr;
776
777			pre_rxd_blk = tmp_v_addr;
778			pre_rxd_blk->reserved_2_pNext_RxD_block =
779				(unsigned long)tmp_v_addr_next;
780			pre_rxd_blk->pNext_RxD_Blk_physical =
781				(u64)tmp_p_addr_next;
782		}
783	}
784	if (nic->rxd_mode == RXD_MODE_3B) {
785		/*
786		 * Allocation of Storages for buffer addresses in 2BUFF mode
787		 * and the buffers as well.
788		 */
789		for (i = 0; i < config->rx_ring_num; i++) {
790			struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
791			struct ring_info *ring = &mac_control->rings[i];
792
793			blk_cnt = rx_cfg->num_rxd /
794				(rxd_count[nic->rxd_mode] + 1);
795			size = sizeof(struct buffAdd *) * blk_cnt;
796			ring->ba = kmalloc(size, GFP_KERNEL);
797			if (!ring->ba)
798				return -ENOMEM;
799			mem_allocated += size;
800			for (j = 0; j < blk_cnt; j++) {
801				int k = 0;
802
803				size = sizeof(struct buffAdd) *
804					(rxd_count[nic->rxd_mode] + 1);
805				ring->ba[j] = kmalloc(size, GFP_KERNEL);
806				if (!ring->ba[j])
807					return -ENOMEM;
808				mem_allocated += size;
809				while (k != rxd_count[nic->rxd_mode]) {
810					ba = &ring->ba[j][k];
811					size = BUF0_LEN + ALIGN_SIZE;
812					ba->ba_0_org = kmalloc(size, GFP_KERNEL);
813					if (!ba->ba_0_org)
814						return -ENOMEM;
815					mem_allocated += size;
816					tmp = (unsigned long)ba->ba_0_org;
817					tmp += ALIGN_SIZE;
818					tmp &= ~((unsigned long)ALIGN_SIZE);
819					ba->ba_0 = (void *)tmp;
820
821					size = BUF1_LEN + ALIGN_SIZE;
822					ba->ba_1_org = kmalloc(size, GFP_KERNEL);
823					if (!ba->ba_1_org)
824						return -ENOMEM;
825					mem_allocated += size;
826					tmp = (unsigned long)ba->ba_1_org;
827					tmp += ALIGN_SIZE;
828					tmp &= ~((unsigned long)ALIGN_SIZE);
829					ba->ba_1 = (void *)tmp;
830					k++;
831				}
832			}
833		}
834	}
835
836	/* Allocation and initialization of Statistics block */
837	size = sizeof(struct stat_block);
838	mac_control->stats_mem =
839		dma_alloc_coherent(&nic->pdev->dev, size,
840				   &mac_control->stats_mem_phy, GFP_KERNEL);
841
842	if (!mac_control->stats_mem) {
843		/*
844		 * In case of failure, free_shared_mem() is called, which
845		 * should free any memory that was alloced till the
846		 * failure happened.
847		 */
848		return -ENOMEM;
849	}
850	mem_allocated += size;
851	mac_control->stats_mem_sz = size;
852
853	tmp_v_addr = mac_control->stats_mem;
854	mac_control->stats_info = tmp_v_addr;
855	memset(tmp_v_addr, 0, size);
856	DBG_PRINT(INIT_DBG, "%s: Ring Mem PHY: 0x%llx\n",
857		dev_name(&nic->pdev->dev), (unsigned long long)tmp_p_addr);
858	mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
859	return SUCCESS;
860}
861
862/**
863 * free_shared_mem - Free the allocated Memory
864 * @nic:  Device private variable.
865 * Description: This function is to free all memory locations allocated by
866 * the init_shared_mem() function and return it to the kernel.
867 */
868
869static void free_shared_mem(struct s2io_nic *nic)
870{
871	int i, j, blk_cnt, size;
872	void *tmp_v_addr;
873	dma_addr_t tmp_p_addr;
874	int lst_size, lst_per_page;
875	struct net_device *dev;
876	int page_num = 0;
877	struct config_param *config;
878	struct mac_info *mac_control;
879	struct stat_block *stats;
880	struct swStat *swstats;
881
882	if (!nic)
883		return;
884
885	dev = nic->dev;
886
887	config = &nic->config;
888	mac_control = &nic->mac_control;
889	stats = mac_control->stats_info;
890	swstats = &stats->sw_stat;
891
892	lst_size = sizeof(struct TxD) * config->max_txds;
893	lst_per_page = PAGE_SIZE / lst_size;
894
895	for (i = 0; i < config->tx_fifo_num; i++) {
896		struct fifo_info *fifo = &mac_control->fifos[i];
897		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
898
899		page_num = TXD_MEM_PAGE_CNT(tx_cfg->fifo_len, lst_per_page);
900		for (j = 0; j < page_num; j++) {
901			int mem_blks = (j * lst_per_page);
902			struct list_info_hold *fli;
903
904			if (!fifo->list_info)
905				return;
906
907			fli = &fifo->list_info[mem_blks];
908			if (!fli->list_virt_addr)
909				break;
910			dma_free_coherent(&nic->pdev->dev, PAGE_SIZE,
911					  fli->list_virt_addr,
912					  fli->list_phy_addr);
913			swstats->mem_freed += PAGE_SIZE;
914		}
915		/* If we got a zero DMA address during allocation,
916		 * free the page now
917		 */
918		if (mac_control->zerodma_virt_addr) {
919			dma_free_coherent(&nic->pdev->dev, PAGE_SIZE,
920					  mac_control->zerodma_virt_addr,
921					  (dma_addr_t)0);
922			DBG_PRINT(INIT_DBG,
923				  "%s: Freeing TxDL with zero DMA address. "
924				  "Virtual address %p\n",
925				  dev->name, mac_control->zerodma_virt_addr);
926			swstats->mem_freed += PAGE_SIZE;
927		}
928		kfree(fifo->list_info);
929		swstats->mem_freed += tx_cfg->fifo_len *
930			sizeof(struct list_info_hold);
931	}
932
933	size = SIZE_OF_BLOCK;
934	for (i = 0; i < config->rx_ring_num; i++) {
935		struct ring_info *ring = &mac_control->rings[i];
936
937		blk_cnt = ring->block_count;
938		for (j = 0; j < blk_cnt; j++) {
939			tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
940			tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
941			if (tmp_v_addr == NULL)
942				break;
943			dma_free_coherent(&nic->pdev->dev, size, tmp_v_addr,
944					  tmp_p_addr);
945			swstats->mem_freed += size;
946			kfree(ring->rx_blocks[j].rxds);
947			swstats->mem_freed += sizeof(struct rxd_info) *
948				rxd_count[nic->rxd_mode];
949		}
950	}
951
952	if (nic->rxd_mode == RXD_MODE_3B) {
953		/* Freeing buffer storage addresses in 2BUFF mode. */
954		for (i = 0; i < config->rx_ring_num; i++) {
955			struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
956			struct ring_info *ring = &mac_control->rings[i];
957
958			blk_cnt = rx_cfg->num_rxd /
959				(rxd_count[nic->rxd_mode] + 1);
960			for (j = 0; j < blk_cnt; j++) {
961				int k = 0;
962				if (!ring->ba[j])
963					continue;
964				while (k != rxd_count[nic->rxd_mode]) {
965					struct buffAdd *ba = &ring->ba[j][k];
966					kfree(ba->ba_0_org);
967					swstats->mem_freed +=
968						BUF0_LEN + ALIGN_SIZE;
969					kfree(ba->ba_1_org);
970					swstats->mem_freed +=
971						BUF1_LEN + ALIGN_SIZE;
972					k++;
973				}
974				kfree(ring->ba[j]);
975				swstats->mem_freed += sizeof(struct buffAdd) *
976					(rxd_count[nic->rxd_mode] + 1);
977			}
978			kfree(ring->ba);
979			swstats->mem_freed += sizeof(struct buffAdd *) *
980				blk_cnt;
981		}
982	}
983
984	for (i = 0; i < nic->config.tx_fifo_num; i++) {
985		struct fifo_info *fifo = &mac_control->fifos[i];
986		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
987
988		if (fifo->ufo_in_band_v) {
989			swstats->mem_freed += tx_cfg->fifo_len *
990				sizeof(u64);
991			kfree(fifo->ufo_in_band_v);
992		}
993	}
994
995	if (mac_control->stats_mem) {
996		swstats->mem_freed += mac_control->stats_mem_sz;
997		dma_free_coherent(&nic->pdev->dev, mac_control->stats_mem_sz,
998				  mac_control->stats_mem,
999				  mac_control->stats_mem_phy);
1000	}
1001}
1002
1003/*
1004 * s2io_verify_pci_mode -
1005 */
1006
1007static int s2io_verify_pci_mode(struct s2io_nic *nic)
1008{
1009	struct XENA_dev_config __iomem *bar0 = nic->bar0;
1010	register u64 val64 = 0;
1011	int     mode;
1012
1013	val64 = readq(&bar0->pci_mode);
1014	mode = (u8)GET_PCI_MODE(val64);
1015
1016	if (val64 & PCI_MODE_UNKNOWN_MODE)
1017		return -1;      /* Unknown PCI mode */
1018	return mode;
1019}
1020
1021#define NEC_VENID   0x1033
1022#define NEC_DEVID   0x0125
1023static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
1024{
1025	struct pci_dev *tdev = NULL;
1026	for_each_pci_dev(tdev) {
1027		if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
1028			if (tdev->bus == s2io_pdev->bus->parent) {
1029				pci_dev_put(tdev);
1030				return 1;
1031			}
1032		}
1033	}
1034	return 0;
1035}
1036
1037static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
1038/*
1039 * s2io_print_pci_mode -
1040 */
1041static int s2io_print_pci_mode(struct s2io_nic *nic)
1042{
1043	struct XENA_dev_config __iomem *bar0 = nic->bar0;
1044	register u64 val64 = 0;
1045	int	mode;
1046	struct config_param *config = &nic->config;
1047	const char *pcimode;
1048
1049	val64 = readq(&bar0->pci_mode);
1050	mode = (u8)GET_PCI_MODE(val64);
1051
1052	if (val64 & PCI_MODE_UNKNOWN_MODE)
1053		return -1;	/* Unknown PCI mode */
1054
1055	config->bus_speed = bus_speed[mode];
1056
1057	if (s2io_on_nec_bridge(nic->pdev)) {
1058		DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
1059			  nic->dev->name);
1060		return mode;
1061	}
1062
1063	switch (mode) {
1064	case PCI_MODE_PCI_33:
1065		pcimode = "33MHz PCI bus";
1066		break;
1067	case PCI_MODE_PCI_66:
1068		pcimode = "66MHz PCI bus";
1069		break;
1070	case PCI_MODE_PCIX_M1_66:
1071		pcimode = "66MHz PCIX(M1) bus";
1072		break;
1073	case PCI_MODE_PCIX_M1_100:
1074		pcimode = "100MHz PCIX(M1) bus";
1075		break;
1076	case PCI_MODE_PCIX_M1_133:
1077		pcimode = "133MHz PCIX(M1) bus";
1078		break;
1079	case PCI_MODE_PCIX_M2_66:
1080		pcimode = "133MHz PCIX(M2) bus";
1081		break;
1082	case PCI_MODE_PCIX_M2_100:
1083		pcimode = "200MHz PCIX(M2) bus";
1084		break;
1085	case PCI_MODE_PCIX_M2_133:
1086		pcimode = "266MHz PCIX(M2) bus";
1087		break;
1088	default:
1089		pcimode = "unsupported bus!";
1090		mode = -1;
1091	}
1092
1093	DBG_PRINT(ERR_DBG, "%s: Device is on %d bit %s\n",
1094		  nic->dev->name, val64 & PCI_MODE_32_BITS ? 32 : 64, pcimode);
1095
1096	return mode;
1097}
1098
1099/**
1100 *  init_tti - Initialization transmit traffic interrupt scheme
1101 *  @nic: device private variable
1102 *  @link: link status (UP/DOWN) used to enable/disable continuous
1103 *  transmit interrupts
1104 *  @may_sleep: parameter indicates if sleeping when waiting for
1105 *  command complete
1106 *  Description: The function configures transmit traffic interrupts
1107 *  Return Value:  SUCCESS on success and
1108 *  '-1' on failure
1109 */
1110
1111static int init_tti(struct s2io_nic *nic, int link, bool may_sleep)
1112{
1113	struct XENA_dev_config __iomem *bar0 = nic->bar0;
1114	register u64 val64 = 0;
1115	int i;
1116	struct config_param *config = &nic->config;
1117
1118	for (i = 0; i < config->tx_fifo_num; i++) {
1119		/*
1120		 * TTI Initialization. Default Tx timer gets us about
1121		 * 250 interrupts per sec. Continuous interrupts are enabled
1122		 * by default.
1123		 */
1124		if (nic->device_type == XFRAME_II_DEVICE) {
1125			int count = (nic->config.bus_speed * 125)/2;
1126			val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1127		} else
1128			val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1129
1130		val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1131			TTI_DATA1_MEM_TX_URNG_B(0x10) |
1132			TTI_DATA1_MEM_TX_URNG_C(0x30) |
1133			TTI_DATA1_MEM_TX_TIMER_AC_EN;
1134		if (i == 0)
1135			if (use_continuous_tx_intrs && (link == LINK_UP))
1136				val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1137		writeq(val64, &bar0->tti_data1_mem);
1138
1139		if (nic->config.intr_type == MSI_X) {
1140			val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1141				TTI_DATA2_MEM_TX_UFC_B(0x100) |
1142				TTI_DATA2_MEM_TX_UFC_C(0x200) |
1143				TTI_DATA2_MEM_TX_UFC_D(0x300);
1144		} else {
1145			if ((nic->config.tx_steering_type ==
1146			     TX_DEFAULT_STEERING) &&
1147			    (config->tx_fifo_num > 1) &&
1148			    (i >= nic->udp_fifo_idx) &&
1149			    (i < (nic->udp_fifo_idx +
1150				  nic->total_udp_fifos)))
1151				val64 = TTI_DATA2_MEM_TX_UFC_A(0x50) |
1152					TTI_DATA2_MEM_TX_UFC_B(0x80) |
1153					TTI_DATA2_MEM_TX_UFC_C(0x100) |
1154					TTI_DATA2_MEM_TX_UFC_D(0x120);
1155			else
1156				val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1157					TTI_DATA2_MEM_TX_UFC_B(0x20) |
1158					TTI_DATA2_MEM_TX_UFC_C(0x40) |
1159					TTI_DATA2_MEM_TX_UFC_D(0x80);
1160		}
1161
1162		writeq(val64, &bar0->tti_data2_mem);
1163
1164		val64 = TTI_CMD_MEM_WE |
1165			TTI_CMD_MEM_STROBE_NEW_CMD |
1166			TTI_CMD_MEM_OFFSET(i);
1167		writeq(val64, &bar0->tti_command_mem);
1168
1169		if (wait_for_cmd_complete(&bar0->tti_command_mem,
1170					  TTI_CMD_MEM_STROBE_NEW_CMD,
1171					  S2IO_BIT_RESET, may_sleep) != SUCCESS)
1172			return FAILURE;
1173	}
1174
1175	return SUCCESS;
1176}
1177
1178/**
1179 *  init_nic - Initialization of hardware
1180 *  @nic: device private variable
1181 *  Description: The function sequentially configures every block
1182 *  of the H/W from their reset values.
1183 *  Return Value:  SUCCESS on success and
1184 *  '-1' on failure (endian settings incorrect).
1185 */
1186
1187static int init_nic(struct s2io_nic *nic)
1188{
1189	struct XENA_dev_config __iomem *bar0 = nic->bar0;
1190	struct net_device *dev = nic->dev;
1191	register u64 val64 = 0;
1192	void __iomem *add;
1193	u32 time;
1194	int i, j;
1195	int dtx_cnt = 0;
1196	unsigned long long mem_share;
1197	int mem_size;
1198	struct config_param *config = &nic->config;
1199	struct mac_info *mac_control = &nic->mac_control;
1200
1201	/* to set the swapper controle on the card */
1202	if (s2io_set_swapper(nic)) {
1203		DBG_PRINT(ERR_DBG, "ERROR: Setting Swapper failed\n");
1204		return -EIO;
1205	}
1206
1207	/*
1208	 * Herc requires EOI to be removed from reset before XGXS, so..
1209	 */
1210	if (nic->device_type & XFRAME_II_DEVICE) {
1211		val64 = 0xA500000000ULL;
1212		writeq(val64, &bar0->sw_reset);
1213		msleep(500);
1214		val64 = readq(&bar0->sw_reset);
1215	}
1216
1217	/* Remove XGXS from reset state */
1218	val64 = 0;
1219	writeq(val64, &bar0->sw_reset);
1220	msleep(500);
1221	val64 = readq(&bar0->sw_reset);
1222
1223	/* Ensure that it's safe to access registers by checking
1224	 * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1225	 */
1226	if (nic->device_type == XFRAME_II_DEVICE) {
1227		for (i = 0; i < 50; i++) {
1228			val64 = readq(&bar0->adapter_status);
1229			if (!(val64 & ADAPTER_STATUS_RIC_RUNNING))
1230				break;
1231			msleep(10);
1232		}
1233		if (i == 50)
1234			return -ENODEV;
1235	}
1236
1237	/*  Enable Receiving broadcasts */
1238	add = &bar0->mac_cfg;
1239	val64 = readq(&bar0->mac_cfg);
1240	val64 |= MAC_RMAC_BCAST_ENABLE;
1241	writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1242	writel((u32)val64, add);
1243	writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1244	writel((u32) (val64 >> 32), (add + 4));
1245
1246	/* Read registers in all blocks */
1247	val64 = readq(&bar0->mac_int_mask);
1248	val64 = readq(&bar0->mc_int_mask);
1249	val64 = readq(&bar0->xgxs_int_mask);
1250
1251	/*  Set MTU */
1252	val64 = dev->mtu;
1253	writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1254
1255	if (nic->device_type & XFRAME_II_DEVICE) {
1256		while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
1257			SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1258					  &bar0->dtx_control, UF);
1259			if (dtx_cnt & 0x1)
1260				msleep(1); /* Necessary!! */
1261			dtx_cnt++;
1262		}
1263	} else {
1264		while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1265			SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1266					  &bar0->dtx_control, UF);
1267			val64 = readq(&bar0->dtx_control);
1268			dtx_cnt++;
1269		}
1270	}
1271
1272	/*  Tx DMA Initialization */
1273	val64 = 0;
1274	writeq(val64, &bar0->tx_fifo_partition_0);
1275	writeq(val64, &bar0->tx_fifo_partition_1);
1276	writeq(val64, &bar0->tx_fifo_partition_2);
1277	writeq(val64, &bar0->tx_fifo_partition_3);
1278
1279	for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1280		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
1281
1282		val64 |= vBIT(tx_cfg->fifo_len - 1, ((j * 32) + 19), 13) |
1283			vBIT(tx_cfg->fifo_priority, ((j * 32) + 5), 3);
1284
1285		if (i == (config->tx_fifo_num - 1)) {
1286			if (i % 2 == 0)
1287				i++;
1288		}
1289
1290		switch (i) {
1291		case 1:
1292			writeq(val64, &bar0->tx_fifo_partition_0);
1293			val64 = 0;
1294			j = 0;
1295			break;
1296		case 3:
1297			writeq(val64, &bar0->tx_fifo_partition_1);
1298			val64 = 0;
1299			j = 0;
1300			break;
1301		case 5:
1302			writeq(val64, &bar0->tx_fifo_partition_2);
1303			val64 = 0;
1304			j = 0;
1305			break;
1306		case 7:
1307			writeq(val64, &bar0->tx_fifo_partition_3);
1308			val64 = 0;
1309			j = 0;
1310			break;
1311		default:
1312			j++;
1313			break;
1314		}
1315	}
1316
1317	/*
1318	 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1319	 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1320	 */
1321	if ((nic->device_type == XFRAME_I_DEVICE) && (nic->pdev->revision < 4))
1322		writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1323
1324	val64 = readq(&bar0->tx_fifo_partition_0);
1325	DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1326		  &bar0->tx_fifo_partition_0, (unsigned long long)val64);
1327
1328	/*
1329	 * Initialization of Tx_PA_CONFIG register to ignore packet
1330	 * integrity checking.
1331	 */
1332	val64 = readq(&bar0->tx_pa_cfg);
1333	val64 |= TX_PA_CFG_IGNORE_FRM_ERR |
1334		TX_PA_CFG_IGNORE_SNAP_OUI |
1335		TX_PA_CFG_IGNORE_LLC_CTRL |
1336		TX_PA_CFG_IGNORE_L2_ERR;
1337	writeq(val64, &bar0->tx_pa_cfg);
1338
1339	/* Rx DMA initialization. */
1340	val64 = 0;
1341	for (i = 0; i < config->rx_ring_num; i++) {
1342		struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
1343
1344		val64 |= vBIT(rx_cfg->ring_priority, (5 + (i * 8)), 3);
1345	}
1346	writeq(val64, &bar0->rx_queue_priority);
1347
1348	/*
1349	 * Allocating equal share of memory to all the
1350	 * configured Rings.
1351	 */
1352	val64 = 0;
1353	if (nic->device_type & XFRAME_II_DEVICE)
1354		mem_size = 32;
1355	else
1356		mem_size = 64;
1357
1358	for (i = 0; i < config->rx_ring_num; i++) {
1359		switch (i) {
1360		case 0:
1361			mem_share = (mem_size / config->rx_ring_num +
1362				     mem_size % config->rx_ring_num);
1363			val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1364			continue;
1365		case 1:
1366			mem_share = (mem_size / config->rx_ring_num);
1367			val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1368			continue;
1369		case 2:
1370			mem_share = (mem_size / config->rx_ring_num);
1371			val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1372			continue;
1373		case 3:
1374			mem_share = (mem_size / config->rx_ring_num);
1375			val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1376			continue;
1377		case 4:
1378			mem_share = (mem_size / config->rx_ring_num);
1379			val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1380			continue;
1381		case 5:
1382			mem_share = (mem_size / config->rx_ring_num);
1383			val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1384			continue;
1385		case 6:
1386			mem_share = (mem_size / config->rx_ring_num);
1387			val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1388			continue;
1389		case 7:
1390			mem_share = (mem_size / config->rx_ring_num);
1391			val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1392			continue;
1393		}
1394	}
1395	writeq(val64, &bar0->rx_queue_cfg);
1396
1397	/*
1398	 * Filling Tx round robin registers
1399	 * as per the number of FIFOs for equal scheduling priority
1400	 */
1401	switch (config->tx_fifo_num) {
1402	case 1:
1403		val64 = 0x0;
1404		writeq(val64, &bar0->tx_w_round_robin_0);
1405		writeq(val64, &bar0->tx_w_round_robin_1);
1406		writeq(val64, &bar0->tx_w_round_robin_2);
1407		writeq(val64, &bar0->tx_w_round_robin_3);
1408		writeq(val64, &bar0->tx_w_round_robin_4);
1409		break;
1410	case 2:
1411		val64 = 0x0001000100010001ULL;
1412		writeq(val64, &bar0->tx_w_round_robin_0);
1413		writeq(val64, &bar0->tx_w_round_robin_1);
1414		writeq(val64, &bar0->tx_w_round_robin_2);
1415		writeq(val64, &bar0->tx_w_round_robin_3);
1416		val64 = 0x0001000100000000ULL;
1417		writeq(val64, &bar0->tx_w_round_robin_4);
1418		break;
1419	case 3:
1420		val64 = 0x0001020001020001ULL;
1421		writeq(val64, &bar0->tx_w_round_robin_0);
1422		val64 = 0x0200010200010200ULL;
1423		writeq(val64, &bar0->tx_w_round_robin_1);
1424		val64 = 0x0102000102000102ULL;
1425		writeq(val64, &bar0->tx_w_round_robin_2);
1426		val64 = 0x0001020001020001ULL;
1427		writeq(val64, &bar0->tx_w_round_robin_3);
1428		val64 = 0x0200010200000000ULL;
1429		writeq(val64, &bar0->tx_w_round_robin_4);
1430		break;
1431	case 4:
1432		val64 = 0x0001020300010203ULL;
1433		writeq(val64, &bar0->tx_w_round_robin_0);
1434		writeq(val64, &bar0->tx_w_round_robin_1);
1435		writeq(val64, &bar0->tx_w_round_robin_2);
1436		writeq(val64, &bar0->tx_w_round_robin_3);
1437		val64 = 0x0001020300000000ULL;
1438		writeq(val64, &bar0->tx_w_round_robin_4);
1439		break;
1440	case 5:
1441		val64 = 0x0001020304000102ULL;
1442		writeq(val64, &bar0->tx_w_round_robin_0);
1443		val64 = 0x0304000102030400ULL;
1444		writeq(val64, &bar0->tx_w_round_robin_1);
1445		val64 = 0x0102030400010203ULL;
1446		writeq(val64, &bar0->tx_w_round_robin_2);
1447		val64 = 0x0400010203040001ULL;
1448		writeq(val64, &bar0->tx_w_round_robin_3);
1449		val64 = 0x0203040000000000ULL;
1450		writeq(val64, &bar0->tx_w_round_robin_4);
1451		break;
1452	case 6:
1453		val64 = 0x0001020304050001ULL;
1454		writeq(val64, &bar0->tx_w_round_robin_0);
1455		val64 = 0x0203040500010203ULL;
1456		writeq(val64, &bar0->tx_w_round_robin_1);
1457		val64 = 0x0405000102030405ULL;
1458		writeq(val64, &bar0->tx_w_round_robin_2);
1459		val64 = 0x0001020304050001ULL;
1460		writeq(val64, &bar0->tx_w_round_robin_3);
1461		val64 = 0x0203040500000000ULL;
1462		writeq(val64, &bar0->tx_w_round_robin_4);
1463		break;
1464	case 7:
1465		val64 = 0x0001020304050600ULL;
1466		writeq(val64, &bar0->tx_w_round_robin_0);
1467		val64 = 0x0102030405060001ULL;
1468		writeq(val64, &bar0->tx_w_round_robin_1);
1469		val64 = 0x0203040506000102ULL;
1470		writeq(val64, &bar0->tx_w_round_robin_2);
1471		val64 = 0x0304050600010203ULL;
1472		writeq(val64, &bar0->tx_w_round_robin_3);
1473		val64 = 0x0405060000000000ULL;
1474		writeq(val64, &bar0->tx_w_round_robin_4);
1475		break;
1476	case 8:
1477		val64 = 0x0001020304050607ULL;
1478		writeq(val64, &bar0->tx_w_round_robin_0);
1479		writeq(val64, &bar0->tx_w_round_robin_1);
1480		writeq(val64, &bar0->tx_w_round_robin_2);
1481		writeq(val64, &bar0->tx_w_round_robin_3);
1482		val64 = 0x0001020300000000ULL;
1483		writeq(val64, &bar0->tx_w_round_robin_4);
1484		break;
1485	}
1486
1487	/* Enable all configured Tx FIFO partitions */
1488	val64 = readq(&bar0->tx_fifo_partition_0);
1489	val64 |= (TX_FIFO_PARTITION_EN);
1490	writeq(val64, &bar0->tx_fifo_partition_0);
1491
1492	/* Filling the Rx round robin registers as per the
1493	 * number of Rings and steering based on QoS with
1494	 * equal priority.
1495	 */
1496	switch (config->rx_ring_num) {
1497	case 1:
1498		val64 = 0x0;
1499		writeq(val64, &bar0->rx_w_round_robin_0);
1500		writeq(val64, &bar0->rx_w_round_robin_1);
1501		writeq(val64, &bar0->rx_w_round_robin_2);
1502		writeq(val64, &bar0->rx_w_round_robin_3);
1503		writeq(val64, &bar0->rx_w_round_robin_4);
1504
1505		val64 = 0x8080808080808080ULL;
1506		writeq(val64, &bar0->rts_qos_steering);
1507		break;
1508	case 2:
1509		val64 = 0x0001000100010001ULL;
1510		writeq(val64, &bar0->rx_w_round_robin_0);
1511		writeq(val64, &bar0->rx_w_round_robin_1);
1512		writeq(val64, &bar0->rx_w_round_robin_2);
1513		writeq(val64, &bar0->rx_w_round_robin_3);
1514		val64 = 0x0001000100000000ULL;
1515		writeq(val64, &bar0->rx_w_round_robin_4);
1516
1517		val64 = 0x8080808040404040ULL;
1518		writeq(val64, &bar0->rts_qos_steering);
1519		break;
1520	case 3:
1521		val64 = 0x0001020001020001ULL;
1522		writeq(val64, &bar0->rx_w_round_robin_0);
1523		val64 = 0x0200010200010200ULL;
1524		writeq(val64, &bar0->rx_w_round_robin_1);
1525		val64 = 0x0102000102000102ULL;
1526		writeq(val64, &bar0->rx_w_round_robin_2);
1527		val64 = 0x0001020001020001ULL;
1528		writeq(val64, &bar0->rx_w_round_robin_3);
1529		val64 = 0x0200010200000000ULL;
1530		writeq(val64, &bar0->rx_w_round_robin_4);
1531
1532		val64 = 0x8080804040402020ULL;
1533		writeq(val64, &bar0->rts_qos_steering);
1534		break;
1535	case 4:
1536		val64 = 0x0001020300010203ULL;
1537		writeq(val64, &bar0->rx_w_round_robin_0);
1538		writeq(val64, &bar0->rx_w_round_robin_1);
1539		writeq(val64, &bar0->rx_w_round_robin_2);
1540		writeq(val64, &bar0->rx_w_round_robin_3);
1541		val64 = 0x0001020300000000ULL;
1542		writeq(val64, &bar0->rx_w_round_robin_4);
1543
1544		val64 = 0x8080404020201010ULL;
1545		writeq(val64, &bar0->rts_qos_steering);
1546		break;
1547	case 5:
1548		val64 = 0x0001020304000102ULL;
1549		writeq(val64, &bar0->rx_w_round_robin_0);
1550		val64 = 0x0304000102030400ULL;
1551		writeq(val64, &bar0->rx_w_round_robin_1);
1552		val64 = 0x0102030400010203ULL;
1553		writeq(val64, &bar0->rx_w_round_robin_2);
1554		val64 = 0x0400010203040001ULL;
1555		writeq(val64, &bar0->rx_w_round_robin_3);
1556		val64 = 0x0203040000000000ULL;
1557		writeq(val64, &bar0->rx_w_round_robin_4);
1558
1559		val64 = 0x8080404020201008ULL;
1560		writeq(val64, &bar0->rts_qos_steering);
1561		break;
1562	case 6:
1563		val64 = 0x0001020304050001ULL;
1564		writeq(val64, &bar0->rx_w_round_robin_0);
1565		val64 = 0x0203040500010203ULL;
1566		writeq(val64, &bar0->rx_w_round_robin_1);
1567		val64 = 0x0405000102030405ULL;
1568		writeq(val64, &bar0->rx_w_round_robin_2);
1569		val64 = 0x0001020304050001ULL;
1570		writeq(val64, &bar0->rx_w_round_robin_3);
1571		val64 = 0x0203040500000000ULL;
1572		writeq(val64, &bar0->rx_w_round_robin_4);
1573
1574		val64 = 0x8080404020100804ULL;
1575		writeq(val64, &bar0->rts_qos_steering);
1576		break;
1577	case 7:
1578		val64 = 0x0001020304050600ULL;
1579		writeq(val64, &bar0->rx_w_round_robin_0);
1580		val64 = 0x0102030405060001ULL;
1581		writeq(val64, &bar0->rx_w_round_robin_1);
1582		val64 = 0x0203040506000102ULL;
1583		writeq(val64, &bar0->rx_w_round_robin_2);
1584		val64 = 0x0304050600010203ULL;
1585		writeq(val64, &bar0->rx_w_round_robin_3);
1586		val64 = 0x0405060000000000ULL;
1587		writeq(val64, &bar0->rx_w_round_robin_4);
1588
1589		val64 = 0x8080402010080402ULL;
1590		writeq(val64, &bar0->rts_qos_steering);
1591		break;
1592	case 8:
1593		val64 = 0x0001020304050607ULL;
1594		writeq(val64, &bar0->rx_w_round_robin_0);
1595		writeq(val64, &bar0->rx_w_round_robin_1);
1596		writeq(val64, &bar0->rx_w_round_robin_2);
1597		writeq(val64, &bar0->rx_w_round_robin_3);
1598		val64 = 0x0001020300000000ULL;
1599		writeq(val64, &bar0->rx_w_round_robin_4);
1600
1601		val64 = 0x8040201008040201ULL;
1602		writeq(val64, &bar0->rts_qos_steering);
1603		break;
1604	}
1605
1606	/* UDP Fix */
1607	val64 = 0;
1608	for (i = 0; i < 8; i++)
1609		writeq(val64, &bar0->rts_frm_len_n[i]);
1610
1611	/* Set the default rts frame length for the rings configured */
1612	val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1613	for (i = 0 ; i < config->rx_ring_num ; i++)
1614		writeq(val64, &bar0->rts_frm_len_n[i]);
1615
1616	/* Set the frame length for the configured rings
1617	 * desired by the user
1618	 */
1619	for (i = 0; i < config->rx_ring_num; i++) {
1620		/* If rts_frm_len[i] == 0 then it is assumed that user not
1621		 * specified frame length steering.
1622		 * If the user provides the frame length then program
1623		 * the rts_frm_len register for those values or else
1624		 * leave it as it is.
1625		 */
1626		if (rts_frm_len[i] != 0) {
1627			writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1628			       &bar0->rts_frm_len_n[i]);
1629		}
1630	}
1631
1632	/* Disable differentiated services steering logic */
1633	for (i = 0; i < 64; i++) {
1634		if (rts_ds_steer(nic, i, 0) == FAILURE) {
1635			DBG_PRINT(ERR_DBG,
1636				  "%s: rts_ds_steer failed on codepoint %d\n",
1637				  dev->name, i);
1638			return -ENODEV;
1639		}
1640	}
1641
1642	/* Program statistics memory */
1643	writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1644
1645	if (nic->device_type == XFRAME_II_DEVICE) {
1646		val64 = STAT_BC(0x320);
1647		writeq(val64, &bar0->stat_byte_cnt);
1648	}
1649
1650	/*
1651	 * Initializing the sampling rate for the device to calculate the
1652	 * bandwidth utilization.
1653	 */
1654	val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1655		MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1656	writeq(val64, &bar0->mac_link_util);
1657
1658	/*
1659	 * Initializing the Transmit and Receive Traffic Interrupt
1660	 * Scheme.
1661	 */
1662
1663	/* Initialize TTI */
1664	if (SUCCESS != init_tti(nic, nic->last_link_state, true))
1665		return -ENODEV;
1666
1667	/* RTI Initialization */
1668	if (nic->device_type == XFRAME_II_DEVICE) {
1669		/*
1670		 * Programmed to generate Apprx 500 Intrs per
1671		 * second
1672		 */
1673		int count = (nic->config.bus_speed * 125)/4;
1674		val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1675	} else
1676		val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1677	val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1678		RTI_DATA1_MEM_RX_URNG_B(0x10) |
1679		RTI_DATA1_MEM_RX_URNG_C(0x30) |
1680		RTI_DATA1_MEM_RX_TIMER_AC_EN;
1681
1682	writeq(val64, &bar0->rti_data1_mem);
1683
1684	val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1685		RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1686	if (nic->config.intr_type == MSI_X)
1687		val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) |
1688			  RTI_DATA2_MEM_RX_UFC_D(0x40));
1689	else
1690		val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) |
1691			  RTI_DATA2_MEM_RX_UFC_D(0x80));
1692	writeq(val64, &bar0->rti_data2_mem);
1693
1694	for (i = 0; i < config->rx_ring_num; i++) {
1695		val64 = RTI_CMD_MEM_WE |
1696			RTI_CMD_MEM_STROBE_NEW_CMD |
1697			RTI_CMD_MEM_OFFSET(i);
1698		writeq(val64, &bar0->rti_command_mem);
1699
1700		/*
1701		 * Once the operation completes, the Strobe bit of the
1702		 * command register will be reset. We poll for this
1703		 * particular condition. We wait for a maximum of 500ms
1704		 * for the operation to complete, if it's not complete
1705		 * by then we return error.
1706		 */
1707		time = 0;
1708		while (true) {
1709			val64 = readq(&bar0->rti_command_mem);
1710			if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
1711				break;
1712
1713			if (time > 10) {
1714				DBG_PRINT(ERR_DBG, "%s: RTI init failed\n",
1715					  dev->name);
1716				return -ENODEV;
1717			}
1718			time++;
1719			msleep(50);
1720		}
1721	}
1722
1723	/*
1724	 * Initializing proper values as Pause threshold into all
1725	 * the 8 Queues on Rx side.
1726	 */
1727	writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1728	writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1729
1730	/* Disable RMAC PAD STRIPPING */
1731	add = &bar0->mac_cfg;
1732	val64 = readq(&bar0->mac_cfg);
1733	val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1734	writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1735	writel((u32) (val64), add);
1736	writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1737	writel((u32) (val64 >> 32), (add + 4));
1738	val64 = readq(&bar0->mac_cfg);
1739
1740	/* Enable FCS stripping by adapter */
1741	add = &bar0->mac_cfg;
1742	val64 = readq(&bar0->mac_cfg);
1743	val64 |= MAC_CFG_RMAC_STRIP_FCS;
1744	if (nic->device_type == XFRAME_II_DEVICE)
1745		writeq(val64, &bar0->mac_cfg);
1746	else {
1747		writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1748		writel((u32) (val64), add);
1749		writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1750		writel((u32) (val64 >> 32), (add + 4));
1751	}
1752
1753	/*
1754	 * Set the time value to be inserted in the pause frame
1755	 * generated by xena.
1756	 */
1757	val64 = readq(&bar0->rmac_pause_cfg);
1758	val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1759	val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1760	writeq(val64, &bar0->rmac_pause_cfg);
1761
1762	/*
1763	 * Set the Threshold Limit for Generating the pause frame
1764	 * If the amount of data in any Queue exceeds ratio of
1765	 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1766	 * pause frame is generated
1767	 */
1768	val64 = 0;
1769	for (i = 0; i < 4; i++) {
1770		val64 |= (((u64)0xFF00 |
1771			   nic->mac_control.mc_pause_threshold_q0q3)
1772			  << (i * 2 * 8));
1773	}
1774	writeq(val64, &bar0->mc_pause_thresh_q0q3);
1775
1776	val64 = 0;
1777	for (i = 0; i < 4; i++) {
1778		val64 |= (((u64)0xFF00 |
1779			   nic->mac_control.mc_pause_threshold_q4q7)
1780			  << (i * 2 * 8));
1781	}
1782	writeq(val64, &bar0->mc_pause_thresh_q4q7);
1783
1784	/*
1785	 * TxDMA will stop Read request if the number of read split has
1786	 * exceeded the limit pointed by shared_splits
1787	 */
1788	val64 = readq(&bar0->pic_control);
1789	val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1790	writeq(val64, &bar0->pic_control);
1791
1792	if (nic->config.bus_speed == 266) {
1793		writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1794		writeq(0x0, &bar0->read_retry_delay);
1795		writeq(0x0, &bar0->write_retry_delay);
1796	}
1797
1798	/*
1799	 * Programming the Herc to split every write transaction
1800	 * that does not start on an ADB to reduce disconnects.
1801	 */
1802	if (nic->device_type == XFRAME_II_DEVICE) {
1803		val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1804			MISC_LINK_STABILITY_PRD(3);
1805		writeq(val64, &bar0->misc_control);
1806		val64 = readq(&bar0->pic_control2);
1807		val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
1808		writeq(val64, &bar0->pic_control2);
1809	}
1810	if (strstr(nic->product_name, "CX4")) {
1811		val64 = TMAC_AVG_IPG(0x17);
1812		writeq(val64, &bar0->tmac_avg_ipg);
1813	}
1814
1815	return SUCCESS;
1816}
1817#define LINK_UP_DOWN_INTERRUPT		1
1818#define MAC_RMAC_ERR_TIMER		2
1819
1820static int s2io_link_fault_indication(struct s2io_nic *nic)
1821{
1822	if (nic->device_type == XFRAME_II_DEVICE)
1823		return LINK_UP_DOWN_INTERRUPT;
1824	else
1825		return MAC_RMAC_ERR_TIMER;
1826}
1827
1828/**
1829 *  do_s2io_write_bits -  update alarm bits in alarm register
1830 *  @value: alarm bits
1831 *  @flag: interrupt status
1832 *  @addr: address value
1833 *  Description: update alarm bits in alarm register
1834 *  Return Value:
1835 *  NONE.
1836 */
1837static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
1838{
1839	u64 temp64;
1840
1841	temp64 = readq(addr);
1842
1843	if (flag == ENABLE_INTRS)
1844		temp64 &= ~((u64)value);
1845	else
1846		temp64 |= ((u64)value);
1847	writeq(temp64, addr);
1848}
1849
1850static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
1851{
1852	struct XENA_dev_config __iomem *bar0 = nic->bar0;
1853	register u64 gen_int_mask = 0;
1854	u64 interruptible;
1855
1856	writeq(DISABLE_ALL_INTRS, &bar0->general_int_mask);
1857	if (mask & TX_DMA_INTR) {
1858		gen_int_mask |= TXDMA_INT_M;
1859
1860		do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
1861				   TXDMA_PCC_INT | TXDMA_TTI_INT |
1862				   TXDMA_LSO_INT | TXDMA_TPA_INT |
1863				   TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
1864
1865		do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
1866				   PFC_MISC_0_ERR | PFC_MISC_1_ERR |
1867				   PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
1868				   &bar0->pfc_err_mask);
1869
1870		do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
1871				   TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
1872				   TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
1873
1874		do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
1875				   PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
1876				   PCC_N_SERR | PCC_6_COF_OV_ERR |
1877				   PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
1878				   PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
1879				   PCC_TXB_ECC_SG_ERR,
1880				   flag, &bar0->pcc_err_mask);
1881
1882		do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
1883				   TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
1884
1885		do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
1886				   LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
1887				   LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
1888				   flag, &bar0->lso_err_mask);
1889
1890		do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
1891				   flag, &bar0->tpa_err_mask);
1892
1893		do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
1894	}
1895
1896	if (mask & TX_MAC_INTR) {
1897		gen_int_mask |= TXMAC_INT_M;
1898		do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
1899				   &bar0->mac_int_mask);
1900		do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
1901				   TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
1902				   TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
1903				   flag, &bar0->mac_tmac_err_mask);
1904	}
1905
1906	if (mask & TX_XGXS_INTR) {
1907		gen_int_mask |= TXXGXS_INT_M;
1908		do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
1909				   &bar0->xgxs_int_mask);
1910		do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
1911				   TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
1912				   flag, &bar0->xgxs_txgxs_err_mask);
1913	}
1914
1915	if (mask & RX_DMA_INTR) {
1916		gen_int_mask |= RXDMA_INT_M;
1917		do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
1918				   RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
1919				   flag, &bar0->rxdma_int_mask);
1920		do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
1921				   RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
1922				   RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
1923				   RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
1924		do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
1925				   PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
1926				   PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
1927				   &bar0->prc_pcix_err_mask);
1928		do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
1929				   RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
1930				   &bar0->rpa_err_mask);
1931		do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
1932				   RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
1933				   RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
1934				   RDA_FRM_ECC_SG_ERR |
1935				   RDA_MISC_ERR|RDA_PCIX_ERR,
1936				   flag, &bar0->rda_err_mask);
1937		do_s2io_write_bits(RTI_SM_ERR_ALARM |
1938				   RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
1939				   flag, &bar0->rti_err_mask);
1940	}
1941
1942	if (mask & RX_MAC_INTR) {
1943		gen_int_mask |= RXMAC_INT_M;
1944		do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
1945				   &bar0->mac_int_mask);
1946		interruptible = (RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
1947				 RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
1948				 RMAC_DOUBLE_ECC_ERR);
1949		if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER)
1950			interruptible |= RMAC_LINK_STATE_CHANGE_INT;
1951		do_s2io_write_bits(interruptible,
1952				   flag, &bar0->mac_rmac_err_mask);
1953	}
1954
1955	if (mask & RX_XGXS_INTR) {
1956		gen_int_mask |= RXXGXS_INT_M;
1957		do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
1958				   &bar0->xgxs_int_mask);
1959		do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
1960				   &bar0->xgxs_rxgxs_err_mask);
1961	}
1962
1963	if (mask & MC_INTR) {
1964		gen_int_mask |= MC_INT_M;
1965		do_s2io_write_bits(MC_INT_MASK_MC_INT,
1966				   flag, &bar0->mc_int_mask);
1967		do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
1968				   MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
1969				   &bar0->mc_err_mask);
1970	}
1971	nic->general_int_mask = gen_int_mask;
1972
1973	/* Remove this line when alarm interrupts are enabled */
1974	nic->general_int_mask = 0;
1975}
1976
1977/**
1978 *  en_dis_able_nic_intrs - Enable or Disable the interrupts
1979 *  @nic: device private variable,
1980 *  @mask: A mask indicating which Intr block must be modified and,
1981 *  @flag: A flag indicating whether to enable or disable the Intrs.
1982 *  Description: This function will either disable or enable the interrupts
1983 *  depending on the flag argument. The mask argument can be used to
1984 *  enable/disable any Intr block.
1985 *  Return Value: NONE.
1986 */
1987
1988static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
1989{
1990	struct XENA_dev_config __iomem *bar0 = nic->bar0;
1991	register u64 temp64 = 0, intr_mask = 0;
1992
1993	intr_mask = nic->general_int_mask;
1994
1995	/*  Top level interrupt classification */
1996	/*  PIC Interrupts */
1997	if (mask & TX_PIC_INTR) {
1998		/*  Enable PIC Intrs in the general intr mask register */
1999		intr_mask |= TXPIC_INT_M;
2000		if (flag == ENABLE_INTRS) {
2001			/*
2002			 * If Hercules adapter enable GPIO otherwise
2003			 * disable all PCIX, Flash, MDIO, IIC and GPIO
2004			 * interrupts for now.
2005			 * TODO
2006			 */
2007			if (s2io_link_fault_indication(nic) ==
2008			    LINK_UP_DOWN_INTERRUPT) {
2009				do_s2io_write_bits(PIC_INT_GPIO, flag,
2010						   &bar0->pic_int_mask);
2011				do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
2012						   &bar0->gpio_int_mask);
2013			} else
2014				writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2015		} else if (flag == DISABLE_INTRS) {
2016			/*
2017			 * Disable PIC Intrs in the general
2018			 * intr mask register
2019			 */
2020			writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2021		}
2022	}
2023
2024	/*  Tx traffic interrupts */
2025	if (mask & TX_TRAFFIC_INTR) {
2026		intr_mask |= TXTRAFFIC_INT_M;
2027		if (flag == ENABLE_INTRS) {
2028			/*
2029			 * Enable all the Tx side interrupts
2030			 * writing 0 Enables all 64 TX interrupt levels
2031			 */
2032			writeq(0x0, &bar0->tx_traffic_mask);
2033		} else if (flag == DISABLE_INTRS) {
2034			/*
2035			 * Disable Tx Traffic Intrs in the general intr mask
2036			 * register.
2037			 */
2038			writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
2039		}
2040	}
2041
2042	/*  Rx traffic interrupts */
2043	if (mask & RX_TRAFFIC_INTR) {
2044		intr_mask |= RXTRAFFIC_INT_M;
2045		if (flag == ENABLE_INTRS) {
2046			/* writing 0 Enables all 8 RX interrupt levels */
2047			writeq(0x0, &bar0->rx_traffic_mask);
2048		} else if (flag == DISABLE_INTRS) {
2049			/*
2050			 * Disable Rx Traffic Intrs in the general intr mask
2051			 * register.
2052			 */
2053			writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
2054		}
2055	}
2056
2057	temp64 = readq(&bar0->general_int_mask);
2058	if (flag == ENABLE_INTRS)
2059		temp64 &= ~((u64)intr_mask);
2060	else
2061		temp64 = DISABLE_ALL_INTRS;
2062	writeq(temp64, &bar0->general_int_mask);
2063
2064	nic->general_int_mask = readq(&bar0->general_int_mask);
2065}
2066
2067/**
2068 *  verify_pcc_quiescent- Checks for PCC quiescent state
2069 *  @sp : private member of the device structure, which is a pointer to the
2070 *  s2io_nic structure.
2071 *  @flag: boolean controlling function path
2072 *  Return: 1 If PCC is quiescence
2073 *          0 If PCC is not quiescence
2074 */
2075static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
2076{
2077	int ret = 0, herc;
2078	struct XENA_dev_config __iomem *bar0 = sp->bar0;
2079	u64 val64 = readq(&bar0->adapter_status);
2080
2081	herc = (sp->device_type == XFRAME_II_DEVICE);
2082
2083	if (flag == false) {
2084		if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2085			if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
2086				ret = 1;
2087		} else {
2088			if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2089				ret = 1;
2090		}
2091	} else {
2092		if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2093			if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
2094			     ADAPTER_STATUS_RMAC_PCC_IDLE))
2095				ret = 1;
2096		} else {
2097			if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
2098			     ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2099				ret = 1;
2100		}
2101	}
2102
2103	return ret;
2104}
2105/**
2106 *  verify_xena_quiescence - Checks whether the H/W is ready
2107 *  @sp : private member of the device structure, which is a pointer to the
2108 *  s2io_nic structure.
2109 *  Description: Returns whether the H/W is ready to go or not. Depending
2110 *  on whether adapter enable bit was written or not the comparison
2111 *  differs and the calling function passes the input argument flag to
2112 *  indicate this.
2113 *  Return: 1 If xena is quiescence
2114 *          0 If Xena is not quiescence
2115 */
2116
2117static int verify_xena_quiescence(struct s2io_nic *sp)
2118{
2119	int  mode;
2120	struct XENA_dev_config __iomem *bar0 = sp->bar0;
2121	u64 val64 = readq(&bar0->adapter_status);
2122	mode = s2io_verify_pci_mode(sp);
2123
2124	if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
2125		DBG_PRINT(ERR_DBG, "TDMA is not ready!\n");
2126		return 0;
2127	}
2128	if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
2129		DBG_PRINT(ERR_DBG, "RDMA is not ready!\n");
2130		return 0;
2131	}
2132	if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
2133		DBG_PRINT(ERR_DBG, "PFC is not ready!\n");
2134		return 0;
2135	}
2136	if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
2137		DBG_PRINT(ERR_DBG, "TMAC BUF is not empty!\n");
2138		return 0;
2139	}
2140	if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
2141		DBG_PRINT(ERR_DBG, "PIC is not QUIESCENT!\n");
2142		return 0;
2143	}
2144	if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
2145		DBG_PRINT(ERR_DBG, "MC_DRAM is not ready!\n");
2146		return 0;
2147	}
2148	if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
2149		DBG_PRINT(ERR_DBG, "MC_QUEUES is not ready!\n");
2150		return 0;
2151	}
2152	if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
2153		DBG_PRINT(ERR_DBG, "M_PLL is not locked!\n");
2154		return 0;
2155	}
2156
2157	/*
2158	 * In PCI 33 mode, the P_PLL is not used, and therefore,
2159	 * the P_PLL_LOCK bit in the adapter_status register will
2160	 * not be asserted.
2161	 */
2162	if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
2163	    sp->device_type == XFRAME_II_DEVICE &&
2164	    mode != PCI_MODE_PCI_33) {
2165		DBG_PRINT(ERR_DBG, "P_PLL is not locked!\n");
2166		return 0;
2167	}
2168	if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
2169	      ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
2170		DBG_PRINT(ERR_DBG, "RC_PRC is not QUIESCENT!\n");
2171		return 0;
2172	}
2173	return 1;
2174}
2175
2176/**
2177 * fix_mac_address -  Fix for Mac addr problem on Alpha platforms
2178 * @sp: Pointer to device specifc structure
2179 * Description :
2180 * New procedure to clear mac address reading  problems on Alpha platforms
2181 *
2182 */
2183
2184static void fix_mac_address(struct s2io_nic *sp)
2185{
2186	struct XENA_dev_config __iomem *bar0 = sp->bar0;
2187	int i = 0;
2188
2189	while (fix_mac[i] != END_SIGN) {
2190		writeq(fix_mac[i++], &bar0->gpio_control);
2191		udelay(10);
2192		(void) readq(&bar0->gpio_control);
2193	}
2194}
2195
2196/**
2197 *  start_nic - Turns the device on
2198 *  @nic : device private variable.
2199 *  Description:
2200 *  This function actually turns the device on. Before this  function is
2201 *  called,all Registers are configured from their reset states
2202 *  and shared memory is allocated but the NIC is still quiescent. On
2203 *  calling this function, the device interrupts are cleared and the NIC is
2204 *  literally switched on by writing into the adapter control register.
2205 *  Return Value:
2206 *  SUCCESS on success and -1 on failure.
2207 */
2208
2209static int start_nic(struct s2io_nic *nic)
2210{
2211	struct XENA_dev_config __iomem *bar0 = nic->bar0;
2212	struct net_device *dev = nic->dev;
2213	register u64 val64 = 0;
2214	u16 subid, i;
2215	struct config_param *config = &nic->config;
2216	struct mac_info *mac_control = &nic->mac_control;
2217
2218	/*  PRC Initialization and configuration */
2219	for (i = 0; i < config->rx_ring_num; i++) {
2220		struct ring_info *ring = &mac_control->rings[i];
2221
2222		writeq((u64)ring->rx_blocks[0].block_dma_addr,
2223		       &bar0->prc_rxd0_n[i]);
2224
2225		val64 = readq(&bar0->prc_ctrl_n[i]);
2226		if (nic->rxd_mode == RXD_MODE_1)
2227			val64 |= PRC_CTRL_RC_ENABLED;
2228		else
2229			val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
2230		if (nic->device_type == XFRAME_II_DEVICE)
2231			val64 |= PRC_CTRL_GROUP_READS;
2232		val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2233		val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2234		writeq(val64, &bar0->prc_ctrl_n[i]);
2235	}
2236
2237	if (nic->rxd_mode == RXD_MODE_3B) {
2238		/* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2239		val64 = readq(&bar0->rx_pa_cfg);
2240		val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2241		writeq(val64, &bar0->rx_pa_cfg);
2242	}
2243
2244	if (vlan_tag_strip == 0) {
2245		val64 = readq(&bar0->rx_pa_cfg);
2246		val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2247		writeq(val64, &bar0->rx_pa_cfg);
2248		nic->vlan_strip_flag = 0;
2249	}
2250
2251	/*
2252	 * Enabling MC-RLDRAM. After enabling the device, we timeout
2253	 * for around 100ms, which is approximately the time required
2254	 * for the device to be ready for operation.
2255	 */
2256	val64 = readq(&bar0->mc_rldram_mrs);
2257	val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2258	SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2259	val64 = readq(&bar0->mc_rldram_mrs);
2260
2261	msleep(100);	/* Delay by around 100 ms. */
2262
2263	/* Enabling ECC Protection. */
2264	val64 = readq(&bar0->adapter_control);
2265	val64 &= ~ADAPTER_ECC_EN;
2266	writeq(val64, &bar0->adapter_control);
2267
2268	/*
2269	 * Verify if the device is ready to be enabled, if so enable
2270	 * it.
2271	 */
2272	val64 = readq(&bar0->adapter_status);
2273	if (!verify_xena_quiescence(nic)) {
2274		DBG_PRINT(ERR_DBG, "%s: device is not ready, "
2275			  "Adapter status reads: 0x%llx\n",
2276			  dev->name, (unsigned long long)val64);
2277		return FAILURE;
2278	}
2279
2280	/*
2281	 * With some switches, link might be already up at this point.
2282	 * Because of this weird behavior, when we enable laser,
2283	 * we may not get link. We need to handle this. We cannot
2284	 * figure out which switch is misbehaving. So we are forced to
2285	 * make a global change.
2286	 */
2287
2288	/* Enabling Laser. */
2289	val64 = readq(&bar0->adapter_control);
2290	val64 |= ADAPTER_EOI_TX_ON;
2291	writeq(val64, &bar0->adapter_control);
2292
2293	if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2294		/*
2295		 * Dont see link state interrupts initially on some switches,
2296		 * so directly scheduling the link state task here.
2297		 */
2298		schedule_work(&nic->set_link_task);
2299	}
2300	/* SXE-002: Initialize link and activity LED */
2301	subid = nic->pdev->subsystem_device;
2302	if (((subid & 0xFF) >= 0x07) &&
2303	    (nic->device_type == XFRAME_I_DEVICE)) {
2304		val64 = readq(&bar0->gpio_control);
2305		val64 |= 0x0000800000000000ULL;
2306		writeq(val64, &bar0->gpio_control);
2307		val64 = 0x0411040400000000ULL;
2308		writeq(val64, (void __iomem *)bar0 + 0x2700);
2309	}
2310
2311	return SUCCESS;
2312}
2313/**
2314 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2315 * @fifo_data: fifo data pointer
2316 * @txdlp: descriptor
2317 * @get_off: unused
2318 */
2319static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data,
2320					struct TxD *txdlp, int get_off)
2321{
2322	struct s2io_nic *nic = fifo_data->nic;
2323	struct sk_buff *skb;
2324	struct TxD *txds;
2325	u16 j, frg_cnt;
2326
2327	txds = txdlp;
2328	if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) {
2329		dma_unmap_single(&nic->pdev->dev,
2330				 (dma_addr_t)txds->Buffer_Pointer,
2331				 sizeof(u64), DMA_TO_DEVICE);
2332		txds++;
2333	}
2334
2335	skb = (struct sk_buff *)((unsigned long)txds->Host_Control);
2336	if (!skb) {
2337		memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2338		return NULL;
2339	}
2340	dma_unmap_single(&nic->pdev->dev, (dma_addr_t)txds->Buffer_Pointer,
2341			 skb_headlen(skb), DMA_TO_DEVICE);
2342	frg_cnt = skb_shinfo(skb)->nr_frags;
2343	if (frg_cnt) {
2344		txds++;
2345		for (j = 0; j < frg_cnt; j++, txds++) {
2346			const skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2347			if (!txds->Buffer_Pointer)
2348				break;
2349			dma_unmap_page(&nic->pdev->dev,
2350				       (dma_addr_t)txds->Buffer_Pointer,
2351				       skb_frag_size(frag), DMA_TO_DEVICE);
2352		}
2353	}
2354	memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2355	return skb;
2356}
2357
2358/**
2359 *  free_tx_buffers - Free all queued Tx buffers
2360 *  @nic : device private variable.
2361 *  Description:
2362 *  Free all queued Tx buffers.
2363 *  Return Value: void
2364 */
2365
2366static void free_tx_buffers(struct s2io_nic *nic)
2367{
2368	struct net_device *dev = nic->dev;
2369	struct sk_buff *skb;
2370	struct TxD *txdp;
2371	int i, j;
2372	int cnt = 0;
2373	struct config_param *config = &nic->config;
2374	struct mac_info *mac_control = &nic->mac_control;
2375	struct stat_block *stats = mac_control->stats_info;
2376	struct swStat *swstats = &stats->sw_stat;
2377
2378	for (i = 0; i < config->tx_fifo_num; i++) {
2379		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
2380		struct fifo_info *fifo = &mac_control->fifos[i];
2381		unsigned long flags;
2382
2383		spin_lock_irqsave(&fifo->tx_lock, flags);
2384		for (j = 0; j < tx_cfg->fifo_len; j++) {
2385			txdp = fifo->list_info[j].list_virt_addr;
2386			skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2387			if (skb) {
2388				swstats->mem_freed += skb->truesize;
2389				dev_kfree_skb_irq(skb);
2390				cnt++;
2391			}
2392		}
2393		DBG_PRINT(INTR_DBG,
2394			  "%s: forcibly freeing %d skbs on FIFO%d\n",
2395			  dev->name, cnt, i);
2396		fifo->tx_curr_get_info.offset = 0;
2397		fifo->tx_curr_put_info.offset = 0;
2398		spin_unlock_irqrestore(&fifo->tx_lock, flags);
2399	}
2400}
2401
2402/**
2403 *   stop_nic -  To stop the nic
2404 *   @nic : device private variable.
2405 *   Description:
2406 *   This function does exactly the opposite of what the start_nic()
2407 *   function does. This function is called to stop the device.
2408 *   Return Value:
2409 *   void.
2410 */
2411
2412static void stop_nic(struct s2io_nic *nic)
2413{
2414	struct XENA_dev_config __iomem *bar0 = nic->bar0;
2415	register u64 val64 = 0;
2416	u16 interruptible;
2417
2418	/*  Disable all interrupts */
2419	en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
2420	interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2421	interruptible |= TX_PIC_INTR;
2422	en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2423
2424	/* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2425	val64 = readq(&bar0->adapter_control);
2426	val64 &= ~(ADAPTER_CNTL_EN);
2427	writeq(val64, &bar0->adapter_control);
2428}
2429
2430/**
2431 *  fill_rx_buffers - Allocates the Rx side skbs
2432 *  @nic : device private variable.
2433 *  @ring: per ring structure
2434 *  @from_card_up: If this is true, we will map the buffer to get
2435 *     the dma address for buf0 and buf1 to give it to the card.
2436 *     Else we will sync the already mapped buffer to give it to the card.
2437 *  Description:
2438 *  The function allocates Rx side skbs and puts the physical
2439 *  address of these buffers into the RxD buffer pointers, so that the NIC
2440 *  can DMA the received frame into these locations.
2441 *  The NIC supports 3 receive modes, viz
2442 *  1. single buffer,
2443 *  2. three buffer and
2444 *  3. Five buffer modes.
2445 *  Each mode defines how many fragments the received frame will be split
2446 *  up into by the NIC. The frame is split into L3 header, L4 Header,
2447 *  L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2448 *  is split into 3 fragments. As of now only single buffer mode is
2449 *  supported.
2450 *   Return Value:
2451 *  SUCCESS on success or an appropriate -ve value on failure.
2452 */
2453static int fill_rx_buffers(struct s2io_nic *nic, struct ring_info *ring,
2454			   int from_card_up)
2455{
2456	struct sk_buff *skb;
2457	struct RxD_t *rxdp;
2458	int off, size, block_no, block_no1;
2459	u32 alloc_tab = 0;
2460	u32 alloc_cnt;
2461	u64 tmp;
2462	struct buffAdd *ba;
2463	struct RxD_t *first_rxdp = NULL;
2464	u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
2465	struct RxD1 *rxdp1;
2466	struct RxD3 *rxdp3;
2467	struct swStat *swstats = &ring->nic->mac_control.stats_info->sw_stat;
2468
2469	alloc_cnt = ring->pkt_cnt - ring->rx_bufs_left;
2470
2471	block_no1 = ring->rx_curr_get_info.block_index;
2472	while (alloc_tab < alloc_cnt) {
2473		block_no = ring->rx_curr_put_info.block_index;
2474
2475		off = ring->rx_curr_put_info.offset;
2476
2477		rxdp = ring->rx_blocks[block_no].rxds[off].virt_addr;
2478
2479		if ((block_no == block_no1) &&
2480		    (off == ring->rx_curr_get_info.offset) &&
2481		    (rxdp->Host_Control)) {
2482			DBG_PRINT(INTR_DBG, "%s: Get and Put info equated\n",
2483				  ring->dev->name);
2484			goto end;
2485		}
2486		if (off && (off == ring->rxd_count)) {
2487			ring->rx_curr_put_info.block_index++;
2488			if (ring->rx_curr_put_info.block_index ==
2489			    ring->block_count)
2490				ring->rx_curr_put_info.block_index = 0;
2491			block_no = ring->rx_curr_put_info.block_index;
2492			off = 0;
2493			ring->rx_curr_put_info.offset = off;
2494			rxdp = ring->rx_blocks[block_no].block_virt_addr;
2495			DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2496				  ring->dev->name, rxdp);
2497
2498		}
2499
2500		if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2501		    ((ring->rxd_mode == RXD_MODE_3B) &&
2502		     (rxdp->Control_2 & s2BIT(0)))) {
2503			ring->rx_curr_put_info.offset = off;
2504			goto end;
2505		}
2506		/* calculate size of skb based on ring mode */
2507		size = ring->mtu +
2508			HEADER_ETHERNET_II_802_3_SIZE +
2509			HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2510		if (ring->rxd_mode == RXD_MODE_1)
2511			size += NET_IP_ALIGN;
2512		else
2513			size = ring->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2514
2515		/* allocate skb */
2516		skb = netdev_alloc_skb(nic->dev, size);
2517		if (!skb) {
2518			DBG_PRINT(INFO_DBG, "%s: Could not allocate skb\n",
2519				  ring->dev->name);
2520			if (first_rxdp) {
2521				dma_wmb();
2522				first_rxdp->Control_1 |= RXD_OWN_XENA;
2523			}
2524			swstats->mem_alloc_fail_cnt++;
2525
2526			return -ENOMEM ;
2527		}
2528		swstats->mem_allocated += skb->truesize;
2529
2530		if (ring->rxd_mode == RXD_MODE_1) {
2531			/* 1 buffer mode - normal operation mode */
2532			rxdp1 = (struct RxD1 *)rxdp;
2533			memset(rxdp, 0, sizeof(struct RxD1));
2534			skb_reserve(skb, NET_IP_ALIGN);
2535			rxdp1->Buffer0_ptr =
2536				dma_map_single(&ring->pdev->dev, skb->data,
2537					       size - NET_IP_ALIGN,
2538					       DMA_FROM_DEVICE);
2539			if (dma_mapping_error(&nic->pdev->dev, rxdp1->Buffer0_ptr))
2540				goto pci_map_failed;
2541
2542			rxdp->Control_2 =
2543				SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2544			rxdp->Host_Control = (unsigned long)skb;
2545		} else if (ring->rxd_mode == RXD_MODE_3B) {
2546			/*
2547			 * 2 buffer mode -
2548			 * 2 buffer mode provides 128
2549			 * byte aligned receive buffers.
2550			 */
2551
2552			rxdp3 = (struct RxD3 *)rxdp;
2553			/* save buffer pointers to avoid frequent dma mapping */
2554			Buffer0_ptr = rxdp3->Buffer0_ptr;
2555			Buffer1_ptr = rxdp3->Buffer1_ptr;
2556			memset(rxdp, 0, sizeof(struct RxD3));
2557			/* restore the buffer pointers for dma sync*/
2558			rxdp3->Buffer0_ptr = Buffer0_ptr;
2559			rxdp3->Buffer1_ptr = Buffer1_ptr;
2560
2561			ba = &ring->ba[block_no][off];
2562			skb_reserve(skb, BUF0_LEN);
2563			tmp = (u64)(unsigned long)skb->data;
2564			tmp += ALIGN_SIZE;
2565			tmp &= ~ALIGN_SIZE;
2566			skb->data = (void *) (unsigned long)tmp;
2567			skb_reset_tail_pointer(skb);
2568
2569			if (from_card_up) {
2570				rxdp3->Buffer0_ptr =
2571					dma_map_single(&ring->pdev->dev,
2572						       ba->ba_0, BUF0_LEN,
2573						       DMA_FROM_DEVICE);
2574				if (dma_mapping_error(&nic->pdev->dev, rxdp3->Buffer0_ptr))
2575					goto pci_map_failed;
2576			} else
2577				dma_sync_single_for_device(&ring->pdev->dev,
2578							   (dma_addr_t)rxdp3->Buffer0_ptr,
2579							   BUF0_LEN,
2580							   DMA_FROM_DEVICE);
2581
2582			rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2583			if (ring->rxd_mode == RXD_MODE_3B) {
2584				/* Two buffer mode */
2585
2586				/*
2587				 * Buffer2 will have L3/L4 header plus
2588				 * L4 payload
2589				 */
2590				rxdp3->Buffer2_ptr = dma_map_single(&ring->pdev->dev,
2591								    skb->data,
2592								    ring->mtu + 4,
2593								    DMA_FROM_DEVICE);
2594
2595				if (dma_mapping_error(&nic->pdev->dev, rxdp3->Buffer2_ptr))
2596					goto pci_map_failed;
2597
2598				if (from_card_up) {
2599					rxdp3->Buffer1_ptr =
2600						dma_map_single(&ring->pdev->dev,
2601							       ba->ba_1,
2602							       BUF1_LEN,
2603							       DMA_FROM_DEVICE);
2604
2605					if (dma_mapping_error(&nic->pdev->dev,
2606							      rxdp3->Buffer1_ptr)) {
2607						dma_unmap_single(&ring->pdev->dev,
2608								 (dma_addr_t)(unsigned long)
2609								 skb->data,
2610								 ring->mtu + 4,
2611								 DMA_FROM_DEVICE);
2612						goto pci_map_failed;
2613					}
2614				}
2615				rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2616				rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2617					(ring->mtu + 4);
2618			}
2619			rxdp->Control_2 |= s2BIT(0);
2620			rxdp->Host_Control = (unsigned long) (skb);
2621		}
2622		if (alloc_tab & ((1 << rxsync_frequency) - 1))
2623			rxdp->Control_1 |= RXD_OWN_XENA;
2624		off++;
2625		if (off == (ring->rxd_count + 1))
2626			off = 0;
2627		ring->rx_curr_put_info.offset = off;
2628
2629		rxdp->Control_2 |= SET_RXD_MARKER;
2630		if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2631			if (first_rxdp) {
2632				dma_wmb();
2633				first_rxdp->Control_1 |= RXD_OWN_XENA;
2634			}
2635			first_rxdp = rxdp;
2636		}
2637		ring->rx_bufs_left += 1;
2638		alloc_tab++;
2639	}
2640
2641end:
2642	/* Transfer ownership of first descriptor to adapter just before
2643	 * exiting. Before that, use memory barrier so that ownership
2644	 * and other fields are seen by adapter correctly.
2645	 */
2646	if (first_rxdp) {
2647		dma_wmb();
2648		first_rxdp->Control_1 |= RXD_OWN_XENA;
2649	}
2650
2651	return SUCCESS;
2652
2653pci_map_failed:
2654	swstats->pci_map_fail_cnt++;
2655	swstats->mem_freed += skb->truesize;
2656	dev_kfree_skb_irq(skb);
2657	return -ENOMEM;
2658}
2659
2660static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2661{
2662	struct net_device *dev = sp->dev;
2663	int j;
2664	struct sk_buff *skb;
2665	struct RxD_t *rxdp;
2666	struct RxD1 *rxdp1;
2667	struct RxD3 *rxdp3;
2668	struct mac_info *mac_control = &sp->mac_control;
2669	struct stat_block *stats = mac_control->stats_info;
2670	struct swStat *swstats = &stats->sw_stat;
2671
2672	for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2673		rxdp = mac_control->rings[ring_no].
2674			rx_blocks[blk].rxds[j].virt_addr;
2675		skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
2676		if (!skb)
2677			continue;
2678		if (sp->rxd_mode == RXD_MODE_1) {
2679			rxdp1 = (struct RxD1 *)rxdp;
2680			dma_unmap_single(&sp->pdev->dev,
2681					 (dma_addr_t)rxdp1->Buffer0_ptr,
2682					 dev->mtu +
2683					 HEADER_ETHERNET_II_802_3_SIZE +
2684					 HEADER_802_2_SIZE + HEADER_SNAP_SIZE,
2685					 DMA_FROM_DEVICE);
2686			memset(rxdp, 0, sizeof(struct RxD1));
2687		} else if (sp->rxd_mode == RXD_MODE_3B) {
2688			rxdp3 = (struct RxD3 *)rxdp;
2689			dma_unmap_single(&sp->pdev->dev,
2690					 (dma_addr_t)rxdp3->Buffer0_ptr,
2691					 BUF0_LEN, DMA_FROM_DEVICE);
2692			dma_unmap_single(&sp->pdev->dev,
2693					 (dma_addr_t)rxdp3->Buffer1_ptr,
2694					 BUF1_LEN, DMA_FROM_DEVICE);
2695			dma_unmap_single(&sp->pdev->dev,
2696					 (dma_addr_t)rxdp3->Buffer2_ptr,
2697					 dev->mtu + 4, DMA_FROM_DEVICE);
2698			memset(rxdp, 0, sizeof(struct RxD3));
2699		}
2700		swstats->mem_freed += skb->truesize;
2701		dev_kfree_skb(skb);
2702		mac_control->rings[ring_no].rx_bufs_left -= 1;
2703	}
2704}
2705
2706/**
2707 *  free_rx_buffers - Frees all Rx buffers
2708 *  @sp: device private variable.
2709 *  Description:
2710 *  This function will free all Rx buffers allocated by host.
2711 *  Return Value:
2712 *  NONE.
2713 */
2714
2715static void free_rx_buffers(struct s2io_nic *sp)
2716{
2717	struct net_device *dev = sp->dev;
2718	int i, blk = 0, buf_cnt = 0;
2719	struct config_param *config = &sp->config;
2720	struct mac_info *mac_control = &sp->mac_control;
2721
2722	for (i = 0; i < config->rx_ring_num; i++) {
2723		struct ring_info *ring = &mac_control->rings[i];
2724
2725		for (blk = 0; blk < rx_ring_sz[i]; blk++)
2726			free_rxd_blk(sp, i, blk);
2727
2728		ring->rx_curr_put_info.block_index = 0;
2729		ring->rx_curr_get_info.block_index = 0;
2730		ring->rx_curr_put_info.offset = 0;
2731		ring->rx_curr_get_info.offset = 0;
2732		ring->rx_bufs_left = 0;
2733		DBG_PRINT(INIT_DBG, "%s: Freed 0x%x Rx Buffers on ring%d\n",
2734			  dev->name, buf_cnt, i);
2735	}
2736}
2737
2738static int s2io_chk_rx_buffers(struct s2io_nic *nic, struct ring_info *ring)
2739{
2740	if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
2741		DBG_PRINT(INFO_DBG, "%s: Out of memory in Rx Intr!!\n",
2742			  ring->dev->name);
2743	}
2744	return 0;
2745}
2746
2747/**
2748 * s2io_poll_msix - Rx interrupt handler for NAPI support
2749 * @napi : pointer to the napi structure.
2750 * @budget : The number of packets that were budgeted to be processed
2751 * during  one pass through the 'Poll" function.
2752 * Description:
2753 * Comes into picture only if NAPI support has been incorporated. It does
2754 * the same thing that rx_intr_handler does, but not in a interrupt context
2755 * also It will process only a given number of packets.
2756 * Return value:
2757 * 0 on success and 1 if there are No Rx packets to be processed.
2758 */
2759
2760static int s2io_poll_msix(struct napi_struct *napi, int budget)
2761{
2762	struct ring_info *ring = container_of(napi, struct ring_info, napi);
2763	struct net_device *dev = ring->dev;
2764	int pkts_processed = 0;
2765	u8 __iomem *addr = NULL;
2766	u8 val8 = 0;
2767	struct s2io_nic *nic = netdev_priv(dev);
2768	struct XENA_dev_config __iomem *bar0 = nic->bar0;
2769	int budget_org = budget;
2770
2771	if (unlikely(!is_s2io_card_up(nic)))
2772		return 0;
2773
2774	pkts_processed = rx_intr_handler(ring, budget);
2775	s2io_chk_rx_buffers(nic, ring);
2776
2777	if (pkts_processed < budget_org) {
2778		napi_complete_done(napi, pkts_processed);
2779		/*Re Enable MSI-Rx Vector*/
2780		addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
2781		addr += 7 - ring->ring_no;
2782		val8 = (ring->ring_no == 0) ? 0x3f : 0xbf;
2783		writeb(val8, addr);
2784		val8 = readb(addr);
2785	}
2786	return pkts_processed;
2787}
2788
2789static int s2io_poll_inta(struct napi_struct *napi, int budget)
2790{
2791	struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
2792	int pkts_processed = 0;
2793	int ring_pkts_processed, i;
2794	struct XENA_dev_config __iomem *bar0 = nic->bar0;
2795	int budget_org = budget;
2796	struct config_param *config = &nic->config;
2797	struct mac_info *mac_control = &nic->mac_control;
2798
2799	if (unlikely(!is_s2io_card_up(nic)))
2800		return 0;
2801
2802	for (i = 0; i < config->rx_ring_num; i++) {
2803		struct ring_info *ring = &mac_control->rings[i];
2804		ring_pkts_processed = rx_intr_handler(ring, budget);
2805		s2io_chk_rx_buffers(nic, ring);
2806		pkts_processed += ring_pkts_processed;
2807		budget -= ring_pkts_processed;
2808		if (budget <= 0)
2809			break;
2810	}
2811	if (pkts_processed < budget_org) {
2812		napi_complete_done(napi, pkts_processed);
2813		/* Re enable the Rx interrupts for the ring */
2814		writeq(0, &bar0->rx_traffic_mask);
2815		readl(&bar0->rx_traffic_mask);
2816	}
2817	return pkts_processed;
2818}
2819
2820#ifdef CONFIG_NET_POLL_CONTROLLER
2821/**
2822 * s2io_netpoll - netpoll event handler entry point
2823 * @dev : pointer to the device structure.
2824 * Description:
2825 * 	This function will be called by upper layer to check for events on the
2826 * interface in situations where interrupts are disabled. It is used for
2827 * specific in-kernel networking tasks, such as remote consoles and kernel
2828 * debugging over the network (example netdump in RedHat).
2829 */
2830static void s2io_netpoll(struct net_device *dev)
2831{
2832	struct s2io_nic *nic = netdev_priv(dev);
2833	const int irq = nic->pdev->irq;
2834	struct XENA_dev_config __iomem *bar0 = nic->bar0;
2835	u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2836	int i;
2837	struct config_param *config = &nic->config;
2838	struct mac_info *mac_control = &nic->mac_control;
2839
2840	if (pci_channel_offline(nic->pdev))
2841		return;
2842
2843	disable_irq(irq);
2844
2845	writeq(val64, &bar0->rx_traffic_int);
2846	writeq(val64, &bar0->tx_traffic_int);
2847
2848	/* we need to free up the transmitted skbufs or else netpoll will
2849	 * run out of skbs and will fail and eventually netpoll application such
2850	 * as netdump will fail.
2851	 */
2852	for (i = 0; i < config->tx_fifo_num; i++)
2853		tx_intr_handler(&mac_control->fifos[i]);
2854
2855	/* check for received packet and indicate up to network */
2856	for (i = 0; i < config->rx_ring_num; i++) {
2857		struct ring_info *ring = &mac_control->rings[i];
2858
2859		rx_intr_handler(ring, 0);
2860	}
2861
2862	for (i = 0; i < config->rx_ring_num; i++) {
2863		struct ring_info *ring = &mac_control->rings[i];
2864
2865		if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
2866			DBG_PRINT(INFO_DBG,
2867				  "%s: Out of memory in Rx Netpoll!!\n",
2868				  dev->name);
2869			break;
2870		}
2871	}
2872	enable_irq(irq);
2873}
2874#endif
2875
2876/**
2877 *  rx_intr_handler - Rx interrupt handler
2878 *  @ring_data: per ring structure.
2879 *  @budget: budget for napi processing.
2880 *  Description:
2881 *  If the interrupt is because of a received frame or if the
2882 *  receive ring contains fresh as yet un-processed frames,this function is
2883 *  called. It picks out the RxD at which place the last Rx processing had
2884 *  stopped and sends the skb to the OSM's Rx handler and then increments
2885 *  the offset.
2886 *  Return Value:
2887 *  No. of napi packets processed.
2888 */
2889static int rx_intr_handler(struct ring_info *ring_data, int budget)
2890{
2891	int get_block, put_block;
2892	struct rx_curr_get_info get_info, put_info;
2893	struct RxD_t *rxdp;
2894	struct sk_buff *skb;
2895	int pkt_cnt = 0, napi_pkts = 0;
2896	int i;
2897	struct RxD1 *rxdp1;
2898	struct RxD3 *rxdp3;
2899
2900	if (budget <= 0)
2901		return napi_pkts;
2902
2903	get_info = ring_data->rx_curr_get_info;
2904	get_block = get_info.block_index;
2905	memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
2906	put_block = put_info.block_index;
2907	rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2908
2909	while (RXD_IS_UP2DT(rxdp)) {
2910		/*
2911		 * If your are next to put index then it's
2912		 * FIFO full condition
2913		 */
2914		if ((get_block == put_block) &&
2915		    (get_info.offset + 1) == put_info.offset) {
2916			DBG_PRINT(INTR_DBG, "%s: Ring Full\n",
2917				  ring_data->dev->name);
2918			break;
2919		}
2920		skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
2921		if (skb == NULL) {
2922			DBG_PRINT(ERR_DBG, "%s: NULL skb in Rx Intr\n",
2923				  ring_data->dev->name);
2924			return 0;
2925		}
2926		if (ring_data->rxd_mode == RXD_MODE_1) {
2927			rxdp1 = (struct RxD1 *)rxdp;
2928			dma_unmap_single(&ring_data->pdev->dev,
2929					 (dma_addr_t)rxdp1->Buffer0_ptr,
2930					 ring_data->mtu +
2931					 HEADER_ETHERNET_II_802_3_SIZE +
2932					 HEADER_802_2_SIZE +
2933					 HEADER_SNAP_SIZE,
2934					 DMA_FROM_DEVICE);
2935		} else if (ring_data->rxd_mode == RXD_MODE_3B) {
2936			rxdp3 = (struct RxD3 *)rxdp;
2937			dma_sync_single_for_cpu(&ring_data->pdev->dev,
2938						(dma_addr_t)rxdp3->Buffer0_ptr,
2939						BUF0_LEN, DMA_FROM_DEVICE);
2940			dma_unmap_single(&ring_data->pdev->dev,
2941					 (dma_addr_t)rxdp3->Buffer2_ptr,
2942					 ring_data->mtu + 4, DMA_FROM_DEVICE);
2943		}
2944		prefetch(skb->data);
2945		rx_osm_handler(ring_data, rxdp);
2946		get_info.offset++;
2947		ring_data->rx_curr_get_info.offset = get_info.offset;
2948		rxdp = ring_data->rx_blocks[get_block].
2949			rxds[get_info.offset].virt_addr;
2950		if (get_info.offset == rxd_count[ring_data->rxd_mode]) {
2951			get_info.offset = 0;
2952			ring_data->rx_curr_get_info.offset = get_info.offset;
2953			get_block++;
2954			if (get_block == ring_data->block_count)
2955				get_block = 0;
2956			ring_data->rx_curr_get_info.block_index = get_block;
2957			rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
2958		}
2959
2960		if (ring_data->nic->config.napi) {
2961			budget--;
2962			napi_pkts++;
2963			if (!budget)
2964				break;
2965		}
2966		pkt_cnt++;
2967		if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
2968			break;
2969	}
2970	if (ring_data->lro) {
2971		/* Clear all LRO sessions before exiting */
2972		for (i = 0; i < MAX_LRO_SESSIONS; i++) {
2973			struct lro *lro = &ring_data->lro0_n[i];
2974			if (lro->in_use) {
2975				update_L3L4_header(ring_data->nic, lro);
2976				queue_rx_frame(lro->parent, lro->vlan_tag);
2977				clear_lro_session(lro);
2978			}
2979		}
2980	}
2981	return napi_pkts;
2982}
2983
2984/**
2985 *  tx_intr_handler - Transmit interrupt handler
2986 *  @fifo_data : fifo data pointer
2987 *  Description:
2988 *  If an interrupt was raised to indicate DMA complete of the
2989 *  Tx packet, this function is called. It identifies the last TxD
2990 *  whose buffer was freed and frees all skbs whose data have already
2991 *  DMA'ed into the NICs internal memory.
2992 *  Return Value:
2993 *  NONE
2994 */
2995
2996static void tx_intr_handler(struct fifo_info *fifo_data)
2997{
2998	struct s2io_nic *nic = fifo_data->nic;
2999	struct tx_curr_get_info get_info, put_info;
3000	struct sk_buff *skb = NULL;
3001	struct TxD *txdlp;
3002	int pkt_cnt = 0;
3003	unsigned long flags = 0;
3004	u8 err_mask;
3005	struct stat_block *stats = nic->mac_control.stats_info;
3006	struct swStat *swstats = &stats->sw_stat;
3007
3008	if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags))
3009		return;
3010
3011	get_info = fifo_data->tx_curr_get_info;
3012	memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
3013	txdlp = fifo_data->list_info[get_info.offset].list_virt_addr;
3014	while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
3015	       (get_info.offset != put_info.offset) &&
3016	       (txdlp->Host_Control)) {
3017		/* Check for TxD errors */
3018		if (txdlp->Control_1 & TXD_T_CODE) {
3019			unsigned long long err;
3020			err = txdlp->Control_1 & TXD_T_CODE;
3021			if (err & 0x1) {
3022				swstats->parity_err_cnt++;
3023			}
3024
3025			/* update t_code statistics */
3026			err_mask = err >> 48;
3027			switch (err_mask) {
3028			case 2:
3029				swstats->tx_buf_abort_cnt++;
3030				break;
3031
3032			case 3:
3033				swstats->tx_desc_abort_cnt++;
3034				break;
3035
3036			case 7:
3037				swstats->tx_parity_err_cnt++;
3038				break;
3039
3040			case 10:
3041				swstats->tx_link_loss_cnt++;
3042				break;
3043
3044			case 15:
3045				swstats->tx_list_proc_err_cnt++;
3046				break;
3047			}
3048		}
3049
3050		skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
3051		if (skb == NULL) {
3052			spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3053			DBG_PRINT(ERR_DBG, "%s: NULL skb in Tx Free Intr\n",
3054				  __func__);
3055			return;
3056		}
3057		pkt_cnt++;
3058
3059		/* Updating the statistics block */
3060		swstats->mem_freed += skb->truesize;
3061		dev_consume_skb_irq(skb);
3062
3063		get_info.offset++;
3064		if (get_info.offset == get_info.fifo_len + 1)
3065			get_info.offset = 0;
3066		txdlp = fifo_data->list_info[get_info.offset].list_virt_addr;
3067		fifo_data->tx_curr_get_info.offset = get_info.offset;
3068	}
3069
3070	s2io_wake_tx_queue(fifo_data, pkt_cnt, nic->config.multiq);
3071
3072	spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3073}
3074
3075/**
3076 *  s2io_mdio_write - Function to write in to MDIO registers
3077 *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3078 *  @addr     : address value
3079 *  @value    : data value
3080 *  @dev      : pointer to net_device structure
3081 *  Description:
3082 *  This function is used to write values to the MDIO registers
3083 *  NONE
3084 */
3085static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value,
3086			    struct net_device *dev)
3087{
3088	u64 val64;
3089	struct s2io_nic *sp = netdev_priv(dev);
3090	struct XENA_dev_config __iomem *bar0 = sp->bar0;
3091
3092	/* address transaction */
3093	val64 = MDIO_MMD_INDX_ADDR(addr) |
3094		MDIO_MMD_DEV_ADDR(mmd_type) |
3095		MDIO_MMS_PRT_ADDR(0x0);
3096	writeq(val64, &bar0->mdio_control);
3097	val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3098	writeq(val64, &bar0->mdio_control);
3099	udelay(100);
3100
3101	/* Data transaction */
3102	val64 = MDIO_MMD_INDX_ADDR(addr) |
3103		MDIO_MMD_DEV_ADDR(mmd_type) |
3104		MDIO_MMS_PRT_ADDR(0x0) |
3105		MDIO_MDIO_DATA(value) |
3106		MDIO_OP(MDIO_OP_WRITE_TRANS);
3107	writeq(val64, &bar0->mdio_control);
3108	val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3109	writeq(val64, &bar0->mdio_control);
3110	udelay(100);
3111
3112	val64 = MDIO_MMD_INDX_ADDR(addr) |
3113		MDIO_MMD_DEV_ADDR(mmd_type) |
3114		MDIO_MMS_PRT_ADDR(0x0) |
3115		MDIO_OP(MDIO_OP_READ_TRANS);
3116	writeq(val64, &bar0->mdio_control);
3117	val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3118	writeq(val64, &bar0->mdio_control);
3119	udelay(100);
3120}
3121
3122/**
3123 *  s2io_mdio_read - Function to write in to MDIO registers
3124 *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3125 *  @addr     : address value
3126 *  @dev      : pointer to net_device structure
3127 *  Description:
3128 *  This function is used to read values to the MDIO registers
3129 *  NONE
3130 */
3131static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
3132{
3133	u64 val64 = 0x0;
3134	u64 rval64 = 0x0;
3135	struct s2io_nic *sp = netdev_priv(dev);
3136	struct XENA_dev_config __iomem *bar0 = sp->bar0;
3137
3138	/* address transaction */
3139	val64 = val64 | (MDIO_MMD_INDX_ADDR(addr)
3140			 | MDIO_MMD_DEV_ADDR(mmd_type)
3141			 | MDIO_MMS_PRT_ADDR(0x0));
3142	writeq(val64, &bar0->mdio_control);
3143	val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3144	writeq(val64, &bar0->mdio_control);
3145	udelay(100);
3146
3147	/* Data transaction */
3148	val64 = MDIO_MMD_INDX_ADDR(addr) |
3149		MDIO_MMD_DEV_ADDR(mmd_type) |
3150		MDIO_MMS_PRT_ADDR(0x0) |
3151		MDIO_OP(MDIO_OP_READ_TRANS);
3152	writeq(val64, &bar0->mdio_control);
3153	val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3154	writeq(val64, &bar0->mdio_control);
3155	udelay(100);
3156
3157	/* Read the value from regs */
3158	rval64 = readq(&bar0->mdio_control);
3159	rval64 = rval64 & 0xFFFF0000;
3160	rval64 = rval64 >> 16;
3161	return rval64;
3162}
3163
3164/**
3165 *  s2io_chk_xpak_counter - Function to check the status of the xpak counters
3166 *  @counter      : counter value to be updated
3167 *  @regs_stat    : registers status
3168 *  @index        : index
3169 *  @flag         : flag to indicate the status
3170 *  @type         : counter type
3171 *  Description:
3172 *  This function is to check the status of the xpak counters value
3173 *  NONE
3174 */
3175
3176static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index,
3177				  u16 flag, u16 type)
3178{
3179	u64 mask = 0x3;
3180	u64 val64;
3181	int i;
3182	for (i = 0; i < index; i++)
3183		mask = mask << 0x2;
3184
3185	if (flag > 0) {
3186		*counter = *counter + 1;
3187		val64 = *regs_stat & mask;
3188		val64 = val64 >> (index * 0x2);
3189		val64 = val64 + 1;
3190		if (val64 == 3) {
3191			switch (type) {
3192			case 1:
3193				DBG_PRINT(ERR_DBG,
3194					  "Take Xframe NIC out of service.\n");
3195				DBG_PRINT(ERR_DBG,
3196"Excessive temperatures may result in premature transceiver failure.\n");
3197				break;
3198			case 2:
3199				DBG_PRINT(ERR_DBG,
3200					  "Take Xframe NIC out of service.\n");
3201				DBG_PRINT(ERR_DBG,
3202"Excessive bias currents may indicate imminent laser diode failure.\n");
3203				break;
3204			case 3:
3205				DBG_PRINT(ERR_DBG,
3206					  "Take Xframe NIC out of service.\n");
3207				DBG_PRINT(ERR_DBG,
3208"Excessive laser output power may saturate far-end receiver.\n");
3209				break;
3210			default:
3211				DBG_PRINT(ERR_DBG,
3212					  "Incorrect XPAK Alarm type\n");
3213			}
3214			val64 = 0x0;
3215		}
3216		val64 = val64 << (index * 0x2);
3217		*regs_stat = (*regs_stat & (~mask)) | (val64);
3218
3219	} else {
3220		*regs_stat = *regs_stat & (~mask);
3221	}
3222}
3223
3224/**
3225 *  s2io_updt_xpak_counter - Function to update the xpak counters
3226 *  @dev         : pointer to net_device struct
3227 *  Description:
3228 *  This function is to upate the status of the xpak counters value
3229 *  NONE
3230 */
3231static void s2io_updt_xpak_counter(struct net_device *dev)
3232{
3233	u16 flag  = 0x0;
3234	u16 type  = 0x0;
3235	u16 val16 = 0x0;
3236	u64 val64 = 0x0;
3237	u64 addr  = 0x0;
3238
3239	struct s2io_nic *sp = netdev_priv(dev);
3240	struct stat_block *stats = sp->mac_control.stats_info;
3241	struct xpakStat *xstats = &stats->xpak_stat;
3242
3243	/* Check the communication with the MDIO slave */
3244	addr = MDIO_CTRL1;
3245	val64 = 0x0;
3246	val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3247	if ((val64 == 0xFFFF) || (val64 == 0x0000)) {
3248		DBG_PRINT(ERR_DBG,
3249			  "ERR: MDIO slave access failed - Returned %llx\n",
3250			  (unsigned long long)val64);
3251		return;
3252	}
3253
3254	/* Check for the expected value of control reg 1 */
3255	if (val64 != MDIO_CTRL1_SPEED10G) {
3256		DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - "
3257			  "Returned: %llx- Expected: 0x%x\n",
3258			  (unsigned long long)val64, MDIO_CTRL1_SPEED10G);
3259		return;
3260	}
3261
3262	/* Loading the DOM register to MDIO register */
3263	addr = 0xA100;
3264	s2io_mdio_write(MDIO_MMD_PMAPMD, addr, val16, dev);
3265	val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3266
3267	/* Reading the Alarm flags */
3268	addr = 0xA070;
3269	val64 = 0x0;
3270	val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3271
3272	flag = CHECKBIT(val64, 0x7);
3273	type = 1;
3274	s2io_chk_xpak_counter(&xstats->alarm_transceiver_temp_high,
3275			      &xstats->xpak_regs_stat,
3276			      0x0, flag, type);
3277
3278	if (CHECKBIT(val64, 0x6))
3279		xstats->alarm_transceiver_temp_low++;
3280
3281	flag = CHECKBIT(val64, 0x3);
3282	type = 2;
3283	s2io_chk_xpak_counter(&xstats->alarm_laser_bias_current_high,
3284			      &xstats->xpak_regs_stat,
3285			      0x2, flag, type);
3286
3287	if (CHECKBIT(val64, 0x2))
3288		xstats->alarm_laser_bias_current_low++;
3289
3290	flag = CHECKBIT(val64, 0x1);
3291	type = 3;
3292	s2io_chk_xpak_counter(&xstats->alarm_laser_output_power_high,
3293			      &xstats->xpak_regs_stat,
3294			      0x4, flag, type);
3295
3296	if (CHECKBIT(val64, 0x0))
3297		xstats->alarm_laser_output_power_low++;
3298
3299	/* Reading the Warning flags */
3300	addr = 0xA074;
3301	val64 = 0x0;
3302	val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3303
3304	if (CHECKBIT(val64, 0x7))
3305		xstats->warn_transceiver_temp_high++;
3306
3307	if (CHECKBIT(val64, 0x6))
3308		xstats->warn_transceiver_temp_low++;
3309
3310	if (CHECKBIT(val64, 0x3))
3311		xstats->warn_laser_bias_current_high++;
3312
3313	if (CHECKBIT(val64, 0x2))
3314		xstats->warn_laser_bias_current_low++;
3315
3316	if (CHECKBIT(val64, 0x1))
3317		xstats->warn_laser_output_power_high++;
3318
3319	if (CHECKBIT(val64, 0x0))
3320		xstats->warn_laser_output_power_low++;
3321}
3322
3323/**
3324 *  wait_for_cmd_complete - waits for a command to complete.
3325 *  @addr: address
3326 *  @busy_bit: bit to check for busy
3327 *  @bit_state: state to check
3328 *  @may_sleep: parameter indicates if sleeping when waiting for
3329 *  command complete
3330 *  Description: Function that waits for a command to Write into RMAC
3331 *  ADDR DATA registers to be completed and returns either success or
3332 *  error depending on whether the command was complete or not.
3333 *  Return value:
3334 *   SUCCESS on success and FAILURE on failure.
3335 */
3336
3337static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3338				 int bit_state, bool may_sleep)
3339{
3340	int ret = FAILURE, cnt = 0, delay = 1;
3341	u64 val64;
3342
3343	if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3344		return FAILURE;
3345
3346	do {
3347		val64 = readq(addr);
3348		if (bit_state == S2IO_BIT_RESET) {
3349			if (!(val64 & busy_bit)) {
3350				ret = SUCCESS;
3351				break;
3352			}
3353		} else {
3354			if (val64 & busy_bit) {
3355				ret = SUCCESS;
3356				break;
3357			}
3358		}
3359
3360		if (!may_sleep)
3361			mdelay(delay);
3362		else
3363			msleep(delay);
3364
3365		if (++cnt >= 10)
3366			delay = 50;
3367	} while (cnt < 20);
3368	return ret;
3369}
3370/**
3371 * check_pci_device_id - Checks if the device id is supported
3372 * @id : device id
3373 * Description: Function to check if the pci device id is supported by driver.
3374 * Return value: Actual device id if supported else PCI_ANY_ID
3375 */
3376static u16 check_pci_device_id(u16 id)
3377{
3378	switch (id) {
3379	case PCI_DEVICE_ID_HERC_WIN:
3380	case PCI_DEVICE_ID_HERC_UNI:
3381		return XFRAME_II_DEVICE;
3382	case PCI_DEVICE_ID_S2IO_UNI:
3383	case PCI_DEVICE_ID_S2IO_WIN:
3384		return XFRAME_I_DEVICE;
3385	default:
3386		return PCI_ANY_ID;
3387	}
3388}
3389
3390/**
3391 *  s2io_reset - Resets the card.
3392 *  @sp : private member of the device structure.
3393 *  Description: Function to Reset the card. This function then also
3394 *  restores the previously saved PCI configuration space registers as
3395 *  the card reset also resets the configuration space.
3396 *  Return value:
3397 *  void.
3398 */
3399
3400static void s2io_reset(struct s2io_nic *sp)
3401{
3402	struct XENA_dev_config __iomem *bar0 = sp->bar0;
3403	u64 val64;
3404	u16 subid, pci_cmd;
3405	int i;
3406	u16 val16;
3407	unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3408	unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
3409	struct stat_block *stats;
3410	struct swStat *swstats;
3411
3412	DBG_PRINT(INIT_DBG, "%s: Resetting XFrame card %s\n",
3413		  __func__, pci_name(sp->pdev));
3414
3415	/* Back up  the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3416	pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3417
3418	val64 = SW_RESET_ALL;
3419	writeq(val64, &bar0->sw_reset);
3420	if (strstr(sp->product_name, "CX4"))
3421		msleep(750);
3422	msleep(250);
3423	for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
3424
3425		/* Restore the PCI state saved during initialization. */
3426		pci_restore_state(sp->pdev);
3427		pci_save_state(sp->pdev);
3428		pci_read_config_word(sp->pdev, 0x2, &val16);
3429		if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3430			break;
3431		msleep(200);
3432	}
3433
3434	if (check_pci_device_id(val16) == (u16)PCI_ANY_ID)
3435		DBG_PRINT(ERR_DBG, "%s SW_Reset failed!\n", __func__);
3436
3437	pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3438
3439	s2io_init_pci(sp);
3440
3441	/* Set swapper to enable I/O register access */
3442	s2io_set_swapper(sp);
3443
3444	/* restore mac_addr entries */
3445	do_s2io_restore_unicast_mc(sp);
3446
3447	/* Restore the MSIX table entries from local variables */
3448	restore_xmsi_data(sp);
3449
3450	/* Clear certain PCI/PCI-X fields after reset */
3451	if (sp->device_type == XFRAME_II_DEVICE) {
3452		/* Clear "detected parity error" bit */
3453		pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3454
3455		/* Clearing PCIX Ecc status register */
3456		pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3457
3458		/* Clearing PCI_STATUS error reflected here */
3459		writeq(s2BIT(62), &bar0->txpic_int_reg);
3460	}
3461
3462	/* Reset device statistics maintained by OS */
3463	memset(&sp->stats, 0, sizeof(struct net_device_stats));
3464
3465	stats = sp->mac_control.stats_info;
3466	swstats = &stats->sw_stat;
3467
3468	/* save link up/down time/cnt, reset/memory/watchdog cnt */
3469	up_cnt = swstats->link_up_cnt;
3470	down_cnt = swstats->link_down_cnt;
3471	up_time = swstats->link_up_time;
3472	down_time = swstats->link_down_time;
3473	reset_cnt = swstats->soft_reset_cnt;
3474	mem_alloc_cnt = swstats->mem_allocated;
3475	mem_free_cnt = swstats->mem_freed;
3476	watchdog_cnt = swstats->watchdog_timer_cnt;
3477
3478	memset(stats, 0, sizeof(struct stat_block));
3479
3480	/* restore link up/down time/cnt, reset/memory/watchdog cnt */
3481	swstats->link_up_cnt = up_cnt;
3482	swstats->link_down_cnt = down_cnt;
3483	swstats->link_up_time = up_time;
3484	swstats->link_down_time = down_time;
3485	swstats->soft_reset_cnt = reset_cnt;
3486	swstats->mem_allocated = mem_alloc_cnt;
3487	swstats->mem_freed = mem_free_cnt;
3488	swstats->watchdog_timer_cnt = watchdog_cnt;
3489
3490	/* SXE-002: Configure link and activity LED to turn it off */
3491	subid = sp->pdev->subsystem_device;
3492	if (((subid & 0xFF) >= 0x07) &&
3493	    (sp->device_type == XFRAME_I_DEVICE)) {
3494		val64 = readq(&bar0->gpio_control);
3495		val64 |= 0x0000800000000000ULL;
3496		writeq(val64, &bar0->gpio_control);
3497		val64 = 0x0411040400000000ULL;
3498		writeq(val64, (void __iomem *)bar0 + 0x2700);
3499	}
3500
3501	/*
3502	 * Clear spurious ECC interrupts that would have occurred on
3503	 * XFRAME II cards after reset.
3504	 */
3505	if (sp->device_type == XFRAME_II_DEVICE) {
3506		val64 = readq(&bar0->pcc_err_reg);
3507		writeq(val64, &bar0->pcc_err_reg);
3508	}
3509
3510	sp->device_enabled_once = false;
3511}
3512
3513/**
3514 *  s2io_set_swapper - to set the swapper controle on the card
3515 *  @sp : private member of the device structure,
3516 *  pointer to the s2io_nic structure.
3517 *  Description: Function to set the swapper control on the card
3518 *  correctly depending on the 'endianness' of the system.
3519 *  Return value:
3520 *  SUCCESS on success and FAILURE on failure.
3521 */
3522
3523static int s2io_set_swapper(struct s2io_nic *sp)
3524{
3525	struct net_device *dev = sp->dev;
3526	struct XENA_dev_config __iomem *bar0 = sp->bar0;
3527	u64 val64, valt, valr;
3528
3529	/*
3530	 * Set proper endian settings and verify the same by reading
3531	 * the PIF Feed-back register.
3532	 */
3533
3534	val64 = readq(&bar0->pif_rd_swapper_fb);
3535	if (val64 != 0x0123456789ABCDEFULL) {
3536		int i = 0;
3537		static const u64 value[] = {
3538			0xC30000C3C30000C3ULL,	/* FE=1, SE=1 */
3539			0x8100008181000081ULL,	/* FE=1, SE=0 */
3540			0x4200004242000042ULL,	/* FE=0, SE=1 */
3541			0			/* FE=0, SE=0 */
3542		};
3543
3544		while (i < 4) {
3545			writeq(value[i], &bar0->swapper_ctrl);
3546			val64 = readq(&bar0->pif_rd_swapper_fb);
3547			if (val64 == 0x0123456789ABCDEFULL)
3548				break;
3549			i++;
3550		}
3551		if (i == 4) {
3552			DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, "
3553				  "feedback read %llx\n",
3554				  dev->name, (unsigned long long)val64);
3555			return FAILURE;
3556		}
3557		valr = value[i];
3558	} else {
3559		valr = readq(&bar0->swapper_ctrl);
3560	}
3561
3562	valt = 0x0123456789ABCDEFULL;
3563	writeq(valt, &bar0->xmsi_address);
3564	val64 = readq(&bar0->xmsi_address);
3565
3566	if (val64 != valt) {
3567		int i = 0;
3568		static const u64 value[] = {
3569			0x00C3C30000C3C300ULL,	/* FE=1, SE=1 */
3570			0x0081810000818100ULL,	/* FE=1, SE=0 */
3571			0x0042420000424200ULL,	/* FE=0, SE=1 */
3572			0			/* FE=0, SE=0 */
3573		};
3574
3575		while (i < 4) {
3576			writeq((value[i] | valr), &bar0->swapper_ctrl);
3577			writeq(valt, &bar0->xmsi_address);
3578			val64 = readq(&bar0->xmsi_address);
3579			if (val64 == valt)
3580				break;
3581			i++;
3582		}
3583		if (i == 4) {
3584			unsigned long long x = val64;
3585			DBG_PRINT(ERR_DBG,
3586				  "Write failed, Xmsi_addr reads:0x%llx\n", x);
3587			return FAILURE;
3588		}
3589	}
3590	val64 = readq(&bar0->swapper_ctrl);
3591	val64 &= 0xFFFF000000000000ULL;
3592
3593#ifdef __BIG_ENDIAN
3594	/*
3595	 * The device by default set to a big endian format, so a
3596	 * big endian driver need not set anything.
3597	 */
3598	val64 |= (SWAPPER_CTRL_TXP_FE |
3599		  SWAPPER_CTRL_TXP_SE |
3600		  SWAPPER_CTRL_TXD_R_FE |
3601		  SWAPPER_CTRL_TXD_W_FE |
3602		  SWAPPER_CTRL_TXF_R_FE |
3603		  SWAPPER_CTRL_RXD_R_FE |
3604		  SWAPPER_CTRL_RXD_W_FE |
3605		  SWAPPER_CTRL_RXF_W_FE |
3606		  SWAPPER_CTRL_XMSI_FE |
3607		  SWAPPER_CTRL_STATS_FE |
3608		  SWAPPER_CTRL_STATS_SE);
3609	if (sp->config.intr_type == INTA)
3610		val64 |= SWAPPER_CTRL_XMSI_SE;
3611	writeq(val64, &bar0->swapper_ctrl);
3612#else
3613	/*
3614	 * Initially we enable all bits to make it accessible by the
3615	 * driver, then we selectively enable only those bits that
3616	 * we want to set.
3617	 */
3618	val64 |= (SWAPPER_CTRL_TXP_FE |
3619		  SWAPPER_CTRL_TXP_SE |
3620		  SWAPPER_CTRL_TXD_R_FE |
3621		  SWAPPER_CTRL_TXD_R_SE |
3622		  SWAPPER_CTRL_TXD_W_FE |
3623		  SWAPPER_CTRL_TXD_W_SE |
3624		  SWAPPER_CTRL_TXF_R_FE |
3625		  SWAPPER_CTRL_RXD_R_FE |
3626		  SWAPPER_CTRL_RXD_R_SE |
3627		  SWAPPER_CTRL_RXD_W_FE |
3628		  SWAPPER_CTRL_RXD_W_SE |
3629		  SWAPPER_CTRL_RXF_W_FE |
3630		  SWAPPER_CTRL_XMSI_FE |
3631		  SWAPPER_CTRL_STATS_FE |
3632		  SWAPPER_CTRL_STATS_SE);
3633	if (sp->config.intr_type == INTA)
3634		val64 |= SWAPPER_CTRL_XMSI_SE;
3635	writeq(val64, &bar0->swapper_ctrl);
3636#endif
3637	val64 = readq(&bar0->swapper_ctrl);
3638
3639	/*
3640	 * Verifying if endian settings are accurate by reading a
3641	 * feedback register.
3642	 */
3643	val64 = readq(&bar0->pif_rd_swapper_fb);
3644	if (val64 != 0x0123456789ABCDEFULL) {
3645		/* Endian settings are incorrect, calls for another dekko. */
3646		DBG_PRINT(ERR_DBG,
3647			  "%s: Endian settings are wrong, feedback read %llx\n",
3648			  dev->name, (unsigned long long)val64);
3649		return FAILURE;
3650	}
3651
3652	return SUCCESS;
3653}
3654
3655static int wait_for_msix_trans(struct s2io_nic *nic, int i)
3656{
3657	struct XENA_dev_config __iomem *bar0 = nic->bar0;
3658	u64 val64;
3659	int ret = 0, cnt = 0;
3660
3661	do {
3662		val64 = readq(&bar0->xmsi_access);
3663		if (!(val64 & s2BIT(15)))
3664			break;
3665		mdelay(1);
3666		cnt++;
3667	} while (cnt < 5);
3668	if (cnt == 5) {
3669		DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3670		ret = 1;
3671	}
3672
3673	return ret;
3674}
3675
3676static void restore_xmsi_data(struct s2io_nic *nic)
3677{
3678	struct XENA_dev_config __iomem *bar0 = nic->bar0;
3679	u64 val64;
3680	int i, msix_index;
3681
3682	if (nic->device_type == XFRAME_I_DEVICE)
3683		return;
3684
3685	for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3686		msix_index = (i) ? ((i-1) * 8 + 1) : 0;
3687		writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3688		writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3689		val64 = (s2BIT(7) | s2BIT(15) | vBIT(msix_index, 26, 6));
3690		writeq(val64, &bar0->xmsi_access);
3691		if (wait_for_msix_trans(nic, msix_index))
3692			DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
3693				  __func__, msix_index);
3694	}
3695}
3696
3697static void store_xmsi_data(struct s2io_nic *nic)
3698{
3699	struct XENA_dev_config __iomem *bar0 = nic->bar0;
3700	u64 val64, addr, data;
3701	int i, msix_index;
3702
3703	if (nic->device_type == XFRAME_I_DEVICE)
3704		return;
3705
3706	/* Store and display */
3707	for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3708		msix_index = (i) ? ((i-1) * 8 + 1) : 0;
3709		val64 = (s2BIT(15) | vBIT(msix_index, 26, 6));
3710		writeq(val64, &bar0->xmsi_access);
3711		if (wait_for_msix_trans(nic, msix_index)) {
3712			DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
3713				  __func__, msix_index);
3714			continue;
3715		}
3716		addr = readq(&bar0->xmsi_address);
3717		data = readq(&bar0->xmsi_data);
3718		if (addr && data) {
3719			nic->msix_info[i].addr = addr;
3720			nic->msix_info[i].data = data;
3721		}
3722	}
3723}
3724
3725static int s2io_enable_msi_x(struct s2io_nic *nic)
3726{
3727	struct XENA_dev_config __iomem *bar0 = nic->bar0;
3728	u64 rx_mat;
3729	u16 msi_control; /* Temp variable */
3730	int ret, i, j, msix_indx = 1;
3731	int size;
3732	struct stat_block *stats = nic->mac_control.stats_info;
3733	struct swStat *swstats = &stats->sw_stat;
3734
3735	size = nic->num_entries * sizeof(struct msix_entry);
3736	nic->entries = kzalloc(size, GFP_KERNEL);
3737	if (!nic->entries) {
3738		DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3739			  __func__);
3740		swstats->mem_alloc_fail_cnt++;
3741		return -ENOMEM;
3742	}
3743	swstats->mem_allocated += size;
3744
3745	size = nic->num_entries * sizeof(struct s2io_msix_entry);
3746	nic->s2io_entries = kzalloc(size, GFP_KERNEL);
3747	if (!nic->s2io_entries) {
3748		DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3749			  __func__);
3750		swstats->mem_alloc_fail_cnt++;
3751		kfree(nic->entries);
3752		swstats->mem_freed
3753			+= (nic->num_entries * sizeof(struct msix_entry));
3754		return -ENOMEM;
3755	}
3756	swstats->mem_allocated += size;
3757
3758	nic->entries[0].entry = 0;
3759	nic->s2io_entries[0].entry = 0;
3760	nic->s2io_entries[0].in_use = MSIX_FLG;
3761	nic->s2io_entries[0].type = MSIX_ALARM_TYPE;
3762	nic->s2io_entries[0].arg = &nic->mac_control.fifos;
3763
3764	for (i = 1; i < nic->num_entries; i++) {
3765		nic->entries[i].entry = ((i - 1) * 8) + 1;
3766		nic->s2io_entries[i].entry = ((i - 1) * 8) + 1;
3767		nic->s2io_entries[i].arg = NULL;
3768		nic->s2io_entries[i].in_use = 0;
3769	}
3770
3771	rx_mat = readq(&bar0->rx_mat);
3772	for (j = 0; j < nic->config.rx_ring_num; j++) {
3773		rx_mat |= RX_MAT_SET(j, msix_indx);
3774		nic->s2io_entries[j+1].arg = &nic->mac_control.rings[j];
3775		nic->s2io_entries[j+1].type = MSIX_RING_TYPE;
3776		nic->s2io_entries[j+1].in_use = MSIX_FLG;
3777		msix_indx += 8;
3778	}
3779	writeq(rx_mat, &bar0->rx_mat);
3780	readq(&bar0->rx_mat);
3781
3782	ret = pci_enable_msix_range(nic->pdev, nic->entries,
3783				    nic->num_entries, nic->num_entries);
3784	/* We fail init if error or we get less vectors than min required */
3785	if (ret < 0) {
3786		DBG_PRINT(ERR_DBG, "Enabling MSI-X failed\n");
3787		kfree(nic->entries);
3788		swstats->mem_freed += nic->num_entries *
3789			sizeof(struct msix_entry);
3790		kfree(nic->s2io_entries);
3791		swstats->mem_freed += nic->num_entries *
3792			sizeof(struct s2io_msix_entry);
3793		nic->entries = NULL;
3794		nic->s2io_entries = NULL;
3795		return -ENOMEM;
3796	}
3797
3798	/*
3799	 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3800	 * in the herc NIC. (Temp change, needs to be removed later)
3801	 */
3802	pci_read_config_word(nic->pdev, 0x42, &msi_control);
3803	msi_control |= 0x1; /* Enable MSI */
3804	pci_write_config_word(nic->pdev, 0x42, msi_control);
3805
3806	return 0;
3807}
3808
3809/* Handle software interrupt used during MSI(X) test */
3810static irqreturn_t s2io_test_intr(int irq, void *dev_id)
3811{
3812	struct s2io_nic *sp = dev_id;
3813
3814	sp->msi_detected = 1;
3815	wake_up(&sp->msi_wait);
3816
3817	return IRQ_HANDLED;
3818}
3819
3820/* Test interrupt path by forcing a software IRQ */
3821static int s2io_test_msi(struct s2io_nic *sp)
3822{
3823	struct pci_dev *pdev = sp->pdev;
3824	struct XENA_dev_config __iomem *bar0 = sp->bar0;
3825	int err;
3826	u64 val64, saved64;
3827
3828	err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
3829			  sp->name, sp);
3830	if (err) {
3831		DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
3832			  sp->dev->name, pci_name(pdev), pdev->irq);
3833		return err;
3834	}
3835
3836	init_waitqueue_head(&sp->msi_wait);
3837	sp->msi_detected = 0;
3838
3839	saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
3840	val64 |= SCHED_INT_CTRL_ONE_SHOT;
3841	val64 |= SCHED_INT_CTRL_TIMER_EN;
3842	val64 |= SCHED_INT_CTRL_INT2MSI(1);
3843	writeq(val64, &bar0->scheduled_int_ctrl);
3844
3845	wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
3846
3847	if (!sp->msi_detected) {
3848		/* MSI(X) test failed, go back to INTx mode */
3849		DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated "
3850			  "using MSI(X) during test\n",
3851			  sp->dev->name, pci_name(pdev));
3852
3853		err = -EOPNOTSUPP;
3854	}
3855
3856	free_irq(sp->entries[1].vector, sp);
3857
3858	writeq(saved64, &bar0->scheduled_int_ctrl);
3859
3860	return err;
3861}
3862
3863static void remove_msix_isr(struct s2io_nic *sp)
3864{
3865	int i;
3866	u16 msi_control;
3867
3868	for (i = 0; i < sp->num_entries; i++) {
3869		if (sp->s2io_entries[i].in_use == MSIX_REGISTERED_SUCCESS) {
3870			int vector = sp->entries[i].vector;
3871			void *arg = sp->s2io_entries[i].arg;
3872			free_irq(vector, arg);
3873		}
3874	}
3875
3876	kfree(sp->entries);
3877	kfree(sp->s2io_entries);
3878	sp->entries = NULL;
3879	sp->s2io_entries = NULL;
3880
3881	pci_read_config_word(sp->pdev, 0x42, &msi_control);
3882	msi_control &= 0xFFFE; /* Disable MSI */
3883	pci_write_config_word(sp->pdev, 0x42, msi_control);
3884
3885	pci_disable_msix(sp->pdev);
3886}
3887
3888static void remove_inta_isr(struct s2io_nic *sp)
3889{
3890	free_irq(sp->pdev->irq, sp->dev);
3891}
3892
3893/* ********************************************************* *
3894 * Functions defined below concern the OS part of the driver *
3895 * ********************************************************* */
3896
3897/**
3898 *  s2io_open - open entry point of the driver
3899 *  @dev : pointer to the device structure.
3900 *  Description:
3901 *  This function is the open entry point of the driver. It mainly calls a
3902 *  function to allocate Rx buffers and inserts them into the buffer
3903 *  descriptors and then enables the Rx part of the NIC.
3904 *  Return value:
3905 *  0 on success and an appropriate (-)ve integer as defined in errno.h
3906 *   file on failure.
3907 */
3908
3909static int s2io_open(struct net_device *dev)
3910{
3911	struct s2io_nic *sp = netdev_priv(dev);
3912	struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
3913	int err = 0;
3914
3915	/*
3916	 * Make sure you have link off by default every time
3917	 * Nic is initialized
3918	 */
3919	netif_carrier_off(dev);
3920	sp->last_link_state = 0;
3921
3922	/* Initialize H/W and enable interrupts */
3923	err = s2io_card_up(sp);
3924	if (err) {
3925		DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3926			  dev->name);
3927		goto hw_init_failed;
3928	}
3929
3930	if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
3931		DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
3932		s2io_card_down(sp);
3933		err = -ENODEV;
3934		goto hw_init_failed;
3935	}
3936	s2io_start_all_tx_queue(sp);
3937	return 0;
3938
3939hw_init_failed:
3940	if (sp->config.intr_type == MSI_X) {
3941		if (sp->entries) {
3942			kfree(sp->entries);
3943			swstats->mem_freed += sp->num_entries *
3944				sizeof(struct msix_entry);
3945		}
3946		if (sp->s2io_entries) {
3947			kfree(sp->s2io_entries);
3948			swstats->mem_freed += sp->num_entries *
3949				sizeof(struct s2io_msix_entry);
3950		}
3951	}
3952	return err;
3953}
3954
3955/**
3956 *  s2io_close -close entry point of the driver
3957 *  @dev : device pointer.
3958 *  Description:
3959 *  This is the stop entry point of the driver. It needs to undo exactly
3960 *  whatever was done by the open entry point,thus it's usually referred to
3961 *  as the close function.Among other things this function mainly stops the
3962 *  Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3963 *  Return value:
3964 *  0 on success and an appropriate (-)ve integer as defined in errno.h
3965 *  file on failure.
3966 */
3967
3968static int s2io_close(struct net_device *dev)
3969{
3970	struct s2io_nic *sp = netdev_priv(dev);
3971	struct config_param *config = &sp->config;
3972	u64 tmp64;
3973	int offset;
3974
3975	/* Return if the device is already closed               *
3976	 *  Can happen when s2io_card_up failed in change_mtu    *
3977	 */
3978	if (!is_s2io_card_up(sp))
3979		return 0;
3980
3981	s2io_stop_all_tx_queue(sp);
3982	/* delete all populated mac entries */
3983	for (offset = 1; offset < config->max_mc_addr; offset++) {
3984		tmp64 = do_s2io_read_unicast_mc(sp, offset);
3985		if (tmp64 != S2IO_DISABLE_MAC_ENTRY)
3986			do_s2io_delete_unicast_mc(sp, tmp64);
3987	}
3988
3989	s2io_card_down(sp);
3990
3991	return 0;
3992}
3993
3994/**
3995 *  s2io_xmit - Tx entry point of te driver
3996 *  @skb : the socket buffer containing the Tx data.
3997 *  @dev : device pointer.
3998 *  Description :
3999 *  This function is the Tx entry point of the driver. S2IO NIC supports
4000 *  certain protocol assist features on Tx side, namely  CSO, S/G, LSO.
4001 *  NOTE: when device can't queue the pkt,just the trans_start variable will
4002 *  not be upadted.
4003 *  Return value:
4004 *  0 on success & 1 on failure.
4005 */
4006
4007static netdev_tx_t s2io_xmit(struct sk_buff *skb, struct net_device *dev)
4008{
4009	struct s2io_nic *sp = netdev_priv(dev);
4010	u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
4011	register u64 val64;
4012	struct TxD *txdp;
4013	struct TxFIFO_element __iomem *tx_fifo;
4014	unsigned long flags = 0;
4015	u16 vlan_tag = 0;
4016	struct fifo_info *fifo = NULL;
4017	int offload_type;
4018	int enable_per_list_interrupt = 0;
4019	struct config_param *config = &sp->config;
4020	struct mac_info *mac_control = &sp->mac_control;
4021	struct stat_block *stats = mac_control->stats_info;
4022	struct swStat *swstats = &stats->sw_stat;
4023
4024	DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
4025
4026	if (unlikely(skb->len <= 0)) {
4027		DBG_PRINT(TX_DBG, "%s: Buffer has no data..\n", dev->name);
4028		dev_kfree_skb_any(skb);
4029		return NETDEV_TX_OK;
4030	}
4031
4032	if (!is_s2io_card_up(sp)) {
4033		DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
4034			  dev->name);
4035		dev_kfree_skb_any(skb);
4036		return NETDEV_TX_OK;
4037	}
4038
4039	queue = 0;
4040	if (skb_vlan_tag_present(skb))
4041		vlan_tag = skb_vlan_tag_get(skb);
4042	if (sp->config.tx_steering_type == TX_DEFAULT_STEERING) {
4043		if (skb->protocol == htons(ETH_P_IP)) {
4044			struct iphdr *ip;
4045			struct tcphdr *th;
4046			ip = ip_hdr(skb);
4047
4048			if (!ip_is_fragment(ip)) {
4049				th = (struct tcphdr *)(((unsigned char *)ip) +
4050						       ip->ihl*4);
4051
4052				if (ip->protocol == IPPROTO_TCP) {
4053					queue_len = sp->total_tcp_fifos;
4054					queue = (ntohs(th->source) +
4055						 ntohs(th->dest)) &
4056						sp->fifo_selector[queue_len - 1];
4057					if (queue >= queue_len)
4058						queue = queue_len - 1;
4059				} else if (ip->protocol == IPPROTO_UDP) {
4060					queue_len = sp->total_udp_fifos;
4061					queue = (ntohs(th->source) +
4062						 ntohs(th->dest)) &
4063						sp->fifo_selector[queue_len - 1];
4064					if (queue >= queue_len)
4065						queue = queue_len - 1;
4066					queue += sp->udp_fifo_idx;
4067					if (skb->len > 1024)
4068						enable_per_list_interrupt = 1;
4069				}
4070			}
4071		}
4072	} else if (sp->config.tx_steering_type == TX_PRIORITY_STEERING)
4073		/* get fifo number based on skb->priority value */
4074		queue = config->fifo_mapping
4075			[skb->priority & (MAX_TX_FIFOS - 1)];
4076	fifo = &mac_control->fifos[queue];
4077
4078	spin_lock_irqsave(&fifo->tx_lock, flags);
4079
4080	if (sp->config.multiq) {
4081		if (__netif_subqueue_stopped(dev, fifo->fifo_no)) {
4082			spin_unlock_irqrestore(&fifo->tx_lock, flags);
4083			return NETDEV_TX_BUSY;
4084		}
4085	} else if (unlikely(fifo->queue_state == FIFO_QUEUE_STOP)) {
4086		if (netif_queue_stopped(dev)) {
4087			spin_unlock_irqrestore(&fifo->tx_lock, flags);
4088			return NETDEV_TX_BUSY;
4089		}
4090	}
4091
4092	put_off = (u16)fifo->tx_curr_put_info.offset;
4093	get_off = (u16)fifo->tx_curr_get_info.offset;
4094	txdp = fifo->list_info[put_off].list_virt_addr;
4095
4096	queue_len = fifo->tx_curr_put_info.fifo_len + 1;
4097	/* Avoid "put" pointer going beyond "get" pointer */
4098	if (txdp->Host_Control ||
4099	    ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4100		DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
4101		s2io_stop_tx_queue(sp, fifo->fifo_no);
4102		dev_kfree_skb_any(skb);
4103		spin_unlock_irqrestore(&fifo->tx_lock, flags);
4104		return NETDEV_TX_OK;
4105	}
4106
4107	offload_type = s2io_offload_type(skb);
4108	if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
4109		txdp->Control_1 |= TXD_TCP_LSO_EN;
4110		txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
4111	}
4112	if (skb->ip_summed == CHECKSUM_PARTIAL) {
4113		txdp->Control_2 |= (TXD_TX_CKO_IPV4_EN |
4114				    TXD_TX_CKO_TCP_EN |
4115				    TXD_TX_CKO_UDP_EN);
4116	}
4117	txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
4118	txdp->Control_1 |= TXD_LIST_OWN_XENA;
4119	txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no);
4120	if (enable_per_list_interrupt)
4121		if (put_off & (queue_len >> 5))
4122			txdp->Control_2 |= TXD_INT_TYPE_PER_LIST;
4123	if (vlan_tag) {
4124		txdp->Control_2 |= TXD_VLAN_ENABLE;
4125		txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
4126	}
4127
4128	frg_len = skb_headlen(skb);
4129	txdp->Buffer_Pointer = dma_map_single(&sp->pdev->dev, skb->data,
4130					      frg_len, DMA_TO_DEVICE);
4131	if (dma_mapping_error(&sp->pdev->dev, txdp->Buffer_Pointer))
4132		goto pci_map_failed;
4133
4134	txdp->Host_Control = (unsigned long)skb;
4135	txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
4136
4137	frg_cnt = skb_shinfo(skb)->nr_frags;
4138	/* For fragmented SKB. */
4139	for (i = 0; i < frg_cnt; i++) {
4140		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4141		/* A '0' length fragment will be ignored */
4142		if (!skb_frag_size(frag))
4143			continue;
4144		txdp++;
4145		txdp->Buffer_Pointer = (u64)skb_frag_dma_map(&sp->pdev->dev,
4146							     frag, 0,
4147							     skb_frag_size(frag),
4148							     DMA_TO_DEVICE);
4149		txdp->Control_1 = TXD_BUFFER0_SIZE(skb_frag_size(frag));
4150	}
4151	txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4152
4153	tx_fifo = mac_control->tx_FIFO_start[queue];
4154	val64 = fifo->list_info[put_off].list_phy_addr;
4155	writeq(val64, &tx_fifo->TxDL_Pointer);
4156
4157	val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4158		 TX_FIFO_LAST_LIST);
4159	if (offload_type)
4160		val64 |= TX_FIFO_SPECIAL_FUNC;
4161
4162	writeq(val64, &tx_fifo->List_Control);
4163
4164	put_off++;
4165	if (put_off == fifo->tx_curr_put_info.fifo_len + 1)
4166		put_off = 0;
4167	fifo->tx_curr_put_info.offset = put_off;
4168
4169	/* Avoid "put" pointer going beyond "get" pointer */
4170	if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4171		swstats->fifo_full_cnt++;
4172		DBG_PRINT(TX_DBG,
4173			  "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4174			  put_off, get_off);
4175		s2io_stop_tx_queue(sp, fifo->fifo_no);
4176	}
4177	swstats->mem_allocated += skb->truesize;
4178	spin_unlock_irqrestore(&fifo->tx_lock, flags);
4179
4180	if (sp->config.intr_type == MSI_X)
4181		tx_intr_handler(fifo);
4182
4183	return NETDEV_TX_OK;
4184
4185pci_map_failed:
4186	swstats->pci_map_fail_cnt++;
4187	s2io_stop_tx_queue(sp, fifo->fifo_no);
4188	swstats->mem_freed += skb->truesize;
4189	dev_kfree_skb_any(skb);
4190	spin_unlock_irqrestore(&fifo->tx_lock, flags);
4191	return NETDEV_TX_OK;
4192}
4193
4194static void
4195s2io_alarm_handle(struct timer_list *t)
4196{
4197	struct s2io_nic *sp = from_timer(sp, t, alarm_timer);
4198	struct net_device *dev = sp->dev;
4199
4200	s2io_handle_errors(dev);
4201	mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4202}
4203
4204static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
4205{
4206	struct ring_info *ring = (struct ring_info *)dev_id;
4207	struct s2io_nic *sp = ring->nic;
4208	struct XENA_dev_config __iomem *bar0 = sp->bar0;
4209
4210	if (unlikely(!is_s2io_card_up(sp)))
4211		return IRQ_HANDLED;
4212
4213	if (sp->config.napi) {
4214		u8 __iomem *addr = NULL;
4215		u8 val8 = 0;
4216
4217		addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
4218		addr += (7 - ring->ring_no);
4219		val8 = (ring->ring_no == 0) ? 0x7f : 0xff;
4220		writeb(val8, addr);
4221		val8 = readb(addr);
4222		napi_schedule(&ring->napi);
4223	} else {
4224		rx_intr_handler(ring, 0);
4225		s2io_chk_rx_buffers(sp, ring);
4226	}
4227
4228	return IRQ_HANDLED;
4229}
4230
4231static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
4232{
4233	int i;
4234	struct fifo_info *fifos = (struct fifo_info *)dev_id;
4235	struct s2io_nic *sp = fifos->nic;
4236	struct XENA_dev_config __iomem *bar0 = sp->bar0;
4237	struct config_param *config  = &sp->config;
4238	u64 reason;
4239
4240	if (unlikely(!is_s2io_card_up(sp)))
4241		return IRQ_NONE;
4242
4243	reason = readq(&bar0->general_int_status);
4244	if (unlikely(reason == S2IO_MINUS_ONE))
4245		/* Nothing much can be done. Get out */
4246		return IRQ_HANDLED;
4247
4248	if (reason & (GEN_INTR_TXPIC | GEN_INTR_TXTRAFFIC)) {
4249		writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4250
4251		if (reason & GEN_INTR_TXPIC)
4252			s2io_txpic_intr_handle(sp);
4253
4254		if (reason & GEN_INTR_TXTRAFFIC)
4255			writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4256
4257		for (i = 0; i < config->tx_fifo_num; i++)
4258			tx_intr_handler(&fifos[i]);
4259
4260		writeq(sp->general_int_mask, &bar0->general_int_mask);
4261		readl(&bar0->general_int_status);
4262		return IRQ_HANDLED;
4263	}
4264	/* The interrupt was not raised by us */
4265	return IRQ_NONE;
4266}
4267
4268static void s2io_txpic_intr_handle(struct s2io_nic *sp)
4269{
4270	struct XENA_dev_config __iomem *bar0 = sp->bar0;
4271	u64 val64;
4272
4273	val64 = readq(&bar0->pic_int_status);
4274	if (val64 & PIC_INT_GPIO) {
4275		val64 = readq(&bar0->gpio_int_reg);
4276		if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4277		    (val64 & GPIO_INT_REG_LINK_UP)) {
4278			/*
4279			 * This is unstable state so clear both up/down
4280			 * interrupt and adapter to re-evaluate the link state.
4281			 */
4282			val64 |= GPIO_INT_REG_LINK_DOWN;
4283			val64 |= GPIO_INT_REG_LINK_UP;
4284			writeq(val64, &bar0->gpio_int_reg);
4285			val64 = readq(&bar0->gpio_int_mask);
4286			val64 &= ~(GPIO_INT_MASK_LINK_UP |
4287				   GPIO_INT_MASK_LINK_DOWN);
4288			writeq(val64, &bar0->gpio_int_mask);
4289		} else if (val64 & GPIO_INT_REG_LINK_UP) {
4290			val64 = readq(&bar0->adapter_status);
4291			/* Enable Adapter */
4292			val64 = readq(&bar0->adapter_control);
4293			val64 |= ADAPTER_CNTL_EN;
4294			writeq(val64, &bar0->adapter_control);
4295			val64 |= ADAPTER_LED_ON;
4296			writeq(val64, &bar0->adapter_control);
4297			if (!sp->device_enabled_once)
4298				sp->device_enabled_once = 1;
4299
4300			s2io_link(sp, LINK_UP);
4301			/*
4302			 * unmask link down interrupt and mask link-up
4303			 * intr
4304			 */
4305			val64 = readq(&bar0->gpio_int_mask);
4306			val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4307			val64 |= GPIO_INT_MASK_LINK_UP;
4308			writeq(val64, &bar0->gpio_int_mask);
4309
4310		} else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4311			val64 = readq(&bar0->adapter_status);
4312			s2io_link(sp, LINK_DOWN);
4313			/* Link is down so unmaks link up interrupt */
4314			val64 = readq(&bar0->gpio_int_mask);
4315			val64 &= ~GPIO_INT_MASK_LINK_UP;
4316			val64 |= GPIO_INT_MASK_LINK_DOWN;
4317			writeq(val64, &bar0->gpio_int_mask);
4318
4319			/* turn off LED */
4320			val64 = readq(&bar0->adapter_control);
4321			val64 = val64 & (~ADAPTER_LED_ON);
4322			writeq(val64, &bar0->adapter_control);
4323		}
4324	}
4325	val64 = readq(&bar0->gpio_int_mask);
4326}
4327
4328/**
4329 *  do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4330 *  @value: alarm bits
4331 *  @addr: address value
4332 *  @cnt: counter variable
4333 *  Description: Check for alarm and increment the counter
4334 *  Return Value:
4335 *  1 - if alarm bit set
4336 *  0 - if alarm bit is not set
4337 */
4338static int do_s2io_chk_alarm_bit(u64 value, void __iomem *addr,
4339				 unsigned long long *cnt)
4340{
4341	u64 val64;
4342	val64 = readq(addr);
4343	if (val64 & value) {
4344		writeq(val64, addr);
4345		(*cnt)++;
4346		return 1;
4347	}
4348	return 0;
4349
4350}
4351
4352/**
4353 *  s2io_handle_errors - Xframe error indication handler
4354 *  @dev_id: opaque handle to dev
4355 *  Description: Handle alarms such as loss of link, single or
4356 *  double ECC errors, critical and serious errors.
4357 *  Return Value:
4358 *  NONE
4359 */
4360static void s2io_handle_errors(void *dev_id)
4361{
4362	struct net_device *dev = (struct net_device *)dev_id;
4363	struct s2io_nic *sp = netdev_priv(dev);
4364	struct XENA_dev_config __iomem *bar0 = sp->bar0;
4365	u64 temp64 = 0, val64 = 0;
4366	int i = 0;
4367
4368	struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
4369	struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
4370
4371	if (!is_s2io_card_up(sp))
4372		return;
4373
4374	if (pci_channel_offline(sp->pdev))
4375		return;
4376
4377	memset(&sw_stat->ring_full_cnt, 0,
4378	       sizeof(sw_stat->ring_full_cnt));
4379
4380	/* Handling the XPAK counters update */
4381	if (stats->xpak_timer_count < 72000) {
4382		/* waiting for an hour */
4383		stats->xpak_timer_count++;
4384	} else {
4385		s2io_updt_xpak_counter(dev);
4386		/* reset the count to zero */
4387		stats->xpak_timer_count = 0;
4388	}
4389
4390	/* Handling link status change error Intr */
4391	if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
4392		val64 = readq(&bar0->mac_rmac_err_reg);
4393		writeq(val64, &bar0->mac_rmac_err_reg);
4394		if (val64 & RMAC_LINK_STATE_CHANGE_INT)
4395			schedule_work(&sp->set_link_task);
4396	}
4397
4398	/* In case of a serious error, the device will be Reset. */
4399	if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
4400				  &sw_stat->serious_err_cnt))
4401		goto reset;
4402
4403	/* Check for data parity error */
4404	if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
4405				  &sw_stat->parity_err_cnt))
4406		goto reset;
4407
4408	/* Check for ring full counter */
4409	if (sp->device_type == XFRAME_II_DEVICE) {
4410		val64 = readq(&bar0->ring_bump_counter1);
4411		for (i = 0; i < 4; i++) {
4412			temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
4413			temp64 >>= 64 - ((i+1)*16);
4414			sw_stat->ring_full_cnt[i] += temp64;
4415		}
4416
4417		val64 = readq(&bar0->ring_bump_counter2);
4418		for (i = 0; i < 4; i++) {
4419			temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
4420			temp64 >>= 64 - ((i+1)*16);
4421			sw_stat->ring_full_cnt[i+4] += temp64;
4422		}
4423	}
4424
4425	val64 = readq(&bar0->txdma_int_status);
4426	/*check for pfc_err*/
4427	if (val64 & TXDMA_PFC_INT) {
4428		if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
4429					  PFC_MISC_0_ERR | PFC_MISC_1_ERR |
4430					  PFC_PCIX_ERR,
4431					  &bar0->pfc_err_reg,
4432					  &sw_stat->pfc_err_cnt))
4433			goto reset;
4434		do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR,
4435				      &bar0->pfc_err_reg,
4436				      &sw_stat->pfc_err_cnt);
4437	}
4438
4439	/*check for tda_err*/
4440	if (val64 & TXDMA_TDA_INT) {
4441		if (do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR |
4442					  TDA_SM0_ERR_ALARM |
4443					  TDA_SM1_ERR_ALARM,
4444					  &bar0->tda_err_reg,
4445					  &sw_stat->tda_err_cnt))
4446			goto reset;
4447		do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
4448				      &bar0->tda_err_reg,
4449				      &sw_stat->tda_err_cnt);
4450	}
4451	/*check for pcc_err*/
4452	if (val64 & TXDMA_PCC_INT) {
4453		if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
4454					  PCC_N_SERR | PCC_6_COF_OV_ERR |
4455					  PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
4456					  PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR |
4457					  PCC_TXB_ECC_DB_ERR,
4458					  &bar0->pcc_err_reg,
4459					  &sw_stat->pcc_err_cnt))
4460			goto reset;
4461		do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
4462				      &bar0->pcc_err_reg,
4463				      &sw_stat->pcc_err_cnt);
4464	}
4465
4466	/*check for tti_err*/
4467	if (val64 & TXDMA_TTI_INT) {
4468		if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM,
4469					  &bar0->tti_err_reg,
4470					  &sw_stat->tti_err_cnt))
4471			goto reset;
4472		do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
4473				      &bar0->tti_err_reg,
4474				      &sw_stat->tti_err_cnt);
4475	}
4476
4477	/*check for lso_err*/
4478	if (val64 & TXDMA_LSO_INT) {
4479		if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT |
4480					  LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
4481					  &bar0->lso_err_reg,
4482					  &sw_stat->lso_err_cnt))
4483			goto reset;
4484		do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
4485				      &bar0->lso_err_reg,
4486				      &sw_stat->lso_err_cnt);
4487	}
4488
4489	/*check for tpa_err*/
4490	if (val64 & TXDMA_TPA_INT) {
4491		if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM,
4492					  &bar0->tpa_err_reg,
4493					  &sw_stat->tpa_err_cnt))
4494			goto reset;
4495		do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP,
4496				      &bar0->tpa_err_reg,
4497				      &sw_stat->tpa_err_cnt);
4498	}
4499
4500	/*check for sm_err*/
4501	if (val64 & TXDMA_SM_INT) {
4502		if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM,
4503					  &bar0->sm_err_reg,
4504					  &sw_stat->sm_err_cnt))
4505			goto reset;
4506	}
4507
4508	val64 = readq(&bar0->mac_int_status);
4509	if (val64 & MAC_INT_STATUS_TMAC_INT) {
4510		if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
4511					  &bar0->mac_tmac_err_reg,
4512					  &sw_stat->mac_tmac_err_cnt))
4513			goto reset;
4514		do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
4515				      TMAC_DESC_ECC_SG_ERR |
4516				      TMAC_DESC_ECC_DB_ERR,
4517				      &bar0->mac_tmac_err_reg,
4518				      &sw_stat->mac_tmac_err_cnt);
4519	}
4520
4521	val64 = readq(&bar0->xgxs_int_status);
4522	if (val64 & XGXS_INT_STATUS_TXGXS) {
4523		if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
4524					  &bar0->xgxs_txgxs_err_reg,
4525					  &sw_stat->xgxs_txgxs_err_cnt))
4526			goto reset;
4527		do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
4528				      &bar0->xgxs_txgxs_err_reg,
4529				      &sw_stat->xgxs_txgxs_err_cnt);
4530	}
4531
4532	val64 = readq(&bar0->rxdma_int_status);
4533	if (val64 & RXDMA_INT_RC_INT_M) {
4534		if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR |
4535					  RC_FTC_ECC_DB_ERR |
4536					  RC_PRCn_SM_ERR_ALARM |
4537					  RC_FTC_SM_ERR_ALARM,
4538					  &bar0->rc_err_reg,
4539					  &sw_stat->rc_err_cnt))
4540			goto reset;
4541		do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR |
4542				      RC_FTC_ECC_SG_ERR |
4543				      RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
4544				      &sw_stat->rc_err_cnt);
4545		if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn |
4546					  PRC_PCI_AB_WR_Rn |
4547					  PRC_PCI_AB_F_WR_Rn,
4548					  &bar0->prc_pcix_err_reg,
4549					  &sw_stat->prc_pcix_err_cnt))
4550			goto reset;
4551		do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn |
4552				      PRC_PCI_DP_WR_Rn |
4553				      PRC_PCI_DP_F_WR_Rn,
4554				      &bar0->prc_pcix_err_reg,
4555				      &sw_stat->prc_pcix_err_cnt);
4556	}
4557
4558	if (val64 & RXDMA_INT_RPA_INT_M) {
4559		if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
4560					  &bar0->rpa_err_reg,
4561					  &sw_stat->rpa_err_cnt))
4562			goto reset;
4563		do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
4564				      &bar0->rpa_err_reg,
4565				      &sw_stat->rpa_err_cnt);
4566	}
4567
4568	if (val64 & RXDMA_INT_RDA_INT_M) {
4569		if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR |
4570					  RDA_FRM_ECC_DB_N_AERR |
4571					  RDA_SM1_ERR_ALARM |
4572					  RDA_SM0_ERR_ALARM |
4573					  RDA_RXD_ECC_DB_SERR,
4574					  &bar0->rda_err_reg,
4575					  &sw_stat->rda_err_cnt))
4576			goto reset;
4577		do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR |
4578				      RDA_FRM_ECC_SG_ERR |
4579				      RDA_MISC_ERR |
4580				      RDA_PCIX_ERR,
4581				      &bar0->rda_err_reg,
4582				      &sw_stat->rda_err_cnt);
4583	}
4584
4585	if (val64 & RXDMA_INT_RTI_INT_M) {
4586		if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM,
4587					  &bar0->rti_err_reg,
4588					  &sw_stat->rti_err_cnt))
4589			goto reset;
4590		do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
4591				      &bar0->rti_err_reg,
4592				      &sw_stat->rti_err_cnt);
4593	}
4594
4595	val64 = readq(&bar0->mac_int_status);
4596	if (val64 & MAC_INT_STATUS_RMAC_INT) {
4597		if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
4598					  &bar0->mac_rmac_err_reg,
4599					  &sw_stat->mac_rmac_err_cnt))
4600			goto reset;
4601		do_s2io_chk_alarm_bit(RMAC_UNUSED_INT |
4602				      RMAC_SINGLE_ECC_ERR |
4603				      RMAC_DOUBLE_ECC_ERR,
4604				      &bar0->mac_rmac_err_reg,
4605				      &sw_stat->mac_rmac_err_cnt);
4606	}
4607
4608	val64 = readq(&bar0->xgxs_int_status);
4609	if (val64 & XGXS_INT_STATUS_RXGXS) {
4610		if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
4611					  &bar0->xgxs_rxgxs_err_reg,
4612					  &sw_stat->xgxs_rxgxs_err_cnt))
4613			goto reset;
4614	}
4615
4616	val64 = readq(&bar0->mc_int_status);
4617	if (val64 & MC_INT_STATUS_MC_INT) {
4618		if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR,
4619					  &bar0->mc_err_reg,
4620					  &sw_stat->mc_err_cnt))
4621			goto reset;
4622
4623		/* Handling Ecc errors */
4624		if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
4625			writeq(val64, &bar0->mc_err_reg);
4626			if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
4627				sw_stat->double_ecc_errs++;
4628				if (sp->device_type != XFRAME_II_DEVICE) {
4629					/*
4630					 * Reset XframeI only if critical error
4631					 */
4632					if (val64 &
4633					    (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
4634					     MC_ERR_REG_MIRI_ECC_DB_ERR_1))
4635						goto reset;
4636				}
4637			} else
4638				sw_stat->single_ecc_errs++;
4639		}
4640	}
4641	return;
4642
4643reset:
4644	s2io_stop_all_tx_queue(sp);
4645	schedule_work(&sp->rst_timer_task);
4646	sw_stat->soft_reset_cnt++;
4647}
4648
4649/**
4650 *  s2io_isr - ISR handler of the device .
4651 *  @irq: the irq of the device.
4652 *  @dev_id: a void pointer to the dev structure of the NIC.
4653 *  Description:  This function is the ISR handler of the device. It
4654 *  identifies the reason for the interrupt and calls the relevant
4655 *  service routines. As a contongency measure, this ISR allocates the
4656 *  recv buffers, if their numbers are below the panic value which is
4657 *  presently set to 25% of the original number of rcv buffers allocated.
4658 *  Return value:
4659 *   IRQ_HANDLED: will be returned if IRQ was handled by this routine
4660 *   IRQ_NONE: will be returned if interrupt is not from our device
4661 */
4662static irqreturn_t s2io_isr(int irq, void *dev_id)
4663{
4664	struct net_device *dev = (struct net_device *)dev_id;
4665	struct s2io_nic *sp = netdev_priv(dev);
4666	struct XENA_dev_config __iomem *bar0 = sp->bar0;
4667	int i;
4668	u64 reason = 0;
4669	struct mac_info *mac_control;
4670	struct config_param *config;
4671
4672	/* Pretend we handled any irq's from a disconnected card */
4673	if (pci_channel_offline(sp->pdev))
4674		return IRQ_NONE;
4675
4676	if (!is_s2io_card_up(sp))
4677		return IRQ_NONE;
4678
4679	config = &sp->config;
4680	mac_control = &sp->mac_control;
4681
4682	/*
4683	 * Identify the cause for interrupt and call the appropriate
4684	 * interrupt handler. Causes for the interrupt could be;
4685	 * 1. Rx of packet.
4686	 * 2. Tx complete.
4687	 * 3. Link down.
4688	 */
4689	reason = readq(&bar0->general_int_status);
4690
4691	if (unlikely(reason == S2IO_MINUS_ONE))
4692		return IRQ_HANDLED;	/* Nothing much can be done. Get out */
4693
4694	if (reason &
4695	    (GEN_INTR_RXTRAFFIC | GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC)) {
4696		writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4697
4698		if (config->napi) {
4699			if (reason & GEN_INTR_RXTRAFFIC) {
4700				napi_schedule(&sp->napi);
4701				writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
4702				writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4703				readl(&bar0->rx_traffic_int);
4704			}
4705		} else {
4706			/*
4707			 * rx_traffic_int reg is an R1 register, writing all 1's
4708			 * will ensure that the actual interrupt causing bit
4709			 * get's cleared and hence a read can be avoided.
4710			 */
4711			if (reason & GEN_INTR_RXTRAFFIC)
4712				writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4713
4714			for (i = 0; i < config->rx_ring_num; i++) {
4715				struct ring_info *ring = &mac_control->rings[i];
4716
4717				rx_intr_handler(ring, 0);
4718			}
4719		}
4720
4721		/*
4722		 * tx_traffic_int reg is an R1 register, writing all 1's
4723		 * will ensure that the actual interrupt causing bit get's
4724		 * cleared and hence a read can be avoided.
4725		 */
4726		if (reason & GEN_INTR_TXTRAFFIC)
4727			writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4728
4729		for (i = 0; i < config->tx_fifo_num; i++)
4730			tx_intr_handler(&mac_control->fifos[i]);
4731
4732		if (reason & GEN_INTR_TXPIC)
4733			s2io_txpic_intr_handle(sp);
4734
4735		/*
4736		 * Reallocate the buffers from the interrupt handler itself.
4737		 */
4738		if (!config->napi) {
4739			for (i = 0; i < config->rx_ring_num; i++) {
4740				struct ring_info *ring = &mac_control->rings[i];
4741
4742				s2io_chk_rx_buffers(sp, ring);
4743			}
4744		}
4745		writeq(sp->general_int_mask, &bar0->general_int_mask);
4746		readl(&bar0->general_int_status);
4747
4748		return IRQ_HANDLED;
4749
4750	} else if (!reason) {
4751		/* The interrupt was not raised by us */
4752		return IRQ_NONE;
4753	}
4754
4755	return IRQ_HANDLED;
4756}
4757
4758/*
4759 * s2io_updt_stats -
4760 */
4761static void s2io_updt_stats(struct s2io_nic *sp)
4762{
4763	struct XENA_dev_config __iomem *bar0 = sp->bar0;
4764	u64 val64;
4765	int cnt = 0;
4766
4767	if (is_s2io_card_up(sp)) {
4768		/* Apprx 30us on a 133 MHz bus */
4769		val64 = SET_UPDT_CLICKS(10) |
4770			STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4771		writeq(val64, &bar0->stat_cfg);
4772		do {
4773			udelay(100);
4774			val64 = readq(&bar0->stat_cfg);
4775			if (!(val64 & s2BIT(0)))
4776				break;
4777			cnt++;
4778			if (cnt == 5)
4779				break; /* Updt failed */
4780		} while (1);
4781	}
4782}
4783
4784/**
4785 *  s2io_get_stats - Updates the device statistics structure.
4786 *  @dev : pointer to the device structure.
4787 *  Description:
4788 *  This function updates the device statistics structure in the s2io_nic
4789 *  structure and returns a pointer to the same.
4790 *  Return value:
4791 *  pointer to the updated net_device_stats structure.
4792 */
4793static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4794{
4795	struct s2io_nic *sp = netdev_priv(dev);
4796	struct mac_info *mac_control = &sp->mac_control;
4797	struct stat_block *stats = mac_control->stats_info;
4798	u64 delta;
4799
4800	/* Configure Stats for immediate updt */
4801	s2io_updt_stats(sp);
4802
4803	/* A device reset will cause the on-adapter statistics to be zero'ed.
4804	 * This can be done while running by changing the MTU.  To prevent the
4805	 * system from having the stats zero'ed, the driver keeps a copy of the
4806	 * last update to the system (which is also zero'ed on reset).  This
4807	 * enables the driver to accurately know the delta between the last
4808	 * update and the current update.
4809	 */
4810	delta = ((u64) le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 |
4811		le32_to_cpu(stats->rmac_vld_frms)) - sp->stats.rx_packets;
4812	sp->stats.rx_packets += delta;
4813	dev->stats.rx_packets += delta;
4814
4815	delta = ((u64) le32_to_cpu(stats->tmac_frms_oflow) << 32 |
4816		le32_to_cpu(stats->tmac_frms)) - sp->stats.tx_packets;
4817	sp->stats.tx_packets += delta;
4818	dev->stats.tx_packets += delta;
4819
4820	delta = ((u64) le32_to_cpu(stats->rmac_data_octets_oflow) << 32 |
4821		le32_to_cpu(stats->rmac_data_octets)) - sp->stats.rx_bytes;
4822	sp->stats.rx_bytes += delta;
4823	dev->stats.rx_bytes += delta;
4824
4825	delta = ((u64) le32_to_cpu(stats->tmac_data_octets_oflow) << 32 |
4826		le32_to_cpu(stats->tmac_data_octets)) - sp->stats.tx_bytes;
4827	sp->stats.tx_bytes += delta;
4828	dev->stats.tx_bytes += delta;
4829
4830	delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_errors;
4831	sp->stats.rx_errors += delta;
4832	dev->stats.rx_errors += delta;
4833
4834	delta = ((u64) le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 |
4835		le32_to_cpu(stats->tmac_any_err_frms)) - sp->stats.tx_errors;
4836	sp->stats.tx_errors += delta;
4837	dev->stats.tx_errors += delta;
4838
4839	delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_dropped;
4840	sp->stats.rx_dropped += delta;
4841	dev->stats.rx_dropped += delta;
4842
4843	delta = le64_to_cpu(stats->tmac_drop_frms) - sp->stats.tx_dropped;
4844	sp->stats.tx_dropped += delta;
4845	dev->stats.tx_dropped += delta;
4846
4847	/* The adapter MAC interprets pause frames as multicast packets, but
4848	 * does not pass them up.  This erroneously increases the multicast
4849	 * packet count and needs to be deducted when the multicast frame count
4850	 * is queried.
4851	 */
4852	delta = (u64) le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 |
4853		le32_to_cpu(stats->rmac_vld_mcst_frms);
4854	delta -= le64_to_cpu(stats->rmac_pause_ctrl_frms);
4855	delta -= sp->stats.multicast;
4856	sp->stats.multicast += delta;
4857	dev->stats.multicast += delta;
4858
4859	delta = ((u64) le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 |
4860		le32_to_cpu(stats->rmac_usized_frms)) +
4861		le64_to_cpu(stats->rmac_long_frms) - sp->stats.rx_length_errors;
4862	sp->stats.rx_length_errors += delta;
4863	dev->stats.rx_length_errors += delta;
4864
4865	delta = le64_to_cpu(stats->rmac_fcs_err_frms) - sp->stats.rx_crc_errors;
4866	sp->stats.rx_crc_errors += delta;
4867	dev->stats.rx_crc_errors += delta;
4868
4869	return &dev->stats;
4870}
4871
4872/**
4873 *  s2io_set_multicast - entry point for multicast address enable/disable.
4874 *  @dev : pointer to the device structure
4875 *  @may_sleep: parameter indicates if sleeping when waiting for command
4876 *  complete
4877 *  Description:
4878 *  This function is a driver entry point which gets called by the kernel
4879 *  whenever multicast addresses must be enabled/disabled. This also gets
4880 *  called to set/reset promiscuous mode. Depending on the deivce flag, we
4881 *  determine, if multicast address must be enabled or if promiscuous mode
4882 *  is to be disabled etc.
4883 *  Return value:
4884 *  void.
4885 */
4886static void s2io_set_multicast(struct net_device *dev, bool may_sleep)
4887{
4888	int i, j, prev_cnt;
4889	struct netdev_hw_addr *ha;
4890	struct s2io_nic *sp = netdev_priv(dev);
4891	struct XENA_dev_config __iomem *bar0 = sp->bar0;
4892	u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4893		0xfeffffffffffULL;
4894	u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0;
4895	void __iomem *add;
4896	struct config_param *config = &sp->config;
4897
4898	if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4899		/*  Enable all Multicast addresses */
4900		writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4901		       &bar0->rmac_addr_data0_mem);
4902		writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4903		       &bar0->rmac_addr_data1_mem);
4904		val64 = RMAC_ADDR_CMD_MEM_WE |
4905			RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4906			RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1);
4907		writeq(val64, &bar0->rmac_addr_cmd_mem);
4908		/* Wait till command completes */
4909		wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4910				      RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4911				      S2IO_BIT_RESET, may_sleep);
4912
4913		sp->m_cast_flg = 1;
4914		sp->all_multi_pos = config->max_mc_addr - 1;
4915	} else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4916		/*  Disable all Multicast addresses */
4917		writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4918		       &bar0->rmac_addr_data0_mem);
4919		writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4920		       &bar0->rmac_addr_data1_mem);
4921		val64 = RMAC_ADDR_CMD_MEM_WE |
4922			RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4923			RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4924		writeq(val64, &bar0->rmac_addr_cmd_mem);
4925		/* Wait till command completes */
4926		wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4927				      RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4928				      S2IO_BIT_RESET, may_sleep);
4929
4930		sp->m_cast_flg = 0;
4931		sp->all_multi_pos = 0;
4932	}
4933
4934	if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4935		/*  Put the NIC into promiscuous mode */
4936		add = &bar0->mac_cfg;
4937		val64 = readq(&bar0->mac_cfg);
4938		val64 |= MAC_CFG_RMAC_PROM_ENABLE;
4939
4940		writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4941		writel((u32)val64, add);
4942		writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4943		writel((u32) (val64 >> 32), (add + 4));
4944
4945		if (vlan_tag_strip != 1) {
4946			val64 = readq(&bar0->rx_pa_cfg);
4947			val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
4948			writeq(val64, &bar0->rx_pa_cfg);
4949			sp->vlan_strip_flag = 0;
4950		}
4951
4952		val64 = readq(&bar0->mac_cfg);
4953		sp->promisc_flg = 1;
4954		DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
4955			  dev->name);
4956	} else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
4957		/*  Remove the NIC from promiscuous mode */
4958		add = &bar0->mac_cfg;
4959		val64 = readq(&bar0->mac_cfg);
4960		val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
4961
4962		writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4963		writel((u32)val64, add);
4964		writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4965		writel((u32) (val64 >> 32), (add + 4));
4966
4967		if (vlan_tag_strip != 0) {
4968			val64 = readq(&bar0->rx_pa_cfg);
4969			val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
4970			writeq(val64, &bar0->rx_pa_cfg);
4971			sp->vlan_strip_flag = 1;
4972		}
4973
4974		val64 = readq(&bar0->mac_cfg);
4975		sp->promisc_flg = 0;
4976		DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n", dev->name);
4977	}
4978
4979	/*  Update individual M_CAST address list */
4980	if ((!sp->m_cast_flg) && netdev_mc_count(dev)) {
4981		if (netdev_mc_count(dev) >
4982		    (config->max_mc_addr - config->max_mac_addr)) {
4983			DBG_PRINT(ERR_DBG,
4984				  "%s: No more Rx filters can be added - "
4985				  "please enable ALL_MULTI instead\n",
4986				  dev->name);
4987			return;
4988		}
4989
4990		prev_cnt = sp->mc_addr_count;
4991		sp->mc_addr_count = netdev_mc_count(dev);
4992
4993		/* Clear out the previous list of Mc in the H/W. */
4994		for (i = 0; i < prev_cnt; i++) {
4995			writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4996			       &bar0->rmac_addr_data0_mem);
4997			writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4998			       &bar0->rmac_addr_data1_mem);
4999			val64 = RMAC_ADDR_CMD_MEM_WE |
5000				RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5001				RMAC_ADDR_CMD_MEM_OFFSET
5002				(config->mc_start_offset + i);
5003			writeq(val64, &bar0->rmac_addr_cmd_mem);
5004
5005			/* Wait for command completes */
5006			if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5007						  RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5008						  S2IO_BIT_RESET, may_sleep)) {
5009				DBG_PRINT(ERR_DBG,
5010					  "%s: Adding Multicasts failed\n",
5011					  dev->name);
5012				return;
5013			}
5014		}
5015
5016		/* Create the new Rx filter list and update the same in H/W. */
5017		i = 0;
5018		netdev_for_each_mc_addr(ha, dev) {
5019			mac_addr = 0;
5020			for (j = 0; j < ETH_ALEN; j++) {
5021				mac_addr |= ha->addr[j];
5022				mac_addr <<= 8;
5023			}
5024			mac_addr >>= 8;
5025			writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
5026			       &bar0->rmac_addr_data0_mem);
5027			writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5028			       &bar0->rmac_addr_data1_mem);
5029			val64 = RMAC_ADDR_CMD_MEM_WE |
5030				RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5031				RMAC_ADDR_CMD_MEM_OFFSET
5032				(i + config->mc_start_offset);
5033			writeq(val64, &bar0->rmac_addr_cmd_mem);
5034
5035			/* Wait for command completes */
5036			if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5037						  RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5038						  S2IO_BIT_RESET, may_sleep)) {
5039				DBG_PRINT(ERR_DBG,
5040					  "%s: Adding Multicasts failed\n",
5041					  dev->name);
5042				return;
5043			}
5044			i++;
5045		}
5046	}
5047}
5048
5049/* NDO wrapper for s2io_set_multicast */
5050static void s2io_ndo_set_multicast(struct net_device *dev)
5051{
5052	s2io_set_multicast(dev, false);
5053}
5054
5055/* read from CAM unicast & multicast addresses and store it in
5056 * def_mac_addr structure
5057 */
5058static void do_s2io_store_unicast_mc(struct s2io_nic *sp)
5059{
5060	int offset;
5061	u64 mac_addr = 0x0;
5062	struct config_param *config = &sp->config;
5063
5064	/* store unicast & multicast mac addresses */
5065	for (offset = 0; offset < config->max_mc_addr; offset++) {
5066		mac_addr = do_s2io_read_unicast_mc(sp, offset);
5067		/* if read fails disable the entry */
5068		if (mac_addr == FAILURE)
5069			mac_addr = S2IO_DISABLE_MAC_ENTRY;
5070		do_s2io_copy_mac_addr(sp, offset, mac_addr);
5071	}
5072}
5073
5074/* restore unicast & multicast MAC to CAM from def_mac_addr structure */
5075static void do_s2io_restore_unicast_mc(struct s2io_nic *sp)
5076{
5077	int offset;
5078	struct config_param *config = &sp->config;
5079	/* restore unicast mac address */
5080	for (offset = 0; offset < config->max_mac_addr; offset++)
5081		do_s2io_prog_unicast(sp->dev,
5082				     sp->def_mac_addr[offset].mac_addr);
5083
5084	/* restore multicast mac address */
5085	for (offset = config->mc_start_offset;
5086	     offset < config->max_mc_addr; offset++)
5087		do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr);
5088}
5089
5090/* add a multicast MAC address to CAM */
5091static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr)
5092{
5093	int i;
5094	u64 mac_addr;
5095	struct config_param *config = &sp->config;
5096
5097	mac_addr = ether_addr_to_u64(addr);
5098	if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY))
5099		return SUCCESS;
5100
5101	/* check if the multicast mac already preset in CAM */
5102	for (i = config->mc_start_offset; i < config->max_mc_addr; i++) {
5103		u64 tmp64;
5104		tmp64 = do_s2io_read_unicast_mc(sp, i);
5105		if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5106			break;
5107
5108		if (tmp64 == mac_addr)
5109			return SUCCESS;
5110	}
5111	if (i == config->max_mc_addr) {
5112		DBG_PRINT(ERR_DBG,
5113			  "CAM full no space left for multicast MAC\n");
5114		return FAILURE;
5115	}
5116	/* Update the internal structure with this new mac address */
5117	do_s2io_copy_mac_addr(sp, i, mac_addr);
5118
5119	return do_s2io_add_mac(sp, mac_addr, i);
5120}
5121
5122/* add MAC address to CAM */
5123static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off)
5124{
5125	u64 val64;
5126	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5127
5128	writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
5129	       &bar0->rmac_addr_data0_mem);
5130
5131	val64 =	RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5132		RMAC_ADDR_CMD_MEM_OFFSET(off);
5133	writeq(val64, &bar0->rmac_addr_cmd_mem);
5134
5135	/* Wait till command completes */
5136	if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5137				  RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5138				  S2IO_BIT_RESET, true)) {
5139		DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n");
5140		return FAILURE;
5141	}
5142	return SUCCESS;
5143}
5144/* deletes a specified unicast/multicast mac entry from CAM */
5145static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr)
5146{
5147	int offset;
5148	u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64;
5149	struct config_param *config = &sp->config;
5150
5151	for (offset = 1;
5152	     offset < config->max_mc_addr; offset++) {
5153		tmp64 = do_s2io_read_unicast_mc(sp, offset);
5154		if (tmp64 == addr) {
5155			/* disable the entry by writing  0xffffffffffffULL */
5156			if (do_s2io_add_mac(sp, dis_addr, offset) ==  FAILURE)
5157				return FAILURE;
5158			/* store the new mac list from CAM */
5159			do_s2io_store_unicast_mc(sp);
5160			return SUCCESS;
5161		}
5162	}
5163	DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n",
5164		  (unsigned long long)addr);
5165	return FAILURE;
5166}
5167
5168/* read mac entries from CAM */
5169static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset)
5170{
5171	u64 tmp64, val64;
5172	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5173
5174	/* read mac addr */
5175	val64 =	RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5176		RMAC_ADDR_CMD_MEM_OFFSET(offset);
5177	writeq(val64, &bar0->rmac_addr_cmd_mem);
5178
5179	/* Wait till command completes */
5180	if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5181				  RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5182				  S2IO_BIT_RESET, true)) {
5183		DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n");
5184		return FAILURE;
5185	}
5186	tmp64 = readq(&bar0->rmac_addr_data0_mem);
5187
5188	return tmp64 >> 16;
5189}
5190
5191/*
5192 * s2io_set_mac_addr - driver entry point
5193 */
5194
5195static int s2io_set_mac_addr(struct net_device *dev, void *p)
5196{
5197	struct sockaddr *addr = p;
5198
5199	if (!is_valid_ether_addr(addr->sa_data))
5200		return -EADDRNOTAVAIL;
5201
5202	eth_hw_addr_set(dev, addr->sa_data);
5203
5204	/* store the MAC address in CAM */
5205	return do_s2io_prog_unicast(dev, dev->dev_addr);
5206}
5207/**
5208 *  do_s2io_prog_unicast - Programs the Xframe mac address
5209 *  @dev : pointer to the device structure.
5210 *  @addr: a uchar pointer to the new mac address which is to be set.
5211 *  Description : This procedure will program the Xframe to receive
5212 *  frames with new Mac Address
5213 *  Return value: SUCCESS on success and an appropriate (-)ve integer
5214 *  as defined in errno.h file on failure.
5215 */
5216
5217static int do_s2io_prog_unicast(struct net_device *dev, const u8 *addr)
5218{
5219	struct s2io_nic *sp = netdev_priv(dev);
5220	register u64 mac_addr, perm_addr;
5221	int i;
5222	u64 tmp64;
5223	struct config_param *config = &sp->config;
5224
5225	/*
5226	 * Set the new MAC address as the new unicast filter and reflect this
5227	 * change on the device address registered with the OS. It will be
5228	 * at offset 0.
5229	 */
5230	mac_addr = ether_addr_to_u64(addr);
5231	perm_addr = ether_addr_to_u64(sp->def_mac_addr[0].mac_addr);
5232
5233	/* check if the dev_addr is different than perm_addr */
5234	if (mac_addr == perm_addr)
5235		return SUCCESS;
5236
5237	/* check if the mac already preset in CAM */
5238	for (i = 1; i < config->max_mac_addr; i++) {
5239		tmp64 = do_s2io_read_unicast_mc(sp, i);
5240		if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5241			break;
5242
5243		if (tmp64 == mac_addr) {
5244			DBG_PRINT(INFO_DBG,
5245				  "MAC addr:0x%llx already present in CAM\n",
5246				  (unsigned long long)mac_addr);
5247			return SUCCESS;
5248		}
5249	}
5250	if (i == config->max_mac_addr) {
5251		DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n");
5252		return FAILURE;
5253	}
5254	/* Update the internal structure with this new mac address */
5255	do_s2io_copy_mac_addr(sp, i, mac_addr);
5256
5257	return do_s2io_add_mac(sp, mac_addr, i);
5258}
5259
5260/**
5261 * s2io_ethtool_set_link_ksettings - Sets different link parameters.
5262 * @dev : pointer to netdev
5263 * @cmd: pointer to the structure with parameters given by ethtool to set
5264 * link information.
5265 * Description:
5266 * The function sets different link parameters provided by the user onto
5267 * the NIC.
5268 * Return value:
5269 * 0 on success.
5270 */
5271
5272static int
5273s2io_ethtool_set_link_ksettings(struct net_device *dev,
5274				const struct ethtool_link_ksettings *cmd)
5275{
5276	struct s2io_nic *sp = netdev_priv(dev);
5277	if ((cmd->base.autoneg == AUTONEG_ENABLE) ||
5278	    (cmd->base.speed != SPEED_10000) ||
5279	    (cmd->base.duplex != DUPLEX_FULL))
5280		return -EINVAL;
5281	else {
5282		s2io_close(sp->dev);
5283		s2io_open(sp->dev);
5284	}
5285
5286	return 0;
5287}
5288
5289/**
5290 * s2io_ethtool_get_link_ksettings - Return link specific information.
5291 * @dev: pointer to netdev
5292 * @cmd : pointer to the structure with parameters given by ethtool
5293 * to return link information.
5294 * Description:
5295 * Returns link specific information like speed, duplex etc.. to ethtool.
5296 * Return value :
5297 * return 0 on success.
5298 */
5299
5300static int
5301s2io_ethtool_get_link_ksettings(struct net_device *dev,
5302				struct ethtool_link_ksettings *cmd)
5303{
5304	struct s2io_nic *sp = netdev_priv(dev);
5305
5306	ethtool_link_ksettings_zero_link_mode(cmd, supported);
5307	ethtool_link_ksettings_add_link_mode(cmd, supported, 10000baseT_Full);
5308	ethtool_link_ksettings_add_link_mode(cmd, supported, FIBRE);
5309
5310	ethtool_link_ksettings_zero_link_mode(cmd, advertising);
5311	ethtool_link_ksettings_add_link_mode(cmd, advertising, 10000baseT_Full);
5312	ethtool_link_ksettings_add_link_mode(cmd, advertising, FIBRE);
5313
5314	cmd->base.port = PORT_FIBRE;
5315
5316	if (netif_carrier_ok(sp->dev)) {
5317		cmd->base.speed = SPEED_10000;
5318		cmd->base.duplex = DUPLEX_FULL;
5319	} else {
5320		cmd->base.speed = SPEED_UNKNOWN;
5321		cmd->base.duplex = DUPLEX_UNKNOWN;
5322	}
5323
5324	cmd->base.autoneg = AUTONEG_DISABLE;
5325	return 0;
5326}
5327
5328/**
5329 * s2io_ethtool_gdrvinfo - Returns driver specific information.
5330 * @dev: pointer to netdev
5331 * @info : pointer to the structure with parameters given by ethtool to
5332 * return driver information.
5333 * Description:
5334 * Returns driver specefic information like name, version etc.. to ethtool.
5335 * Return value:
5336 *  void
5337 */
5338
5339static void s2io_ethtool_gdrvinfo(struct net_device *dev,
5340				  struct ethtool_drvinfo *info)
5341{
5342	struct s2io_nic *sp = netdev_priv(dev);
5343
5344	strscpy(info->driver, s2io_driver_name, sizeof(info->driver));
5345	strscpy(info->version, s2io_driver_version, sizeof(info->version));
5346	strscpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
5347}
5348
5349/**
5350 *  s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
5351 *  @dev: pointer to netdev
5352 *  @regs : pointer to the structure with parameters given by ethtool for
5353 *          dumping the registers.
5354 *  @space: The input argument into which all the registers are dumped.
5355 *  Description:
5356 *  Dumps the entire register space of xFrame NIC into the user given
5357 *  buffer area.
5358 * Return value :
5359 * void .
5360 */
5361
5362static void s2io_ethtool_gregs(struct net_device *dev,
5363			       struct ethtool_regs *regs, void *space)
5364{
5365	int i;
5366	u64 reg;
5367	u8 *reg_space = (u8 *)space;
5368	struct s2io_nic *sp = netdev_priv(dev);
5369
5370	regs->len = XENA_REG_SPACE;
5371	regs->version = sp->pdev->subsystem_device;
5372
5373	for (i = 0; i < regs->len; i += 8) {
5374		reg = readq(sp->bar0 + i);
5375		memcpy((reg_space + i), &reg, 8);
5376	}
5377}
5378
5379/*
5380 *  s2io_set_led - control NIC led
5381 */
5382static void s2io_set_led(struct s2io_nic *sp, bool on)
5383{
5384	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5385	u16 subid = sp->pdev->subsystem_device;
5386	u64 val64;
5387
5388	if ((sp->device_type == XFRAME_II_DEVICE) ||
5389	    ((subid & 0xFF) >= 0x07)) {
5390		val64 = readq(&bar0->gpio_control);
5391		if (on)
5392			val64 |= GPIO_CTRL_GPIO_0;
5393		else
5394			val64 &= ~GPIO_CTRL_GPIO_0;
5395
5396		writeq(val64, &bar0->gpio_control);
5397	} else {
5398		val64 = readq(&bar0->adapter_control);
5399		if (on)
5400			val64 |= ADAPTER_LED_ON;
5401		else
5402			val64 &= ~ADAPTER_LED_ON;
5403
5404		writeq(val64, &bar0->adapter_control);
5405	}
5406
5407}
5408
5409/**
5410 * s2io_ethtool_set_led - To physically identify the nic on the system.
5411 * @dev : network device
5412 * @state: led setting
5413 *
5414 * Description: Used to physically identify the NIC on the system.
5415 * The Link LED will blink for a time specified by the user for
5416 * identification.
5417 * NOTE: The Link has to be Up to be able to blink the LED. Hence
5418 * identification is possible only if it's link is up.
5419 */
5420
5421static int s2io_ethtool_set_led(struct net_device *dev,
5422				enum ethtool_phys_id_state state)
5423{
5424	struct s2io_nic *sp = netdev_priv(dev);
5425	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5426	u16 subid = sp->pdev->subsystem_device;
5427
5428	if ((sp->device_type == XFRAME_I_DEVICE) && ((subid & 0xFF) < 0x07)) {
5429		u64 val64 = readq(&bar0->adapter_control);
5430		if (!(val64 & ADAPTER_CNTL_EN)) {
5431			pr_err("Adapter Link down, cannot blink LED\n");
5432			return -EAGAIN;
5433		}
5434	}
5435
5436	switch (state) {
5437	case ETHTOOL_ID_ACTIVE:
5438		sp->adapt_ctrl_org = readq(&bar0->gpio_control);
5439		return 1;	/* cycle on/off once per second */
5440
5441	case ETHTOOL_ID_ON:
5442		s2io_set_led(sp, true);
5443		break;
5444
5445	case ETHTOOL_ID_OFF:
5446		s2io_set_led(sp, false);
5447		break;
5448
5449	case ETHTOOL_ID_INACTIVE:
5450		if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid))
5451			writeq(sp->adapt_ctrl_org, &bar0->gpio_control);
5452	}
5453
5454	return 0;
5455}
5456
5457static void
5458s2io_ethtool_gringparam(struct net_device *dev,
5459			struct ethtool_ringparam *ering,
5460			struct kernel_ethtool_ringparam *kernel_ering,
5461			struct netlink_ext_ack *extack)
5462{
5463	struct s2io_nic *sp = netdev_priv(dev);
5464	int i, tx_desc_count = 0, rx_desc_count = 0;
5465
5466	if (sp->rxd_mode == RXD_MODE_1) {
5467		ering->rx_max_pending = MAX_RX_DESC_1;
5468		ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
5469	} else {
5470		ering->rx_max_pending = MAX_RX_DESC_2;
5471		ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
5472	}
5473
5474	ering->tx_max_pending = MAX_TX_DESC;
5475
5476	for (i = 0; i < sp->config.rx_ring_num; i++)
5477		rx_desc_count += sp->config.rx_cfg[i].num_rxd;
5478	ering->rx_pending = rx_desc_count;
5479	ering->rx_jumbo_pending = rx_desc_count;
5480
5481	for (i = 0; i < sp->config.tx_fifo_num; i++)
5482		tx_desc_count += sp->config.tx_cfg[i].fifo_len;
5483	ering->tx_pending = tx_desc_count;
5484	DBG_PRINT(INFO_DBG, "max txds: %d\n", sp->config.max_txds);
5485}
5486
5487/**
5488 * s2io_ethtool_getpause_data -Pause frame generation and reception.
5489 * @dev: pointer to netdev
5490 * @ep : pointer to the structure with pause parameters given by ethtool.
5491 * Description:
5492 * Returns the Pause frame generation and reception capability of the NIC.
5493 * Return value:
5494 *  void
5495 */
5496static void s2io_ethtool_getpause_data(struct net_device *dev,
5497				       struct ethtool_pauseparam *ep)
5498{
5499	u64 val64;
5500	struct s2io_nic *sp = netdev_priv(dev);
5501	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5502
5503	val64 = readq(&bar0->rmac_pause_cfg);
5504	if (val64 & RMAC_PAUSE_GEN_ENABLE)
5505		ep->tx_pause = true;
5506	if (val64 & RMAC_PAUSE_RX_ENABLE)
5507		ep->rx_pause = true;
5508	ep->autoneg = false;
5509}
5510
5511/**
5512 * s2io_ethtool_setpause_data -  set/reset pause frame generation.
5513 * @dev: pointer to netdev
5514 * @ep : pointer to the structure with pause parameters given by ethtool.
5515 * Description:
5516 * It can be used to set or reset Pause frame generation or reception
5517 * support of the NIC.
5518 * Return value:
5519 * int, returns 0 on Success
5520 */
5521
5522static int s2io_ethtool_setpause_data(struct net_device *dev,
5523				      struct ethtool_pauseparam *ep)
5524{
5525	u64 val64;
5526	struct s2io_nic *sp = netdev_priv(dev);
5527	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5528
5529	val64 = readq(&bar0->rmac_pause_cfg);
5530	if (ep->tx_pause)
5531		val64 |= RMAC_PAUSE_GEN_ENABLE;
5532	else
5533		val64 &= ~RMAC_PAUSE_GEN_ENABLE;
5534	if (ep->rx_pause)
5535		val64 |= RMAC_PAUSE_RX_ENABLE;
5536	else
5537		val64 &= ~RMAC_PAUSE_RX_ENABLE;
5538	writeq(val64, &bar0->rmac_pause_cfg);
5539	return 0;
5540}
5541
5542#define S2IO_DEV_ID		5
5543/**
5544 * read_eeprom - reads 4 bytes of data from user given offset.
5545 * @sp : private member of the device structure, which is a pointer to the
5546 *      s2io_nic structure.
5547 * @off : offset at which the data must be written
5548 * @data : Its an output parameter where the data read at the given
5549 *	offset is stored.
5550 * Description:
5551 * Will read 4 bytes of data from the user given offset and return the
5552 * read data.
5553 * NOTE: Will allow to read only part of the EEPROM visible through the
5554 *   I2C bus.
5555 * Return value:
5556 *  -1 on failure and 0 on success.
5557 */
5558static int read_eeprom(struct s2io_nic *sp, int off, u64 *data)
5559{
5560	int ret = -1;
5561	u32 exit_cnt = 0;
5562	u64 val64;
5563	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5564
5565	if (sp->device_type == XFRAME_I_DEVICE) {
5566		val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
5567			I2C_CONTROL_ADDR(off) |
5568			I2C_CONTROL_BYTE_CNT(0x3) |
5569			I2C_CONTROL_READ |
5570			I2C_CONTROL_CNTL_START;
5571		SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5572
5573		while (exit_cnt < 5) {
5574			val64 = readq(&bar0->i2c_control);
5575			if (I2C_CONTROL_CNTL_END(val64)) {
5576				*data = I2C_CONTROL_GET_DATA(val64);
5577				ret = 0;
5578				break;
5579			}
5580			msleep(50);
5581			exit_cnt++;
5582		}
5583	}
5584
5585	if (sp->device_type == XFRAME_II_DEVICE) {
5586		val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5587			SPI_CONTROL_BYTECNT(0x3) |
5588			SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5589		SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5590		val64 |= SPI_CONTROL_REQ;
5591		SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5592		while (exit_cnt < 5) {
5593			val64 = readq(&bar0->spi_control);
5594			if (val64 & SPI_CONTROL_NACK) {
5595				ret = 1;
5596				break;
5597			} else if (val64 & SPI_CONTROL_DONE) {
5598				*data = readq(&bar0->spi_data);
5599				*data &= 0xffffff;
5600				ret = 0;
5601				break;
5602			}
5603			msleep(50);
5604			exit_cnt++;
5605		}
5606	}
5607	return ret;
5608}
5609
5610/**
5611 *  write_eeprom - actually writes the relevant part of the data value.
5612 *  @sp : private member of the device structure, which is a pointer to the
5613 *       s2io_nic structure.
5614 *  @off : offset at which the data must be written
5615 *  @data : The data that is to be written
5616 *  @cnt : Number of bytes of the data that are actually to be written into
5617 *  the Eeprom. (max of 3)
5618 * Description:
5619 *  Actually writes the relevant part of the data value into the Eeprom
5620 *  through the I2C bus.
5621 * Return value:
5622 *  0 on success, -1 on failure.
5623 */
5624
5625static int write_eeprom(struct s2io_nic *sp, int off, u64 data, int cnt)
5626{
5627	int exit_cnt = 0, ret = -1;
5628	u64 val64;
5629	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5630
5631	if (sp->device_type == XFRAME_I_DEVICE) {
5632		val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
5633			I2C_CONTROL_ADDR(off) |
5634			I2C_CONTROL_BYTE_CNT(cnt) |
5635			I2C_CONTROL_SET_DATA((u32)data) |
5636			I2C_CONTROL_CNTL_START;
5637		SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5638
5639		while (exit_cnt < 5) {
5640			val64 = readq(&bar0->i2c_control);
5641			if (I2C_CONTROL_CNTL_END(val64)) {
5642				if (!(val64 & I2C_CONTROL_NACK))
5643					ret = 0;
5644				break;
5645			}
5646			msleep(50);
5647			exit_cnt++;
5648		}
5649	}
5650
5651	if (sp->device_type == XFRAME_II_DEVICE) {
5652		int write_cnt = (cnt == 8) ? 0 : cnt;
5653		writeq(SPI_DATA_WRITE(data, (cnt << 3)), &bar0->spi_data);
5654
5655		val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5656			SPI_CONTROL_BYTECNT(write_cnt) |
5657			SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5658		SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5659		val64 |= SPI_CONTROL_REQ;
5660		SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5661		while (exit_cnt < 5) {
5662			val64 = readq(&bar0->spi_control);
5663			if (val64 & SPI_CONTROL_NACK) {
5664				ret = 1;
5665				break;
5666			} else if (val64 & SPI_CONTROL_DONE) {
5667				ret = 0;
5668				break;
5669			}
5670			msleep(50);
5671			exit_cnt++;
5672		}
5673	}
5674	return ret;
5675}
5676static void s2io_vpd_read(struct s2io_nic *nic)
5677{
5678	u8 *vpd_data;
5679	u8 data;
5680	int i = 0, cnt, len, fail = 0;
5681	int vpd_addr = 0x80;
5682	struct swStat *swstats = &nic->mac_control.stats_info->sw_stat;
5683
5684	if (nic->device_type == XFRAME_II_DEVICE) {
5685		strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5686		vpd_addr = 0x80;
5687	} else {
5688		strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5689		vpd_addr = 0x50;
5690	}
5691	strcpy(nic->serial_num, "NOT AVAILABLE");
5692
5693	vpd_data = kmalloc(256, GFP_KERNEL);
5694	if (!vpd_data) {
5695		swstats->mem_alloc_fail_cnt++;
5696		return;
5697	}
5698	swstats->mem_allocated += 256;
5699
5700	for (i = 0; i < 256; i += 4) {
5701		pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5702		pci_read_config_byte(nic->pdev,  (vpd_addr + 2), &data);
5703		pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5704		for (cnt = 0; cnt < 5; cnt++) {
5705			msleep(2);
5706			pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5707			if (data == 0x80)
5708				break;
5709		}
5710		if (cnt >= 5) {
5711			DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5712			fail = 1;
5713			break;
5714		}
5715		pci_read_config_dword(nic->pdev,  (vpd_addr + 4),
5716				      (u32 *)&vpd_data[i]);
5717	}
5718
5719	if (!fail) {
5720		/* read serial number of adapter */
5721		for (cnt = 0; cnt < 252; cnt++) {
5722			if ((vpd_data[cnt] == 'S') &&
5723			    (vpd_data[cnt+1] == 'N')) {
5724				len = vpd_data[cnt+2];
5725				if (len < min(VPD_STRING_LEN, 256-cnt-2)) {
5726					memcpy(nic->serial_num,
5727					       &vpd_data[cnt + 3],
5728					       len);
5729					memset(nic->serial_num+len,
5730					       0,
5731					       VPD_STRING_LEN-len);
5732					break;
5733				}
5734			}
5735		}
5736	}
5737
5738	if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
5739		len = vpd_data[1];
5740		memcpy(nic->product_name, &vpd_data[3], len);
5741		nic->product_name[len] = 0;
5742	}
5743	kfree(vpd_data);
5744	swstats->mem_freed += 256;
5745}
5746
5747/**
5748 *  s2io_ethtool_geeprom  - reads the value stored in the Eeprom.
5749 *  @dev: pointer to netdev
5750 *  @eeprom : pointer to the user level structure provided by ethtool,
5751 *  containing all relevant information.
5752 *  @data_buf : user defined value to be written into Eeprom.
5753 *  Description: Reads the values stored in the Eeprom at given offset
5754 *  for a given length. Stores these values int the input argument data
5755 *  buffer 'data_buf' and returns these to the caller (ethtool.)
5756 *  Return value:
5757 *  int  0 on success
5758 */
5759
5760static int s2io_ethtool_geeprom(struct net_device *dev,
5761				struct ethtool_eeprom *eeprom, u8 * data_buf)
5762{
5763	u32 i, valid;
5764	u64 data;
5765	struct s2io_nic *sp = netdev_priv(dev);
5766
5767	eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5768
5769	if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5770		eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5771
5772	for (i = 0; i < eeprom->len; i += 4) {
5773		if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5774			DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5775			return -EFAULT;
5776		}
5777		valid = INV(data);
5778		memcpy((data_buf + i), &valid, 4);
5779	}
5780	return 0;
5781}
5782
5783/**
5784 *  s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5785 *  @dev: pointer to netdev
5786 *  @eeprom : pointer to the user level structure provided by ethtool,
5787 *  containing all relevant information.
5788 *  @data_buf : user defined value to be written into Eeprom.
5789 *  Description:
5790 *  Tries to write the user provided value in the Eeprom, at the offset
5791 *  given by the user.
5792 *  Return value:
5793 *  0 on success, -EFAULT on failure.
5794 */
5795
5796static int s2io_ethtool_seeprom(struct net_device *dev,
5797				struct ethtool_eeprom *eeprom,
5798				u8 *data_buf)
5799{
5800	int len = eeprom->len, cnt = 0;
5801	u64 valid = 0, data;
5802	struct s2io_nic *sp = netdev_priv(dev);
5803
5804	if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5805		DBG_PRINT(ERR_DBG,
5806			  "ETHTOOL_WRITE_EEPROM Err: "
5807			  "Magic value is wrong, it is 0x%x should be 0x%x\n",
5808			  (sp->pdev->vendor | (sp->pdev->device << 16)),
5809			  eeprom->magic);
5810		return -EFAULT;
5811	}
5812
5813	while (len) {
5814		data = (u32)data_buf[cnt] & 0x000000FF;
5815		if (data)
5816			valid = (u32)(data << 24);
5817		else
5818			valid = data;
5819
5820		if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5821			DBG_PRINT(ERR_DBG,
5822				  "ETHTOOL_WRITE_EEPROM Err: "
5823				  "Cannot write into the specified offset\n");
5824			return -EFAULT;
5825		}
5826		cnt++;
5827		len--;
5828	}
5829
5830	return 0;
5831}
5832
5833/**
5834 * s2io_register_test - reads and writes into all clock domains.
5835 * @sp : private member of the device structure, which is a pointer to the
5836 * s2io_nic structure.
5837 * @data : variable that returns the result of each of the test conducted b
5838 * by the driver.
5839 * Description:
5840 * Read and write into all clock domains. The NIC has 3 clock domains,
5841 * see that registers in all the three regions are accessible.
5842 * Return value:
5843 * 0 on success.
5844 */
5845
5846static int s2io_register_test(struct s2io_nic *sp, uint64_t *data)
5847{
5848	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5849	u64 val64 = 0, exp_val;
5850	int fail = 0;
5851
5852	val64 = readq(&bar0->pif_rd_swapper_fb);
5853	if (val64 != 0x123456789abcdefULL) {
5854		fail = 1;
5855		DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 1);
5856	}
5857
5858	val64 = readq(&bar0->rmac_pause_cfg);
5859	if (val64 != 0xc000ffff00000000ULL) {
5860		fail = 1;
5861		DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 2);
5862	}
5863
5864	val64 = readq(&bar0->rx_queue_cfg);
5865	if (sp->device_type == XFRAME_II_DEVICE)
5866		exp_val = 0x0404040404040404ULL;
5867	else
5868		exp_val = 0x0808080808080808ULL;
5869	if (val64 != exp_val) {
5870		fail = 1;
5871		DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 3);
5872	}
5873
5874	val64 = readq(&bar0->xgxs_efifo_cfg);
5875	if (val64 != 0x000000001923141EULL) {
5876		fail = 1;
5877		DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 4);
5878	}
5879
5880	val64 = 0x5A5A5A5A5A5A5A5AULL;
5881	writeq(val64, &bar0->xmsi_data);
5882	val64 = readq(&bar0->xmsi_data);
5883	if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5884		fail = 1;
5885		DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 1);
5886	}
5887
5888	val64 = 0xA5A5A5A5A5A5A5A5ULL;
5889	writeq(val64, &bar0->xmsi_data);
5890	val64 = readq(&bar0->xmsi_data);
5891	if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5892		fail = 1;
5893		DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 2);
5894	}
5895
5896	*data = fail;
5897	return fail;
5898}
5899
5900/**
5901 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5902 * @sp : private member of the device structure, which is a pointer to the
5903 * s2io_nic structure.
5904 * @data:variable that returns the result of each of the test conducted by
5905 * the driver.
5906 * Description:
5907 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5908 * register.
5909 * Return value:
5910 * 0 on success.
5911 */
5912
5913static int s2io_eeprom_test(struct s2io_nic *sp, uint64_t *data)
5914{
5915	int fail = 0;
5916	u64 ret_data, org_4F0, org_7F0;
5917	u8 saved_4F0 = 0, saved_7F0 = 0;
5918	struct net_device *dev = sp->dev;
5919
5920	/* Test Write Error at offset 0 */
5921	/* Note that SPI interface allows write access to all areas
5922	 * of EEPROM. Hence doing all negative testing only for Xframe I.
5923	 */
5924	if (sp->device_type == XFRAME_I_DEVICE)
5925		if (!write_eeprom(sp, 0, 0, 3))
5926			fail = 1;
5927
5928	/* Save current values at offsets 0x4F0 and 0x7F0 */
5929	if (!read_eeprom(sp, 0x4F0, &org_4F0))
5930		saved_4F0 = 1;
5931	if (!read_eeprom(sp, 0x7F0, &org_7F0))
5932		saved_7F0 = 1;
5933
5934	/* Test Write at offset 4f0 */
5935	if (write_eeprom(sp, 0x4F0, 0x012345, 3))
5936		fail = 1;
5937	if (read_eeprom(sp, 0x4F0, &ret_data))
5938		fail = 1;
5939
5940	if (ret_data != 0x012345) {
5941		DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
5942			  "Data written %llx Data read %llx\n",
5943			  dev->name, (unsigned long long)0x12345,
5944			  (unsigned long long)ret_data);
5945		fail = 1;
5946	}
5947
5948	/* Reset the EEPROM data go FFFF */
5949	write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
5950
5951	/* Test Write Request Error at offset 0x7c */
5952	if (sp->device_type == XFRAME_I_DEVICE)
5953		if (!write_eeprom(sp, 0x07C, 0, 3))
5954			fail = 1;
5955
5956	/* Test Write Request at offset 0x7f0 */
5957	if (write_eeprom(sp, 0x7F0, 0x012345, 3))
5958		fail = 1;
5959	if (read_eeprom(sp, 0x7F0, &ret_data))
5960		fail = 1;
5961
5962	if (ret_data != 0x012345) {
5963		DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
5964			  "Data written %llx Data read %llx\n",
5965			  dev->name, (unsigned long long)0x12345,
5966			  (unsigned long long)ret_data);
5967		fail = 1;
5968	}
5969
5970	/* Reset the EEPROM data go FFFF */
5971	write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
5972
5973	if (sp->device_type == XFRAME_I_DEVICE) {
5974		/* Test Write Error at offset 0x80 */
5975		if (!write_eeprom(sp, 0x080, 0, 3))
5976			fail = 1;
5977
5978		/* Test Write Error at offset 0xfc */
5979		if (!write_eeprom(sp, 0x0FC, 0, 3))
5980			fail = 1;
5981
5982		/* Test Write Error at offset 0x100 */
5983		if (!write_eeprom(sp, 0x100, 0, 3))
5984			fail = 1;
5985
5986		/* Test Write Error at offset 4ec */
5987		if (!write_eeprom(sp, 0x4EC, 0, 3))
5988			fail = 1;
5989	}
5990
5991	/* Restore values at offsets 0x4F0 and 0x7F0 */
5992	if (saved_4F0)
5993		write_eeprom(sp, 0x4F0, org_4F0, 3);
5994	if (saved_7F0)
5995		write_eeprom(sp, 0x7F0, org_7F0, 3);
5996
5997	*data = fail;
5998	return fail;
5999}
6000
6001/**
6002 * s2io_bist_test - invokes the MemBist test of the card .
6003 * @sp : private member of the device structure, which is a pointer to the
6004 * s2io_nic structure.
6005 * @data:variable that returns the result of each of the test conducted by
6006 * the driver.
6007 * Description:
6008 * This invokes the MemBist test of the card. We give around
6009 * 2 secs time for the Test to complete. If it's still not complete
6010 * within this peiod, we consider that the test failed.
6011 * Return value:
6012 * 0 on success and -1 on failure.
6013 */
6014
6015static int s2io_bist_test(struct s2io_nic *sp, uint64_t *data)
6016{
6017	u8 bist = 0;
6018	int cnt = 0, ret = -1;
6019
6020	pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6021	bist |= PCI_BIST_START;
6022	pci_write_config_word(sp->pdev, PCI_BIST, bist);
6023
6024	while (cnt < 20) {
6025		pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6026		if (!(bist & PCI_BIST_START)) {
6027			*data = (bist & PCI_BIST_CODE_MASK);
6028			ret = 0;
6029			break;
6030		}
6031		msleep(100);
6032		cnt++;
6033	}
6034
6035	return ret;
6036}
6037
6038/**
6039 * s2io_link_test - verifies the link state of the nic
6040 * @sp: private member of the device structure, which is a pointer to the
6041 * s2io_nic structure.
6042 * @data: variable that returns the result of each of the test conducted by
6043 * the driver.
6044 * Description:
6045 * The function verifies the link state of the NIC and updates the input
6046 * argument 'data' appropriately.
6047 * Return value:
6048 * 0 on success.
6049 */
6050
6051static int s2io_link_test(struct s2io_nic *sp, uint64_t *data)
6052{
6053	struct XENA_dev_config __iomem *bar0 = sp->bar0;
6054	u64 val64;
6055
6056	val64 = readq(&bar0->adapter_status);
6057	if (!(LINK_IS_UP(val64)))
6058		*data = 1;
6059	else
6060		*data = 0;
6061
6062	return *data;
6063}
6064
6065/**
6066 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
6067 * @sp: private member of the device structure, which is a pointer to the
6068 * s2io_nic structure.
6069 * @data: variable that returns the result of each of the test
6070 * conducted by the driver.
6071 * Description:
6072 *  This is one of the offline test that tests the read and write
6073 *  access to the RldRam chip on the NIC.
6074 * Return value:
6075 *  0 on success.
6076 */
6077
6078static int s2io_rldram_test(struct s2io_nic *sp, uint64_t *data)
6079{
6080	struct XENA_dev_config __iomem *bar0 = sp->bar0;
6081	u64 val64;
6082	int cnt, iteration = 0, test_fail = 0;
6083
6084	val64 = readq(&bar0->adapter_control);
6085	val64 &= ~ADAPTER_ECC_EN;
6086	writeq(val64, &bar0->adapter_control);
6087
6088	val64 = readq(&bar0->mc_rldram_test_ctrl);
6089	val64 |= MC_RLDRAM_TEST_MODE;
6090	SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6091
6092	val64 = readq(&bar0->mc_rldram_mrs);
6093	val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
6094	SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6095
6096	val64 |= MC_RLDRAM_MRS_ENABLE;
6097	SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6098
6099	while (iteration < 2) {
6100		val64 = 0x55555555aaaa0000ULL;
6101		if (iteration == 1)
6102			val64 ^= 0xFFFFFFFFFFFF0000ULL;
6103		writeq(val64, &bar0->mc_rldram_test_d0);
6104
6105		val64 = 0xaaaa5a5555550000ULL;
6106		if (iteration == 1)
6107			val64 ^= 0xFFFFFFFFFFFF0000ULL;
6108		writeq(val64, &bar0->mc_rldram_test_d1);
6109
6110		val64 = 0x55aaaaaaaa5a0000ULL;
6111		if (iteration == 1)
6112			val64 ^= 0xFFFFFFFFFFFF0000ULL;
6113		writeq(val64, &bar0->mc_rldram_test_d2);
6114
6115		val64 = (u64) (0x0000003ffffe0100ULL);
6116		writeq(val64, &bar0->mc_rldram_test_add);
6117
6118		val64 = MC_RLDRAM_TEST_MODE |
6119			MC_RLDRAM_TEST_WRITE |
6120			MC_RLDRAM_TEST_GO;
6121		SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6122
6123		for (cnt = 0; cnt < 5; cnt++) {
6124			val64 = readq(&bar0->mc_rldram_test_ctrl);
6125			if (val64 & MC_RLDRAM_TEST_DONE)
6126				break;
6127			msleep(200);
6128		}
6129
6130		if (cnt == 5)
6131			break;
6132
6133		val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
6134		SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6135
6136		for (cnt = 0; cnt < 5; cnt++) {
6137			val64 = readq(&bar0->mc_rldram_test_ctrl);
6138			if (val64 & MC_RLDRAM_TEST_DONE)
6139				break;
6140			msleep(500);
6141		}
6142
6143		if (cnt == 5)
6144			break;
6145
6146		val64 = readq(&bar0->mc_rldram_test_ctrl);
6147		if (!(val64 & MC_RLDRAM_TEST_PASS))
6148			test_fail = 1;
6149
6150		iteration++;
6151	}
6152
6153	*data = test_fail;
6154
6155	/* Bring the adapter out of test mode */
6156	SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
6157
6158	return test_fail;
6159}
6160
6161/**
6162 *  s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6163 *  @dev: pointer to netdev
6164 *  @ethtest : pointer to a ethtool command specific structure that will be
6165 *  returned to the user.
6166 *  @data : variable that returns the result of each of the test
6167 * conducted by the driver.
6168 * Description:
6169 *  This function conducts 6 tests ( 4 offline and 2 online) to determine
6170 *  the health of the card.
6171 * Return value:
6172 *  void
6173 */
6174
6175static void s2io_ethtool_test(struct net_device *dev,
6176			      struct ethtool_test *ethtest,
6177			      uint64_t *data)
6178{
6179	struct s2io_nic *sp = netdev_priv(dev);
6180	int orig_state = netif_running(sp->dev);
6181
6182	if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
6183		/* Offline Tests. */
6184		if (orig_state)
6185			s2io_close(sp->dev);
6186
6187		if (s2io_register_test(sp, &data[0]))
6188			ethtest->flags |= ETH_TEST_FL_FAILED;
6189
6190		s2io_reset(sp);
6191
6192		if (s2io_rldram_test(sp, &data[3]))
6193			ethtest->flags |= ETH_TEST_FL_FAILED;
6194
6195		s2io_reset(sp);
6196
6197		if (s2io_eeprom_test(sp, &data[1]))
6198			ethtest->flags |= ETH_TEST_FL_FAILED;
6199
6200		if (s2io_bist_test(sp, &data[4]))
6201			ethtest->flags |= ETH_TEST_FL_FAILED;
6202
6203		if (orig_state)
6204			s2io_open(sp->dev);
6205
6206		data[2] = 0;
6207	} else {
6208		/* Online Tests. */
6209		if (!orig_state) {
6210			DBG_PRINT(ERR_DBG, "%s: is not up, cannot run test\n",
6211				  dev->name);
6212			data[0] = -1;
6213			data[1] = -1;
6214			data[2] = -1;
6215			data[3] = -1;
6216			data[4] = -1;
6217		}
6218
6219		if (s2io_link_test(sp, &data[2]))
6220			ethtest->flags |= ETH_TEST_FL_FAILED;
6221
6222		data[0] = 0;
6223		data[1] = 0;
6224		data[3] = 0;
6225		data[4] = 0;
6226	}
6227}
6228
6229static void s2io_get_ethtool_stats(struct net_device *dev,
6230				   struct ethtool_stats *estats,
6231				   u64 *tmp_stats)
6232{
6233	int i = 0, k;
6234	struct s2io_nic *sp = netdev_priv(dev);
6235	struct stat_block *stats = sp->mac_control.stats_info;
6236	struct swStat *swstats = &stats->sw_stat;
6237	struct xpakStat *xstats = &stats->xpak_stat;
6238
6239	s2io_updt_stats(sp);
6240	tmp_stats[i++] =
6241		(u64)le32_to_cpu(stats->tmac_frms_oflow) << 32  |
6242		le32_to_cpu(stats->tmac_frms);
6243	tmp_stats[i++] =
6244		(u64)le32_to_cpu(stats->tmac_data_octets_oflow) << 32 |
6245		le32_to_cpu(stats->tmac_data_octets);
6246	tmp_stats[i++] = le64_to_cpu(stats->tmac_drop_frms);
6247	tmp_stats[i++] =
6248		(u64)le32_to_cpu(stats->tmac_mcst_frms_oflow) << 32 |
6249		le32_to_cpu(stats->tmac_mcst_frms);
6250	tmp_stats[i++] =
6251		(u64)le32_to_cpu(stats->tmac_bcst_frms_oflow) << 32 |
6252		le32_to_cpu(stats->tmac_bcst_frms);
6253	tmp_stats[i++] = le64_to_cpu(stats->tmac_pause_ctrl_frms);
6254	tmp_stats[i++] =
6255		(u64)le32_to_cpu(stats->tmac_ttl_octets_oflow) << 32 |
6256		le32_to_cpu(stats->tmac_ttl_octets);
6257	tmp_stats[i++] =
6258		(u64)le32_to_cpu(stats->tmac_ucst_frms_oflow) << 32 |
6259		le32_to_cpu(stats->tmac_ucst_frms);
6260	tmp_stats[i++] =
6261		(u64)le32_to_cpu(stats->tmac_nucst_frms_oflow) << 32 |
6262		le32_to_cpu(stats->tmac_nucst_frms);
6263	tmp_stats[i++] =
6264		(u64)le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 |
6265		le32_to_cpu(stats->tmac_any_err_frms);
6266	tmp_stats[i++] = le64_to_cpu(stats->tmac_ttl_less_fb_octets);
6267	tmp_stats[i++] = le64_to_cpu(stats->tmac_vld_ip_octets);
6268	tmp_stats[i++] =
6269		(u64)le32_to_cpu(stats->tmac_vld_ip_oflow) << 32 |
6270		le32_to_cpu(stats->tmac_vld_ip);
6271	tmp_stats[i++] =
6272		(u64)le32_to_cpu(stats->tmac_drop_ip_oflow) << 32 |
6273		le32_to_cpu(stats->tmac_drop_ip);
6274	tmp_stats[i++] =
6275		(u64)le32_to_cpu(stats->tmac_icmp_oflow) << 32 |
6276		le32_to_cpu(stats->tmac_icmp);
6277	tmp_stats[i++] =
6278		(u64)le32_to_cpu(stats->tmac_rst_tcp_oflow) << 32 |
6279		le32_to_cpu(stats->tmac_rst_tcp);
6280	tmp_stats[i++] = le64_to_cpu(stats->tmac_tcp);
6281	tmp_stats[i++] = (u64)le32_to_cpu(stats->tmac_udp_oflow) << 32 |
6282		le32_to_cpu(stats->tmac_udp);
6283	tmp_stats[i++] =
6284		(u64)le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 |
6285		le32_to_cpu(stats->rmac_vld_frms);
6286	tmp_stats[i++] =
6287		(u64)le32_to_cpu(stats->rmac_data_octets_oflow) << 32 |
6288		le32_to_cpu(stats->rmac_data_octets);
6289	tmp_stats[i++] = le64_to_cpu(stats->rmac_fcs_err_frms);
6290	tmp_stats[i++] = le64_to_cpu(stats->rmac_drop_frms);
6291	tmp_stats[i++] =
6292		(u64)le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 |
6293		le32_to_cpu(stats->rmac_vld_mcst_frms);
6294	tmp_stats[i++] =
6295		(u64)le32_to_cpu(stats->rmac_vld_bcst_frms_oflow) << 32 |
6296		le32_to_cpu(stats->rmac_vld_bcst_frms);
6297	tmp_stats[i++] = le32_to_cpu(stats->rmac_in_rng_len_err_frms);
6298	tmp_stats[i++] = le32_to_cpu(stats->rmac_out_rng_len_err_frms);
6299	tmp_stats[i++] = le64_to_cpu(stats->rmac_long_frms);
6300	tmp_stats[i++] = le64_to_cpu(stats->rmac_pause_ctrl_frms);
6301	tmp_stats[i++] = le64_to_cpu(stats->rmac_unsup_ctrl_frms);
6302	tmp_stats[i++] =
6303		(u64)le32_to_cpu(stats->rmac_ttl_octets_oflow) << 32 |
6304		le32_to_cpu(stats->rmac_ttl_octets);
6305	tmp_stats[i++] =
6306		(u64)le32_to_cpu(stats->rmac_accepted_ucst_frms_oflow) << 32
6307		| le32_to_cpu(stats->rmac_accepted_ucst_frms);
6308	tmp_stats[i++] =
6309		(u64)le32_to_cpu(stats->rmac_accepted_nucst_frms_oflow)
6310		<< 32 | le32_to_cpu(stats->rmac_accepted_nucst_frms);
6311	tmp_stats[i++] =
6312		(u64)le32_to_cpu(stats->rmac_discarded_frms_oflow) << 32 |
6313		le32_to_cpu(stats->rmac_discarded_frms);
6314	tmp_stats[i++] =
6315		(u64)le32_to_cpu(stats->rmac_drop_events_oflow)
6316		<< 32 | le32_to_cpu(stats->rmac_drop_events);
6317	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_less_fb_octets);
6318	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_frms);
6319	tmp_stats[i++] =
6320		(u64)le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 |
6321		le32_to_cpu(stats->rmac_usized_frms);
6322	tmp_stats[i++] =
6323		(u64)le32_to_cpu(stats->rmac_osized_frms_oflow) << 32 |
6324		le32_to_cpu(stats->rmac_osized_frms);
6325	tmp_stats[i++] =
6326		(u64)le32_to_cpu(stats->rmac_frag_frms_oflow) << 32 |
6327		le32_to_cpu(stats->rmac_frag_frms);
6328	tmp_stats[i++] =
6329		(u64)le32_to_cpu(stats->rmac_jabber_frms_oflow) << 32 |
6330		le32_to_cpu(stats->rmac_jabber_frms);
6331	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_64_frms);
6332	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_65_127_frms);
6333	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_128_255_frms);
6334	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_256_511_frms);
6335	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_512_1023_frms);
6336	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_1024_1518_frms);
6337	tmp_stats[i++] =
6338		(u64)le32_to_cpu(stats->rmac_ip_oflow) << 32 |
6339		le32_to_cpu(stats->rmac_ip);
6340	tmp_stats[i++] = le64_to_cpu(stats->rmac_ip_octets);
6341	tmp_stats[i++] = le32_to_cpu(stats->rmac_hdr_err_ip);
6342	tmp_stats[i++] =
6343		(u64)le32_to_cpu(stats->rmac_drop_ip_oflow) << 32 |
6344		le32_to_cpu(stats->rmac_drop_ip);
6345	tmp_stats[i++] =
6346		(u64)le32_to_cpu(stats->rmac_icmp_oflow) << 32 |
6347		le32_to_cpu(stats->rmac_icmp);
6348	tmp_stats[i++] = le64_to_cpu(stats->rmac_tcp);
6349	tmp_stats[i++] =
6350		(u64)le32_to_cpu(stats->rmac_udp_oflow) << 32 |
6351		le32_to_cpu(stats->rmac_udp);
6352	tmp_stats[i++] =
6353		(u64)le32_to_cpu(stats->rmac_err_drp_udp_oflow) << 32 |
6354		le32_to_cpu(stats->rmac_err_drp_udp);
6355	tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_err_sym);
6356	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q0);
6357	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q1);
6358	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q2);
6359	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q3);
6360	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q4);
6361	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q5);
6362	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q6);
6363	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q7);
6364	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q0);
6365	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q1);
6366	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q2);
6367	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q3);
6368	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q4);
6369	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q5);
6370	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q6);
6371	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q7);
6372	tmp_stats[i++] =
6373		(u64)le32_to_cpu(stats->rmac_pause_cnt_oflow) << 32 |
6374		le32_to_cpu(stats->rmac_pause_cnt);
6375	tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_data_err_cnt);
6376	tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_ctrl_err_cnt);
6377	tmp_stats[i++] =
6378		(u64)le32_to_cpu(stats->rmac_accepted_ip_oflow) << 32 |
6379		le32_to_cpu(stats->rmac_accepted_ip);
6380	tmp_stats[i++] = le32_to_cpu(stats->rmac_err_tcp);
6381	tmp_stats[i++] = le32_to_cpu(stats->rd_req_cnt);
6382	tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_cnt);
6383	tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_rtry_cnt);
6384	tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_cnt);
6385	tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_rd_ack_cnt);
6386	tmp_stats[i++] = le32_to_cpu(stats->wr_req_cnt);
6387	tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_cnt);
6388	tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_rtry_cnt);
6389	tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_cnt);
6390	tmp_stats[i++] = le32_to_cpu(stats->wr_disc_cnt);
6391	tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_wr_ack_cnt);
6392	tmp_stats[i++] = le32_to_cpu(stats->txp_wr_cnt);
6393	tmp_stats[i++] = le32_to_cpu(stats->txd_rd_cnt);
6394	tmp_stats[i++] = le32_to_cpu(stats->txd_wr_cnt);
6395	tmp_stats[i++] = le32_to_cpu(stats->rxd_rd_cnt);
6396	tmp_stats[i++] = le32_to_cpu(stats->rxd_wr_cnt);
6397	tmp_stats[i++] = le32_to_cpu(stats->txf_rd_cnt);
6398	tmp_stats[i++] = le32_to_cpu(stats->rxf_wr_cnt);
6399
6400	/* Enhanced statistics exist only for Hercules */
6401	if (sp->device_type == XFRAME_II_DEVICE) {
6402		tmp_stats[i++] =
6403			le64_to_cpu(stats->rmac_ttl_1519_4095_frms);
6404		tmp_stats[i++] =
6405			le64_to_cpu(stats->rmac_ttl_4096_8191_frms);
6406		tmp_stats[i++] =
6407			le64_to_cpu(stats->rmac_ttl_8192_max_frms);
6408		tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_gt_max_frms);
6409		tmp_stats[i++] = le64_to_cpu(stats->rmac_osized_alt_frms);
6410		tmp_stats[i++] = le64_to_cpu(stats->rmac_jabber_alt_frms);
6411		tmp_stats[i++] = le64_to_cpu(stats->rmac_gt_max_alt_frms);
6412		tmp_stats[i++] = le64_to_cpu(stats->rmac_vlan_frms);
6413		tmp_stats[i++] = le32_to_cpu(stats->rmac_len_discard);
6414		tmp_stats[i++] = le32_to_cpu(stats->rmac_fcs_discard);
6415		tmp_stats[i++] = le32_to_cpu(stats->rmac_pf_discard);
6416		tmp_stats[i++] = le32_to_cpu(stats->rmac_da_discard);
6417		tmp_stats[i++] = le32_to_cpu(stats->rmac_red_discard);
6418		tmp_stats[i++] = le32_to_cpu(stats->rmac_rts_discard);
6419		tmp_stats[i++] = le32_to_cpu(stats->rmac_ingm_full_discard);
6420		tmp_stats[i++] = le32_to_cpu(stats->link_fault_cnt);
6421	}
6422
6423	tmp_stats[i++] = 0;
6424	tmp_stats[i++] = swstats->single_ecc_errs;
6425	tmp_stats[i++] = swstats->double_ecc_errs;
6426	tmp_stats[i++] = swstats->parity_err_cnt;
6427	tmp_stats[i++] = swstats->serious_err_cnt;
6428	tmp_stats[i++] = swstats->soft_reset_cnt;
6429	tmp_stats[i++] = swstats->fifo_full_cnt;
6430	for (k = 0; k < MAX_RX_RINGS; k++)
6431		tmp_stats[i++] = swstats->ring_full_cnt[k];
6432	tmp_stats[i++] = xstats->alarm_transceiver_temp_high;
6433	tmp_stats[i++] = xstats->alarm_transceiver_temp_low;
6434	tmp_stats[i++] = xstats->alarm_laser_bias_current_high;
6435	tmp_stats[i++] = xstats->alarm_laser_bias_current_low;
6436	tmp_stats[i++] = xstats->alarm_laser_output_power_high;
6437	tmp_stats[i++] = xstats->alarm_laser_output_power_low;
6438	tmp_stats[i++] = xstats->warn_transceiver_temp_high;
6439	tmp_stats[i++] = xstats->warn_transceiver_temp_low;
6440	tmp_stats[i++] = xstats->warn_laser_bias_current_high;
6441	tmp_stats[i++] = xstats->warn_laser_bias_current_low;
6442	tmp_stats[i++] = xstats->warn_laser_output_power_high;
6443	tmp_stats[i++] = xstats->warn_laser_output_power_low;
6444	tmp_stats[i++] = swstats->clubbed_frms_cnt;
6445	tmp_stats[i++] = swstats->sending_both;
6446	tmp_stats[i++] = swstats->outof_sequence_pkts;
6447	tmp_stats[i++] = swstats->flush_max_pkts;
6448	if (swstats->num_aggregations) {
6449		u64 tmp = swstats->sum_avg_pkts_aggregated;
6450		int count = 0;
6451		/*
6452		 * Since 64-bit divide does not work on all platforms,
6453		 * do repeated subtraction.
6454		 */
6455		while (tmp >= swstats->num_aggregations) {
6456			tmp -= swstats->num_aggregations;
6457			count++;
6458		}
6459		tmp_stats[i++] = count;
6460	} else
6461		tmp_stats[i++] = 0;
6462	tmp_stats[i++] = swstats->mem_alloc_fail_cnt;
6463	tmp_stats[i++] = swstats->pci_map_fail_cnt;
6464	tmp_stats[i++] = swstats->watchdog_timer_cnt;
6465	tmp_stats[i++] = swstats->mem_allocated;
6466	tmp_stats[i++] = swstats->mem_freed;
6467	tmp_stats[i++] = swstats->link_up_cnt;
6468	tmp_stats[i++] = swstats->link_down_cnt;
6469	tmp_stats[i++] = swstats->link_up_time;
6470	tmp_stats[i++] = swstats->link_down_time;
6471
6472	tmp_stats[i++] = swstats->tx_buf_abort_cnt;
6473	tmp_stats[i++] = swstats->tx_desc_abort_cnt;
6474	tmp_stats[i++] = swstats->tx_parity_err_cnt;
6475	tmp_stats[i++] = swstats->tx_link_loss_cnt;
6476	tmp_stats[i++] = swstats->tx_list_proc_err_cnt;
6477
6478	tmp_stats[i++] = swstats->rx_parity_err_cnt;
6479	tmp_stats[i++] = swstats->rx_abort_cnt;
6480	tmp_stats[i++] = swstats->rx_parity_abort_cnt;
6481	tmp_stats[i++] = swstats->rx_rda_fail_cnt;
6482	tmp_stats[i++] = swstats->rx_unkn_prot_cnt;
6483	tmp_stats[i++] = swstats->rx_fcs_err_cnt;
6484	tmp_stats[i++] = swstats->rx_buf_size_err_cnt;
6485	tmp_stats[i++] = swstats->rx_rxd_corrupt_cnt;
6486	tmp_stats[i++] = swstats->rx_unkn_err_cnt;
6487	tmp_stats[i++] = swstats->tda_err_cnt;
6488	tmp_stats[i++] = swstats->pfc_err_cnt;
6489	tmp_stats[i++] = swstats->pcc_err_cnt;
6490	tmp_stats[i++] = swstats->tti_err_cnt;
6491	tmp_stats[i++] = swstats->tpa_err_cnt;
6492	tmp_stats[i++] = swstats->sm_err_cnt;
6493	tmp_stats[i++] = swstats->lso_err_cnt;
6494	tmp_stats[i++] = swstats->mac_tmac_err_cnt;
6495	tmp_stats[i++] = swstats->mac_rmac_err_cnt;
6496	tmp_stats[i++] = swstats->xgxs_txgxs_err_cnt;
6497	tmp_stats[i++] = swstats->xgxs_rxgxs_err_cnt;
6498	tmp_stats[i++] = swstats->rc_err_cnt;
6499	tmp_stats[i++] = swstats->prc_pcix_err_cnt;
6500	tmp_stats[i++] = swstats->rpa_err_cnt;
6501	tmp_stats[i++] = swstats->rda_err_cnt;
6502	tmp_stats[i++] = swstats->rti_err_cnt;
6503	tmp_stats[i++] = swstats->mc_err_cnt;
6504}
6505
6506static int s2io_ethtool_get_regs_len(struct net_device *dev)
6507{
6508	return XENA_REG_SPACE;
6509}
6510
6511
6512static int s2io_get_eeprom_len(struct net_device *dev)
6513{
6514	return XENA_EEPROM_SPACE;
6515}
6516
6517static int s2io_get_sset_count(struct net_device *dev, int sset)
6518{
6519	struct s2io_nic *sp = netdev_priv(dev);
6520
6521	switch (sset) {
6522	case ETH_SS_TEST:
6523		return S2IO_TEST_LEN;
6524	case ETH_SS_STATS:
6525		switch (sp->device_type) {
6526		case XFRAME_I_DEVICE:
6527			return XFRAME_I_STAT_LEN;
6528		case XFRAME_II_DEVICE:
6529			return XFRAME_II_STAT_LEN;
6530		default:
6531			return 0;
6532		}
6533	default:
6534		return -EOPNOTSUPP;
6535	}
6536}
6537
6538static void s2io_ethtool_get_strings(struct net_device *dev,
6539				     u32 stringset, u8 *data)
6540{
6541	int stat_size = 0;
6542	struct s2io_nic *sp = netdev_priv(dev);
6543
6544	switch (stringset) {
6545	case ETH_SS_TEST:
6546		memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
6547		break;
6548	case ETH_SS_STATS:
6549		stat_size = sizeof(ethtool_xena_stats_keys);
6550		memcpy(data, &ethtool_xena_stats_keys, stat_size);
6551		if (sp->device_type == XFRAME_II_DEVICE) {
6552			memcpy(data + stat_size,
6553			       &ethtool_enhanced_stats_keys,
6554			       sizeof(ethtool_enhanced_stats_keys));
6555			stat_size += sizeof(ethtool_enhanced_stats_keys);
6556		}
6557
6558		memcpy(data + stat_size, &ethtool_driver_stats_keys,
6559		       sizeof(ethtool_driver_stats_keys));
6560	}
6561}
6562
6563static int s2io_set_features(struct net_device *dev, netdev_features_t features)
6564{
6565	struct s2io_nic *sp = netdev_priv(dev);
6566	netdev_features_t changed = (features ^ dev->features) & NETIF_F_LRO;
6567
6568	if (changed && netif_running(dev)) {
6569		int rc;
6570
6571		s2io_stop_all_tx_queue(sp);
6572		s2io_card_down(sp);
6573		dev->features = features;
6574		rc = s2io_card_up(sp);
6575		if (rc)
6576			s2io_reset(sp);
6577		else
6578			s2io_start_all_tx_queue(sp);
6579
6580		return rc ? rc : 1;
6581	}
6582
6583	return 0;
6584}
6585
6586static const struct ethtool_ops netdev_ethtool_ops = {
6587	.get_drvinfo = s2io_ethtool_gdrvinfo,
6588	.get_regs_len = s2io_ethtool_get_regs_len,
6589	.get_regs = s2io_ethtool_gregs,
6590	.get_link = ethtool_op_get_link,
6591	.get_eeprom_len = s2io_get_eeprom_len,
6592	.get_eeprom = s2io_ethtool_geeprom,
6593	.set_eeprom = s2io_ethtool_seeprom,
6594	.get_ringparam = s2io_ethtool_gringparam,
6595	.get_pauseparam = s2io_ethtool_getpause_data,
6596	.set_pauseparam = s2io_ethtool_setpause_data,
6597	.self_test = s2io_ethtool_test,
6598	.get_strings = s2io_ethtool_get_strings,
6599	.set_phys_id = s2io_ethtool_set_led,
6600	.get_ethtool_stats = s2io_get_ethtool_stats,
6601	.get_sset_count = s2io_get_sset_count,
6602	.get_link_ksettings = s2io_ethtool_get_link_ksettings,
6603	.set_link_ksettings = s2io_ethtool_set_link_ksettings,
6604};
6605
6606/**
6607 *  s2io_ioctl - Entry point for the Ioctl
6608 *  @dev :  Device pointer.
6609 *  @rq :  An IOCTL specefic structure, that can contain a pointer to
6610 *  a proprietary structure used to pass information to the driver.
6611 *  @cmd :  This is used to distinguish between the different commands that
6612 *  can be passed to the IOCTL functions.
6613 *  Description:
6614 *  Currently there are no special functionality supported in IOCTL, hence
6615 *  function always return EOPNOTSUPPORTED
6616 */
6617
6618static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
6619{
6620	return -EOPNOTSUPP;
6621}
6622
6623/**
6624 *  s2io_change_mtu - entry point to change MTU size for the device.
6625 *   @dev : device pointer.
6626 *   @new_mtu : the new MTU size for the device.
6627 *   Description: A driver entry point to change MTU size for the device.
6628 *   Before changing the MTU the device must be stopped.
6629 *  Return value:
6630 *   0 on success and an appropriate (-)ve integer as defined in errno.h
6631 *   file on failure.
6632 */
6633
6634static int s2io_change_mtu(struct net_device *dev, int new_mtu)
6635{
6636	struct s2io_nic *sp = netdev_priv(dev);
6637	int ret = 0;
6638
6639	dev->mtu = new_mtu;
6640	if (netif_running(dev)) {
6641		s2io_stop_all_tx_queue(sp);
6642		s2io_card_down(sp);
6643		ret = s2io_card_up(sp);
6644		if (ret) {
6645			DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6646				  __func__);
6647			return ret;
6648		}
6649		s2io_wake_all_tx_queue(sp);
6650	} else { /* Device is down */
6651		struct XENA_dev_config __iomem *bar0 = sp->bar0;
6652		u64 val64 = new_mtu;
6653
6654		writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6655	}
6656
6657	return ret;
6658}
6659
6660/**
6661 * s2io_set_link - Set the LInk status
6662 * @work: work struct containing a pointer to device private structure
6663 * Description: Sets the link status for the adapter
6664 */
6665
6666static void s2io_set_link(struct work_struct *work)
6667{
6668	struct s2io_nic *nic = container_of(work, struct s2io_nic,
6669					    set_link_task);
6670	struct net_device *dev = nic->dev;
6671	struct XENA_dev_config __iomem *bar0 = nic->bar0;
6672	register u64 val64;
6673	u16 subid;
6674
6675	rtnl_lock();
6676
6677	if (!netif_running(dev))
6678		goto out_unlock;
6679
6680	if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
6681		/* The card is being reset, no point doing anything */
6682		goto out_unlock;
6683	}
6684
6685	subid = nic->pdev->subsystem_device;
6686	if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6687		/*
6688		 * Allow a small delay for the NICs self initiated
6689		 * cleanup to complete.
6690		 */
6691		msleep(100);
6692	}
6693
6694	val64 = readq(&bar0->adapter_status);
6695	if (LINK_IS_UP(val64)) {
6696		if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6697			if (verify_xena_quiescence(nic)) {
6698				val64 = readq(&bar0->adapter_control);
6699				val64 |= ADAPTER_CNTL_EN;
6700				writeq(val64, &bar0->adapter_control);
6701				if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6702					    nic->device_type, subid)) {
6703					val64 = readq(&bar0->gpio_control);
6704					val64 |= GPIO_CTRL_GPIO_0;
6705					writeq(val64, &bar0->gpio_control);
6706					val64 = readq(&bar0->gpio_control);
6707				} else {
6708					val64 |= ADAPTER_LED_ON;
6709					writeq(val64, &bar0->adapter_control);
6710				}
6711				nic->device_enabled_once = true;
6712			} else {
6713				DBG_PRINT(ERR_DBG,
6714					  "%s: Error: device is not Quiescent\n",
6715					  dev->name);
6716				s2io_stop_all_tx_queue(nic);
6717			}
6718		}
6719		val64 = readq(&bar0->adapter_control);
6720		val64 |= ADAPTER_LED_ON;
6721		writeq(val64, &bar0->adapter_control);
6722		s2io_link(nic, LINK_UP);
6723	} else {
6724		if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6725						      subid)) {
6726			val64 = readq(&bar0->gpio_control);
6727			val64 &= ~GPIO_CTRL_GPIO_0;
6728			writeq(val64, &bar0->gpio_control);
6729			val64 = readq(&bar0->gpio_control);
6730		}
6731		/* turn off LED */
6732		val64 = readq(&bar0->adapter_control);
6733		val64 = val64 & (~ADAPTER_LED_ON);
6734		writeq(val64, &bar0->adapter_control);
6735		s2io_link(nic, LINK_DOWN);
6736	}
6737	clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
6738
6739out_unlock:
6740	rtnl_unlock();
6741}
6742
6743static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
6744				  struct buffAdd *ba,
6745				  struct sk_buff **skb, u64 *temp0, u64 *temp1,
6746				  u64 *temp2, int size)
6747{
6748	struct net_device *dev = sp->dev;
6749	struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
6750
6751	if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6752		struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
6753		/* allocate skb */
6754		if (*skb) {
6755			DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6756			/*
6757			 * As Rx frame are not going to be processed,
6758			 * using same mapped address for the Rxd
6759			 * buffer pointer
6760			 */
6761			rxdp1->Buffer0_ptr = *temp0;
6762		} else {
6763			*skb = netdev_alloc_skb(dev, size);
6764			if (!(*skb)) {
6765				DBG_PRINT(INFO_DBG,
6766					  "%s: Out of memory to allocate %s\n",
6767					  dev->name, "1 buf mode SKBs");
6768				stats->mem_alloc_fail_cnt++;
6769				return -ENOMEM ;
6770			}
6771			stats->mem_allocated += (*skb)->truesize;
6772			/* storing the mapped addr in a temp variable
6773			 * such it will be used for next rxd whose
6774			 * Host Control is NULL
6775			 */
6776			rxdp1->Buffer0_ptr = *temp0 =
6777				dma_map_single(&sp->pdev->dev, (*skb)->data,
6778					       size - NET_IP_ALIGN,
6779					       DMA_FROM_DEVICE);
6780			if (dma_mapping_error(&sp->pdev->dev, rxdp1->Buffer0_ptr))
6781				goto memalloc_failed;
6782			rxdp->Host_Control = (unsigned long) (*skb);
6783		}
6784	} else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6785		struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
6786		/* Two buffer Mode */
6787		if (*skb) {
6788			rxdp3->Buffer2_ptr = *temp2;
6789			rxdp3->Buffer0_ptr = *temp0;
6790			rxdp3->Buffer1_ptr = *temp1;
6791		} else {
6792			*skb = netdev_alloc_skb(dev, size);
6793			if (!(*skb)) {
6794				DBG_PRINT(INFO_DBG,
6795					  "%s: Out of memory to allocate %s\n",
6796					  dev->name,
6797					  "2 buf mode SKBs");
6798				stats->mem_alloc_fail_cnt++;
6799				return -ENOMEM;
6800			}
6801			stats->mem_allocated += (*skb)->truesize;
6802			rxdp3->Buffer2_ptr = *temp2 =
6803				dma_map_single(&sp->pdev->dev, (*skb)->data,
6804					       dev->mtu + 4, DMA_FROM_DEVICE);
6805			if (dma_mapping_error(&sp->pdev->dev, rxdp3->Buffer2_ptr))
6806				goto memalloc_failed;
6807			rxdp3->Buffer0_ptr = *temp0 =
6808				dma_map_single(&sp->pdev->dev, ba->ba_0,
6809					       BUF0_LEN, DMA_FROM_DEVICE);
6810			if (dma_mapping_error(&sp->pdev->dev, rxdp3->Buffer0_ptr)) {
6811				dma_unmap_single(&sp->pdev->dev,
6812						 (dma_addr_t)rxdp3->Buffer2_ptr,
6813						 dev->mtu + 4,
6814						 DMA_FROM_DEVICE);
6815				goto memalloc_failed;
6816			}
6817			rxdp->Host_Control = (unsigned long) (*skb);
6818
6819			/* Buffer-1 will be dummy buffer not used */
6820			rxdp3->Buffer1_ptr = *temp1 =
6821				dma_map_single(&sp->pdev->dev, ba->ba_1,
6822					       BUF1_LEN, DMA_FROM_DEVICE);
6823			if (dma_mapping_error(&sp->pdev->dev, rxdp3->Buffer1_ptr)) {
6824				dma_unmap_single(&sp->pdev->dev,
6825						 (dma_addr_t)rxdp3->Buffer0_ptr,
6826						 BUF0_LEN, DMA_FROM_DEVICE);
6827				dma_unmap_single(&sp->pdev->dev,
6828						 (dma_addr_t)rxdp3->Buffer2_ptr,
6829						 dev->mtu + 4,
6830						 DMA_FROM_DEVICE);
6831				goto memalloc_failed;
6832			}
6833		}
6834	}
6835	return 0;
6836
6837memalloc_failed:
6838	stats->pci_map_fail_cnt++;
6839	stats->mem_freed += (*skb)->truesize;
6840	dev_kfree_skb(*skb);
6841	return -ENOMEM;
6842}
6843
6844static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6845				int size)
6846{
6847	struct net_device *dev = sp->dev;
6848	if (sp->rxd_mode == RXD_MODE_1) {
6849		rxdp->Control_2 = SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
6850	} else if (sp->rxd_mode == RXD_MODE_3B) {
6851		rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6852		rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6853		rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu + 4);
6854	}
6855}
6856
6857static  int rxd_owner_bit_reset(struct s2io_nic *sp)
6858{
6859	int i, j, k, blk_cnt = 0, size;
6860	struct config_param *config = &sp->config;
6861	struct mac_info *mac_control = &sp->mac_control;
6862	struct net_device *dev = sp->dev;
6863	struct RxD_t *rxdp = NULL;
6864	struct sk_buff *skb = NULL;
6865	struct buffAdd *ba = NULL;
6866	u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6867
6868	/* Calculate the size based on ring mode */
6869	size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6870		HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6871	if (sp->rxd_mode == RXD_MODE_1)
6872		size += NET_IP_ALIGN;
6873	else if (sp->rxd_mode == RXD_MODE_3B)
6874		size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
6875
6876	for (i = 0; i < config->rx_ring_num; i++) {
6877		struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
6878		struct ring_info *ring = &mac_control->rings[i];
6879
6880		blk_cnt = rx_cfg->num_rxd / (rxd_count[sp->rxd_mode] + 1);
6881
6882		for (j = 0; j < blk_cnt; j++) {
6883			for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
6884				rxdp = ring->rx_blocks[j].rxds[k].virt_addr;
6885				if (sp->rxd_mode == RXD_MODE_3B)
6886					ba = &ring->ba[j][k];
6887				if (set_rxd_buffer_pointer(sp, rxdp, ba, &skb,
6888							   &temp0_64,
6889							   &temp1_64,
6890							   &temp2_64,
6891							   size) == -ENOMEM) {
6892					return 0;
6893				}
6894
6895				set_rxd_buffer_size(sp, rxdp, size);
6896				dma_wmb();
6897				/* flip the Ownership bit to Hardware */
6898				rxdp->Control_1 |= RXD_OWN_XENA;
6899			}
6900		}
6901	}
6902	return 0;
6903
6904}
6905
6906static int s2io_add_isr(struct s2io_nic *sp)
6907{
6908	int ret = 0;
6909	struct net_device *dev = sp->dev;
6910	int err = 0;
6911
6912	if (sp->config.intr_type == MSI_X)
6913		ret = s2io_enable_msi_x(sp);
6914	if (ret) {
6915		DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
6916		sp->config.intr_type = INTA;
6917	}
6918
6919	/*
6920	 * Store the values of the MSIX table in
6921	 * the struct s2io_nic structure
6922	 */
6923	store_xmsi_data(sp);
6924
6925	/* After proper initialization of H/W, register ISR */
6926	if (sp->config.intr_type == MSI_X) {
6927		int i, msix_rx_cnt = 0;
6928
6929		for (i = 0; i < sp->num_entries; i++) {
6930			if (sp->s2io_entries[i].in_use == MSIX_FLG) {
6931				if (sp->s2io_entries[i].type ==
6932				    MSIX_RING_TYPE) {
6933					snprintf(sp->desc[i],
6934						sizeof(sp->desc[i]),
6935						"%s:MSI-X-%d-RX",
6936						dev->name, i);
6937					err = request_irq(sp->entries[i].vector,
6938							  s2io_msix_ring_handle,
6939							  0,
6940							  sp->desc[i],
6941							  sp->s2io_entries[i].arg);
6942				} else if (sp->s2io_entries[i].type ==
6943					   MSIX_ALARM_TYPE) {
6944					snprintf(sp->desc[i],
6945						sizeof(sp->desc[i]),
6946						"%s:MSI-X-%d-TX",
6947						dev->name, i);
6948					err = request_irq(sp->entries[i].vector,
6949							  s2io_msix_fifo_handle,
6950							  0,
6951							  sp->desc[i],
6952							  sp->s2io_entries[i].arg);
6953
6954				}
6955				/* if either data or addr is zero print it. */
6956				if (!(sp->msix_info[i].addr &&
6957				      sp->msix_info[i].data)) {
6958					DBG_PRINT(ERR_DBG,
6959						  "%s @Addr:0x%llx Data:0x%llx\n",
6960						  sp->desc[i],
6961						  (unsigned long long)
6962						  sp->msix_info[i].addr,
6963						  (unsigned long long)
6964						  ntohl(sp->msix_info[i].data));
6965				} else
6966					msix_rx_cnt++;
6967				if (err) {
6968					remove_msix_isr(sp);
6969
6970					DBG_PRINT(ERR_DBG,
6971						  "%s:MSI-X-%d registration "
6972						  "failed\n", dev->name, i);
6973
6974					DBG_PRINT(ERR_DBG,
6975						  "%s: Defaulting to INTA\n",
6976						  dev->name);
6977					sp->config.intr_type = INTA;
6978					break;
6979				}
6980				sp->s2io_entries[i].in_use =
6981					MSIX_REGISTERED_SUCCESS;
6982			}
6983		}
6984		if (!err) {
6985			pr_info("MSI-X-RX %d entries enabled\n", --msix_rx_cnt);
6986			DBG_PRINT(INFO_DBG,
6987				  "MSI-X-TX entries enabled through alarm vector\n");
6988		}
6989	}
6990	if (sp->config.intr_type == INTA) {
6991		err = request_irq(sp->pdev->irq, s2io_isr, IRQF_SHARED,
6992				  sp->name, dev);
6993		if (err) {
6994			DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
6995				  dev->name);
6996			return -1;
6997		}
6998	}
6999	return 0;
7000}
7001
7002static void s2io_rem_isr(struct s2io_nic *sp)
7003{
7004	if (sp->config.intr_type == MSI_X)
7005		remove_msix_isr(sp);
7006	else
7007		remove_inta_isr(sp);
7008}
7009
7010static void do_s2io_card_down(struct s2io_nic *sp, int do_io)
7011{
7012	int cnt = 0;
7013	struct XENA_dev_config __iomem *bar0 = sp->bar0;
7014	register u64 val64 = 0;
7015	struct config_param *config;
7016	config = &sp->config;
7017
7018	if (!is_s2io_card_up(sp))
7019		return;
7020
7021	del_timer_sync(&sp->alarm_timer);
7022	/* If s2io_set_link task is executing, wait till it completes. */
7023	while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state)))
7024		msleep(50);
7025	clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
7026
7027	/* Disable napi */
7028	if (sp->config.napi) {
7029		int off = 0;
7030		if (config->intr_type ==  MSI_X) {
7031			for (; off < sp->config.rx_ring_num; off++)
7032				napi_disable(&sp->mac_control.rings[off].napi);
7033		}
7034		else
7035			napi_disable(&sp->napi);
7036	}
7037
7038	/* disable Tx and Rx traffic on the NIC */
7039	if (do_io)
7040		stop_nic(sp);
7041
7042	s2io_rem_isr(sp);
7043
7044	/* stop the tx queue, indicate link down */
7045	s2io_link(sp, LINK_DOWN);
7046
7047	/* Check if the device is Quiescent and then Reset the NIC */
7048	while (do_io) {
7049		/* As per the HW requirement we need to replenish the
7050		 * receive buffer to avoid the ring bump. Since there is
7051		 * no intention of processing the Rx frame at this pointwe are
7052		 * just setting the ownership bit of rxd in Each Rx
7053		 * ring to HW and set the appropriate buffer size
7054		 * based on the ring mode
7055		 */
7056		rxd_owner_bit_reset(sp);
7057
7058		val64 = readq(&bar0->adapter_status);
7059		if (verify_xena_quiescence(sp)) {
7060			if (verify_pcc_quiescent(sp, sp->device_enabled_once))
7061				break;
7062		}
7063
7064		msleep(50);
7065		cnt++;
7066		if (cnt == 10) {
7067			DBG_PRINT(ERR_DBG, "Device not Quiescent - "
7068				  "adapter status reads 0x%llx\n",
7069				  (unsigned long long)val64);
7070			break;
7071		}
7072	}
7073	if (do_io)
7074		s2io_reset(sp);
7075
7076	/* Free all Tx buffers */
7077	free_tx_buffers(sp);
7078
7079	/* Free all Rx buffers */
7080	free_rx_buffers(sp);
7081
7082	clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
7083}
7084
7085static void s2io_card_down(struct s2io_nic *sp)
7086{
7087	do_s2io_card_down(sp, 1);
7088}
7089
7090static int s2io_card_up(struct s2io_nic *sp)
7091{
7092	int i, ret = 0;
7093	struct config_param *config;
7094	struct mac_info *mac_control;
7095	struct net_device *dev = sp->dev;
7096	u16 interruptible;
7097
7098	/* Initialize the H/W I/O registers */
7099	ret = init_nic(sp);
7100	if (ret != 0) {
7101		DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
7102			  dev->name);
7103		if (ret != -EIO)
7104			s2io_reset(sp);
7105		return ret;
7106	}
7107
7108	/*
7109	 * Initializing the Rx buffers. For now we are considering only 1
7110	 * Rx ring and initializing buffers into 30 Rx blocks
7111	 */
7112	config = &sp->config;
7113	mac_control = &sp->mac_control;
7114
7115	for (i = 0; i < config->rx_ring_num; i++) {
7116		struct ring_info *ring = &mac_control->rings[i];
7117
7118		ring->mtu = dev->mtu;
7119		ring->lro = !!(dev->features & NETIF_F_LRO);
7120		ret = fill_rx_buffers(sp, ring, 1);
7121		if (ret) {
7122			DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
7123				  dev->name);
7124			ret = -ENOMEM;
7125			goto err_fill_buff;
7126		}
7127		DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
7128			  ring->rx_bufs_left);
7129	}
7130
7131	/* Initialise napi */
7132	if (config->napi) {
7133		if (config->intr_type ==  MSI_X) {
7134			for (i = 0; i < sp->config.rx_ring_num; i++)
7135				napi_enable(&sp->mac_control.rings[i].napi);
7136		} else {
7137			napi_enable(&sp->napi);
7138		}
7139	}
7140
7141	/* Maintain the state prior to the open */
7142	if (sp->promisc_flg)
7143		sp->promisc_flg = 0;
7144	if (sp->m_cast_flg) {
7145		sp->m_cast_flg = 0;
7146		sp->all_multi_pos = 0;
7147	}
7148
7149	/* Setting its receive mode */
7150	s2io_set_multicast(dev, true);
7151
7152	if (dev->features & NETIF_F_LRO) {
7153		/* Initialize max aggregatable pkts per session based on MTU */
7154		sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
7155		/* Check if we can use (if specified) user provided value */
7156		if (lro_max_pkts < sp->lro_max_aggr_per_sess)
7157			sp->lro_max_aggr_per_sess = lro_max_pkts;
7158	}
7159
7160	/* Enable Rx Traffic and interrupts on the NIC */
7161	if (start_nic(sp)) {
7162		DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
7163		ret = -ENODEV;
7164		goto err_out;
7165	}
7166
7167	/* Add interrupt service routine */
7168	if (s2io_add_isr(sp) != 0) {
7169		if (sp->config.intr_type == MSI_X)
7170			s2io_rem_isr(sp);
7171		ret = -ENODEV;
7172		goto err_out;
7173	}
7174
7175	timer_setup(&sp->alarm_timer, s2io_alarm_handle, 0);
7176	mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
7177
7178	set_bit(__S2IO_STATE_CARD_UP, &sp->state);
7179
7180	/*  Enable select interrupts */
7181	en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
7182	if (sp->config.intr_type != INTA) {
7183		interruptible = TX_TRAFFIC_INTR | TX_PIC_INTR;
7184		en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7185	} else {
7186		interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
7187		interruptible |= TX_PIC_INTR;
7188		en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7189	}
7190
7191	return 0;
7192
7193err_out:
7194	if (config->napi) {
7195		if (config->intr_type == MSI_X) {
7196			for (i = 0; i < sp->config.rx_ring_num; i++)
7197				napi_disable(&sp->mac_control.rings[i].napi);
7198		} else {
7199			napi_disable(&sp->napi);
7200		}
7201	}
7202err_fill_buff:
7203	s2io_reset(sp);
7204	free_rx_buffers(sp);
7205	return ret;
7206}
7207
7208/**
7209 * s2io_restart_nic - Resets the NIC.
7210 * @work : work struct containing a pointer to the device private structure
7211 * Description:
7212 * This function is scheduled to be run by the s2io_tx_watchdog
7213 * function after 0.5 secs to reset the NIC. The idea is to reduce
7214 * the run time of the watch dog routine which is run holding a
7215 * spin lock.
7216 */
7217
7218static void s2io_restart_nic(struct work_struct *work)
7219{
7220	struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
7221	struct net_device *dev = sp->dev;
7222
7223	rtnl_lock();
7224
7225	if (!netif_running(dev))
7226		goto out_unlock;
7227
7228	s2io_card_down(sp);
7229	if (s2io_card_up(sp)) {
7230		DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n", dev->name);
7231	}
7232	s2io_wake_all_tx_queue(sp);
7233	DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n", dev->name);
7234out_unlock:
7235	rtnl_unlock();
7236}
7237
7238/**
7239 *  s2io_tx_watchdog - Watchdog for transmit side.
7240 *  @dev : Pointer to net device structure
7241 *  @txqueue: index of the hanging queue
7242 *  Description:
7243 *  This function is triggered if the Tx Queue is stopped
7244 *  for a pre-defined amount of time when the Interface is still up.
7245 *  If the Interface is jammed in such a situation, the hardware is
7246 *  reset (by s2io_close) and restarted again (by s2io_open) to
7247 *  overcome any problem that might have been caused in the hardware.
7248 *  Return value:
7249 *  void
7250 */
7251
7252static void s2io_tx_watchdog(struct net_device *dev, unsigned int txqueue)
7253{
7254	struct s2io_nic *sp = netdev_priv(dev);
7255	struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7256
7257	if (netif_carrier_ok(dev)) {
7258		swstats->watchdog_timer_cnt++;
7259		schedule_work(&sp->rst_timer_task);
7260		swstats->soft_reset_cnt++;
7261	}
7262}
7263
7264/**
7265 *   rx_osm_handler - To perform some OS related operations on SKB.
7266 *   @ring_data : the ring from which this RxD was extracted.
7267 *   @rxdp: descriptor
7268 *   Description:
7269 *   This function is called by the Rx interrupt serivce routine to perform
7270 *   some OS related operations on the SKB before passing it to the upper
7271 *   layers. It mainly checks if the checksum is OK, if so adds it to the
7272 *   SKBs cksum variable, increments the Rx packet count and passes the SKB
7273 *   to the upper layer. If the checksum is wrong, it increments the Rx
7274 *   packet error count, frees the SKB and returns error.
7275 *   Return value:
7276 *   SUCCESS on success and -1 on failure.
7277 */
7278static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
7279{
7280	struct s2io_nic *sp = ring_data->nic;
7281	struct net_device *dev = ring_data->dev;
7282	struct sk_buff *skb = (struct sk_buff *)
7283		((unsigned long)rxdp->Host_Control);
7284	int ring_no = ring_data->ring_no;
7285	u16 l3_csum, l4_csum;
7286	unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
7287	struct lro *lro;
7288	u8 err_mask;
7289	struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7290
7291	skb->dev = dev;
7292
7293	if (err) {
7294		/* Check for parity error */
7295		if (err & 0x1)
7296			swstats->parity_err_cnt++;
7297
7298		err_mask = err >> 48;
7299		switch (err_mask) {
7300		case 1:
7301			swstats->rx_parity_err_cnt++;
7302			break;
7303
7304		case 2:
7305			swstats->rx_abort_cnt++;
7306			break;
7307
7308		case 3:
7309			swstats->rx_parity_abort_cnt++;
7310			break;
7311
7312		case 4:
7313			swstats->rx_rda_fail_cnt++;
7314			break;
7315
7316		case 5:
7317			swstats->rx_unkn_prot_cnt++;
7318			break;
7319
7320		case 6:
7321			swstats->rx_fcs_err_cnt++;
7322			break;
7323
7324		case 7:
7325			swstats->rx_buf_size_err_cnt++;
7326			break;
7327
7328		case 8:
7329			swstats->rx_rxd_corrupt_cnt++;
7330			break;
7331
7332		case 15:
7333			swstats->rx_unkn_err_cnt++;
7334			break;
7335		}
7336		/*
7337		 * Drop the packet if bad transfer code. Exception being
7338		 * 0x5, which could be due to unsupported IPv6 extension header.
7339		 * In this case, we let stack handle the packet.
7340		 * Note that in this case, since checksum will be incorrect,
7341		 * stack will validate the same.
7342		 */
7343		if (err_mask != 0x5) {
7344			DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
7345				  dev->name, err_mask);
7346			dev->stats.rx_crc_errors++;
7347			swstats->mem_freed
7348				+= skb->truesize;
7349			dev_kfree_skb(skb);
7350			ring_data->rx_bufs_left -= 1;
7351			rxdp->Host_Control = 0;
7352			return 0;
7353		}
7354	}
7355
7356	rxdp->Host_Control = 0;
7357	if (sp->rxd_mode == RXD_MODE_1) {
7358		int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
7359
7360		skb_put(skb, len);
7361	} else if (sp->rxd_mode == RXD_MODE_3B) {
7362		int get_block = ring_data->rx_curr_get_info.block_index;
7363		int get_off = ring_data->rx_curr_get_info.offset;
7364		int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
7365		int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
7366
7367		struct buffAdd *ba = &ring_data->ba[get_block][get_off];
7368		skb_put_data(skb, ba->ba_0, buf0_len);
7369		skb_put(skb, buf2_len);
7370	}
7371
7372	if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) &&
7373	    ((!ring_data->lro) ||
7374	     (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG))) &&
7375	    (dev->features & NETIF_F_RXCSUM)) {
7376		l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
7377		l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
7378		if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
7379			/*
7380			 * NIC verifies if the Checksum of the received
7381			 * frame is Ok or not and accordingly returns
7382			 * a flag in the RxD.
7383			 */
7384			skb->ip_summed = CHECKSUM_UNNECESSARY;
7385			if (ring_data->lro) {
7386				u32 tcp_len = 0;
7387				u8 *tcp;
7388				int ret = 0;
7389
7390				ret = s2io_club_tcp_session(ring_data,
7391							    skb->data, &tcp,
7392							    &tcp_len, &lro,
7393							    rxdp, sp);
7394				switch (ret) {
7395				case 3: /* Begin anew */
7396					lro->parent = skb;
7397					goto aggregate;
7398				case 1: /* Aggregate */
7399					lro_append_pkt(sp, lro, skb, tcp_len);
7400					goto aggregate;
7401				case 4: /* Flush session */
7402					lro_append_pkt(sp, lro, skb, tcp_len);
7403					queue_rx_frame(lro->parent,
7404						       lro->vlan_tag);
7405					clear_lro_session(lro);
7406					swstats->flush_max_pkts++;
7407					goto aggregate;
7408				case 2: /* Flush both */
7409					lro->parent->data_len = lro->frags_len;
7410					swstats->sending_both++;
7411					queue_rx_frame(lro->parent,
7412						       lro->vlan_tag);
7413					clear_lro_session(lro);
7414					goto send_up;
7415				case 0: /* sessions exceeded */
7416				case -1: /* non-TCP or not L2 aggregatable */
7417				case 5: /*
7418					 * First pkt in session not
7419					 * L3/L4 aggregatable
7420					 */
7421					break;
7422				default:
7423					DBG_PRINT(ERR_DBG,
7424						  "%s: Samadhana!!\n",
7425						  __func__);
7426					BUG();
7427				}
7428			}
7429		} else {
7430			/*
7431			 * Packet with erroneous checksum, let the
7432			 * upper layers deal with it.
7433			 */
7434			skb_checksum_none_assert(skb);
7435		}
7436	} else
7437		skb_checksum_none_assert(skb);
7438
7439	swstats->mem_freed += skb->truesize;
7440send_up:
7441	skb_record_rx_queue(skb, ring_no);
7442	queue_rx_frame(skb, RXD_GET_VLAN_TAG(rxdp->Control_2));
7443aggregate:
7444	sp->mac_control.rings[ring_no].rx_bufs_left -= 1;
7445	return SUCCESS;
7446}
7447
7448/**
7449 *  s2io_link - stops/starts the Tx queue.
7450 *  @sp : private member of the device structure, which is a pointer to the
7451 *  s2io_nic structure.
7452 *  @link : inidicates whether link is UP/DOWN.
7453 *  Description:
7454 *  This function stops/starts the Tx queue depending on whether the link
7455 *  status of the NIC is down or up. This is called by the Alarm
7456 *  interrupt handler whenever a link change interrupt comes up.
7457 *  Return value:
7458 *  void.
7459 */
7460
7461static void s2io_link(struct s2io_nic *sp, int link)
7462{
7463	struct net_device *dev = sp->dev;
7464	struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7465
7466	if (link != sp->last_link_state) {
7467		init_tti(sp, link, false);
7468		if (link == LINK_DOWN) {
7469			DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
7470			s2io_stop_all_tx_queue(sp);
7471			netif_carrier_off(dev);
7472			if (swstats->link_up_cnt)
7473				swstats->link_up_time =
7474					jiffies - sp->start_time;
7475			swstats->link_down_cnt++;
7476		} else {
7477			DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
7478			if (swstats->link_down_cnt)
7479				swstats->link_down_time =
7480					jiffies - sp->start_time;
7481			swstats->link_up_cnt++;
7482			netif_carrier_on(dev);
7483			s2io_wake_all_tx_queue(sp);
7484		}
7485	}
7486	sp->last_link_state = link;
7487	sp->start_time = jiffies;
7488}
7489
7490/**
7491 *  s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7492 *  @sp : private member of the device structure, which is a pointer to the
7493 *  s2io_nic structure.
7494 *  Description:
7495 *  This function initializes a few of the PCI and PCI-X configuration registers
7496 *  with recommended values.
7497 *  Return value:
7498 *  void
7499 */
7500
7501static void s2io_init_pci(struct s2io_nic *sp)
7502{
7503	u16 pci_cmd = 0, pcix_cmd = 0;
7504
7505	/* Enable Data Parity Error Recovery in PCI-X command register. */
7506	pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7507			     &(pcix_cmd));
7508	pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7509			      (pcix_cmd | 1));
7510	pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7511			     &(pcix_cmd));
7512
7513	/* Set the PErr Response bit in PCI command register. */
7514	pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7515	pci_write_config_word(sp->pdev, PCI_COMMAND,
7516			      (pci_cmd | PCI_COMMAND_PARITY));
7517	pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7518}
7519
7520static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type,
7521			    u8 *dev_multiq)
7522{
7523	int i;
7524
7525	if ((tx_fifo_num > MAX_TX_FIFOS) || (tx_fifo_num < 1)) {
7526		DBG_PRINT(ERR_DBG, "Requested number of tx fifos "
7527			  "(%d) not supported\n", tx_fifo_num);
7528
7529		if (tx_fifo_num < 1)
7530			tx_fifo_num = 1;
7531		else
7532			tx_fifo_num = MAX_TX_FIFOS;
7533
7534		DBG_PRINT(ERR_DBG, "Default to %d tx fifos\n", tx_fifo_num);
7535	}
7536
7537	if (multiq)
7538		*dev_multiq = multiq;
7539
7540	if (tx_steering_type && (1 == tx_fifo_num)) {
7541		if (tx_steering_type != TX_DEFAULT_STEERING)
7542			DBG_PRINT(ERR_DBG,
7543				  "Tx steering is not supported with "
7544				  "one fifo. Disabling Tx steering.\n");
7545		tx_steering_type = NO_STEERING;
7546	}
7547
7548	if ((tx_steering_type < NO_STEERING) ||
7549	    (tx_steering_type > TX_DEFAULT_STEERING)) {
7550		DBG_PRINT(ERR_DBG,
7551			  "Requested transmit steering not supported\n");
7552		DBG_PRINT(ERR_DBG, "Disabling transmit steering\n");
7553		tx_steering_type = NO_STEERING;
7554	}
7555
7556	if (rx_ring_num > MAX_RX_RINGS) {
7557		DBG_PRINT(ERR_DBG,
7558			  "Requested number of rx rings not supported\n");
7559		DBG_PRINT(ERR_DBG, "Default to %d rx rings\n",
7560			  MAX_RX_RINGS);
7561		rx_ring_num = MAX_RX_RINGS;
7562	}
7563
7564	if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
7565		DBG_PRINT(ERR_DBG, "Wrong intr_type requested. "
7566			  "Defaulting to INTA\n");
7567		*dev_intr_type = INTA;
7568	}
7569
7570	if ((*dev_intr_type == MSI_X) &&
7571	    ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7572	     (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
7573		DBG_PRINT(ERR_DBG, "Xframe I does not support MSI_X. "
7574			  "Defaulting to INTA\n");
7575		*dev_intr_type = INTA;
7576	}
7577
7578	if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
7579		DBG_PRINT(ERR_DBG, "Requested ring mode not supported\n");
7580		DBG_PRINT(ERR_DBG, "Defaulting to 1-buffer mode\n");
7581		rx_ring_mode = 1;
7582	}
7583
7584	for (i = 0; i < MAX_RX_RINGS; i++)
7585		if (rx_ring_sz[i] > MAX_RX_BLOCKS_PER_RING) {
7586			DBG_PRINT(ERR_DBG, "Requested rx ring size not "
7587				  "supported\nDefaulting to %d\n",
7588				  MAX_RX_BLOCKS_PER_RING);
7589			rx_ring_sz[i] = MAX_RX_BLOCKS_PER_RING;
7590		}
7591
7592	return SUCCESS;
7593}
7594
7595/**
7596 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS or Traffic class respectively.
7597 * @nic: device private variable
7598 * @ds_codepoint: data
7599 * @ring: ring index
7600 * Description: The function configures the receive steering to
7601 * desired receive ring.
7602 * Return Value:  SUCCESS on success and
7603 * '-1' on failure (endian settings incorrect).
7604 */
7605static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7606{
7607	struct XENA_dev_config __iomem *bar0 = nic->bar0;
7608	register u64 val64 = 0;
7609
7610	if (ds_codepoint > 63)
7611		return FAILURE;
7612
7613	val64 = RTS_DS_MEM_DATA(ring);
7614	writeq(val64, &bar0->rts_ds_mem_data);
7615
7616	val64 = RTS_DS_MEM_CTRL_WE |
7617		RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7618		RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7619
7620	writeq(val64, &bar0->rts_ds_mem_ctrl);
7621
7622	return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
7623				     RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7624				     S2IO_BIT_RESET, true);
7625}
7626
7627static const struct net_device_ops s2io_netdev_ops = {
7628	.ndo_open	        = s2io_open,
7629	.ndo_stop	        = s2io_close,
7630	.ndo_get_stats	        = s2io_get_stats,
7631	.ndo_start_xmit    	= s2io_xmit,
7632	.ndo_validate_addr	= eth_validate_addr,
7633	.ndo_set_rx_mode	= s2io_ndo_set_multicast,
7634	.ndo_eth_ioctl		= s2io_ioctl,
7635	.ndo_set_mac_address    = s2io_set_mac_addr,
7636	.ndo_change_mtu	   	= s2io_change_mtu,
7637	.ndo_set_features	= s2io_set_features,
7638	.ndo_tx_timeout	   	= s2io_tx_watchdog,
7639#ifdef CONFIG_NET_POLL_CONTROLLER
7640	.ndo_poll_controller    = s2io_netpoll,
7641#endif
7642};
7643
7644/**
7645 *  s2io_init_nic - Initialization of the adapter .
7646 *  @pdev : structure containing the PCI related information of the device.
7647 *  @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7648 *  Description:
7649 *  The function initializes an adapter identified by the pci_dec structure.
7650 *  All OS related initialization including memory and device structure and
7651 *  initlaization of the device private variable is done. Also the swapper
7652 *  control register is initialized to enable read and write into the I/O
7653 *  registers of the device.
7654 *  Return value:
7655 *  returns 0 on success and negative on failure.
7656 */
7657
7658static int
7659s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7660{
7661	struct s2io_nic *sp;
7662	struct net_device *dev;
7663	int i, j, ret;
7664	u32 mac_up, mac_down;
7665	u64 val64 = 0, tmp64 = 0;
7666	struct XENA_dev_config __iomem *bar0 = NULL;
7667	u16 subid;
7668	struct config_param *config;
7669	struct mac_info *mac_control;
7670	int mode;
7671	u8 dev_intr_type = intr_type;
7672	u8 dev_multiq = 0;
7673
7674	ret = s2io_verify_parm(pdev, &dev_intr_type, &dev_multiq);
7675	if (ret)
7676		return ret;
7677
7678	ret = pci_enable_device(pdev);
7679	if (ret) {
7680		DBG_PRINT(ERR_DBG,
7681			  "%s: pci_enable_device failed\n", __func__);
7682		return ret;
7683	}
7684
7685	if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
7686		DBG_PRINT(INIT_DBG, "%s: Using 64bit DMA\n", __func__);
7687	} else {
7688		pci_disable_device(pdev);
7689		return -ENOMEM;
7690	}
7691	ret = pci_request_regions(pdev, s2io_driver_name);
7692	if (ret) {
7693		DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x\n",
7694			  __func__, ret);
7695		pci_disable_device(pdev);
7696		return -ENODEV;
7697	}
7698	if (dev_multiq)
7699		dev = alloc_etherdev_mq(sizeof(struct s2io_nic), tx_fifo_num);
7700	else
7701		dev = alloc_etherdev(sizeof(struct s2io_nic));
7702	if (dev == NULL) {
7703		pci_disable_device(pdev);
7704		pci_release_regions(pdev);
7705		return -ENODEV;
7706	}
7707
7708	pci_set_master(pdev);
7709	pci_set_drvdata(pdev, dev);
7710	SET_NETDEV_DEV(dev, &pdev->dev);
7711
7712	/*  Private member variable initialized to s2io NIC structure */
7713	sp = netdev_priv(dev);
7714	sp->dev = dev;
7715	sp->pdev = pdev;
7716	sp->device_enabled_once = false;
7717	if (rx_ring_mode == 1)
7718		sp->rxd_mode = RXD_MODE_1;
7719	if (rx_ring_mode == 2)
7720		sp->rxd_mode = RXD_MODE_3B;
7721
7722	sp->config.intr_type = dev_intr_type;
7723
7724	if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
7725	    (pdev->device == PCI_DEVICE_ID_HERC_UNI))
7726		sp->device_type = XFRAME_II_DEVICE;
7727	else
7728		sp->device_type = XFRAME_I_DEVICE;
7729
7730
7731	/* Initialize some PCI/PCI-X fields of the NIC. */
7732	s2io_init_pci(sp);
7733
7734	/*
7735	 * Setting the device configuration parameters.
7736	 * Most of these parameters can be specified by the user during
7737	 * module insertion as they are module loadable parameters. If
7738	 * these parameters are not specified during load time, they
7739	 * are initialized with default values.
7740	 */
7741	config = &sp->config;
7742	mac_control = &sp->mac_control;
7743
7744	config->napi = napi;
7745	config->tx_steering_type = tx_steering_type;
7746
7747	/* Tx side parameters. */
7748	if (config->tx_steering_type == TX_PRIORITY_STEERING)
7749		config->tx_fifo_num = MAX_TX_FIFOS;
7750	else
7751		config->tx_fifo_num = tx_fifo_num;
7752
7753	/* Initialize the fifos used for tx steering */
7754	if (config->tx_fifo_num < 5) {
7755		if (config->tx_fifo_num  == 1)
7756			sp->total_tcp_fifos = 1;
7757		else
7758			sp->total_tcp_fifos = config->tx_fifo_num - 1;
7759		sp->udp_fifo_idx = config->tx_fifo_num - 1;
7760		sp->total_udp_fifos = 1;
7761		sp->other_fifo_idx = sp->total_tcp_fifos - 1;
7762	} else {
7763		sp->total_tcp_fifos = (tx_fifo_num - FIFO_UDP_MAX_NUM -
7764				       FIFO_OTHER_MAX_NUM);
7765		sp->udp_fifo_idx = sp->total_tcp_fifos;
7766		sp->total_udp_fifos = FIFO_UDP_MAX_NUM;
7767		sp->other_fifo_idx = sp->udp_fifo_idx + FIFO_UDP_MAX_NUM;
7768	}
7769
7770	config->multiq = dev_multiq;
7771	for (i = 0; i < config->tx_fifo_num; i++) {
7772		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
7773
7774		tx_cfg->fifo_len = tx_fifo_len[i];
7775		tx_cfg->fifo_priority = i;
7776	}
7777
7778	/* mapping the QoS priority to the configured fifos */
7779	for (i = 0; i < MAX_TX_FIFOS; i++)
7780		config->fifo_mapping[i] = fifo_map[config->tx_fifo_num - 1][i];
7781
7782	/* map the hashing selector table to the configured fifos */
7783	for (i = 0; i < config->tx_fifo_num; i++)
7784		sp->fifo_selector[i] = fifo_selector[i];
7785
7786
7787	config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7788	for (i = 0; i < config->tx_fifo_num; i++) {
7789		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
7790
7791		tx_cfg->f_no_snoop = (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7792		if (tx_cfg->fifo_len < 65) {
7793			config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7794			break;
7795		}
7796	}
7797	/* + 2 because one Txd for skb->data and one Txd for UFO */
7798	config->max_txds = MAX_SKB_FRAGS + 2;
7799
7800	/* Rx side parameters. */
7801	config->rx_ring_num = rx_ring_num;
7802	for (i = 0; i < config->rx_ring_num; i++) {
7803		struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7804		struct ring_info *ring = &mac_control->rings[i];
7805
7806		rx_cfg->num_rxd = rx_ring_sz[i] * (rxd_count[sp->rxd_mode] + 1);
7807		rx_cfg->ring_priority = i;
7808		ring->rx_bufs_left = 0;
7809		ring->rxd_mode = sp->rxd_mode;
7810		ring->rxd_count = rxd_count[sp->rxd_mode];
7811		ring->pdev = sp->pdev;
7812		ring->dev = sp->dev;
7813	}
7814
7815	for (i = 0; i < rx_ring_num; i++) {
7816		struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7817
7818		rx_cfg->ring_org = RING_ORG_BUFF1;
7819		rx_cfg->f_no_snoop = (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
7820	}
7821
7822	/*  Setting Mac Control parameters */
7823	mac_control->rmac_pause_time = rmac_pause_time;
7824	mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7825	mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7826
7827
7828	/*  initialize the shared memory used by the NIC and the host */
7829	if (init_shared_mem(sp)) {
7830		DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", dev->name);
7831		ret = -ENOMEM;
7832		goto mem_alloc_failed;
7833	}
7834
7835	sp->bar0 = pci_ioremap_bar(pdev, 0);
7836	if (!sp->bar0) {
7837		DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
7838			  dev->name);
7839		ret = -ENOMEM;
7840		goto bar0_remap_failed;
7841	}
7842
7843	sp->bar1 = pci_ioremap_bar(pdev, 2);
7844	if (!sp->bar1) {
7845		DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
7846			  dev->name);
7847		ret = -ENOMEM;
7848		goto bar1_remap_failed;
7849	}
7850
7851	/* Initializing the BAR1 address as the start of the FIFO pointer. */
7852	for (j = 0; j < MAX_TX_FIFOS; j++) {
7853		mac_control->tx_FIFO_start[j] = sp->bar1 + (j * 0x00020000);
7854	}
7855
7856	/*  Driver entry points */
7857	dev->netdev_ops = &s2io_netdev_ops;
7858	dev->ethtool_ops = &netdev_ethtool_ops;
7859	dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM |
7860		NETIF_F_TSO | NETIF_F_TSO6 |
7861		NETIF_F_RXCSUM | NETIF_F_LRO;
7862	dev->features |= dev->hw_features |
7863		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
7864		NETIF_F_HIGHDMA;
7865	dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
7866	INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
7867	INIT_WORK(&sp->set_link_task, s2io_set_link);
7868
7869	pci_save_state(sp->pdev);
7870
7871	/* Setting swapper control on the NIC, for proper reset operation */
7872	if (s2io_set_swapper(sp)) {
7873		DBG_PRINT(ERR_DBG, "%s: swapper settings are wrong\n",
7874			  dev->name);
7875		ret = -EAGAIN;
7876		goto set_swap_failed;
7877	}
7878
7879	/* Verify if the Herc works on the slot its placed into */
7880	if (sp->device_type & XFRAME_II_DEVICE) {
7881		mode = s2io_verify_pci_mode(sp);
7882		if (mode < 0) {
7883			DBG_PRINT(ERR_DBG, "%s: Unsupported PCI bus mode\n",
7884				  __func__);
7885			ret = -EBADSLT;
7886			goto set_swap_failed;
7887		}
7888	}
7889
7890	if (sp->config.intr_type == MSI_X) {
7891		sp->num_entries = config->rx_ring_num + 1;
7892		ret = s2io_enable_msi_x(sp);
7893
7894		if (!ret) {
7895			ret = s2io_test_msi(sp);
7896			/* rollback MSI-X, will re-enable during add_isr() */
7897			remove_msix_isr(sp);
7898		}
7899		if (ret) {
7900
7901			DBG_PRINT(ERR_DBG,
7902				  "MSI-X requested but failed to enable\n");
7903			sp->config.intr_type = INTA;
7904		}
7905	}
7906
7907	if (config->intr_type ==  MSI_X) {
7908		for (i = 0; i < config->rx_ring_num ; i++) {
7909			struct ring_info *ring = &mac_control->rings[i];
7910
7911			netif_napi_add(dev, &ring->napi, s2io_poll_msix);
7912		}
7913	} else {
7914		netif_napi_add(dev, &sp->napi, s2io_poll_inta);
7915	}
7916
7917	/* Not needed for Herc */
7918	if (sp->device_type & XFRAME_I_DEVICE) {
7919		/*
7920		 * Fix for all "FFs" MAC address problems observed on
7921		 * Alpha platforms
7922		 */
7923		fix_mac_address(sp);
7924		s2io_reset(sp);
7925	}
7926
7927	/*
7928	 * MAC address initialization.
7929	 * For now only one mac address will be read and used.
7930	 */
7931	bar0 = sp->bar0;
7932	val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
7933		RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET);
7934	writeq(val64, &bar0->rmac_addr_cmd_mem);
7935	wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
7936			      RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
7937			      S2IO_BIT_RESET, true);
7938	tmp64 = readq(&bar0->rmac_addr_data0_mem);
7939	mac_down = (u32)tmp64;
7940	mac_up = (u32) (tmp64 >> 32);
7941
7942	sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
7943	sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
7944	sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
7945	sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
7946	sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
7947	sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
7948
7949	/*  Set the factory defined MAC address initially   */
7950	dev->addr_len = ETH_ALEN;
7951	eth_hw_addr_set(dev, sp->def_mac_addr[0].mac_addr);
7952
7953	/* initialize number of multicast & unicast MAC entries variables */
7954	if (sp->device_type == XFRAME_I_DEVICE) {
7955		config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES;
7956		config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES;
7957		config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET;
7958	} else if (sp->device_type == XFRAME_II_DEVICE) {
7959		config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES;
7960		config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES;
7961		config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET;
7962	}
7963
7964	/* MTU range: 46 - 9600 */
7965	dev->min_mtu = MIN_MTU;
7966	dev->max_mtu = S2IO_JUMBO_SIZE;
7967
7968	/* store mac addresses from CAM to s2io_nic structure */
7969	do_s2io_store_unicast_mc(sp);
7970
7971	/* Configure MSIX vector for number of rings configured plus one */
7972	if ((sp->device_type == XFRAME_II_DEVICE) &&
7973	    (config->intr_type == MSI_X))
7974		sp->num_entries = config->rx_ring_num + 1;
7975
7976	/* Store the values of the MSIX table in the s2io_nic structure */
7977	store_xmsi_data(sp);
7978	/* reset Nic and bring it to known state */
7979	s2io_reset(sp);
7980
7981	/*
7982	 * Initialize link state flags
7983	 * and the card state parameter
7984	 */
7985	sp->state = 0;
7986
7987	/* Initialize spinlocks */
7988	for (i = 0; i < sp->config.tx_fifo_num; i++) {
7989		struct fifo_info *fifo = &mac_control->fifos[i];
7990
7991		spin_lock_init(&fifo->tx_lock);
7992	}
7993
7994	/*
7995	 * SXE-002: Configure link and activity LED to init state
7996	 * on driver load.
7997	 */
7998	subid = sp->pdev->subsystem_device;
7999	if ((subid & 0xFF) >= 0x07) {
8000		val64 = readq(&bar0->gpio_control);
8001		val64 |= 0x0000800000000000ULL;
8002		writeq(val64, &bar0->gpio_control);
8003		val64 = 0x0411040400000000ULL;
8004		writeq(val64, (void __iomem *)bar0 + 0x2700);
8005		val64 = readq(&bar0->gpio_control);
8006	}
8007
8008	sp->rx_csum = 1;	/* Rx chksum verify enabled by default */
8009
8010	if (register_netdev(dev)) {
8011		DBG_PRINT(ERR_DBG, "Device registration failed\n");
8012		ret = -ENODEV;
8013		goto register_failed;
8014	}
8015	s2io_vpd_read(sp);
8016	DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2010 Exar Corp.\n");
8017	DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n", dev->name,
8018		  sp->product_name, pdev->revision);
8019	DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
8020		  s2io_driver_version);
8021	DBG_PRINT(ERR_DBG, "%s: MAC Address: %pM\n", dev->name, dev->dev_addr);
8022	DBG_PRINT(ERR_DBG, "Serial number: %s\n", sp->serial_num);
8023	if (sp->device_type & XFRAME_II_DEVICE) {
8024		mode = s2io_print_pci_mode(sp);
8025		if (mode < 0) {
8026			ret = -EBADSLT;
8027			unregister_netdev(dev);
8028			goto set_swap_failed;
8029		}
8030	}
8031	switch (sp->rxd_mode) {
8032	case RXD_MODE_1:
8033		DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
8034			  dev->name);
8035		break;
8036	case RXD_MODE_3B:
8037		DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
8038			  dev->name);
8039		break;
8040	}
8041
8042	switch (sp->config.napi) {
8043	case 0:
8044		DBG_PRINT(ERR_DBG, "%s: NAPI disabled\n", dev->name);
8045		break;
8046	case 1:
8047		DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
8048		break;
8049	}
8050
8051	DBG_PRINT(ERR_DBG, "%s: Using %d Tx fifo(s)\n", dev->name,
8052		  sp->config.tx_fifo_num);
8053
8054	DBG_PRINT(ERR_DBG, "%s: Using %d Rx ring(s)\n", dev->name,
8055		  sp->config.rx_ring_num);
8056
8057	switch (sp->config.intr_type) {
8058	case INTA:
8059		DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
8060		break;
8061	case MSI_X:
8062		DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
8063		break;
8064	}
8065	if (sp->config.multiq) {
8066		for (i = 0; i < sp->config.tx_fifo_num; i++) {
8067			struct fifo_info *fifo = &mac_control->fifos[i];
8068
8069			fifo->multiq = config->multiq;
8070		}
8071		DBG_PRINT(ERR_DBG, "%s: Multiqueue support enabled\n",
8072			  dev->name);
8073	} else
8074		DBG_PRINT(ERR_DBG, "%s: Multiqueue support disabled\n",
8075			  dev->name);
8076
8077	switch (sp->config.tx_steering_type) {
8078	case NO_STEERING:
8079		DBG_PRINT(ERR_DBG, "%s: No steering enabled for transmit\n",
8080			  dev->name);
8081		break;
8082	case TX_PRIORITY_STEERING:
8083		DBG_PRINT(ERR_DBG,
8084			  "%s: Priority steering enabled for transmit\n",
8085			  dev->name);
8086		break;
8087	case TX_DEFAULT_STEERING:
8088		DBG_PRINT(ERR_DBG,
8089			  "%s: Default steering enabled for transmit\n",
8090			  dev->name);
8091	}
8092
8093	DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
8094		  dev->name);
8095	/* Initialize device name */
8096	snprintf(sp->name, sizeof(sp->name), "%s Neterion %s", dev->name,
8097		 sp->product_name);
8098
8099	if (vlan_tag_strip)
8100		sp->vlan_strip_flag = 1;
8101	else
8102		sp->vlan_strip_flag = 0;
8103
8104	/*
8105	 * Make Link state as off at this point, when the Link change
8106	 * interrupt comes the state will be automatically changed to
8107	 * the right state.
8108	 */
8109	netif_carrier_off(dev);
8110
8111	return 0;
8112
8113register_failed:
8114set_swap_failed:
8115	iounmap(sp->bar1);
8116bar1_remap_failed:
8117	iounmap(sp->bar0);
8118bar0_remap_failed:
8119mem_alloc_failed:
8120	free_shared_mem(sp);
8121	pci_disable_device(pdev);
8122	pci_release_regions(pdev);
8123	free_netdev(dev);
8124
8125	return ret;
8126}
8127
8128/**
8129 * s2io_rem_nic - Free the PCI device
8130 * @pdev: structure containing the PCI related information of the device.
8131 * Description: This function is called by the Pci subsystem to release a
8132 * PCI device and free up all resource held up by the device. This could
8133 * be in response to a Hot plug event or when the driver is to be removed
8134 * from memory.
8135 */
8136
8137static void s2io_rem_nic(struct pci_dev *pdev)
8138{
8139	struct net_device *dev = pci_get_drvdata(pdev);
8140	struct s2io_nic *sp;
8141
8142	if (dev == NULL) {
8143		DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
8144		return;
8145	}
8146
8147	sp = netdev_priv(dev);
8148
8149	cancel_work_sync(&sp->rst_timer_task);
8150	cancel_work_sync(&sp->set_link_task);
8151
8152	unregister_netdev(dev);
8153
8154	free_shared_mem(sp);
8155	iounmap(sp->bar0);
8156	iounmap(sp->bar1);
8157	pci_release_regions(pdev);
8158	free_netdev(dev);
8159	pci_disable_device(pdev);
8160}
8161
8162module_pci_driver(s2io_driver);
8163
8164static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
8165				struct tcphdr **tcp, struct RxD_t *rxdp,
8166				struct s2io_nic *sp)
8167{
8168	int ip_off;
8169	u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
8170
8171	if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
8172		DBG_PRINT(INIT_DBG,
8173			  "%s: Non-TCP frames not supported for LRO\n",
8174			  __func__);
8175		return -1;
8176	}
8177
8178	/* Checking for DIX type or DIX type with VLAN */
8179	if ((l2_type == 0) || (l2_type == 4)) {
8180		ip_off = HEADER_ETHERNET_II_802_3_SIZE;
8181		/*
8182		 * If vlan stripping is disabled and the frame is VLAN tagged,
8183		 * shift the offset by the VLAN header size bytes.
8184		 */
8185		if ((!sp->vlan_strip_flag) &&
8186		    (rxdp->Control_1 & RXD_FRAME_VLAN_TAG))
8187			ip_off += HEADER_VLAN_SIZE;
8188	} else {
8189		/* LLC, SNAP etc are considered non-mergeable */
8190		return -1;
8191	}
8192
8193	*ip = (struct iphdr *)(buffer + ip_off);
8194	ip_len = (u8)((*ip)->ihl);
8195	ip_len <<= 2;
8196	*tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
8197
8198	return 0;
8199}
8200
8201static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
8202				  struct tcphdr *tcp)
8203{
8204	DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8205	if ((lro->iph->saddr != ip->saddr) ||
8206	    (lro->iph->daddr != ip->daddr) ||
8207	    (lro->tcph->source != tcp->source) ||
8208	    (lro->tcph->dest != tcp->dest))
8209		return -1;
8210	return 0;
8211}
8212
8213static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
8214{
8215	return ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2);
8216}
8217
8218static void initiate_new_session(struct lro *lro, u8 *l2h,
8219				 struct iphdr *ip, struct tcphdr *tcp,
8220				 u32 tcp_pyld_len, u16 vlan_tag)
8221{
8222	DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8223	lro->l2h = l2h;
8224	lro->iph = ip;
8225	lro->tcph = tcp;
8226	lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
8227	lro->tcp_ack = tcp->ack_seq;
8228	lro->sg_num = 1;
8229	lro->total_len = ntohs(ip->tot_len);
8230	lro->frags_len = 0;
8231	lro->vlan_tag = vlan_tag;
8232	/*
8233	 * Check if we saw TCP timestamp.
8234	 * Other consistency checks have already been done.
8235	 */
8236	if (tcp->doff == 8) {
8237		__be32 *ptr;
8238		ptr = (__be32 *)(tcp+1);
8239		lro->saw_ts = 1;
8240		lro->cur_tsval = ntohl(*(ptr+1));
8241		lro->cur_tsecr = *(ptr+2);
8242	}
8243	lro->in_use = 1;
8244}
8245
8246static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
8247{
8248	struct iphdr *ip = lro->iph;
8249	struct tcphdr *tcp = lro->tcph;
8250	struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8251
8252	DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8253
8254	/* Update L3 header */
8255	csum_replace2(&ip->check, ip->tot_len, htons(lro->total_len));
8256	ip->tot_len = htons(lro->total_len);
8257
8258	/* Update L4 header */
8259	tcp->ack_seq = lro->tcp_ack;
8260	tcp->window = lro->window;
8261
8262	/* Update tsecr field if this session has timestamps enabled */
8263	if (lro->saw_ts) {
8264		__be32 *ptr = (__be32 *)(tcp + 1);
8265		*(ptr+2) = lro->cur_tsecr;
8266	}
8267
8268	/* Update counters required for calculation of
8269	 * average no. of packets aggregated.
8270	 */
8271	swstats->sum_avg_pkts_aggregated += lro->sg_num;
8272	swstats->num_aggregations++;
8273}
8274
8275static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
8276			     struct tcphdr *tcp, u32 l4_pyld)
8277{
8278	DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8279	lro->total_len += l4_pyld;
8280	lro->frags_len += l4_pyld;
8281	lro->tcp_next_seq += l4_pyld;
8282	lro->sg_num++;
8283
8284	/* Update ack seq no. and window ad(from this pkt) in LRO object */
8285	lro->tcp_ack = tcp->ack_seq;
8286	lro->window = tcp->window;
8287
8288	if (lro->saw_ts) {
8289		__be32 *ptr;
8290		/* Update tsecr and tsval from this packet */
8291		ptr = (__be32 *)(tcp+1);
8292		lro->cur_tsval = ntohl(*(ptr+1));
8293		lro->cur_tsecr = *(ptr + 2);
8294	}
8295}
8296
8297static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
8298				    struct tcphdr *tcp, u32 tcp_pyld_len)
8299{
8300	u8 *ptr;
8301
8302	DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8303
8304	if (!tcp_pyld_len) {
8305		/* Runt frame or a pure ack */
8306		return -1;
8307	}
8308
8309	if (ip->ihl != 5) /* IP has options */
8310		return -1;
8311
8312	/* If we see CE codepoint in IP header, packet is not mergeable */
8313	if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
8314		return -1;
8315
8316	/* If we see ECE or CWR flags in TCP header, packet is not mergeable */
8317	if (tcp->urg || tcp->psh || tcp->rst ||
8318	    tcp->syn || tcp->fin ||
8319	    tcp->ece || tcp->cwr || !tcp->ack) {
8320		/*
8321		 * Currently recognize only the ack control word and
8322		 * any other control field being set would result in
8323		 * flushing the LRO session
8324		 */
8325		return -1;
8326	}
8327
8328	/*
8329	 * Allow only one TCP timestamp option. Don't aggregate if
8330	 * any other options are detected.
8331	 */
8332	if (tcp->doff != 5 && tcp->doff != 8)
8333		return -1;
8334
8335	if (tcp->doff == 8) {
8336		ptr = (u8 *)(tcp + 1);
8337		while (*ptr == TCPOPT_NOP)
8338			ptr++;
8339		if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
8340			return -1;
8341
8342		/* Ensure timestamp value increases monotonically */
8343		if (l_lro)
8344			if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2))))
8345				return -1;
8346
8347		/* timestamp echo reply should be non-zero */
8348		if (*((__be32 *)(ptr+6)) == 0)
8349			return -1;
8350	}
8351
8352	return 0;
8353}
8354
8355static int s2io_club_tcp_session(struct ring_info *ring_data, u8 *buffer,
8356				 u8 **tcp, u32 *tcp_len, struct lro **lro,
8357				 struct RxD_t *rxdp, struct s2io_nic *sp)
8358{
8359	struct iphdr *ip;
8360	struct tcphdr *tcph;
8361	int ret = 0, i;
8362	u16 vlan_tag = 0;
8363	struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8364
8365	ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
8366				   rxdp, sp);
8367	if (ret)
8368		return ret;
8369
8370	DBG_PRINT(INFO_DBG, "IP Saddr: %x Daddr: %x\n", ip->saddr, ip->daddr);
8371
8372	vlan_tag = RXD_GET_VLAN_TAG(rxdp->Control_2);
8373	tcph = (struct tcphdr *)*tcp;
8374	*tcp_len = get_l4_pyld_length(ip, tcph);
8375	for (i = 0; i < MAX_LRO_SESSIONS; i++) {
8376		struct lro *l_lro = &ring_data->lro0_n[i];
8377		if (l_lro->in_use) {
8378			if (check_for_socket_match(l_lro, ip, tcph))
8379				continue;
8380			/* Sock pair matched */
8381			*lro = l_lro;
8382
8383			if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
8384				DBG_PRINT(INFO_DBG, "%s: Out of sequence. "
8385					  "expected 0x%x, actual 0x%x\n",
8386					  __func__,
8387					  (*lro)->tcp_next_seq,
8388					  ntohl(tcph->seq));
8389
8390				swstats->outof_sequence_pkts++;
8391				ret = 2;
8392				break;
8393			}
8394
8395			if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,
8396						      *tcp_len))
8397				ret = 1; /* Aggregate */
8398			else
8399				ret = 2; /* Flush both */
8400			break;
8401		}
8402	}
8403
8404	if (ret == 0) {
8405		/* Before searching for available LRO objects,
8406		 * check if the pkt is L3/L4 aggregatable. If not
8407		 * don't create new LRO session. Just send this
8408		 * packet up.
8409		 */
8410		if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len))
8411			return 5;
8412
8413		for (i = 0; i < MAX_LRO_SESSIONS; i++) {
8414			struct lro *l_lro = &ring_data->lro0_n[i];
8415			if (!(l_lro->in_use)) {
8416				*lro = l_lro;
8417				ret = 3; /* Begin anew */
8418				break;
8419			}
8420		}
8421	}
8422
8423	if (ret == 0) { /* sessions exceeded */
8424		DBG_PRINT(INFO_DBG, "%s: All LRO sessions already in use\n",
8425			  __func__);
8426		*lro = NULL;
8427		return ret;
8428	}
8429
8430	switch (ret) {
8431	case 3:
8432		initiate_new_session(*lro, buffer, ip, tcph, *tcp_len,
8433				     vlan_tag);
8434		break;
8435	case 2:
8436		update_L3L4_header(sp, *lro);
8437		break;
8438	case 1:
8439		aggregate_new_rx(*lro, ip, tcph, *tcp_len);
8440		if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
8441			update_L3L4_header(sp, *lro);
8442			ret = 4; /* Flush the LRO */
8443		}
8444		break;
8445	default:
8446		DBG_PRINT(ERR_DBG, "%s: Don't know, can't say!!\n", __func__);
8447		break;
8448	}
8449
8450	return ret;
8451}
8452
8453static void clear_lro_session(struct lro *lro)
8454{
8455	static u16 lro_struct_size = sizeof(struct lro);
8456
8457	memset(lro, 0, lro_struct_size);
8458}
8459
8460static void queue_rx_frame(struct sk_buff *skb, u16 vlan_tag)
8461{
8462	struct net_device *dev = skb->dev;
8463	struct s2io_nic *sp = netdev_priv(dev);
8464
8465	skb->protocol = eth_type_trans(skb, dev);
8466	if (vlan_tag && sp->vlan_strip_flag)
8467		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
8468	if (sp->config.napi)
8469		netif_receive_skb(skb);
8470	else
8471		netif_rx(skb);
8472}
8473
8474static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
8475			   struct sk_buff *skb, u32 tcp_len)
8476{
8477	struct sk_buff *first = lro->parent;
8478	struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8479
8480	first->len += tcp_len;
8481	first->data_len = lro->frags_len;
8482	skb_pull(skb, (skb->len - tcp_len));
8483	if (skb_shinfo(first)->frag_list)
8484		lro->last_frag->next = skb;
8485	else
8486		skb_shinfo(first)->frag_list = skb;
8487	first->truesize += skb->truesize;
8488	lro->last_frag = skb;
8489	swstats->clubbed_frms_cnt++;
8490}
8491
8492/**
8493 * s2io_io_error_detected - called when PCI error is detected
8494 * @pdev: Pointer to PCI device
8495 * @state: The current pci connection state
8496 *
8497 * This function is called after a PCI bus error affecting
8498 * this device has been detected.
8499 */
8500static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
8501					       pci_channel_state_t state)
8502{
8503	struct net_device *netdev = pci_get_drvdata(pdev);
8504	struct s2io_nic *sp = netdev_priv(netdev);
8505
8506	netif_device_detach(netdev);
8507
8508	if (state == pci_channel_io_perm_failure)
8509		return PCI_ERS_RESULT_DISCONNECT;
8510
8511	if (netif_running(netdev)) {
8512		/* Bring down the card, while avoiding PCI I/O */
8513		do_s2io_card_down(sp, 0);
8514	}
8515	pci_disable_device(pdev);
8516
8517	return PCI_ERS_RESULT_NEED_RESET;
8518}
8519
8520/**
8521 * s2io_io_slot_reset - called after the pci bus has been reset.
8522 * @pdev: Pointer to PCI device
8523 *
8524 * Restart the card from scratch, as if from a cold-boot.
8525 * At this point, the card has exprienced a hard reset,
8526 * followed by fixups by BIOS, and has its config space
8527 * set up identically to what it was at cold boot.
8528 */
8529static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
8530{
8531	struct net_device *netdev = pci_get_drvdata(pdev);
8532	struct s2io_nic *sp = netdev_priv(netdev);
8533
8534	if (pci_enable_device(pdev)) {
8535		pr_err("Cannot re-enable PCI device after reset.\n");
8536		return PCI_ERS_RESULT_DISCONNECT;
8537	}
8538
8539	pci_set_master(pdev);
8540	s2io_reset(sp);
8541
8542	return PCI_ERS_RESULT_RECOVERED;
8543}
8544
8545/**
8546 * s2io_io_resume - called when traffic can start flowing again.
8547 * @pdev: Pointer to PCI device
8548 *
8549 * This callback is called when the error recovery driver tells
8550 * us that its OK to resume normal operation.
8551 */
8552static void s2io_io_resume(struct pci_dev *pdev)
8553{
8554	struct net_device *netdev = pci_get_drvdata(pdev);
8555	struct s2io_nic *sp = netdev_priv(netdev);
8556
8557	if (netif_running(netdev)) {
8558		if (s2io_card_up(sp)) {
8559			pr_err("Can't bring device back up after reset.\n");
8560			return;
8561		}
8562
8563		if (do_s2io_prog_unicast(netdev, netdev->dev_addr) == FAILURE) {
8564			s2io_card_down(sp);
8565			pr_err("Can't restore mac addr after reset.\n");
8566			return;
8567		}
8568	}
8569
8570	netif_device_attach(netdev);
8571	netif_tx_wake_all_queues(netdev);
8572}
8573