1// SPDX-License-Identifier: GPL-2.0-only
2/* drivers/net/ethernet/micrel/ks8851.c
3 *
4 * Copyright 2009 Simtec Electronics
5 *	http://www.simtec.co.uk/
6 *	Ben Dooks <ben@simtec.co.uk>
7 */
8
9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11#include <linux/interrupt.h>
12#include <linux/module.h>
13#include <linux/kernel.h>
14#include <linux/netdevice.h>
15#include <linux/etherdevice.h>
16#include <linux/ethtool.h>
17#include <linux/cache.h>
18#include <linux/crc32.h>
19#include <linux/mii.h>
20#include <linux/gpio/consumer.h>
21#include <linux/regulator/consumer.h>
22
23#include <linux/of_mdio.h>
24#include <linux/of_net.h>
25
26#include "ks8851.h"
27
28/**
29 * ks8851_lock - register access lock
30 * @ks: The chip state
31 * @flags: Spinlock flags
32 *
33 * Claim chip register access lock
34 */
35static void ks8851_lock(struct ks8851_net *ks, unsigned long *flags)
36{
37	ks->lock(ks, flags);
38}
39
40/**
41 * ks8851_unlock - register access unlock
42 * @ks: The chip state
43 * @flags: Spinlock flags
44 *
45 * Release chip register access lock
46 */
47static void ks8851_unlock(struct ks8851_net *ks, unsigned long *flags)
48{
49	ks->unlock(ks, flags);
50}
51
52/**
53 * ks8851_wrreg16 - write 16bit register value to chip
54 * @ks: The chip state
55 * @reg: The register address
56 * @val: The value to write
57 *
58 * Issue a write to put the value @val into the register specified in @reg.
59 */
60static void ks8851_wrreg16(struct ks8851_net *ks, unsigned int reg,
61			   unsigned int val)
62{
63	ks->wrreg16(ks, reg, val);
64}
65
66/**
67 * ks8851_rdreg16 - read 16 bit register from device
68 * @ks: The chip information
69 * @reg: The register address
70 *
71 * Read a 16bit register from the chip, returning the result
72 */
73static unsigned int ks8851_rdreg16(struct ks8851_net *ks,
74				   unsigned int reg)
75{
76	return ks->rdreg16(ks, reg);
77}
78
79/**
80 * ks8851_soft_reset - issue one of the soft reset to the device
81 * @ks: The device state.
82 * @op: The bit(s) to set in the GRR
83 *
84 * Issue the relevant soft-reset command to the device's GRR register
85 * specified by @op.
86 *
87 * Note, the delays are in there as a caution to ensure that the reset
88 * has time to take effect and then complete. Since the datasheet does
89 * not currently specify the exact sequence, we have chosen something
90 * that seems to work with our device.
91 */
92static void ks8851_soft_reset(struct ks8851_net *ks, unsigned op)
93{
94	ks8851_wrreg16(ks, KS_GRR, op);
95	mdelay(1);	/* wait a short time to effect reset */
96	ks8851_wrreg16(ks, KS_GRR, 0);
97	mdelay(1);	/* wait for condition to clear */
98}
99
100/**
101 * ks8851_set_powermode - set power mode of the device
102 * @ks: The device state
103 * @pwrmode: The power mode value to write to KS_PMECR.
104 *
105 * Change the power mode of the chip.
106 */
107static void ks8851_set_powermode(struct ks8851_net *ks, unsigned pwrmode)
108{
109	unsigned pmecr;
110
111	netif_dbg(ks, hw, ks->netdev, "setting power mode %d\n", pwrmode);
112
113	pmecr = ks8851_rdreg16(ks, KS_PMECR);
114	pmecr &= ~PMECR_PM_MASK;
115	pmecr |= pwrmode;
116
117	ks8851_wrreg16(ks, KS_PMECR, pmecr);
118}
119
120/**
121 * ks8851_write_mac_addr - write mac address to device registers
122 * @dev: The network device
123 *
124 * Update the KS8851 MAC address registers from the address in @dev.
125 *
126 * This call assumes that the chip is not running, so there is no need to
127 * shutdown the RXQ process whilst setting this.
128*/
129static int ks8851_write_mac_addr(struct net_device *dev)
130{
131	struct ks8851_net *ks = netdev_priv(dev);
132	unsigned long flags;
133	u16 val;
134	int i;
135
136	ks8851_lock(ks, &flags);
137
138	/*
139	 * Wake up chip in case it was powered off when stopped; otherwise,
140	 * the first write to the MAC address does not take effect.
141	 */
142	ks8851_set_powermode(ks, PMECR_PM_NORMAL);
143
144	for (i = 0; i < ETH_ALEN; i += 2) {
145		val = (dev->dev_addr[i] << 8) | dev->dev_addr[i + 1];
146		ks8851_wrreg16(ks, KS_MAR(i), val);
147	}
148
149	if (!netif_running(dev))
150		ks8851_set_powermode(ks, PMECR_PM_SOFTDOWN);
151
152	ks8851_unlock(ks, &flags);
153
154	return 0;
155}
156
157/**
158 * ks8851_read_mac_addr - read mac address from device registers
159 * @dev: The network device
160 *
161 * Update our copy of the KS8851 MAC address from the registers of @dev.
162*/
163static void ks8851_read_mac_addr(struct net_device *dev)
164{
165	struct ks8851_net *ks = netdev_priv(dev);
166	unsigned long flags;
167	u8 addr[ETH_ALEN];
168	u16 reg;
169	int i;
170
171	ks8851_lock(ks, &flags);
172
173	for (i = 0; i < ETH_ALEN; i += 2) {
174		reg = ks8851_rdreg16(ks, KS_MAR(i));
175		addr[i] = reg >> 8;
176		addr[i + 1] = reg & 0xff;
177	}
178	eth_hw_addr_set(dev, addr);
179
180	ks8851_unlock(ks, &flags);
181}
182
183/**
184 * ks8851_init_mac - initialise the mac address
185 * @ks: The device structure
186 * @np: The device node pointer
187 *
188 * Get or create the initial mac address for the device and then set that
189 * into the station address register. A mac address supplied in the device
190 * tree takes precedence. Otherwise, if there is an EEPROM present, then
191 * we try that. If no valid mac address is found we use eth_random_addr()
192 * to create a new one.
193 */
194static void ks8851_init_mac(struct ks8851_net *ks, struct device_node *np)
195{
196	struct net_device *dev = ks->netdev;
197	int ret;
198
199	ret = of_get_ethdev_address(np, dev);
200	if (!ret) {
201		ks8851_write_mac_addr(dev);
202		return;
203	}
204
205	if (ks->rc_ccr & CCR_EEPROM) {
206		ks8851_read_mac_addr(dev);
207		if (is_valid_ether_addr(dev->dev_addr))
208			return;
209
210		netdev_err(ks->netdev, "invalid mac address read %pM\n",
211				dev->dev_addr);
212	}
213
214	eth_hw_addr_random(dev);
215	ks8851_write_mac_addr(dev);
216}
217
218/**
219 * ks8851_dbg_dumpkkt - dump initial packet contents to debug
220 * @ks: The device state
221 * @rxpkt: The data for the received packet
222 *
223 * Dump the initial data from the packet to dev_dbg().
224 */
225static void ks8851_dbg_dumpkkt(struct ks8851_net *ks, u8 *rxpkt)
226{
227	netdev_dbg(ks->netdev,
228		   "pkt %02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x\n",
229		   rxpkt[4], rxpkt[5], rxpkt[6], rxpkt[7],
230		   rxpkt[8], rxpkt[9], rxpkt[10], rxpkt[11],
231		   rxpkt[12], rxpkt[13], rxpkt[14], rxpkt[15]);
232}
233
234/**
235 * ks8851_rx_skb - receive skbuff
236 * @ks: The device state.
237 * @skb: The skbuff
238 */
239static void ks8851_rx_skb(struct ks8851_net *ks, struct sk_buff *skb)
240{
241	ks->rx_skb(ks, skb);
242}
243
244/**
245 * ks8851_rx_pkts - receive packets from the host
246 * @ks: The device information.
247 *
248 * This is called from the IRQ work queue when the system detects that there
249 * are packets in the receive queue. Find out how many packets there are and
250 * read them from the FIFO.
251 */
252static void ks8851_rx_pkts(struct ks8851_net *ks)
253{
254	struct sk_buff *skb;
255	unsigned rxfc;
256	unsigned rxlen;
257	unsigned rxstat;
258	u8 *rxpkt;
259
260	rxfc = (ks8851_rdreg16(ks, KS_RXFCTR) >> 8) & 0xff;
261
262	netif_dbg(ks, rx_status, ks->netdev,
263		  "%s: %d packets\n", __func__, rxfc);
264
265	/* Currently we're issuing a read per packet, but we could possibly
266	 * improve the code by issuing a single read, getting the receive
267	 * header, allocating the packet and then reading the packet data
268	 * out in one go.
269	 *
270	 * This form of operation would require us to hold the SPI bus'
271	 * chipselect low during the entie transaction to avoid any
272	 * reset to the data stream coming from the chip.
273	 */
274
275	for (; rxfc != 0; rxfc--) {
276		rxstat = ks8851_rdreg16(ks, KS_RXFHSR);
277		rxlen = ks8851_rdreg16(ks, KS_RXFHBCR) & RXFHBCR_CNT_MASK;
278
279		netif_dbg(ks, rx_status, ks->netdev,
280			  "rx: stat 0x%04x, len 0x%04x\n", rxstat, rxlen);
281
282		/* the length of the packet includes the 32bit CRC */
283
284		/* set dma read address */
285		ks8851_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI | 0x00);
286
287		/* start DMA access */
288		ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr | RXQCR_SDA);
289
290		if (rxlen > 4) {
291			unsigned int rxalign;
292
293			rxlen -= 4;
294			rxalign = ALIGN(rxlen, 4);
295			skb = netdev_alloc_skb_ip_align(ks->netdev, rxalign);
296			if (skb) {
297
298				/* 4 bytes of status header + 4 bytes of
299				 * garbage: we put them before ethernet
300				 * header, so that they are copied,
301				 * but ignored.
302				 */
303
304				rxpkt = skb_put(skb, rxlen) - 8;
305
306				ks->rdfifo(ks, rxpkt, rxalign + 8);
307
308				if (netif_msg_pktdata(ks))
309					ks8851_dbg_dumpkkt(ks, rxpkt);
310
311				skb->protocol = eth_type_trans(skb, ks->netdev);
312				ks8851_rx_skb(ks, skb);
313
314				ks->netdev->stats.rx_packets++;
315				ks->netdev->stats.rx_bytes += rxlen;
316			}
317		}
318
319		/* end DMA access and dequeue packet */
320		ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr | RXQCR_RRXEF);
321	}
322}
323
324/**
325 * ks8851_irq - IRQ handler for dealing with interrupt requests
326 * @irq: IRQ number
327 * @_ks: cookie
328 *
329 * This handler is invoked when the IRQ line asserts to find out what happened.
330 * As we cannot allow ourselves to sleep in HARDIRQ context, this handler runs
331 * in thread context.
332 *
333 * Read the interrupt status, work out what needs to be done and then clear
334 * any of the interrupts that are not needed.
335 */
336static irqreturn_t ks8851_irq(int irq, void *_ks)
337{
338	struct ks8851_net *ks = _ks;
339	unsigned handled = 0;
340	unsigned long flags;
341	unsigned int status;
342
343	ks8851_lock(ks, &flags);
344
345	status = ks8851_rdreg16(ks, KS_ISR);
346
347	netif_dbg(ks, intr, ks->netdev,
348		  "%s: status 0x%04x\n", __func__, status);
349
350	if (status & IRQ_LCI)
351		handled |= IRQ_LCI;
352
353	if (status & IRQ_LDI) {
354		u16 pmecr = ks8851_rdreg16(ks, KS_PMECR);
355		pmecr &= ~PMECR_WKEVT_MASK;
356		ks8851_wrreg16(ks, KS_PMECR, pmecr | PMECR_WKEVT_LINK);
357
358		handled |= IRQ_LDI;
359	}
360
361	if (status & IRQ_RXPSI)
362		handled |= IRQ_RXPSI;
363
364	if (status & IRQ_TXI) {
365		unsigned short tx_space = ks8851_rdreg16(ks, KS_TXMIR);
366
367		netif_dbg(ks, intr, ks->netdev,
368			  "%s: txspace %d\n", __func__, tx_space);
369
370		spin_lock(&ks->statelock);
371		ks->tx_space = tx_space;
372		if (netif_queue_stopped(ks->netdev))
373			netif_wake_queue(ks->netdev);
374		spin_unlock(&ks->statelock);
375
376		handled |= IRQ_TXI;
377	}
378
379	if (status & IRQ_RXI)
380		handled |= IRQ_RXI;
381
382	if (status & IRQ_SPIBEI) {
383		netdev_err(ks->netdev, "%s: spi bus error\n", __func__);
384		handled |= IRQ_SPIBEI;
385	}
386
387	ks8851_wrreg16(ks, KS_ISR, handled);
388
389	if (status & IRQ_RXI) {
390		/* the datasheet says to disable the rx interrupt during
391		 * packet read-out, however we're masking the interrupt
392		 * from the device so do not bother masking just the RX
393		 * from the device. */
394
395		ks8851_rx_pkts(ks);
396	}
397
398	/* if something stopped the rx process, probably due to wanting
399	 * to change the rx settings, then do something about restarting
400	 * it. */
401	if (status & IRQ_RXPSI) {
402		struct ks8851_rxctrl *rxc = &ks->rxctrl;
403
404		/* update the multicast hash table */
405		ks8851_wrreg16(ks, KS_MAHTR0, rxc->mchash[0]);
406		ks8851_wrreg16(ks, KS_MAHTR1, rxc->mchash[1]);
407		ks8851_wrreg16(ks, KS_MAHTR2, rxc->mchash[2]);
408		ks8851_wrreg16(ks, KS_MAHTR3, rxc->mchash[3]);
409
410		ks8851_wrreg16(ks, KS_RXCR2, rxc->rxcr2);
411		ks8851_wrreg16(ks, KS_RXCR1, rxc->rxcr1);
412	}
413
414	ks8851_unlock(ks, &flags);
415
416	if (status & IRQ_LCI)
417		mii_check_link(&ks->mii);
418
419	return IRQ_HANDLED;
420}
421
422/**
423 * ks8851_flush_tx_work - flush outstanding TX work
424 * @ks: The device state
425 */
426static void ks8851_flush_tx_work(struct ks8851_net *ks)
427{
428	if (ks->flush_tx_work)
429		ks->flush_tx_work(ks);
430}
431
432/**
433 * ks8851_net_open - open network device
434 * @dev: The network device being opened.
435 *
436 * Called when the network device is marked active, such as a user executing
437 * 'ifconfig up' on the device.
438 */
439static int ks8851_net_open(struct net_device *dev)
440{
441	struct ks8851_net *ks = netdev_priv(dev);
442	unsigned long flags;
443	int ret;
444
445	ret = request_threaded_irq(dev->irq, NULL, ks8851_irq,
446				   IRQF_TRIGGER_LOW | IRQF_ONESHOT,
447				   dev->name, ks);
448	if (ret < 0) {
449		netdev_err(dev, "failed to get irq\n");
450		return ret;
451	}
452
453	/* lock the card, even if we may not actually be doing anything
454	 * else at the moment */
455	ks8851_lock(ks, &flags);
456
457	netif_dbg(ks, ifup, ks->netdev, "opening\n");
458
459	/* bring chip out of any power saving mode it was in */
460	ks8851_set_powermode(ks, PMECR_PM_NORMAL);
461
462	/* issue a soft reset to the RX/TX QMU to put it into a known
463	 * state. */
464	ks8851_soft_reset(ks, GRR_QMU);
465
466	/* setup transmission parameters */
467
468	ks8851_wrreg16(ks, KS_TXCR, (TXCR_TXE | /* enable transmit process */
469				     TXCR_TXPE | /* pad to min length */
470				     TXCR_TXCRC | /* add CRC */
471				     TXCR_TXFCE)); /* enable flow control */
472
473	/* auto-increment tx data, reset tx pointer */
474	ks8851_wrreg16(ks, KS_TXFDPR, TXFDPR_TXFPAI);
475
476	/* setup receiver control */
477
478	ks8851_wrreg16(ks, KS_RXCR1, (RXCR1_RXPAFMA | /*  from mac filter */
479				      RXCR1_RXFCE | /* enable flow control */
480				      RXCR1_RXBE | /* broadcast enable */
481				      RXCR1_RXUE | /* unicast enable */
482				      RXCR1_RXE)); /* enable rx block */
483
484	/* transfer entire frames out in one go */
485	ks8851_wrreg16(ks, KS_RXCR2, RXCR2_SRDBL_FRAME);
486
487	/* set receive counter timeouts */
488	ks8851_wrreg16(ks, KS_RXDTTR, 1000); /* 1ms after first frame to IRQ */
489	ks8851_wrreg16(ks, KS_RXDBCTR, 4096); /* >4Kbytes in buffer to IRQ */
490	ks8851_wrreg16(ks, KS_RXFCTR, 10);  /* 10 frames to IRQ */
491
492	ks->rc_rxqcr = (RXQCR_RXFCTE |  /* IRQ on frame count exceeded */
493			RXQCR_RXDBCTE | /* IRQ on byte count exceeded */
494			RXQCR_RXDTTE);  /* IRQ on time exceeded */
495
496	ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
497
498	/* clear then enable interrupts */
499	ks8851_wrreg16(ks, KS_ISR, ks->rc_ier);
500	ks8851_wrreg16(ks, KS_IER, ks->rc_ier);
501
502	ks->queued_len = 0;
503	netif_start_queue(ks->netdev);
504
505	netif_dbg(ks, ifup, ks->netdev, "network device up\n");
506
507	ks8851_unlock(ks, &flags);
508	mii_check_link(&ks->mii);
509	return 0;
510}
511
512/**
513 * ks8851_net_stop - close network device
514 * @dev: The device being closed.
515 *
516 * Called to close down a network device which has been active. Cancell any
517 * work, shutdown the RX and TX process and then place the chip into a low
518 * power state whilst it is not being used.
519 */
520static int ks8851_net_stop(struct net_device *dev)
521{
522	struct ks8851_net *ks = netdev_priv(dev);
523	unsigned long flags;
524
525	netif_info(ks, ifdown, dev, "shutting down\n");
526
527	netif_stop_queue(dev);
528
529	ks8851_lock(ks, &flags);
530	/* turn off the IRQs and ack any outstanding */
531	ks8851_wrreg16(ks, KS_IER, 0x0000);
532	ks8851_wrreg16(ks, KS_ISR, 0xffff);
533	ks8851_unlock(ks, &flags);
534
535	/* stop any outstanding work */
536	ks8851_flush_tx_work(ks);
537	flush_work(&ks->rxctrl_work);
538
539	ks8851_lock(ks, &flags);
540	/* shutdown RX process */
541	ks8851_wrreg16(ks, KS_RXCR1, 0x0000);
542
543	/* shutdown TX process */
544	ks8851_wrreg16(ks, KS_TXCR, 0x0000);
545
546	/* set powermode to soft power down to save power */
547	ks8851_set_powermode(ks, PMECR_PM_SOFTDOWN);
548	ks8851_unlock(ks, &flags);
549
550	/* ensure any queued tx buffers are dumped */
551	while (!skb_queue_empty(&ks->txq)) {
552		struct sk_buff *txb = skb_dequeue(&ks->txq);
553
554		netif_dbg(ks, ifdown, ks->netdev,
555			  "%s: freeing txb %p\n", __func__, txb);
556
557		dev_kfree_skb(txb);
558	}
559
560	free_irq(dev->irq, ks);
561
562	return 0;
563}
564
565/**
566 * ks8851_start_xmit - transmit packet
567 * @skb: The buffer to transmit
568 * @dev: The device used to transmit the packet.
569 *
570 * Called by the network layer to transmit the @skb. Queue the packet for
571 * the device and schedule the necessary work to transmit the packet when
572 * it is free.
573 *
574 * We do this to firstly avoid sleeping with the network device locked,
575 * and secondly so we can round up more than one packet to transmit which
576 * means we can try and avoid generating too many transmit done interrupts.
577 */
578static netdev_tx_t ks8851_start_xmit(struct sk_buff *skb,
579				     struct net_device *dev)
580{
581	struct ks8851_net *ks = netdev_priv(dev);
582
583	return ks->start_xmit(skb, dev);
584}
585
586/**
587 * ks8851_rxctrl_work - work handler to change rx mode
588 * @work: The work structure this belongs to.
589 *
590 * Lock the device and issue the necessary changes to the receive mode from
591 * the network device layer. This is done so that we can do this without
592 * having to sleep whilst holding the network device lock.
593 *
594 * Since the recommendation from Micrel is that the RXQ is shutdown whilst the
595 * receive parameters are programmed, we issue a write to disable the RXQ and
596 * then wait for the interrupt handler to be triggered once the RXQ shutdown is
597 * complete. The interrupt handler then writes the new values into the chip.
598 */
599static void ks8851_rxctrl_work(struct work_struct *work)
600{
601	struct ks8851_net *ks = container_of(work, struct ks8851_net, rxctrl_work);
602	unsigned long flags;
603
604	ks8851_lock(ks, &flags);
605
606	/* need to shutdown RXQ before modifying filter parameters */
607	ks8851_wrreg16(ks, KS_RXCR1, 0x00);
608
609	ks8851_unlock(ks, &flags);
610}
611
612static void ks8851_set_rx_mode(struct net_device *dev)
613{
614	struct ks8851_net *ks = netdev_priv(dev);
615	struct ks8851_rxctrl rxctrl;
616
617	memset(&rxctrl, 0, sizeof(rxctrl));
618
619	if (dev->flags & IFF_PROMISC) {
620		/* interface to receive everything */
621
622		rxctrl.rxcr1 = RXCR1_RXAE | RXCR1_RXINVF;
623	} else if (dev->flags & IFF_ALLMULTI) {
624		/* accept all multicast packets */
625
626		rxctrl.rxcr1 = (RXCR1_RXME | RXCR1_RXAE |
627				RXCR1_RXPAFMA | RXCR1_RXMAFMA);
628	} else if (dev->flags & IFF_MULTICAST && !netdev_mc_empty(dev)) {
629		struct netdev_hw_addr *ha;
630		u32 crc;
631
632		/* accept some multicast */
633
634		netdev_for_each_mc_addr(ha, dev) {
635			crc = ether_crc(ETH_ALEN, ha->addr);
636			crc >>= (32 - 6);  /* get top six bits */
637
638			rxctrl.mchash[crc >> 4] |= (1 << (crc & 0xf));
639		}
640
641		rxctrl.rxcr1 = RXCR1_RXME | RXCR1_RXPAFMA;
642	} else {
643		/* just accept broadcast / unicast */
644		rxctrl.rxcr1 = RXCR1_RXPAFMA;
645	}
646
647	rxctrl.rxcr1 |= (RXCR1_RXUE | /* unicast enable */
648			 RXCR1_RXBE | /* broadcast enable */
649			 RXCR1_RXE | /* RX process enable */
650			 RXCR1_RXFCE); /* enable flow control */
651
652	rxctrl.rxcr2 |= RXCR2_SRDBL_FRAME;
653
654	/* schedule work to do the actual set of the data if needed */
655
656	spin_lock(&ks->statelock);
657
658	if (memcmp(&rxctrl, &ks->rxctrl, sizeof(rxctrl)) != 0) {
659		memcpy(&ks->rxctrl, &rxctrl, sizeof(ks->rxctrl));
660		schedule_work(&ks->rxctrl_work);
661	}
662
663	spin_unlock(&ks->statelock);
664}
665
666static int ks8851_set_mac_address(struct net_device *dev, void *addr)
667{
668	struct sockaddr *sa = addr;
669
670	if (netif_running(dev))
671		return -EBUSY;
672
673	if (!is_valid_ether_addr(sa->sa_data))
674		return -EADDRNOTAVAIL;
675
676	eth_hw_addr_set(dev, sa->sa_data);
677	return ks8851_write_mac_addr(dev);
678}
679
680static int ks8851_net_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
681{
682	struct ks8851_net *ks = netdev_priv(dev);
683
684	if (!netif_running(dev))
685		return -EINVAL;
686
687	return generic_mii_ioctl(&ks->mii, if_mii(req), cmd, NULL);
688}
689
690static const struct net_device_ops ks8851_netdev_ops = {
691	.ndo_open		= ks8851_net_open,
692	.ndo_stop		= ks8851_net_stop,
693	.ndo_eth_ioctl		= ks8851_net_ioctl,
694	.ndo_start_xmit		= ks8851_start_xmit,
695	.ndo_set_mac_address	= ks8851_set_mac_address,
696	.ndo_set_rx_mode	= ks8851_set_rx_mode,
697	.ndo_validate_addr	= eth_validate_addr,
698};
699
700/* ethtool support */
701
702static void ks8851_get_drvinfo(struct net_device *dev,
703			       struct ethtool_drvinfo *di)
704{
705	strscpy(di->driver, "KS8851", sizeof(di->driver));
706	strscpy(di->version, "1.00", sizeof(di->version));
707	strscpy(di->bus_info, dev_name(dev->dev.parent), sizeof(di->bus_info));
708}
709
710static u32 ks8851_get_msglevel(struct net_device *dev)
711{
712	struct ks8851_net *ks = netdev_priv(dev);
713	return ks->msg_enable;
714}
715
716static void ks8851_set_msglevel(struct net_device *dev, u32 to)
717{
718	struct ks8851_net *ks = netdev_priv(dev);
719	ks->msg_enable = to;
720}
721
722static int ks8851_get_link_ksettings(struct net_device *dev,
723				     struct ethtool_link_ksettings *cmd)
724{
725	struct ks8851_net *ks = netdev_priv(dev);
726
727	mii_ethtool_get_link_ksettings(&ks->mii, cmd);
728
729	return 0;
730}
731
732static int ks8851_set_link_ksettings(struct net_device *dev,
733				     const struct ethtool_link_ksettings *cmd)
734{
735	struct ks8851_net *ks = netdev_priv(dev);
736	return mii_ethtool_set_link_ksettings(&ks->mii, cmd);
737}
738
739static u32 ks8851_get_link(struct net_device *dev)
740{
741	struct ks8851_net *ks = netdev_priv(dev);
742	return mii_link_ok(&ks->mii);
743}
744
745static int ks8851_nway_reset(struct net_device *dev)
746{
747	struct ks8851_net *ks = netdev_priv(dev);
748	return mii_nway_restart(&ks->mii);
749}
750
751/* EEPROM support */
752
753static void ks8851_eeprom_regread(struct eeprom_93cx6 *ee)
754{
755	struct ks8851_net *ks = ee->data;
756	unsigned val;
757
758	val = ks8851_rdreg16(ks, KS_EEPCR);
759
760	ee->reg_data_out = (val & EEPCR_EESB) ? 1 : 0;
761	ee->reg_data_clock = (val & EEPCR_EESCK) ? 1 : 0;
762	ee->reg_chip_select = (val & EEPCR_EECS) ? 1 : 0;
763}
764
765static void ks8851_eeprom_regwrite(struct eeprom_93cx6 *ee)
766{
767	struct ks8851_net *ks = ee->data;
768	unsigned val = EEPCR_EESA;	/* default - eeprom access on */
769
770	if (ee->drive_data)
771		val |= EEPCR_EESRWA;
772	if (ee->reg_data_in)
773		val |= EEPCR_EEDO;
774	if (ee->reg_data_clock)
775		val |= EEPCR_EESCK;
776	if (ee->reg_chip_select)
777		val |= EEPCR_EECS;
778
779	ks8851_wrreg16(ks, KS_EEPCR, val);
780}
781
782/**
783 * ks8851_eeprom_claim - claim device EEPROM and activate the interface
784 * @ks: The network device state.
785 *
786 * Check for the presence of an EEPROM, and then activate software access
787 * to the device.
788 */
789static int ks8851_eeprom_claim(struct ks8851_net *ks)
790{
791	/* start with clock low, cs high */
792	ks8851_wrreg16(ks, KS_EEPCR, EEPCR_EESA | EEPCR_EECS);
793	return 0;
794}
795
796/**
797 * ks8851_eeprom_release - release the EEPROM interface
798 * @ks: The device state
799 *
800 * Release the software access to the device EEPROM
801 */
802static void ks8851_eeprom_release(struct ks8851_net *ks)
803{
804	unsigned val = ks8851_rdreg16(ks, KS_EEPCR);
805
806	ks8851_wrreg16(ks, KS_EEPCR, val & ~EEPCR_EESA);
807}
808
809#define KS_EEPROM_MAGIC (0x00008851)
810
811static int ks8851_set_eeprom(struct net_device *dev,
812			     struct ethtool_eeprom *ee, u8 *data)
813{
814	struct ks8851_net *ks = netdev_priv(dev);
815	int offset = ee->offset;
816	unsigned long flags;
817	int len = ee->len;
818	u16 tmp;
819
820	/* currently only support byte writing */
821	if (len != 1)
822		return -EINVAL;
823
824	if (ee->magic != KS_EEPROM_MAGIC)
825		return -EINVAL;
826
827	if (!(ks->rc_ccr & CCR_EEPROM))
828		return -ENOENT;
829
830	ks8851_lock(ks, &flags);
831
832	ks8851_eeprom_claim(ks);
833
834	eeprom_93cx6_wren(&ks->eeprom, true);
835
836	/* ethtool currently only supports writing bytes, which means
837	 * we have to read/modify/write our 16bit EEPROMs */
838
839	eeprom_93cx6_read(&ks->eeprom, offset/2, &tmp);
840
841	if (offset & 1) {
842		tmp &= 0xff;
843		tmp |= *data << 8;
844	} else {
845		tmp &= 0xff00;
846		tmp |= *data;
847	}
848
849	eeprom_93cx6_write(&ks->eeprom, offset/2, tmp);
850	eeprom_93cx6_wren(&ks->eeprom, false);
851
852	ks8851_eeprom_release(ks);
853	ks8851_unlock(ks, &flags);
854
855	return 0;
856}
857
858static int ks8851_get_eeprom(struct net_device *dev,
859			     struct ethtool_eeprom *ee, u8 *data)
860{
861	struct ks8851_net *ks = netdev_priv(dev);
862	int offset = ee->offset;
863	unsigned long flags;
864	int len = ee->len;
865
866	/* must be 2 byte aligned */
867	if (len & 1 || offset & 1)
868		return -EINVAL;
869
870	if (!(ks->rc_ccr & CCR_EEPROM))
871		return -ENOENT;
872
873	ks8851_lock(ks, &flags);
874
875	ks8851_eeprom_claim(ks);
876
877	ee->magic = KS_EEPROM_MAGIC;
878
879	eeprom_93cx6_multiread(&ks->eeprom, offset/2, (__le16 *)data, len/2);
880	ks8851_eeprom_release(ks);
881	ks8851_unlock(ks, &flags);
882
883	return 0;
884}
885
886static int ks8851_get_eeprom_len(struct net_device *dev)
887{
888	struct ks8851_net *ks = netdev_priv(dev);
889
890	/* currently, we assume it is an 93C46 attached, so return 128 */
891	return ks->rc_ccr & CCR_EEPROM ? 128 : 0;
892}
893
894static const struct ethtool_ops ks8851_ethtool_ops = {
895	.get_drvinfo	= ks8851_get_drvinfo,
896	.get_msglevel	= ks8851_get_msglevel,
897	.set_msglevel	= ks8851_set_msglevel,
898	.get_link	= ks8851_get_link,
899	.nway_reset	= ks8851_nway_reset,
900	.get_eeprom_len	= ks8851_get_eeprom_len,
901	.get_eeprom	= ks8851_get_eeprom,
902	.set_eeprom	= ks8851_set_eeprom,
903	.get_link_ksettings = ks8851_get_link_ksettings,
904	.set_link_ksettings = ks8851_set_link_ksettings,
905};
906
907/* MII interface controls */
908
909/**
910 * ks8851_phy_reg - convert MII register into a KS8851 register
911 * @reg: MII register number.
912 *
913 * Return the KS8851 register number for the corresponding MII PHY register
914 * if possible. Return zero if the MII register has no direct mapping to the
915 * KS8851 register set.
916 */
917static int ks8851_phy_reg(int reg)
918{
919	switch (reg) {
920	case MII_BMCR:
921		return KS_P1MBCR;
922	case MII_BMSR:
923		return KS_P1MBSR;
924	case MII_PHYSID1:
925		return KS_PHY1ILR;
926	case MII_PHYSID2:
927		return KS_PHY1IHR;
928	case MII_ADVERTISE:
929		return KS_P1ANAR;
930	case MII_LPA:
931		return KS_P1ANLPR;
932	}
933
934	return -EOPNOTSUPP;
935}
936
937static int ks8851_phy_read_common(struct net_device *dev, int phy_addr, int reg)
938{
939	struct ks8851_net *ks = netdev_priv(dev);
940	unsigned long flags;
941	int result;
942	int ksreg;
943
944	ksreg = ks8851_phy_reg(reg);
945	if (ksreg < 0)
946		return ksreg;
947
948	ks8851_lock(ks, &flags);
949	result = ks8851_rdreg16(ks, ksreg);
950	ks8851_unlock(ks, &flags);
951
952	return result;
953}
954
955/**
956 * ks8851_phy_read - MII interface PHY register read.
957 * @dev: The network device the PHY is on.
958 * @phy_addr: Address of PHY (ignored as we only have one)
959 * @reg: The register to read.
960 *
961 * This call reads data from the PHY register specified in @reg. Since the
962 * device does not support all the MII registers, the non-existent values
963 * are always returned as zero.
964 *
965 * We return zero for unsupported registers as the MII code does not check
966 * the value returned for any error status, and simply returns it to the
967 * caller. The mii-tool that the driver was tested with takes any -ve error
968 * as real PHY capabilities, thus displaying incorrect data to the user.
969 */
970static int ks8851_phy_read(struct net_device *dev, int phy_addr, int reg)
971{
972	int ret;
973
974	ret = ks8851_phy_read_common(dev, phy_addr, reg);
975	if (ret < 0)
976		return 0x0;	/* no error return allowed, so use zero */
977
978	return ret;
979}
980
981static void ks8851_phy_write(struct net_device *dev,
982			     int phy, int reg, int value)
983{
984	struct ks8851_net *ks = netdev_priv(dev);
985	unsigned long flags;
986	int ksreg;
987
988	ksreg = ks8851_phy_reg(reg);
989	if (ksreg >= 0) {
990		ks8851_lock(ks, &flags);
991		ks8851_wrreg16(ks, ksreg, value);
992		ks8851_unlock(ks, &flags);
993	}
994}
995
996static int ks8851_mdio_read(struct mii_bus *bus, int phy_id, int reg)
997{
998	struct ks8851_net *ks = bus->priv;
999
1000	if (phy_id != 0)
1001		return -EOPNOTSUPP;
1002
1003	/* KS8851 PHY ID registers are swapped in HW, swap them back. */
1004	if (reg == MII_PHYSID1)
1005		reg = MII_PHYSID2;
1006	else if (reg == MII_PHYSID2)
1007		reg = MII_PHYSID1;
1008
1009	return ks8851_phy_read_common(ks->netdev, phy_id, reg);
1010}
1011
1012static int ks8851_mdio_write(struct mii_bus *bus, int phy_id, int reg, u16 val)
1013{
1014	struct ks8851_net *ks = bus->priv;
1015
1016	ks8851_phy_write(ks->netdev, phy_id, reg, val);
1017	return 0;
1018}
1019
1020/**
1021 * ks8851_read_selftest - read the selftest memory info.
1022 * @ks: The device state
1023 *
1024 * Read and check the TX/RX memory selftest information.
1025 */
1026static void ks8851_read_selftest(struct ks8851_net *ks)
1027{
1028	unsigned both_done = MBIR_TXMBF | MBIR_RXMBF;
1029	unsigned rd;
1030
1031	rd = ks8851_rdreg16(ks, KS_MBIR);
1032
1033	if ((rd & both_done) != both_done) {
1034		netdev_warn(ks->netdev, "Memory selftest not finished\n");
1035		return;
1036	}
1037
1038	if (rd & MBIR_TXMBFA)
1039		netdev_err(ks->netdev, "TX memory selftest fail\n");
1040
1041	if (rd & MBIR_RXMBFA)
1042		netdev_err(ks->netdev, "RX memory selftest fail\n");
1043}
1044
1045/* driver bus management functions */
1046
1047#ifdef CONFIG_PM_SLEEP
1048
1049int ks8851_suspend(struct device *dev)
1050{
1051	struct ks8851_net *ks = dev_get_drvdata(dev);
1052	struct net_device *netdev = ks->netdev;
1053
1054	if (netif_running(netdev)) {
1055		netif_device_detach(netdev);
1056		ks8851_net_stop(netdev);
1057	}
1058
1059	return 0;
1060}
1061EXPORT_SYMBOL_GPL(ks8851_suspend);
1062
1063int ks8851_resume(struct device *dev)
1064{
1065	struct ks8851_net *ks = dev_get_drvdata(dev);
1066	struct net_device *netdev = ks->netdev;
1067
1068	if (netif_running(netdev)) {
1069		ks8851_net_open(netdev);
1070		netif_device_attach(netdev);
1071	}
1072
1073	return 0;
1074}
1075EXPORT_SYMBOL_GPL(ks8851_resume);
1076#endif
1077
1078static int ks8851_register_mdiobus(struct ks8851_net *ks, struct device *dev)
1079{
1080	struct mii_bus *mii_bus;
1081	int ret;
1082
1083	mii_bus = mdiobus_alloc();
1084	if (!mii_bus)
1085		return -ENOMEM;
1086
1087	mii_bus->name = "ks8851_eth_mii";
1088	mii_bus->read = ks8851_mdio_read;
1089	mii_bus->write = ks8851_mdio_write;
1090	mii_bus->priv = ks;
1091	mii_bus->parent = dev;
1092	mii_bus->phy_mask = ~((u32)BIT(0));
1093	snprintf(mii_bus->id, MII_BUS_ID_SIZE, "%s", dev_name(dev));
1094
1095	ret = mdiobus_register(mii_bus);
1096	if (ret)
1097		goto err_mdiobus_register;
1098
1099	ks->mii_bus = mii_bus;
1100
1101	return 0;
1102
1103err_mdiobus_register:
1104	mdiobus_free(mii_bus);
1105	return ret;
1106}
1107
1108static void ks8851_unregister_mdiobus(struct ks8851_net *ks)
1109{
1110	mdiobus_unregister(ks->mii_bus);
1111	mdiobus_free(ks->mii_bus);
1112}
1113
1114int ks8851_probe_common(struct net_device *netdev, struct device *dev,
1115			int msg_en)
1116{
1117	struct ks8851_net *ks = netdev_priv(netdev);
1118	unsigned cider;
1119	int ret;
1120
1121	ks->netdev = netdev;
1122	ks->tx_space = 6144;
1123
1124	ks->gpio = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_HIGH);
1125	ret = PTR_ERR_OR_ZERO(ks->gpio);
1126	if (ret) {
1127		if (ret != -EPROBE_DEFER)
1128			dev_err(dev, "reset gpio request failed: %d\n", ret);
1129		return ret;
1130	}
1131
1132	ret = gpiod_set_consumer_name(ks->gpio, "ks8851_rst_n");
1133	if (ret) {
1134		dev_err(dev, "failed to set reset gpio name: %d\n", ret);
1135		return ret;
1136	}
1137
1138	ks->vdd_io = devm_regulator_get(dev, "vdd-io");
1139	if (IS_ERR(ks->vdd_io)) {
1140		ret = PTR_ERR(ks->vdd_io);
1141		goto err_reg_io;
1142	}
1143
1144	ret = regulator_enable(ks->vdd_io);
1145	if (ret) {
1146		dev_err(dev, "regulator vdd_io enable fail: %d\n", ret);
1147		goto err_reg_io;
1148	}
1149
1150	ks->vdd_reg = devm_regulator_get(dev, "vdd");
1151	if (IS_ERR(ks->vdd_reg)) {
1152		ret = PTR_ERR(ks->vdd_reg);
1153		goto err_reg;
1154	}
1155
1156	ret = regulator_enable(ks->vdd_reg);
1157	if (ret) {
1158		dev_err(dev, "regulator vdd enable fail: %d\n", ret);
1159		goto err_reg;
1160	}
1161
1162	if (ks->gpio) {
1163		usleep_range(10000, 11000);
1164		gpiod_set_value_cansleep(ks->gpio, 0);
1165	}
1166
1167	spin_lock_init(&ks->statelock);
1168
1169	INIT_WORK(&ks->rxctrl_work, ks8851_rxctrl_work);
1170
1171	SET_NETDEV_DEV(netdev, dev);
1172
1173	/* setup EEPROM state */
1174	ks->eeprom.data = ks;
1175	ks->eeprom.width = PCI_EEPROM_WIDTH_93C46;
1176	ks->eeprom.register_read = ks8851_eeprom_regread;
1177	ks->eeprom.register_write = ks8851_eeprom_regwrite;
1178
1179	/* setup mii state */
1180	ks->mii.dev		= netdev;
1181	ks->mii.phy_id		= 1;
1182	ks->mii.phy_id_mask	= 1;
1183	ks->mii.reg_num_mask	= 0xf;
1184	ks->mii.mdio_read	= ks8851_phy_read;
1185	ks->mii.mdio_write	= ks8851_phy_write;
1186
1187	dev_info(dev, "message enable is %d\n", msg_en);
1188
1189	ret = ks8851_register_mdiobus(ks, dev);
1190	if (ret)
1191		goto err_mdio;
1192
1193	/* set the default message enable */
1194	ks->msg_enable = netif_msg_init(msg_en, NETIF_MSG_DRV |
1195						NETIF_MSG_PROBE |
1196						NETIF_MSG_LINK);
1197
1198	skb_queue_head_init(&ks->txq);
1199
1200	netdev->ethtool_ops = &ks8851_ethtool_ops;
1201
1202	dev_set_drvdata(dev, ks);
1203
1204	netif_carrier_off(ks->netdev);
1205	netdev->if_port = IF_PORT_100BASET;
1206	netdev->netdev_ops = &ks8851_netdev_ops;
1207
1208	/* issue a global soft reset to reset the device. */
1209	ks8851_soft_reset(ks, GRR_GSR);
1210
1211	/* simple check for a valid chip being connected to the bus */
1212	cider = ks8851_rdreg16(ks, KS_CIDER);
1213	if ((cider & ~CIDER_REV_MASK) != CIDER_ID) {
1214		dev_err(dev, "failed to read device ID\n");
1215		ret = -ENODEV;
1216		goto err_id;
1217	}
1218
1219	/* cache the contents of the CCR register for EEPROM, etc. */
1220	ks->rc_ccr = ks8851_rdreg16(ks, KS_CCR);
1221
1222	ks8851_read_selftest(ks);
1223	ks8851_init_mac(ks, dev->of_node);
1224
1225	ret = register_netdev(netdev);
1226	if (ret) {
1227		dev_err(dev, "failed to register network device\n");
1228		goto err_id;
1229	}
1230
1231	netdev_info(netdev, "revision %d, MAC %pM, IRQ %d, %s EEPROM\n",
1232		    CIDER_REV_GET(cider), netdev->dev_addr, netdev->irq,
1233		    ks->rc_ccr & CCR_EEPROM ? "has" : "no");
1234
1235	return 0;
1236
1237err_id:
1238	ks8851_unregister_mdiobus(ks);
1239err_mdio:
1240	if (ks->gpio)
1241		gpiod_set_value_cansleep(ks->gpio, 1);
1242	regulator_disable(ks->vdd_reg);
1243err_reg:
1244	regulator_disable(ks->vdd_io);
1245err_reg_io:
1246	return ret;
1247}
1248EXPORT_SYMBOL_GPL(ks8851_probe_common);
1249
1250void ks8851_remove_common(struct device *dev)
1251{
1252	struct ks8851_net *priv = dev_get_drvdata(dev);
1253
1254	ks8851_unregister_mdiobus(priv);
1255
1256	if (netif_msg_drv(priv))
1257		dev_info(dev, "remove\n");
1258
1259	unregister_netdev(priv->netdev);
1260	if (priv->gpio)
1261		gpiod_set_value_cansleep(priv->gpio, 1);
1262	regulator_disable(priv->vdd_reg);
1263	regulator_disable(priv->vdd_io);
1264}
1265EXPORT_SYMBOL_GPL(ks8851_remove_common);
1266
1267MODULE_DESCRIPTION("KS8851 Network driver");
1268MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
1269MODULE_LICENSE("GPL");
1270