1/*
2 *  Driver for the IDT RC32434 (Korina) on-chip ethernet controller.
3 *
4 *  Copyright 2004 IDT Inc. (rischelp@idt.com)
5 *  Copyright 2006 Felix Fietkau <nbd@openwrt.org>
6 *  Copyright 2008 Florian Fainelli <florian@openwrt.org>
7 *  Copyright 2017 Roman Yeryomin <roman@advem.lv>
8 *
9 *  This program is free software; you can redistribute  it and/or modify it
10 *  under  the terms of  the GNU General  Public License as published by the
11 *  Free Software Foundation;  either version 2 of the  License, or (at your
12 *  option) any later version.
13 *
14 *  THIS  SOFTWARE  IS PROVIDED   ``AS  IS'' AND   ANY  EXPRESS OR IMPLIED
15 *  WARRANTIES,   INCLUDING, BUT NOT  LIMITED  TO, THE IMPLIED WARRANTIES OF
16 *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
17 *  NO  EVENT  SHALL   THE AUTHOR  BE    LIABLE FOR ANY   DIRECT, INDIRECT,
18 *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19 *  NOT LIMITED   TO, PROCUREMENT OF  SUBSTITUTE GOODS  OR SERVICES; LOSS OF
20 *  USE, DATA,  OR PROFITS; OR  BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
21 *  ANY THEORY OF LIABILITY, WHETHER IN  CONTRACT, STRICT LIABILITY, OR TORT
22 *  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23 *  THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24 *
25 *  You should have received a copy of the  GNU General Public License along
26 *  with this program; if not, write  to the Free Software Foundation, Inc.,
27 *  675 Mass Ave, Cambridge, MA 02139, USA.
28 *
29 *  Writing to a DMA status register:
30 *
31 *  When writing to the status register, you should mask the bit you have
32 *  been testing the status register with. Both Tx and Rx DMA registers
33 *  should stick to this procedure.
34 */
35
36#include <linux/module.h>
37#include <linux/kernel.h>
38#include <linux/moduleparam.h>
39#include <linux/sched.h>
40#include <linux/ctype.h>
41#include <linux/types.h>
42#include <linux/interrupt.h>
43#include <linux/ioport.h>
44#include <linux/iopoll.h>
45#include <linux/in.h>
46#include <linux/of.h>
47#include <linux/of_net.h>
48#include <linux/slab.h>
49#include <linux/string.h>
50#include <linux/delay.h>
51#include <linux/netdevice.h>
52#include <linux/etherdevice.h>
53#include <linux/skbuff.h>
54#include <linux/errno.h>
55#include <linux/platform_device.h>
56#include <linux/mii.h>
57#include <linux/ethtool.h>
58#include <linux/crc32.h>
59#include <linux/pgtable.h>
60#include <linux/clk.h>
61
62#define DRV_NAME	"korina"
63#define DRV_VERSION	"0.20"
64#define DRV_RELDATE	"15Sep2017"
65
66struct eth_regs {
67	u32 ethintfc;
68	u32 ethfifott;
69	u32 etharc;
70	u32 ethhash0;
71	u32 ethhash1;
72	u32 ethu0[4];		/* Reserved. */
73	u32 ethpfs;
74	u32 ethmcp;
75	u32 eth_u1[10];		/* Reserved. */
76	u32 ethspare;
77	u32 eth_u2[42];		/* Reserved. */
78	u32 ethsal0;
79	u32 ethsah0;
80	u32 ethsal1;
81	u32 ethsah1;
82	u32 ethsal2;
83	u32 ethsah2;
84	u32 ethsal3;
85	u32 ethsah3;
86	u32 ethrbc;
87	u32 ethrpc;
88	u32 ethrupc;
89	u32 ethrfc;
90	u32 ethtbc;
91	u32 ethgpf;
92	u32 eth_u9[50];		/* Reserved. */
93	u32 ethmac1;
94	u32 ethmac2;
95	u32 ethipgt;
96	u32 ethipgr;
97	u32 ethclrt;
98	u32 ethmaxf;
99	u32 eth_u10;		/* Reserved. */
100	u32 ethmtest;
101	u32 miimcfg;
102	u32 miimcmd;
103	u32 miimaddr;
104	u32 miimwtd;
105	u32 miimrdd;
106	u32 miimind;
107	u32 eth_u11;		/* Reserved. */
108	u32 eth_u12;		/* Reserved. */
109	u32 ethcfsa0;
110	u32 ethcfsa1;
111	u32 ethcfsa2;
112};
113
114/* Ethernet interrupt registers */
115#define ETH_INT_FC_EN		BIT(0)
116#define ETH_INT_FC_ITS		BIT(1)
117#define ETH_INT_FC_RIP		BIT(2)
118#define ETH_INT_FC_JAM		BIT(3)
119#define ETH_INT_FC_OVR		BIT(4)
120#define ETH_INT_FC_UND		BIT(5)
121#define ETH_INT_FC_IOC		0x000000c0
122
123/* Ethernet FIFO registers */
124#define ETH_FIFI_TT_TTH_BIT	0
125#define ETH_FIFO_TT_TTH		0x0000007f
126
127/* Ethernet ARC/multicast registers */
128#define ETH_ARC_PRO		BIT(0)
129#define ETH_ARC_AM		BIT(1)
130#define ETH_ARC_AFM		BIT(2)
131#define ETH_ARC_AB		BIT(3)
132
133/* Ethernet SAL registers */
134#define ETH_SAL_BYTE_5		0x000000ff
135#define ETH_SAL_BYTE_4		0x0000ff00
136#define ETH_SAL_BYTE_3		0x00ff0000
137#define ETH_SAL_BYTE_2		0xff000000
138
139/* Ethernet SAH registers */
140#define ETH_SAH_BYTE1		0x000000ff
141#define ETH_SAH_BYTE0		0x0000ff00
142
143/* Ethernet GPF register */
144#define ETH_GPF_PTV		0x0000ffff
145
146/* Ethernet PFG register */
147#define ETH_PFS_PFD		BIT(0)
148
149/* Ethernet CFSA[0-3] registers */
150#define ETH_CFSA0_CFSA4		0x000000ff
151#define ETH_CFSA0_CFSA5		0x0000ff00
152#define ETH_CFSA1_CFSA2		0x000000ff
153#define ETH_CFSA1_CFSA3		0x0000ff00
154#define ETH_CFSA1_CFSA0		0x000000ff
155#define ETH_CFSA1_CFSA1		0x0000ff00
156
157/* Ethernet MAC1 registers */
158#define ETH_MAC1_RE		BIT(0)
159#define ETH_MAC1_PAF		BIT(1)
160#define ETH_MAC1_RFC		BIT(2)
161#define ETH_MAC1_TFC		BIT(3)
162#define ETH_MAC1_LB		BIT(4)
163#define ETH_MAC1_MR		BIT(31)
164
165/* Ethernet MAC2 registers */
166#define ETH_MAC2_FD		BIT(0)
167#define ETH_MAC2_FLC		BIT(1)
168#define ETH_MAC2_HFE		BIT(2)
169#define ETH_MAC2_DC		BIT(3)
170#define ETH_MAC2_CEN		BIT(4)
171#define ETH_MAC2_PE		BIT(5)
172#define ETH_MAC2_VPE		BIT(6)
173#define ETH_MAC2_APE		BIT(7)
174#define ETH_MAC2_PPE		BIT(8)
175#define ETH_MAC2_LPE		BIT(9)
176#define ETH_MAC2_NB		BIT(12)
177#define ETH_MAC2_BP		BIT(13)
178#define ETH_MAC2_ED		BIT(14)
179
180/* Ethernet IPGT register */
181#define ETH_IPGT		0x0000007f
182
183/* Ethernet IPGR registers */
184#define ETH_IPGR_IPGR2		0x0000007f
185#define ETH_IPGR_IPGR1		0x00007f00
186
187/* Ethernet CLRT registers */
188#define ETH_CLRT_MAX_RET	0x0000000f
189#define ETH_CLRT_COL_WIN	0x00003f00
190
191/* Ethernet MAXF register */
192#define ETH_MAXF		0x0000ffff
193
194/* Ethernet test registers */
195#define ETH_TEST_REG		BIT(2)
196#define ETH_MCP_DIV		0x000000ff
197
198/* MII registers */
199#define ETH_MII_CFG_RSVD	0x0000000c
200#define ETH_MII_CMD_RD		BIT(0)
201#define ETH_MII_CMD_SCN		BIT(1)
202#define ETH_MII_REG_ADDR	0x0000001f
203#define ETH_MII_PHY_ADDR	0x00001f00
204#define ETH_MII_WTD_DATA	0x0000ffff
205#define ETH_MII_RDD_DATA	0x0000ffff
206#define ETH_MII_IND_BSY		BIT(0)
207#define ETH_MII_IND_SCN		BIT(1)
208#define ETH_MII_IND_NV		BIT(2)
209
210/* Values for the DEVCS field of the Ethernet DMA Rx and Tx descriptors. */
211#define ETH_RX_FD		BIT(0)
212#define ETH_RX_LD		BIT(1)
213#define ETH_RX_ROK		BIT(2)
214#define ETH_RX_FM		BIT(3)
215#define ETH_RX_MP		BIT(4)
216#define ETH_RX_BP		BIT(5)
217#define ETH_RX_VLT		BIT(6)
218#define ETH_RX_CF		BIT(7)
219#define ETH_RX_OVR		BIT(8)
220#define ETH_RX_CRC		BIT(9)
221#define ETH_RX_CV		BIT(10)
222#define ETH_RX_DB		BIT(11)
223#define ETH_RX_LE		BIT(12)
224#define ETH_RX_LOR		BIT(13)
225#define ETH_RX_CES		BIT(14)
226#define ETH_RX_LEN_BIT		16
227#define ETH_RX_LEN		0xffff0000
228
229#define ETH_TX_FD		BIT(0)
230#define ETH_TX_LD		BIT(1)
231#define ETH_TX_OEN		BIT(2)
232#define ETH_TX_PEN		BIT(3)
233#define ETH_TX_CEN		BIT(4)
234#define ETH_TX_HEN		BIT(5)
235#define ETH_TX_TOK		BIT(6)
236#define ETH_TX_MP		BIT(7)
237#define ETH_TX_BP		BIT(8)
238#define ETH_TX_UND		BIT(9)
239#define ETH_TX_OF		BIT(10)
240#define ETH_TX_ED		BIT(11)
241#define ETH_TX_EC		BIT(12)
242#define ETH_TX_LC		BIT(13)
243#define ETH_TX_TD		BIT(14)
244#define ETH_TX_CRC		BIT(15)
245#define ETH_TX_LE		BIT(16)
246#define ETH_TX_CC		0x001E0000
247
248/* DMA descriptor (in physical memory). */
249struct dma_desc {
250	u32 control;			/* Control. use DMAD_* */
251	u32 ca;				/* Current Address. */
252	u32 devcs;			/* Device control and status. */
253	u32 link;			/* Next descriptor in chain. */
254};
255
256#define DMA_DESC_COUNT_BIT		0
257#define DMA_DESC_COUNT_MSK		0x0003ffff
258#define DMA_DESC_DS_BIT			20
259#define DMA_DESC_DS_MSK			0x00300000
260
261#define DMA_DESC_DEV_CMD_BIT		22
262#define DMA_DESC_DEV_CMD_MSK		0x01c00000
263
264/* DMA descriptors interrupts */
265#define DMA_DESC_COF			BIT(25) /* Chain on finished */
266#define DMA_DESC_COD			BIT(26) /* Chain on done */
267#define DMA_DESC_IOF			BIT(27) /* Interrupt on finished */
268#define DMA_DESC_IOD			BIT(28) /* Interrupt on done */
269#define DMA_DESC_TERM			BIT(29) /* Terminated */
270#define DMA_DESC_DONE			BIT(30) /* Done */
271#define DMA_DESC_FINI			BIT(31) /* Finished */
272
273/* DMA register (within Internal Register Map).  */
274struct dma_reg {
275	u32 dmac;		/* Control. */
276	u32 dmas;		/* Status. */
277	u32 dmasm;		/* Mask. */
278	u32 dmadptr;		/* Descriptor pointer. */
279	u32 dmandptr;		/* Next descriptor pointer. */
280};
281
282/* DMA channels specific registers */
283#define DMA_CHAN_RUN_BIT		BIT(0)
284#define DMA_CHAN_DONE_BIT		BIT(1)
285#define DMA_CHAN_MODE_BIT		BIT(2)
286#define DMA_CHAN_MODE_MSK		0x0000000c
287#define	 DMA_CHAN_MODE_AUTO		0
288#define	 DMA_CHAN_MODE_BURST		1
289#define	 DMA_CHAN_MODE_XFRT		2
290#define	 DMA_CHAN_MODE_RSVD		3
291#define DMA_CHAN_ACT_BIT		BIT(4)
292
293/* DMA status registers */
294#define DMA_STAT_FINI			BIT(0)
295#define DMA_STAT_DONE			BIT(1)
296#define DMA_STAT_CHAIN			BIT(2)
297#define DMA_STAT_ERR			BIT(3)
298#define DMA_STAT_HALT			BIT(4)
299
300#define STATION_ADDRESS_HIGH(dev) (((dev)->dev_addr[0] << 8) | \
301				   ((dev)->dev_addr[1]))
302#define STATION_ADDRESS_LOW(dev)  (((dev)->dev_addr[2] << 24) | \
303				   ((dev)->dev_addr[3] << 16) | \
304				   ((dev)->dev_addr[4] << 8)  | \
305				   ((dev)->dev_addr[5]))
306
307#define MII_CLOCK	1250000 /* no more than 2.5MHz */
308
309/* the following must be powers of two */
310#define KORINA_NUM_RDS	64  /* number of receive descriptors */
311#define KORINA_NUM_TDS	64  /* number of transmit descriptors */
312
313/* KORINA_RBSIZE is the hardware's default maximum receive
314 * frame size in bytes. Having this hardcoded means that there
315 * is no support for MTU sizes greater than 1500. */
316#define KORINA_RBSIZE	1536 /* size of one resource buffer = Ether MTU */
317#define KORINA_RDS_MASK	(KORINA_NUM_RDS - 1)
318#define KORINA_TDS_MASK	(KORINA_NUM_TDS - 1)
319#define RD_RING_SIZE	(KORINA_NUM_RDS * sizeof(struct dma_desc))
320#define TD_RING_SIZE	(KORINA_NUM_TDS * sizeof(struct dma_desc))
321
322#define TX_TIMEOUT	(6000 * HZ / 1000)
323
324enum chain_status {
325	desc_filled,
326	desc_is_empty
327};
328
329#define DMA_COUNT(count)	((count) & DMA_DESC_COUNT_MSK)
330#define IS_DMA_FINISHED(X)	(((X) & (DMA_DESC_FINI)) != 0)
331#define IS_DMA_DONE(X)		(((X) & (DMA_DESC_DONE)) != 0)
332#define RCVPKT_LENGTH(X)	(((X) & ETH_RX_LEN) >> ETH_RX_LEN_BIT)
333
334/* Information that need to be kept for each board. */
335struct korina_private {
336	struct eth_regs __iomem *eth_regs;
337	struct dma_reg __iomem *rx_dma_regs;
338	struct dma_reg __iomem *tx_dma_regs;
339	struct dma_desc *td_ring; /* transmit descriptor ring */
340	struct dma_desc *rd_ring; /* receive descriptor ring  */
341	dma_addr_t td_dma;
342	dma_addr_t rd_dma;
343
344	struct sk_buff *tx_skb[KORINA_NUM_TDS];
345	struct sk_buff *rx_skb[KORINA_NUM_RDS];
346
347	dma_addr_t rx_skb_dma[KORINA_NUM_RDS];
348	dma_addr_t tx_skb_dma[KORINA_NUM_TDS];
349
350	int rx_next_done;
351	int rx_chain_head;
352	int rx_chain_tail;
353	enum chain_status rx_chain_status;
354
355	int tx_next_done;
356	int tx_chain_head;
357	int tx_chain_tail;
358	enum chain_status tx_chain_status;
359	int tx_count;
360	int tx_full;
361
362	int rx_irq;
363	int tx_irq;
364
365	spinlock_t lock;	/* NIC xmit lock */
366
367	int dma_halt_cnt;
368	int dma_run_cnt;
369	struct napi_struct napi;
370	struct timer_list media_check_timer;
371	struct mii_if_info mii_if;
372	struct work_struct restart_task;
373	struct net_device *dev;
374	struct device *dmadev;
375	int mii_clock_freq;
376};
377
378static dma_addr_t korina_tx_dma(struct korina_private *lp, int idx)
379{
380	return lp->td_dma + (idx * sizeof(struct dma_desc));
381}
382
383static dma_addr_t korina_rx_dma(struct korina_private *lp, int idx)
384{
385	return lp->rd_dma + (idx * sizeof(struct dma_desc));
386}
387
388static inline void korina_abort_dma(struct net_device *dev,
389					struct dma_reg *ch)
390{
391	if (readl(&ch->dmac) & DMA_CHAN_RUN_BIT) {
392		writel(0x10, &ch->dmac);
393
394		while (!(readl(&ch->dmas) & DMA_STAT_HALT))
395			netif_trans_update(dev);
396
397		writel(0, &ch->dmas);
398	}
399
400	writel(0, &ch->dmadptr);
401	writel(0, &ch->dmandptr);
402}
403
404static void korina_abort_tx(struct net_device *dev)
405{
406	struct korina_private *lp = netdev_priv(dev);
407
408	korina_abort_dma(dev, lp->tx_dma_regs);
409}
410
411static void korina_abort_rx(struct net_device *dev)
412{
413	struct korina_private *lp = netdev_priv(dev);
414
415	korina_abort_dma(dev, lp->rx_dma_regs);
416}
417
418/* transmit packet */
419static netdev_tx_t korina_send_packet(struct sk_buff *skb,
420				      struct net_device *dev)
421{
422	struct korina_private *lp = netdev_priv(dev);
423	u32 chain_prev, chain_next;
424	unsigned long flags;
425	struct dma_desc *td;
426	dma_addr_t ca;
427	u32 length;
428	int idx;
429
430	spin_lock_irqsave(&lp->lock, flags);
431
432	idx = lp->tx_chain_tail;
433	td = &lp->td_ring[idx];
434
435	/* stop queue when full, drop pkts if queue already full */
436	if (lp->tx_count >= (KORINA_NUM_TDS - 2)) {
437		lp->tx_full = 1;
438
439		if (lp->tx_count == (KORINA_NUM_TDS - 2))
440			netif_stop_queue(dev);
441		else
442			goto drop_packet;
443	}
444
445	lp->tx_count++;
446
447	lp->tx_skb[idx] = skb;
448
449	length = skb->len;
450
451	/* Setup the transmit descriptor. */
452	ca = dma_map_single(lp->dmadev, skb->data, length, DMA_TO_DEVICE);
453	if (dma_mapping_error(lp->dmadev, ca))
454		goto drop_packet;
455
456	lp->tx_skb_dma[idx] = ca;
457	td->ca = ca;
458
459	chain_prev = (idx - 1) & KORINA_TDS_MASK;
460	chain_next = (idx + 1) & KORINA_TDS_MASK;
461
462	if (readl(&(lp->tx_dma_regs->dmandptr)) == 0) {
463		if (lp->tx_chain_status == desc_is_empty) {
464			/* Update tail */
465			td->control = DMA_COUNT(length) |
466					DMA_DESC_COF | DMA_DESC_IOF;
467			/* Move tail */
468			lp->tx_chain_tail = chain_next;
469			/* Write to NDPTR */
470			writel(korina_tx_dma(lp, lp->tx_chain_head),
471			       &lp->tx_dma_regs->dmandptr);
472			/* Move head to tail */
473			lp->tx_chain_head = lp->tx_chain_tail;
474		} else {
475			/* Update tail */
476			td->control = DMA_COUNT(length) |
477					DMA_DESC_COF | DMA_DESC_IOF;
478			/* Link to prev */
479			lp->td_ring[chain_prev].control &=
480					~DMA_DESC_COF;
481			/* Link to prev */
482			lp->td_ring[chain_prev].link = korina_tx_dma(lp, idx);
483			/* Move tail */
484			lp->tx_chain_tail = chain_next;
485			/* Write to NDPTR */
486			writel(korina_tx_dma(lp, lp->tx_chain_head),
487			       &lp->tx_dma_regs->dmandptr);
488			/* Move head to tail */
489			lp->tx_chain_head = lp->tx_chain_tail;
490			lp->tx_chain_status = desc_is_empty;
491		}
492	} else {
493		if (lp->tx_chain_status == desc_is_empty) {
494			/* Update tail */
495			td->control = DMA_COUNT(length) |
496					DMA_DESC_COF | DMA_DESC_IOF;
497			/* Move tail */
498			lp->tx_chain_tail = chain_next;
499			lp->tx_chain_status = desc_filled;
500		} else {
501			/* Update tail */
502			td->control = DMA_COUNT(length) |
503					DMA_DESC_COF | DMA_DESC_IOF;
504			lp->td_ring[chain_prev].control &=
505					~DMA_DESC_COF;
506			lp->td_ring[chain_prev].link = korina_tx_dma(lp, idx);
507			lp->tx_chain_tail = chain_next;
508		}
509	}
510
511	netif_trans_update(dev);
512	spin_unlock_irqrestore(&lp->lock, flags);
513
514	return NETDEV_TX_OK;
515
516drop_packet:
517	dev->stats.tx_dropped++;
518	dev_kfree_skb_any(skb);
519	spin_unlock_irqrestore(&lp->lock, flags);
520
521	return NETDEV_TX_OK;
522}
523
524static int korina_mdio_wait(struct korina_private *lp)
525{
526	u32 value;
527
528	return readl_poll_timeout_atomic(&lp->eth_regs->miimind,
529					 value, value & ETH_MII_IND_BSY,
530					 1, 1000);
531}
532
533static int korina_mdio_read(struct net_device *dev, int phy, int reg)
534{
535	struct korina_private *lp = netdev_priv(dev);
536	int ret;
537
538	ret = korina_mdio_wait(lp);
539	if (ret < 0)
540		return ret;
541
542	writel(phy << 8 | reg, &lp->eth_regs->miimaddr);
543	writel(1, &lp->eth_regs->miimcmd);
544
545	ret = korina_mdio_wait(lp);
546	if (ret < 0)
547		return ret;
548
549	if (readl(&lp->eth_regs->miimind) & ETH_MII_IND_NV)
550		return -EINVAL;
551
552	ret = readl(&lp->eth_regs->miimrdd);
553	writel(0, &lp->eth_regs->miimcmd);
554	return ret;
555}
556
557static void korina_mdio_write(struct net_device *dev, int phy, int reg, int val)
558{
559	struct korina_private *lp = netdev_priv(dev);
560
561	if (korina_mdio_wait(lp))
562		return;
563
564	writel(0, &lp->eth_regs->miimcmd);
565	writel(phy << 8 | reg, &lp->eth_regs->miimaddr);
566	writel(val, &lp->eth_regs->miimwtd);
567}
568
569/* Ethernet Rx DMA interrupt */
570static irqreturn_t korina_rx_dma_interrupt(int irq, void *dev_id)
571{
572	struct net_device *dev = dev_id;
573	struct korina_private *lp = netdev_priv(dev);
574	u32 dmas, dmasm;
575	irqreturn_t retval;
576
577	dmas = readl(&lp->rx_dma_regs->dmas);
578	if (dmas & (DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR)) {
579		dmasm = readl(&lp->rx_dma_regs->dmasm);
580		writel(dmasm | (DMA_STAT_DONE |
581				DMA_STAT_HALT | DMA_STAT_ERR),
582				&lp->rx_dma_regs->dmasm);
583
584		napi_schedule(&lp->napi);
585
586		if (dmas & DMA_STAT_ERR)
587			printk(KERN_ERR "%s: DMA error\n", dev->name);
588
589		retval = IRQ_HANDLED;
590	} else
591		retval = IRQ_NONE;
592
593	return retval;
594}
595
596static int korina_rx(struct net_device *dev, int limit)
597{
598	struct korina_private *lp = netdev_priv(dev);
599	struct dma_desc *rd = &lp->rd_ring[lp->rx_next_done];
600	struct sk_buff *skb, *skb_new;
601	u32 devcs, pkt_len, dmas;
602	dma_addr_t ca;
603	int count;
604
605	for (count = 0; count < limit; count++) {
606		skb = lp->rx_skb[lp->rx_next_done];
607		skb_new = NULL;
608
609		devcs = rd->devcs;
610
611		if ((KORINA_RBSIZE - (u32)DMA_COUNT(rd->control)) == 0)
612			break;
613
614		/* check that this is a whole packet
615		 * WARNING: DMA_FD bit incorrectly set
616		 * in Rc32434 (errata ref #077) */
617		if (!(devcs & ETH_RX_LD))
618			goto next;
619
620		if (!(devcs & ETH_RX_ROK)) {
621			/* Update statistics counters */
622			dev->stats.rx_errors++;
623			dev->stats.rx_dropped++;
624			if (devcs & ETH_RX_CRC)
625				dev->stats.rx_crc_errors++;
626			if (devcs & ETH_RX_LE)
627				dev->stats.rx_length_errors++;
628			if (devcs & ETH_RX_OVR)
629				dev->stats.rx_fifo_errors++;
630			if (devcs & ETH_RX_CV)
631				dev->stats.rx_frame_errors++;
632			if (devcs & ETH_RX_CES)
633				dev->stats.rx_frame_errors++;
634
635			goto next;
636		}
637
638		/* Malloc up new buffer. */
639		skb_new = netdev_alloc_skb_ip_align(dev, KORINA_RBSIZE);
640		if (!skb_new)
641			break;
642
643		ca = dma_map_single(lp->dmadev, skb_new->data, KORINA_RBSIZE,
644				    DMA_FROM_DEVICE);
645		if (dma_mapping_error(lp->dmadev, ca)) {
646			dev_kfree_skb_any(skb_new);
647			break;
648		}
649
650		pkt_len = RCVPKT_LENGTH(devcs);
651		dma_unmap_single(lp->dmadev, lp->rx_skb_dma[lp->rx_next_done],
652				 pkt_len, DMA_FROM_DEVICE);
653
654		/* Do not count the CRC */
655		skb_put(skb, pkt_len - 4);
656		skb->protocol = eth_type_trans(skb, dev);
657
658		/* Pass the packet to upper layers */
659		napi_gro_receive(&lp->napi, skb);
660		dev->stats.rx_packets++;
661		dev->stats.rx_bytes += pkt_len;
662
663		/* Update the mcast stats */
664		if (devcs & ETH_RX_MP)
665			dev->stats.multicast++;
666
667		lp->rx_skb[lp->rx_next_done] = skb_new;
668		lp->rx_skb_dma[lp->rx_next_done] = ca;
669
670next:
671		rd->devcs = 0;
672
673		/* Restore descriptor's curr_addr */
674		rd->ca = lp->rx_skb_dma[lp->rx_next_done];
675
676		rd->control = DMA_COUNT(KORINA_RBSIZE) |
677			DMA_DESC_COD | DMA_DESC_IOD;
678		lp->rd_ring[(lp->rx_next_done - 1) &
679			KORINA_RDS_MASK].control &=
680			~DMA_DESC_COD;
681
682		lp->rx_next_done = (lp->rx_next_done + 1) & KORINA_RDS_MASK;
683		rd = &lp->rd_ring[lp->rx_next_done];
684		writel((u32)~DMA_STAT_DONE, &lp->rx_dma_regs->dmas);
685	}
686
687	dmas = readl(&lp->rx_dma_regs->dmas);
688
689	if (dmas & DMA_STAT_HALT) {
690		writel((u32)~(DMA_STAT_HALT | DMA_STAT_ERR),
691		       &lp->rx_dma_regs->dmas);
692
693		lp->dma_halt_cnt++;
694		rd->devcs = 0;
695		rd->ca = lp->rx_skb_dma[lp->rx_next_done];
696		writel(korina_rx_dma(lp, rd - lp->rd_ring),
697		       &lp->rx_dma_regs->dmandptr);
698	}
699
700	return count;
701}
702
703static int korina_poll(struct napi_struct *napi, int budget)
704{
705	struct korina_private *lp =
706		container_of(napi, struct korina_private, napi);
707	struct net_device *dev = lp->dev;
708	int work_done;
709
710	work_done = korina_rx(dev, budget);
711	if (work_done < budget) {
712		napi_complete_done(napi, work_done);
713
714		writel(readl(&lp->rx_dma_regs->dmasm) &
715			~(DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR),
716			&lp->rx_dma_regs->dmasm);
717	}
718	return work_done;
719}
720
721/*
722 * Set or clear the multicast filter for this adaptor.
723 */
724static void korina_multicast_list(struct net_device *dev)
725{
726	struct korina_private *lp = netdev_priv(dev);
727	unsigned long flags;
728	struct netdev_hw_addr *ha;
729	u32 recognise = ETH_ARC_AB;	/* always accept broadcasts */
730
731	/* Set promiscuous mode */
732	if (dev->flags & IFF_PROMISC)
733		recognise |= ETH_ARC_PRO;
734
735	else if ((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 4))
736		/* All multicast and broadcast */
737		recognise |= ETH_ARC_AM;
738
739	/* Build the hash table */
740	if (netdev_mc_count(dev) > 4) {
741		u16 hash_table[4] = { 0 };
742		u32 crc;
743
744		netdev_for_each_mc_addr(ha, dev) {
745			crc = ether_crc_le(6, ha->addr);
746			crc >>= 26;
747			hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
748		}
749		/* Accept filtered multicast */
750		recognise |= ETH_ARC_AFM;
751
752		/* Fill the MAC hash tables with their values */
753		writel((u32)(hash_table[1] << 16 | hash_table[0]),
754					&lp->eth_regs->ethhash0);
755		writel((u32)(hash_table[3] << 16 | hash_table[2]),
756					&lp->eth_regs->ethhash1);
757	}
758
759	spin_lock_irqsave(&lp->lock, flags);
760	writel(recognise, &lp->eth_regs->etharc);
761	spin_unlock_irqrestore(&lp->lock, flags);
762}
763
764static void korina_tx(struct net_device *dev)
765{
766	struct korina_private *lp = netdev_priv(dev);
767	struct dma_desc *td = &lp->td_ring[lp->tx_next_done];
768	u32 devcs;
769	u32 dmas;
770
771	spin_lock(&lp->lock);
772
773	/* Process all desc that are done */
774	while (IS_DMA_FINISHED(td->control)) {
775		if (lp->tx_full == 1) {
776			netif_wake_queue(dev);
777			lp->tx_full = 0;
778		}
779
780		devcs = lp->td_ring[lp->tx_next_done].devcs;
781		if ((devcs & (ETH_TX_FD | ETH_TX_LD)) !=
782				(ETH_TX_FD | ETH_TX_LD)) {
783			dev->stats.tx_errors++;
784			dev->stats.tx_dropped++;
785
786			/* Should never happen */
787			printk(KERN_ERR "%s: split tx ignored\n",
788							dev->name);
789		} else if (devcs & ETH_TX_TOK) {
790			dev->stats.tx_packets++;
791			dev->stats.tx_bytes +=
792					lp->tx_skb[lp->tx_next_done]->len;
793		} else {
794			dev->stats.tx_errors++;
795			dev->stats.tx_dropped++;
796
797			/* Underflow */
798			if (devcs & ETH_TX_UND)
799				dev->stats.tx_fifo_errors++;
800
801			/* Oversized frame */
802			if (devcs & ETH_TX_OF)
803				dev->stats.tx_aborted_errors++;
804
805			/* Excessive deferrals */
806			if (devcs & ETH_TX_ED)
807				dev->stats.tx_carrier_errors++;
808
809			/* Collisions: medium busy */
810			if (devcs & ETH_TX_EC)
811				dev->stats.collisions++;
812
813			/* Late collision */
814			if (devcs & ETH_TX_LC)
815				dev->stats.tx_window_errors++;
816		}
817
818		/* We must always free the original skb */
819		if (lp->tx_skb[lp->tx_next_done]) {
820			dma_unmap_single(lp->dmadev,
821					 lp->tx_skb_dma[lp->tx_next_done],
822					 lp->tx_skb[lp->tx_next_done]->len,
823					 DMA_TO_DEVICE);
824			dev_kfree_skb_any(lp->tx_skb[lp->tx_next_done]);
825			lp->tx_skb[lp->tx_next_done] = NULL;
826		}
827
828		lp->td_ring[lp->tx_next_done].control = DMA_DESC_IOF;
829		lp->td_ring[lp->tx_next_done].devcs = ETH_TX_FD | ETH_TX_LD;
830		lp->td_ring[lp->tx_next_done].link = 0;
831		lp->td_ring[lp->tx_next_done].ca = 0;
832		lp->tx_count--;
833
834		/* Go on to next transmission */
835		lp->tx_next_done = (lp->tx_next_done + 1) & KORINA_TDS_MASK;
836		td = &lp->td_ring[lp->tx_next_done];
837
838	}
839
840	/* Clear the DMA status register */
841	dmas = readl(&lp->tx_dma_regs->dmas);
842	writel(~dmas, &lp->tx_dma_regs->dmas);
843
844	writel(readl(&lp->tx_dma_regs->dmasm) &
845			~(DMA_STAT_FINI | DMA_STAT_ERR),
846			&lp->tx_dma_regs->dmasm);
847
848	spin_unlock(&lp->lock);
849}
850
851static irqreturn_t
852korina_tx_dma_interrupt(int irq, void *dev_id)
853{
854	struct net_device *dev = dev_id;
855	struct korina_private *lp = netdev_priv(dev);
856	u32 dmas, dmasm;
857	irqreturn_t retval;
858
859	dmas = readl(&lp->tx_dma_regs->dmas);
860
861	if (dmas & (DMA_STAT_FINI | DMA_STAT_ERR)) {
862		dmasm = readl(&lp->tx_dma_regs->dmasm);
863		writel(dmasm | (DMA_STAT_FINI | DMA_STAT_ERR),
864				&lp->tx_dma_regs->dmasm);
865
866		korina_tx(dev);
867
868		if (lp->tx_chain_status == desc_filled &&
869			(readl(&(lp->tx_dma_regs->dmandptr)) == 0)) {
870			writel(korina_tx_dma(lp, lp->tx_chain_head),
871			       &lp->tx_dma_regs->dmandptr);
872			lp->tx_chain_status = desc_is_empty;
873			lp->tx_chain_head = lp->tx_chain_tail;
874			netif_trans_update(dev);
875		}
876		if (dmas & DMA_STAT_ERR)
877			printk(KERN_ERR "%s: DMA error\n", dev->name);
878
879		retval = IRQ_HANDLED;
880	} else
881		retval = IRQ_NONE;
882
883	return retval;
884}
885
886
887static void korina_check_media(struct net_device *dev, unsigned int init_media)
888{
889	struct korina_private *lp = netdev_priv(dev);
890
891	mii_check_media(&lp->mii_if, 1, init_media);
892
893	if (lp->mii_if.full_duplex)
894		writel(readl(&lp->eth_regs->ethmac2) | ETH_MAC2_FD,
895						&lp->eth_regs->ethmac2);
896	else
897		writel(readl(&lp->eth_regs->ethmac2) & ~ETH_MAC2_FD,
898						&lp->eth_regs->ethmac2);
899}
900
901static void korina_poll_media(struct timer_list *t)
902{
903	struct korina_private *lp = from_timer(lp, t, media_check_timer);
904	struct net_device *dev = lp->dev;
905
906	korina_check_media(dev, 0);
907	mod_timer(&lp->media_check_timer, jiffies + HZ);
908}
909
910static void korina_set_carrier(struct mii_if_info *mii)
911{
912	if (mii->force_media) {
913		/* autoneg is off: Link is always assumed to be up */
914		if (!netif_carrier_ok(mii->dev))
915			netif_carrier_on(mii->dev);
916	} else  /* Let MMI library update carrier status */
917		korina_check_media(mii->dev, 0);
918}
919
920static int korina_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
921{
922	struct korina_private *lp = netdev_priv(dev);
923	struct mii_ioctl_data *data = if_mii(rq);
924	int rc;
925
926	if (!netif_running(dev))
927		return -EINVAL;
928	spin_lock_irq(&lp->lock);
929	rc = generic_mii_ioctl(&lp->mii_if, data, cmd, NULL);
930	spin_unlock_irq(&lp->lock);
931	korina_set_carrier(&lp->mii_if);
932
933	return rc;
934}
935
936/* ethtool helpers */
937static void netdev_get_drvinfo(struct net_device *dev,
938				struct ethtool_drvinfo *info)
939{
940	struct korina_private *lp = netdev_priv(dev);
941
942	strscpy(info->driver, DRV_NAME, sizeof(info->driver));
943	strscpy(info->version, DRV_VERSION, sizeof(info->version));
944	strscpy(info->bus_info, lp->dev->name, sizeof(info->bus_info));
945}
946
947static int netdev_get_link_ksettings(struct net_device *dev,
948				     struct ethtool_link_ksettings *cmd)
949{
950	struct korina_private *lp = netdev_priv(dev);
951
952	spin_lock_irq(&lp->lock);
953	mii_ethtool_get_link_ksettings(&lp->mii_if, cmd);
954	spin_unlock_irq(&lp->lock);
955
956	return 0;
957}
958
959static int netdev_set_link_ksettings(struct net_device *dev,
960				     const struct ethtool_link_ksettings *cmd)
961{
962	struct korina_private *lp = netdev_priv(dev);
963	int rc;
964
965	spin_lock_irq(&lp->lock);
966	rc = mii_ethtool_set_link_ksettings(&lp->mii_if, cmd);
967	spin_unlock_irq(&lp->lock);
968	korina_set_carrier(&lp->mii_if);
969
970	return rc;
971}
972
973static u32 netdev_get_link(struct net_device *dev)
974{
975	struct korina_private *lp = netdev_priv(dev);
976
977	return mii_link_ok(&lp->mii_if);
978}
979
980static const struct ethtool_ops netdev_ethtool_ops = {
981	.get_drvinfo		= netdev_get_drvinfo,
982	.get_link		= netdev_get_link,
983	.get_link_ksettings	= netdev_get_link_ksettings,
984	.set_link_ksettings	= netdev_set_link_ksettings,
985};
986
987static int korina_alloc_ring(struct net_device *dev)
988{
989	struct korina_private *lp = netdev_priv(dev);
990	struct sk_buff *skb;
991	dma_addr_t ca;
992	int i;
993
994	/* Initialize the transmit descriptors */
995	for (i = 0; i < KORINA_NUM_TDS; i++) {
996		lp->td_ring[i].control = DMA_DESC_IOF;
997		lp->td_ring[i].devcs = ETH_TX_FD | ETH_TX_LD;
998		lp->td_ring[i].ca = 0;
999		lp->td_ring[i].link = 0;
1000	}
1001	lp->tx_next_done = lp->tx_chain_head = lp->tx_chain_tail =
1002			lp->tx_full = lp->tx_count = 0;
1003	lp->tx_chain_status = desc_is_empty;
1004
1005	/* Initialize the receive descriptors */
1006	for (i = 0; i < KORINA_NUM_RDS; i++) {
1007		skb = netdev_alloc_skb_ip_align(dev, KORINA_RBSIZE);
1008		if (!skb)
1009			return -ENOMEM;
1010		lp->rx_skb[i] = skb;
1011		lp->rd_ring[i].control = DMA_DESC_IOD |
1012				DMA_COUNT(KORINA_RBSIZE);
1013		lp->rd_ring[i].devcs = 0;
1014		ca = dma_map_single(lp->dmadev, skb->data, KORINA_RBSIZE,
1015				    DMA_FROM_DEVICE);
1016		if (dma_mapping_error(lp->dmadev, ca))
1017			return -ENOMEM;
1018		lp->rd_ring[i].ca = ca;
1019		lp->rx_skb_dma[i] = ca;
1020		lp->rd_ring[i].link = korina_rx_dma(lp, i + 1);
1021	}
1022
1023	/* loop back receive descriptors, so the last
1024	 * descriptor points to the first one */
1025	lp->rd_ring[i - 1].link = lp->rd_dma;
1026	lp->rd_ring[i - 1].control |= DMA_DESC_COD;
1027
1028	lp->rx_next_done  = 0;
1029	lp->rx_chain_head = 0;
1030	lp->rx_chain_tail = 0;
1031	lp->rx_chain_status = desc_is_empty;
1032
1033	return 0;
1034}
1035
1036static void korina_free_ring(struct net_device *dev)
1037{
1038	struct korina_private *lp = netdev_priv(dev);
1039	int i;
1040
1041	for (i = 0; i < KORINA_NUM_RDS; i++) {
1042		lp->rd_ring[i].control = 0;
1043		if (lp->rx_skb[i]) {
1044			dma_unmap_single(lp->dmadev, lp->rx_skb_dma[i],
1045					 KORINA_RBSIZE, DMA_FROM_DEVICE);
1046			dev_kfree_skb_any(lp->rx_skb[i]);
1047			lp->rx_skb[i] = NULL;
1048		}
1049	}
1050
1051	for (i = 0; i < KORINA_NUM_TDS; i++) {
1052		lp->td_ring[i].control = 0;
1053		if (lp->tx_skb[i]) {
1054			dma_unmap_single(lp->dmadev, lp->tx_skb_dma[i],
1055					 lp->tx_skb[i]->len, DMA_TO_DEVICE);
1056			dev_kfree_skb_any(lp->tx_skb[i]);
1057			lp->tx_skb[i] = NULL;
1058		}
1059	}
1060}
1061
1062/*
1063 * Initialize the RC32434 ethernet controller.
1064 */
1065static int korina_init(struct net_device *dev)
1066{
1067	struct korina_private *lp = netdev_priv(dev);
1068
1069	/* Disable DMA */
1070	korina_abort_tx(dev);
1071	korina_abort_rx(dev);
1072
1073	/* reset ethernet logic */
1074	writel(0, &lp->eth_regs->ethintfc);
1075	while ((readl(&lp->eth_regs->ethintfc) & ETH_INT_FC_RIP))
1076		netif_trans_update(dev);
1077
1078	/* Enable Ethernet Interface */
1079	writel(ETH_INT_FC_EN, &lp->eth_regs->ethintfc);
1080
1081	/* Allocate rings */
1082	if (korina_alloc_ring(dev)) {
1083		printk(KERN_ERR "%s: descriptor allocation failed\n", dev->name);
1084		korina_free_ring(dev);
1085		return -ENOMEM;
1086	}
1087
1088	writel(0, &lp->rx_dma_regs->dmas);
1089	/* Start Rx DMA */
1090	writel(0, &lp->rx_dma_regs->dmandptr);
1091	writel(korina_rx_dma(lp, 0), &lp->rx_dma_regs->dmadptr);
1092
1093	writel(readl(&lp->tx_dma_regs->dmasm) &
1094			~(DMA_STAT_FINI | DMA_STAT_ERR),
1095			&lp->tx_dma_regs->dmasm);
1096	writel(readl(&lp->rx_dma_regs->dmasm) &
1097			~(DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR),
1098			&lp->rx_dma_regs->dmasm);
1099
1100	/* Accept only packets destined for this Ethernet device address */
1101	writel(ETH_ARC_AB, &lp->eth_regs->etharc);
1102
1103	/* Set all Ether station address registers to their initial values */
1104	writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal0);
1105	writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah0);
1106
1107	writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal1);
1108	writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah1);
1109
1110	writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal2);
1111	writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah2);
1112
1113	writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal3);
1114	writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah3);
1115
1116
1117	/* Frame Length Checking, Pad Enable, CRC Enable, Full Duplex set */
1118	writel(ETH_MAC2_PE | ETH_MAC2_CEN | ETH_MAC2_FD,
1119			&lp->eth_regs->ethmac2);
1120
1121	/* Back to back inter-packet-gap */
1122	writel(0x15, &lp->eth_regs->ethipgt);
1123	/* Non - Back to back inter-packet-gap */
1124	writel(0x12, &lp->eth_regs->ethipgr);
1125
1126	/* Management Clock Prescaler Divisor
1127	 * Clock independent setting */
1128	writel(((lp->mii_clock_freq) / MII_CLOCK + 1) & ~1,
1129	       &lp->eth_regs->ethmcp);
1130	writel(0, &lp->eth_regs->miimcfg);
1131
1132	/* don't transmit until fifo contains 48b */
1133	writel(48, &lp->eth_regs->ethfifott);
1134
1135	writel(ETH_MAC1_RE, &lp->eth_regs->ethmac1);
1136
1137	korina_check_media(dev, 1);
1138
1139	napi_enable(&lp->napi);
1140	netif_start_queue(dev);
1141
1142	return 0;
1143}
1144
1145/*
1146 * Restart the RC32434 ethernet controller.
1147 */
1148static void korina_restart_task(struct work_struct *work)
1149{
1150	struct korina_private *lp = container_of(work,
1151			struct korina_private, restart_task);
1152	struct net_device *dev = lp->dev;
1153
1154	/*
1155	 * Disable interrupts
1156	 */
1157	disable_irq(lp->rx_irq);
1158	disable_irq(lp->tx_irq);
1159
1160	writel(readl(&lp->tx_dma_regs->dmasm) |
1161				DMA_STAT_FINI | DMA_STAT_ERR,
1162				&lp->tx_dma_regs->dmasm);
1163	writel(readl(&lp->rx_dma_regs->dmasm) |
1164				DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR,
1165				&lp->rx_dma_regs->dmasm);
1166
1167	napi_disable(&lp->napi);
1168
1169	korina_free_ring(dev);
1170
1171	if (korina_init(dev) < 0) {
1172		printk(KERN_ERR "%s: cannot restart device\n", dev->name);
1173		return;
1174	}
1175	korina_multicast_list(dev);
1176
1177	enable_irq(lp->tx_irq);
1178	enable_irq(lp->rx_irq);
1179}
1180
1181static void korina_tx_timeout(struct net_device *dev, unsigned int txqueue)
1182{
1183	struct korina_private *lp = netdev_priv(dev);
1184
1185	schedule_work(&lp->restart_task);
1186}
1187
1188#ifdef CONFIG_NET_POLL_CONTROLLER
1189static void korina_poll_controller(struct net_device *dev)
1190{
1191	disable_irq(dev->irq);
1192	korina_tx_dma_interrupt(dev->irq, dev);
1193	enable_irq(dev->irq);
1194}
1195#endif
1196
1197static int korina_open(struct net_device *dev)
1198{
1199	struct korina_private *lp = netdev_priv(dev);
1200	int ret;
1201
1202	/* Initialize */
1203	ret = korina_init(dev);
1204	if (ret < 0) {
1205		printk(KERN_ERR "%s: cannot open device\n", dev->name);
1206		goto out;
1207	}
1208
1209	/* Install the interrupt handler
1210	 * that handles the Done Finished */
1211	ret = request_irq(lp->rx_irq, korina_rx_dma_interrupt,
1212			0, "Korina ethernet Rx", dev);
1213	if (ret < 0) {
1214		printk(KERN_ERR "%s: unable to get Rx DMA IRQ %d\n",
1215			dev->name, lp->rx_irq);
1216		goto err_release;
1217	}
1218	ret = request_irq(lp->tx_irq, korina_tx_dma_interrupt,
1219			0, "Korina ethernet Tx", dev);
1220	if (ret < 0) {
1221		printk(KERN_ERR "%s: unable to get Tx DMA IRQ %d\n",
1222			dev->name, lp->tx_irq);
1223		goto err_free_rx_irq;
1224	}
1225
1226	mod_timer(&lp->media_check_timer, jiffies + 1);
1227out:
1228	return ret;
1229
1230err_free_rx_irq:
1231	free_irq(lp->rx_irq, dev);
1232err_release:
1233	korina_free_ring(dev);
1234	goto out;
1235}
1236
1237static int korina_close(struct net_device *dev)
1238{
1239	struct korina_private *lp = netdev_priv(dev);
1240	u32 tmp;
1241
1242	del_timer(&lp->media_check_timer);
1243
1244	/* Disable interrupts */
1245	disable_irq(lp->rx_irq);
1246	disable_irq(lp->tx_irq);
1247
1248	korina_abort_tx(dev);
1249	tmp = readl(&lp->tx_dma_regs->dmasm);
1250	tmp = tmp | DMA_STAT_FINI | DMA_STAT_ERR;
1251	writel(tmp, &lp->tx_dma_regs->dmasm);
1252
1253	korina_abort_rx(dev);
1254	tmp = readl(&lp->rx_dma_regs->dmasm);
1255	tmp = tmp | DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR;
1256	writel(tmp, &lp->rx_dma_regs->dmasm);
1257
1258	napi_disable(&lp->napi);
1259
1260	cancel_work_sync(&lp->restart_task);
1261
1262	korina_free_ring(dev);
1263
1264	free_irq(lp->rx_irq, dev);
1265	free_irq(lp->tx_irq, dev);
1266
1267	return 0;
1268}
1269
1270static const struct net_device_ops korina_netdev_ops = {
1271	.ndo_open		= korina_open,
1272	.ndo_stop		= korina_close,
1273	.ndo_start_xmit		= korina_send_packet,
1274	.ndo_set_rx_mode	= korina_multicast_list,
1275	.ndo_tx_timeout		= korina_tx_timeout,
1276	.ndo_eth_ioctl		= korina_ioctl,
1277	.ndo_validate_addr	= eth_validate_addr,
1278	.ndo_set_mac_address	= eth_mac_addr,
1279#ifdef CONFIG_NET_POLL_CONTROLLER
1280	.ndo_poll_controller	= korina_poll_controller,
1281#endif
1282};
1283
1284static int korina_probe(struct platform_device *pdev)
1285{
1286	u8 *mac_addr = dev_get_platdata(&pdev->dev);
1287	struct korina_private *lp;
1288	struct net_device *dev;
1289	struct clk *clk;
1290	void __iomem *p;
1291	int rc;
1292
1293	dev = devm_alloc_etherdev(&pdev->dev, sizeof(struct korina_private));
1294	if (!dev)
1295		return -ENOMEM;
1296
1297	SET_NETDEV_DEV(dev, &pdev->dev);
1298	lp = netdev_priv(dev);
1299
1300	if (mac_addr)
1301		eth_hw_addr_set(dev, mac_addr);
1302	else if (of_get_ethdev_address(pdev->dev.of_node, dev) < 0)
1303		eth_hw_addr_random(dev);
1304
1305	clk = devm_clk_get_optional_enabled(&pdev->dev, "mdioclk");
1306	if (IS_ERR(clk))
1307		return PTR_ERR(clk);
1308	if (clk) {
1309		lp->mii_clock_freq = clk_get_rate(clk);
1310	} else {
1311		lp->mii_clock_freq = 200000000; /* max possible input clk */
1312	}
1313
1314	lp->rx_irq = platform_get_irq_byname(pdev, "rx");
1315	lp->tx_irq = platform_get_irq_byname(pdev, "tx");
1316
1317	p = devm_platform_ioremap_resource_byname(pdev, "emac");
1318	if (IS_ERR(p)) {
1319		printk(KERN_ERR DRV_NAME ": cannot remap registers\n");
1320		return PTR_ERR(p);
1321	}
1322	lp->eth_regs = p;
1323
1324	p = devm_platform_ioremap_resource_byname(pdev, "dma_rx");
1325	if (IS_ERR(p)) {
1326		printk(KERN_ERR DRV_NAME ": cannot remap Rx DMA registers\n");
1327		return PTR_ERR(p);
1328	}
1329	lp->rx_dma_regs = p;
1330
1331	p = devm_platform_ioremap_resource_byname(pdev, "dma_tx");
1332	if (IS_ERR(p)) {
1333		printk(KERN_ERR DRV_NAME ": cannot remap Tx DMA registers\n");
1334		return PTR_ERR(p);
1335	}
1336	lp->tx_dma_regs = p;
1337
1338	lp->td_ring = dmam_alloc_coherent(&pdev->dev, TD_RING_SIZE,
1339					  &lp->td_dma, GFP_KERNEL);
1340	if (!lp->td_ring)
1341		return -ENOMEM;
1342
1343	lp->rd_ring = dmam_alloc_coherent(&pdev->dev, RD_RING_SIZE,
1344					  &lp->rd_dma, GFP_KERNEL);
1345	if (!lp->rd_ring)
1346		return -ENOMEM;
1347
1348	spin_lock_init(&lp->lock);
1349	/* just use the rx dma irq */
1350	dev->irq = lp->rx_irq;
1351	lp->dev = dev;
1352	lp->dmadev = &pdev->dev;
1353
1354	dev->netdev_ops = &korina_netdev_ops;
1355	dev->ethtool_ops = &netdev_ethtool_ops;
1356	dev->watchdog_timeo = TX_TIMEOUT;
1357	netif_napi_add(dev, &lp->napi, korina_poll);
1358
1359	lp->mii_if.dev = dev;
1360	lp->mii_if.mdio_read = korina_mdio_read;
1361	lp->mii_if.mdio_write = korina_mdio_write;
1362	lp->mii_if.phy_id = 1;
1363	lp->mii_if.phy_id_mask = 0x1f;
1364	lp->mii_if.reg_num_mask = 0x1f;
1365
1366	platform_set_drvdata(pdev, dev);
1367
1368	rc = register_netdev(dev);
1369	if (rc < 0) {
1370		printk(KERN_ERR DRV_NAME
1371			": cannot register net device: %d\n", rc);
1372		return rc;
1373	}
1374	timer_setup(&lp->media_check_timer, korina_poll_media, 0);
1375
1376	INIT_WORK(&lp->restart_task, korina_restart_task);
1377
1378	printk(KERN_INFO "%s: " DRV_NAME "-" DRV_VERSION " " DRV_RELDATE "\n",
1379			dev->name);
1380	return rc;
1381}
1382
1383static int korina_remove(struct platform_device *pdev)
1384{
1385	struct net_device *dev = platform_get_drvdata(pdev);
1386
1387	unregister_netdev(dev);
1388
1389	return 0;
1390}
1391
1392#ifdef CONFIG_OF
1393static const struct of_device_id korina_match[] = {
1394	{
1395		.compatible = "idt,3243x-emac",
1396	},
1397	{ }
1398};
1399MODULE_DEVICE_TABLE(of, korina_match);
1400#endif
1401
1402static struct platform_driver korina_driver = {
1403	.driver = {
1404		.name = "korina",
1405		.of_match_table = of_match_ptr(korina_match),
1406	},
1407	.probe = korina_probe,
1408	.remove = korina_remove,
1409};
1410
1411module_platform_driver(korina_driver);
1412
1413MODULE_AUTHOR("Philip Rischel <rischelp@idt.com>");
1414MODULE_AUTHOR("Felix Fietkau <nbd@openwrt.org>");
1415MODULE_AUTHOR("Florian Fainelli <florian@openwrt.org>");
1416MODULE_AUTHOR("Roman Yeryomin <roman@advem.lv>");
1417MODULE_DESCRIPTION("IDT RC32434 (Korina) Ethernet driver");
1418MODULE_LICENSE("GPL");
1419