1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 1999 - 2018 Intel Corporation. */
3
4#include "ixgbe.h"
5#include <linux/ptp_classify.h>
6#include <linux/clocksource.h>
7
8/*
9 * The 82599 and the X540 do not have true 64bit nanosecond scale
10 * counter registers. Instead, SYSTIME is defined by a fixed point
11 * system which allows the user to define the scale counter increment
12 * value at every level change of the oscillator driving the SYSTIME
13 * value. For both devices the TIMINCA:IV field defines this
14 * increment. On the X540 device, 31 bits are provided. However on the
15 * 82599 only provides 24 bits. The time unit is determined by the
16 * clock frequency of the oscillator in combination with the TIMINCA
17 * register. When these devices link at 10Gb the oscillator has a
18 * period of 6.4ns. In order to convert the scale counter into
19 * nanoseconds the cyclecounter and timecounter structures are
20 * used. The SYSTIME registers need to be converted to ns values by use
21 * of only a right shift (division by power of 2). The following math
22 * determines the largest incvalue that will fit into the available
23 * bits in the TIMINCA register.
24 *
25 * PeriodWidth: Number of bits to store the clock period
26 * MaxWidth: The maximum width value of the TIMINCA register
27 * Period: The clock period for the oscillator
28 * round(): discard the fractional portion of the calculation
29 *
30 * Period * [ 2 ^ ( MaxWidth - PeriodWidth ) ]
31 *
32 * For the X540, MaxWidth is 31 bits, and the base period is 6.4 ns
33 * For the 82599, MaxWidth is 24 bits, and the base period is 6.4 ns
34 *
35 * The period also changes based on the link speed:
36 * At 10Gb link or no link, the period remains the same.
37 * At 1Gb link, the period is multiplied by 10. (64ns)
38 * At 100Mb link, the period is multiplied by 100. (640ns)
39 *
40 * The calculated value allows us to right shift the SYSTIME register
41 * value in order to quickly convert it into a nanosecond clock,
42 * while allowing for the maximum possible adjustment value.
43 *
44 * These diagrams are only for the 10Gb link period
45 *
46 *           SYSTIMEH            SYSTIMEL
47 *       +--------------+  +--------------+
48 * X540  |      32      |  | 1 | 3 |  28  |
49 *       *--------------+  +--------------+
50 *        \________ 36 bits ______/  fract
51 *
52 *       +--------------+  +--------------+
53 * 82599 |      32      |  | 8 | 3 |  21  |
54 *       *--------------+  +--------------+
55 *        \________ 43 bits ______/  fract
56 *
57 * The 36 bit X540 SYSTIME overflows every
58 *   2^36 * 10^-9 / 60 = 1.14 minutes or 69 seconds
59 *
60 * The 43 bit 82599 SYSTIME overflows every
61 *   2^43 * 10^-9 / 3600 = 2.4 hours
62 */
63#define IXGBE_INCVAL_10GB 0x66666666
64#define IXGBE_INCVAL_1GB  0x40000000
65#define IXGBE_INCVAL_100  0x50000000
66
67#define IXGBE_INCVAL_SHIFT_10GB  28
68#define IXGBE_INCVAL_SHIFT_1GB   24
69#define IXGBE_INCVAL_SHIFT_100   21
70
71#define IXGBE_INCVAL_SHIFT_82599 7
72#define IXGBE_INCPER_SHIFT_82599 24
73
74#define IXGBE_OVERFLOW_PERIOD    (HZ * 30)
75#define IXGBE_PTP_TX_TIMEOUT     (HZ)
76
77/* We use our own definitions instead of NSEC_PER_SEC because we want to mark
78 * the value as a ULL to force precision when bit shifting.
79 */
80#define NS_PER_SEC      1000000000ULL
81#define NS_PER_HALF_SEC  500000000ULL
82
83/* In contrast, the X550 controller has two registers, SYSTIMEH and SYSTIMEL
84 * which contain measurements of seconds and nanoseconds respectively. This
85 * matches the standard linux representation of time in the kernel. In addition,
86 * the X550 also has a SYSTIMER register which represents residue, or
87 * subnanosecond overflow adjustments. To control clock adjustment, the TIMINCA
88 * register is used, but it is unlike the X540 and 82599 devices. TIMINCA
89 * represents units of 2^-32 nanoseconds, and uses 31 bits for this, with the
90 * high bit representing whether the adjustent is positive or negative. Every
91 * clock cycle, the X550 will add 12.5 ns + TIMINCA which can result in a range
92 * of 12 to 13 nanoseconds adjustment. Unlike the 82599 and X540 devices, the
93 * X550's clock for purposes of SYSTIME generation is constant and not dependent
94 * on the link speed.
95 *
96 *           SYSTIMEH           SYSTIMEL        SYSTIMER
97 *       +--------------+  +--------------+  +-------------+
98 * X550  |      32      |  |      32      |  |     32      |
99 *       *--------------+  +--------------+  +-------------+
100 *       \____seconds___/   \_nanoseconds_/  \__2^-32 ns__/
101 *
102 * This results in a full 96 bits to represent the clock, with 32 bits for
103 * seconds, 32 bits for nanoseconds (largest value is 0d999999999 or just under
104 * 1 second) and an additional 32 bits to measure sub nanosecond adjustments for
105 * underflow of adjustments.
106 *
107 * The 32 bits of seconds for the X550 overflows every
108 *   2^32 / ( 365.25 * 24 * 60 * 60 ) = ~136 years.
109 *
110 * In order to adjust the clock frequency for the X550, the TIMINCA register is
111 * provided. This register represents a + or minus nearly 0.5 ns adjustment to
112 * the base frequency. It is measured in 2^-32 ns units, with the high bit being
113 * the sign bit. This register enables software to calculate frequency
114 * adjustments and apply them directly to the clock rate.
115 *
116 * The math for converting scaled_ppm into TIMINCA values is fairly
117 * straightforward.
118 *
119 *   TIMINCA value = ( Base_Frequency * scaled_ppm ) / 1000000ULL << 16
120 *
121 * To avoid overflow, we simply use mul_u64_u64_div_u64.
122 *
123 * This assumes that scaled_ppm is never high enough to create a value bigger
124 * than TIMINCA's 31 bits can store. This is ensured by the stack, and is
125 * measured in parts per billion. Calculating this value is also simple.
126 *   Max ppb = ( Max Adjustment / Base Frequency ) / 1000000000ULL
127 *
128 * For the X550, the Max adjustment is +/- 0.5 ns, and the base frequency is
129 * 12.5 nanoseconds. This means that the Max ppb is 39999999
130 *   Note: We subtract one in order to ensure no overflow, because the TIMINCA
131 *         register can only hold slightly under 0.5 nanoseconds.
132 *
133 * Because TIMINCA is measured in 2^-32 ns units, we have to convert 12.5 ns
134 * into 2^-32 units, which is
135 *
136 *  12.5 * 2^32 = C80000000
137 *
138 * Some revisions of hardware have a faster base frequency than the registers
139 * were defined for. To fix this, we use a timecounter structure with the
140 * proper mult and shift to convert the cycles into nanoseconds of time.
141 */
142#define IXGBE_X550_BASE_PERIOD 0xC80000000ULL
143#define INCVALUE_MASK	0x7FFFFFFF
144#define ISGN		0x80000000
145
146/**
147 * ixgbe_ptp_setup_sdp_X540
148 * @adapter: private adapter structure
149 *
150 * this function enables or disables the clock out feature on SDP0 for
151 * the X540 device. It will create a 1 second periodic output that can
152 * be used as the PPS (via an interrupt).
153 *
154 * It calculates when the system time will be on an exact second, and then
155 * aligns the start of the PPS signal to that value.
156 *
157 * This works by using the cycle counter shift and mult values in reverse, and
158 * assumes that the values we're shifting will not overflow.
159 */
160static void ixgbe_ptp_setup_sdp_X540(struct ixgbe_adapter *adapter)
161{
162	struct cyclecounter *cc = &adapter->hw_cc;
163	struct ixgbe_hw *hw = &adapter->hw;
164	u32 esdp, tsauxc, clktiml, clktimh, trgttiml, trgttimh, rem;
165	u64 ns = 0, clock_edge = 0, clock_period;
166	unsigned long flags;
167
168	/* disable the pin first */
169	IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, 0x0);
170	IXGBE_WRITE_FLUSH(hw);
171
172	if (!(adapter->flags2 & IXGBE_FLAG2_PTP_PPS_ENABLED))
173		return;
174
175	esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
176
177	/* enable the SDP0 pin as output, and connected to the
178	 * native function for Timesync (ClockOut)
179	 */
180	esdp |= IXGBE_ESDP_SDP0_DIR |
181		IXGBE_ESDP_SDP0_NATIVE;
182
183	/* enable the Clock Out feature on SDP0, and allow
184	 * interrupts to occur when the pin changes
185	 */
186	tsauxc = (IXGBE_TSAUXC_EN_CLK |
187		  IXGBE_TSAUXC_SYNCLK |
188		  IXGBE_TSAUXC_SDP0_INT);
189
190	/* Determine the clock time period to use. This assumes that the
191	 * cycle counter shift is small enough to avoid overflow.
192	 */
193	clock_period = div_u64((NS_PER_HALF_SEC << cc->shift), cc->mult);
194	clktiml = (u32)(clock_period);
195	clktimh = (u32)(clock_period >> 32);
196
197	/* Read the current clock time, and save the cycle counter value */
198	spin_lock_irqsave(&adapter->tmreg_lock, flags);
199	ns = timecounter_read(&adapter->hw_tc);
200	clock_edge = adapter->hw_tc.cycle_last;
201	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
202
203	/* Figure out how many seconds to add in order to round up */
204	div_u64_rem(ns, NS_PER_SEC, &rem);
205
206	/* Figure out how many nanoseconds to add to round the clock edge up
207	 * to the next full second
208	 */
209	rem = (NS_PER_SEC - rem);
210
211	/* Adjust the clock edge to align with the next full second. */
212	clock_edge += div_u64(((u64)rem << cc->shift), cc->mult);
213	trgttiml = (u32)clock_edge;
214	trgttimh = (u32)(clock_edge >> 32);
215
216	IXGBE_WRITE_REG(hw, IXGBE_CLKTIML, clktiml);
217	IXGBE_WRITE_REG(hw, IXGBE_CLKTIMH, clktimh);
218	IXGBE_WRITE_REG(hw, IXGBE_TRGTTIML0, trgttiml);
219	IXGBE_WRITE_REG(hw, IXGBE_TRGTTIMH0, trgttimh);
220
221	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
222	IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, tsauxc);
223
224	IXGBE_WRITE_FLUSH(hw);
225}
226
227/**
228 * ixgbe_ptp_setup_sdp_X550
229 * @adapter: private adapter structure
230 *
231 * Enable or disable a clock output signal on SDP 0 for X550 hardware.
232 *
233 * Use the target time feature to align the output signal on the next full
234 * second.
235 *
236 * This works by using the cycle counter shift and mult values in reverse, and
237 * assumes that the values we're shifting will not overflow.
238 */
239static void ixgbe_ptp_setup_sdp_X550(struct ixgbe_adapter *adapter)
240{
241	u32 esdp, tsauxc, freqout, trgttiml, trgttimh, rem, tssdp;
242	struct cyclecounter *cc = &adapter->hw_cc;
243	struct ixgbe_hw *hw = &adapter->hw;
244	u64 ns = 0, clock_edge = 0;
245	struct timespec64 ts;
246	unsigned long flags;
247
248	/* disable the pin first */
249	IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, 0x0);
250	IXGBE_WRITE_FLUSH(hw);
251
252	if (!(adapter->flags2 & IXGBE_FLAG2_PTP_PPS_ENABLED))
253		return;
254
255	esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
256
257	/* enable the SDP0 pin as output, and connected to the
258	 * native function for Timesync (ClockOut)
259	 */
260	esdp |= IXGBE_ESDP_SDP0_DIR |
261		IXGBE_ESDP_SDP0_NATIVE;
262
263	/* enable the Clock Out feature on SDP0, and use Target Time 0 to
264	 * enable generation of interrupts on the clock change.
265	 */
266#define IXGBE_TSAUXC_DIS_TS_CLEAR 0x40000000
267	tsauxc = (IXGBE_TSAUXC_EN_CLK | IXGBE_TSAUXC_ST0 |
268		  IXGBE_TSAUXC_EN_TT0 | IXGBE_TSAUXC_SDP0_INT |
269		  IXGBE_TSAUXC_DIS_TS_CLEAR);
270
271	tssdp = (IXGBE_TSSDP_TS_SDP0_EN |
272		 IXGBE_TSSDP_TS_SDP0_CLK0);
273
274	/* Determine the clock time period to use. This assumes that the
275	 * cycle counter shift is small enough to avoid overflowing a 32bit
276	 * value.
277	 */
278	freqout = div_u64(NS_PER_HALF_SEC << cc->shift,  cc->mult);
279
280	/* Read the current clock time, and save the cycle counter value */
281	spin_lock_irqsave(&adapter->tmreg_lock, flags);
282	ns = timecounter_read(&adapter->hw_tc);
283	clock_edge = adapter->hw_tc.cycle_last;
284	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
285
286	/* Figure out how far past the next second we are */
287	div_u64_rem(ns, NS_PER_SEC, &rem);
288
289	/* Figure out how many nanoseconds to add to round the clock edge up
290	 * to the next full second
291	 */
292	rem = (NS_PER_SEC - rem);
293
294	/* Adjust the clock edge to align with the next full second. */
295	clock_edge += div_u64(((u64)rem << cc->shift), cc->mult);
296
297	/* X550 hardware stores the time in 32bits of 'billions of cycles' and
298	 * 32bits of 'cycles'. There's no guarantee that cycles represents
299	 * nanoseconds. However, we can use the math from a timespec64 to
300	 * convert into the hardware representation.
301	 *
302	 * See ixgbe_ptp_read_X550() for more details.
303	 */
304	ts = ns_to_timespec64(clock_edge);
305	trgttiml = (u32)ts.tv_nsec;
306	trgttimh = (u32)ts.tv_sec;
307
308	IXGBE_WRITE_REG(hw, IXGBE_FREQOUT0, freqout);
309	IXGBE_WRITE_REG(hw, IXGBE_TRGTTIML0, trgttiml);
310	IXGBE_WRITE_REG(hw, IXGBE_TRGTTIMH0, trgttimh);
311
312	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
313	IXGBE_WRITE_REG(hw, IXGBE_TSSDP, tssdp);
314	IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, tsauxc);
315
316	IXGBE_WRITE_FLUSH(hw);
317}
318
319/**
320 * ixgbe_ptp_read_X550 - read cycle counter value
321 * @cc: cyclecounter structure
322 *
323 * This function reads SYSTIME registers. It is called by the cyclecounter
324 * structure to convert from internal representation into nanoseconds. We need
325 * this for X550 since some skews do not have expected clock frequency and
326 * result of SYSTIME is 32bits of "billions of cycles" and 32 bits of
327 * "cycles", rather than seconds and nanoseconds.
328 */
329static u64 ixgbe_ptp_read_X550(const struct cyclecounter *cc)
330{
331	struct ixgbe_adapter *adapter =
332		container_of(cc, struct ixgbe_adapter, hw_cc);
333	struct ixgbe_hw *hw = &adapter->hw;
334	struct timespec64 ts;
335
336	/* storage is 32 bits of 'billions of cycles' and 32 bits of 'cycles'.
337	 * Some revisions of hardware run at a higher frequency and so the
338	 * cycles are not guaranteed to be nanoseconds. The timespec64 created
339	 * here is used for its math/conversions but does not necessarily
340	 * represent nominal time.
341	 *
342	 * It should be noted that this cyclecounter will overflow at a
343	 * non-bitmask field since we have to convert our billions of cycles
344	 * into an actual cycles count. This results in some possible weird
345	 * situations at high cycle counter stamps. However given that 32 bits
346	 * of "seconds" is ~138 years this isn't a problem. Even at the
347	 * increased frequency of some revisions, this is still ~103 years.
348	 * Since the SYSTIME values start at 0 and we never write them, it is
349	 * highly unlikely for the cyclecounter to overflow in practice.
350	 */
351	IXGBE_READ_REG(hw, IXGBE_SYSTIMR);
352	ts.tv_nsec = IXGBE_READ_REG(hw, IXGBE_SYSTIML);
353	ts.tv_sec = IXGBE_READ_REG(hw, IXGBE_SYSTIMH);
354
355	return (u64)timespec64_to_ns(&ts);
356}
357
358/**
359 * ixgbe_ptp_read_82599 - read raw cycle counter (to be used by time counter)
360 * @cc: the cyclecounter structure
361 *
362 * this function reads the cyclecounter registers and is called by the
363 * cyclecounter structure used to construct a ns counter from the
364 * arbitrary fixed point registers
365 */
366static u64 ixgbe_ptp_read_82599(const struct cyclecounter *cc)
367{
368	struct ixgbe_adapter *adapter =
369		container_of(cc, struct ixgbe_adapter, hw_cc);
370	struct ixgbe_hw *hw = &adapter->hw;
371	u64 stamp = 0;
372
373	stamp |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIML);
374	stamp |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIMH) << 32;
375
376	return stamp;
377}
378
379/**
380 * ixgbe_ptp_convert_to_hwtstamp - convert register value to hw timestamp
381 * @adapter: private adapter structure
382 * @hwtstamp: stack timestamp structure
383 * @timestamp: unsigned 64bit system time value
384 *
385 * We need to convert the adapter's RX/TXSTMP registers into a hwtstamp value
386 * which can be used by the stack's ptp functions.
387 *
388 * The lock is used to protect consistency of the cyclecounter and the SYSTIME
389 * registers. However, it does not need to protect against the Rx or Tx
390 * timestamp registers, as there can't be a new timestamp until the old one is
391 * unlatched by reading.
392 *
393 * In addition to the timestamp in hardware, some controllers need a software
394 * overflow cyclecounter, and this function takes this into account as well.
395 **/
396static void ixgbe_ptp_convert_to_hwtstamp(struct ixgbe_adapter *adapter,
397					  struct skb_shared_hwtstamps *hwtstamp,
398					  u64 timestamp)
399{
400	unsigned long flags;
401	struct timespec64 systime;
402	u64 ns;
403
404	memset(hwtstamp, 0, sizeof(*hwtstamp));
405
406	switch (adapter->hw.mac.type) {
407	/* X550 and later hardware supposedly represent time using a seconds
408	 * and nanoseconds counter, instead of raw 64bits nanoseconds. We need
409	 * to convert the timestamp into cycles before it can be fed to the
410	 * cyclecounter. We need an actual cyclecounter because some revisions
411	 * of hardware run at a higher frequency and thus the counter does
412	 * not represent seconds/nanoseconds. Instead it can be thought of as
413	 * cycles and billions of cycles.
414	 */
415	case ixgbe_mac_X550:
416	case ixgbe_mac_X550EM_x:
417	case ixgbe_mac_x550em_a:
418		/* Upper 32 bits represent billions of cycles, lower 32 bits
419		 * represent cycles. However, we use timespec64_to_ns for the
420		 * correct math even though the units haven't been corrected
421		 * yet.
422		 */
423		systime.tv_sec = timestamp >> 32;
424		systime.tv_nsec = timestamp & 0xFFFFFFFF;
425
426		timestamp = timespec64_to_ns(&systime);
427		break;
428	default:
429		break;
430	}
431
432	spin_lock_irqsave(&adapter->tmreg_lock, flags);
433	ns = timecounter_cyc2time(&adapter->hw_tc, timestamp);
434	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
435
436	hwtstamp->hwtstamp = ns_to_ktime(ns);
437}
438
439/**
440 * ixgbe_ptp_adjfine_82599
441 * @ptp: the ptp clock structure
442 * @scaled_ppm: scaled parts per million adjustment from base
443 *
444 * Adjust the frequency of the ptp cycle counter by the
445 * indicated scaled_ppm from the base frequency.
446 *
447 * Scaled parts per million is ppm with a 16-bit binary fractional field.
448 */
449static int ixgbe_ptp_adjfine_82599(struct ptp_clock_info *ptp, long scaled_ppm)
450{
451	struct ixgbe_adapter *adapter =
452		container_of(ptp, struct ixgbe_adapter, ptp_caps);
453	struct ixgbe_hw *hw = &adapter->hw;
454	u64 incval;
455
456	smp_mb();
457	incval = READ_ONCE(adapter->base_incval);
458	incval = adjust_by_scaled_ppm(incval, scaled_ppm);
459
460	switch (hw->mac.type) {
461	case ixgbe_mac_X540:
462		if (incval > 0xFFFFFFFFULL)
463			e_dev_warn("PTP scaled_ppm adjusted SYSTIME rate overflowed!\n");
464		IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, (u32)incval);
465		break;
466	case ixgbe_mac_82599EB:
467		if (incval > 0x00FFFFFFULL)
468			e_dev_warn("PTP scaled_ppm adjusted SYSTIME rate overflowed!\n");
469		IXGBE_WRITE_REG(hw, IXGBE_TIMINCA,
470				BIT(IXGBE_INCPER_SHIFT_82599) |
471				((u32)incval & 0x00FFFFFFUL));
472		break;
473	default:
474		break;
475	}
476
477	return 0;
478}
479
480/**
481 * ixgbe_ptp_adjfine_X550
482 * @ptp: the ptp clock structure
483 * @scaled_ppm: scaled parts per million adjustment from base
484 *
485 * Adjust the frequency of the SYSTIME registers by the indicated scaled_ppm
486 * from base frequency.
487 *
488 * Scaled parts per million is ppm with a 16-bit binary fractional field.
489 */
490static int ixgbe_ptp_adjfine_X550(struct ptp_clock_info *ptp, long scaled_ppm)
491{
492	struct ixgbe_adapter *adapter =
493			container_of(ptp, struct ixgbe_adapter, ptp_caps);
494	struct ixgbe_hw *hw = &adapter->hw;
495	bool neg_adj;
496	u64 rate;
497	u32 inca;
498
499	neg_adj = diff_by_scaled_ppm(IXGBE_X550_BASE_PERIOD, scaled_ppm, &rate);
500
501	/* warn if rate is too large */
502	if (rate >= INCVALUE_MASK)
503		e_dev_warn("PTP scaled_ppm adjusted SYSTIME rate overflowed!\n");
504
505	inca = rate & INCVALUE_MASK;
506	if (neg_adj)
507		inca |= ISGN;
508
509	IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, inca);
510
511	return 0;
512}
513
514/**
515 * ixgbe_ptp_adjtime
516 * @ptp: the ptp clock structure
517 * @delta: offset to adjust the cycle counter by
518 *
519 * adjust the timer by resetting the timecounter structure.
520 */
521static int ixgbe_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
522{
523	struct ixgbe_adapter *adapter =
524		container_of(ptp, struct ixgbe_adapter, ptp_caps);
525	unsigned long flags;
526
527	spin_lock_irqsave(&adapter->tmreg_lock, flags);
528	timecounter_adjtime(&adapter->hw_tc, delta);
529	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
530
531	if (adapter->ptp_setup_sdp)
532		adapter->ptp_setup_sdp(adapter);
533
534	return 0;
535}
536
537/**
538 * ixgbe_ptp_gettimex
539 * @ptp: the ptp clock structure
540 * @ts: timespec to hold the PHC timestamp
541 * @sts: structure to hold the system time before and after reading the PHC
542 *
543 * read the timecounter and return the correct value on ns,
544 * after converting it into a struct timespec.
545 */
546static int ixgbe_ptp_gettimex(struct ptp_clock_info *ptp,
547			      struct timespec64 *ts,
548			      struct ptp_system_timestamp *sts)
549{
550	struct ixgbe_adapter *adapter =
551		container_of(ptp, struct ixgbe_adapter, ptp_caps);
552	struct ixgbe_hw *hw = &adapter->hw;
553	unsigned long flags;
554	u64 ns, stamp;
555
556	spin_lock_irqsave(&adapter->tmreg_lock, flags);
557
558	switch (adapter->hw.mac.type) {
559	case ixgbe_mac_X550:
560	case ixgbe_mac_X550EM_x:
561	case ixgbe_mac_x550em_a:
562		/* Upper 32 bits represent billions of cycles, lower 32 bits
563		 * represent cycles. However, we use timespec64_to_ns for the
564		 * correct math even though the units haven't been corrected
565		 * yet.
566		 */
567		ptp_read_system_prets(sts);
568		IXGBE_READ_REG(hw, IXGBE_SYSTIMR);
569		ptp_read_system_postts(sts);
570		ts->tv_nsec = IXGBE_READ_REG(hw, IXGBE_SYSTIML);
571		ts->tv_sec = IXGBE_READ_REG(hw, IXGBE_SYSTIMH);
572		stamp = timespec64_to_ns(ts);
573		break;
574	default:
575		ptp_read_system_prets(sts);
576		stamp = IXGBE_READ_REG(hw, IXGBE_SYSTIML);
577		ptp_read_system_postts(sts);
578		stamp |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIMH) << 32;
579		break;
580	}
581
582	ns = timecounter_cyc2time(&adapter->hw_tc, stamp);
583
584	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
585
586	*ts = ns_to_timespec64(ns);
587
588	return 0;
589}
590
591/**
592 * ixgbe_ptp_settime
593 * @ptp: the ptp clock structure
594 * @ts: the timespec containing the new time for the cycle counter
595 *
596 * reset the timecounter to use a new base value instead of the kernel
597 * wall timer value.
598 */
599static int ixgbe_ptp_settime(struct ptp_clock_info *ptp,
600			     const struct timespec64 *ts)
601{
602	struct ixgbe_adapter *adapter =
603		container_of(ptp, struct ixgbe_adapter, ptp_caps);
604	unsigned long flags;
605	u64 ns = timespec64_to_ns(ts);
606
607	/* reset the timecounter */
608	spin_lock_irqsave(&adapter->tmreg_lock, flags);
609	timecounter_init(&adapter->hw_tc, &adapter->hw_cc, ns);
610	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
611
612	if (adapter->ptp_setup_sdp)
613		adapter->ptp_setup_sdp(adapter);
614	return 0;
615}
616
617/**
618 * ixgbe_ptp_feature_enable
619 * @ptp: the ptp clock structure
620 * @rq: the requested feature to change
621 * @on: whether to enable or disable the feature
622 *
623 * enable (or disable) ancillary features of the phc subsystem.
624 * our driver only supports the PPS feature on the X540
625 */
626static int ixgbe_ptp_feature_enable(struct ptp_clock_info *ptp,
627				    struct ptp_clock_request *rq, int on)
628{
629	struct ixgbe_adapter *adapter =
630		container_of(ptp, struct ixgbe_adapter, ptp_caps);
631
632	/**
633	 * When PPS is enabled, unmask the interrupt for the ClockOut
634	 * feature, so that the interrupt handler can send the PPS
635	 * event when the clock SDP triggers. Clear mask when PPS is
636	 * disabled
637	 */
638	if (rq->type != PTP_CLK_REQ_PPS || !adapter->ptp_setup_sdp)
639		return -ENOTSUPP;
640
641	if (on)
642		adapter->flags2 |= IXGBE_FLAG2_PTP_PPS_ENABLED;
643	else
644		adapter->flags2 &= ~IXGBE_FLAG2_PTP_PPS_ENABLED;
645
646	adapter->ptp_setup_sdp(adapter);
647	return 0;
648}
649
650/**
651 * ixgbe_ptp_check_pps_event
652 * @adapter: the private adapter structure
653 *
654 * This function is called by the interrupt routine when checking for
655 * interrupts. It will check and handle a pps event.
656 */
657void ixgbe_ptp_check_pps_event(struct ixgbe_adapter *adapter)
658{
659	struct ixgbe_hw *hw = &adapter->hw;
660	struct ptp_clock_event event;
661
662	event.type = PTP_CLOCK_PPS;
663
664	/* this check is necessary in case the interrupt was enabled via some
665	 * alternative means (ex. debug_fs). Better to check here than
666	 * everywhere that calls this function.
667	 */
668	if (!adapter->ptp_clock)
669		return;
670
671	switch (hw->mac.type) {
672	case ixgbe_mac_X540:
673		ptp_clock_event(adapter->ptp_clock, &event);
674		break;
675	default:
676		break;
677	}
678}
679
680/**
681 * ixgbe_ptp_overflow_check - watchdog task to detect SYSTIME overflow
682 * @adapter: private adapter struct
683 *
684 * this watchdog task periodically reads the timecounter
685 * in order to prevent missing when the system time registers wrap
686 * around. This needs to be run approximately twice a minute.
687 */
688void ixgbe_ptp_overflow_check(struct ixgbe_adapter *adapter)
689{
690	bool timeout = time_is_before_jiffies(adapter->last_overflow_check +
691					     IXGBE_OVERFLOW_PERIOD);
692	unsigned long flags;
693
694	if (timeout) {
695		/* Update the timecounter */
696		spin_lock_irqsave(&adapter->tmreg_lock, flags);
697		timecounter_read(&adapter->hw_tc);
698		spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
699
700		adapter->last_overflow_check = jiffies;
701	}
702}
703
704/**
705 * ixgbe_ptp_rx_hang - detect error case when Rx timestamp registers latched
706 * @adapter: private network adapter structure
707 *
708 * this watchdog task is scheduled to detect error case where hardware has
709 * dropped an Rx packet that was timestamped when the ring is full. The
710 * particular error is rare but leaves the device in a state unable to timestamp
711 * any future packets.
712 */
713void ixgbe_ptp_rx_hang(struct ixgbe_adapter *adapter)
714{
715	struct ixgbe_hw *hw = &adapter->hw;
716	u32 tsyncrxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL);
717	struct ixgbe_ring *rx_ring;
718	unsigned long rx_event;
719	int n;
720
721	/* if we don't have a valid timestamp in the registers, just update the
722	 * timeout counter and exit
723	 */
724	if (!(tsyncrxctl & IXGBE_TSYNCRXCTL_VALID)) {
725		adapter->last_rx_ptp_check = jiffies;
726		return;
727	}
728
729	/* determine the most recent watchdog or rx_timestamp event */
730	rx_event = adapter->last_rx_ptp_check;
731	for (n = 0; n < adapter->num_rx_queues; n++) {
732		rx_ring = adapter->rx_ring[n];
733		if (time_after(rx_ring->last_rx_timestamp, rx_event))
734			rx_event = rx_ring->last_rx_timestamp;
735	}
736
737	/* only need to read the high RXSTMP register to clear the lock */
738	if (time_is_before_jiffies(rx_event + 5 * HZ)) {
739		IXGBE_READ_REG(hw, IXGBE_RXSTMPH);
740		adapter->last_rx_ptp_check = jiffies;
741
742		adapter->rx_hwtstamp_cleared++;
743		e_warn(drv, "clearing RX Timestamp hang\n");
744	}
745}
746
747/**
748 * ixgbe_ptp_clear_tx_timestamp - utility function to clear Tx timestamp state
749 * @adapter: the private adapter structure
750 *
751 * This function should be called whenever the state related to a Tx timestamp
752 * needs to be cleared. This helps ensure that all related bits are reset for
753 * the next Tx timestamp event.
754 */
755static void ixgbe_ptp_clear_tx_timestamp(struct ixgbe_adapter *adapter)
756{
757	struct ixgbe_hw *hw = &adapter->hw;
758
759	IXGBE_READ_REG(hw, IXGBE_TXSTMPH);
760	if (adapter->ptp_tx_skb) {
761		dev_kfree_skb_any(adapter->ptp_tx_skb);
762		adapter->ptp_tx_skb = NULL;
763	}
764	clear_bit_unlock(__IXGBE_PTP_TX_IN_PROGRESS, &adapter->state);
765}
766
767/**
768 * ixgbe_ptp_tx_hang - detect error case where Tx timestamp never finishes
769 * @adapter: private network adapter structure
770 */
771void ixgbe_ptp_tx_hang(struct ixgbe_adapter *adapter)
772{
773	bool timeout = time_is_before_jiffies(adapter->ptp_tx_start +
774					      IXGBE_PTP_TX_TIMEOUT);
775
776	if (!adapter->ptp_tx_skb)
777		return;
778
779	if (!test_bit(__IXGBE_PTP_TX_IN_PROGRESS, &adapter->state))
780		return;
781
782	/* If we haven't received a timestamp within the timeout, it is
783	 * reasonable to assume that it will never occur, so we can unlock the
784	 * timestamp bit when this occurs.
785	 */
786	if (timeout) {
787		cancel_work_sync(&adapter->ptp_tx_work);
788		ixgbe_ptp_clear_tx_timestamp(adapter);
789		adapter->tx_hwtstamp_timeouts++;
790		e_warn(drv, "clearing Tx timestamp hang\n");
791	}
792}
793
794/**
795 * ixgbe_ptp_tx_hwtstamp - utility function which checks for TX time stamp
796 * @adapter: the private adapter struct
797 *
798 * if the timestamp is valid, we convert it into the timecounter ns
799 * value, then store that result into the shhwtstamps structure which
800 * is passed up the network stack
801 */
802static void ixgbe_ptp_tx_hwtstamp(struct ixgbe_adapter *adapter)
803{
804	struct sk_buff *skb = adapter->ptp_tx_skb;
805	struct ixgbe_hw *hw = &adapter->hw;
806	struct skb_shared_hwtstamps shhwtstamps;
807	u64 regval = 0;
808
809	regval |= (u64)IXGBE_READ_REG(hw, IXGBE_TXSTMPL);
810	regval |= (u64)IXGBE_READ_REG(hw, IXGBE_TXSTMPH) << 32;
811	ixgbe_ptp_convert_to_hwtstamp(adapter, &shhwtstamps, regval);
812
813	/* Handle cleanup of the ptp_tx_skb ourselves, and unlock the state
814	 * bit prior to notifying the stack via skb_tstamp_tx(). This prevents
815	 * well behaved applications from attempting to timestamp again prior
816	 * to the lock bit being clear.
817	 */
818	adapter->ptp_tx_skb = NULL;
819	clear_bit_unlock(__IXGBE_PTP_TX_IN_PROGRESS, &adapter->state);
820
821	/* Notify the stack and then free the skb after we've unlocked */
822	skb_tstamp_tx(skb, &shhwtstamps);
823	dev_kfree_skb_any(skb);
824}
825
826/**
827 * ixgbe_ptp_tx_hwtstamp_work
828 * @work: pointer to the work struct
829 *
830 * This work item polls TSYNCTXCTL valid bit to determine when a Tx hardware
831 * timestamp has been taken for the current skb. It is necessary, because the
832 * descriptor's "done" bit does not correlate with the timestamp event.
833 */
834static void ixgbe_ptp_tx_hwtstamp_work(struct work_struct *work)
835{
836	struct ixgbe_adapter *adapter = container_of(work, struct ixgbe_adapter,
837						     ptp_tx_work);
838	struct ixgbe_hw *hw = &adapter->hw;
839	bool timeout = time_is_before_jiffies(adapter->ptp_tx_start +
840					      IXGBE_PTP_TX_TIMEOUT);
841	u32 tsynctxctl;
842
843	/* we have to have a valid skb to poll for a timestamp */
844	if (!adapter->ptp_tx_skb) {
845		ixgbe_ptp_clear_tx_timestamp(adapter);
846		return;
847	}
848
849	/* stop polling once we have a valid timestamp */
850	tsynctxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCTXCTL);
851	if (tsynctxctl & IXGBE_TSYNCTXCTL_VALID) {
852		ixgbe_ptp_tx_hwtstamp(adapter);
853		return;
854	}
855
856	if (timeout) {
857		ixgbe_ptp_clear_tx_timestamp(adapter);
858		adapter->tx_hwtstamp_timeouts++;
859		e_warn(drv, "clearing Tx Timestamp hang\n");
860	} else {
861		/* reschedule to keep checking if it's not available yet */
862		schedule_work(&adapter->ptp_tx_work);
863	}
864}
865
866/**
867 * ixgbe_ptp_rx_pktstamp - utility function to get RX time stamp from buffer
868 * @q_vector: structure containing interrupt and ring information
869 * @skb: the packet
870 *
871 * This function will be called by the Rx routine of the timestamp for this
872 * packet is stored in the buffer. The value is stored in little endian format
873 * starting at the end of the packet data.
874 */
875void ixgbe_ptp_rx_pktstamp(struct ixgbe_q_vector *q_vector,
876			   struct sk_buff *skb)
877{
878	__le64 regval;
879
880	/* copy the bits out of the skb, and then trim the skb length */
881	skb_copy_bits(skb, skb->len - IXGBE_TS_HDR_LEN, &regval,
882		      IXGBE_TS_HDR_LEN);
883	__pskb_trim(skb, skb->len - IXGBE_TS_HDR_LEN);
884
885	/* The timestamp is recorded in little endian format, and is stored at
886	 * the end of the packet.
887	 *
888	 * DWORD: N              N + 1      N + 2
889	 * Field: End of Packet  SYSTIMH    SYSTIML
890	 */
891	ixgbe_ptp_convert_to_hwtstamp(q_vector->adapter, skb_hwtstamps(skb),
892				      le64_to_cpu(regval));
893}
894
895/**
896 * ixgbe_ptp_rx_rgtstamp - utility function which checks for RX time stamp
897 * @q_vector: structure containing interrupt and ring information
898 * @skb: particular skb to send timestamp with
899 *
900 * if the timestamp is valid, we convert it into the timecounter ns
901 * value, then store that result into the shhwtstamps structure which
902 * is passed up the network stack
903 */
904void ixgbe_ptp_rx_rgtstamp(struct ixgbe_q_vector *q_vector,
905			   struct sk_buff *skb)
906{
907	struct ixgbe_adapter *adapter;
908	struct ixgbe_hw *hw;
909	u64 regval = 0;
910	u32 tsyncrxctl;
911
912	/* we cannot process timestamps on a ring without a q_vector */
913	if (!q_vector || !q_vector->adapter)
914		return;
915
916	adapter = q_vector->adapter;
917	hw = &adapter->hw;
918
919	/* Read the tsyncrxctl register afterwards in order to prevent taking an
920	 * I/O hit on every packet.
921	 */
922
923	tsyncrxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL);
924	if (!(tsyncrxctl & IXGBE_TSYNCRXCTL_VALID))
925		return;
926
927	regval |= (u64)IXGBE_READ_REG(hw, IXGBE_RXSTMPL);
928	regval |= (u64)IXGBE_READ_REG(hw, IXGBE_RXSTMPH) << 32;
929
930	ixgbe_ptp_convert_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
931}
932
933/**
934 * ixgbe_ptp_get_ts_config - get current hardware timestamping configuration
935 * @adapter: pointer to adapter structure
936 * @ifr: ioctl data
937 *
938 * This function returns the current timestamping settings. Rather than
939 * attempt to deconstruct registers to fill in the values, simply keep a copy
940 * of the old settings around, and return a copy when requested.
941 */
942int ixgbe_ptp_get_ts_config(struct ixgbe_adapter *adapter, struct ifreq *ifr)
943{
944	struct hwtstamp_config *config = &adapter->tstamp_config;
945
946	return copy_to_user(ifr->ifr_data, config,
947			    sizeof(*config)) ? -EFAULT : 0;
948}
949
950/**
951 * ixgbe_ptp_set_timestamp_mode - setup the hardware for the requested mode
952 * @adapter: the private ixgbe adapter structure
953 * @config: the hwtstamp configuration requested
954 *
955 * Outgoing time stamping can be enabled and disabled. Play nice and
956 * disable it when requested, although it shouldn't cause any overhead
957 * when no packet needs it. At most one packet in the queue may be
958 * marked for time stamping, otherwise it would be impossible to tell
959 * for sure to which packet the hardware time stamp belongs.
960 *
961 * Incoming time stamping has to be configured via the hardware
962 * filters. Not all combinations are supported, in particular event
963 * type has to be specified. Matching the kind of event packet is
964 * not supported, with the exception of "all V2 events regardless of
965 * level 2 or 4".
966 *
967 * Since hardware always timestamps Path delay packets when timestamping V2
968 * packets, regardless of the type specified in the register, only use V2
969 * Event mode. This more accurately tells the user what the hardware is going
970 * to do anyways.
971 *
972 * Note: this may modify the hwtstamp configuration towards a more general
973 * mode, if required to support the specifically requested mode.
974 */
975static int ixgbe_ptp_set_timestamp_mode(struct ixgbe_adapter *adapter,
976				 struct hwtstamp_config *config)
977{
978	struct ixgbe_hw *hw = &adapter->hw;
979	u32 tsync_tx_ctl = IXGBE_TSYNCTXCTL_ENABLED;
980	u32 tsync_rx_ctl = IXGBE_TSYNCRXCTL_ENABLED;
981	u32 tsync_rx_mtrl = PTP_EV_PORT << 16;
982	u32 aflags = adapter->flags;
983	bool is_l2 = false;
984	u32 regval;
985
986	switch (config->tx_type) {
987	case HWTSTAMP_TX_OFF:
988		tsync_tx_ctl = 0;
989		break;
990	case HWTSTAMP_TX_ON:
991		break;
992	default:
993		return -ERANGE;
994	}
995
996	switch (config->rx_filter) {
997	case HWTSTAMP_FILTER_NONE:
998		tsync_rx_ctl = 0;
999		tsync_rx_mtrl = 0;
1000		aflags &= ~(IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
1001			    IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
1002		break;
1003	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1004		tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_L4_V1;
1005		tsync_rx_mtrl |= IXGBE_RXMTRL_V1_SYNC_MSG;
1006		aflags |= (IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
1007			   IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
1008		break;
1009	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1010		tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_L4_V1;
1011		tsync_rx_mtrl |= IXGBE_RXMTRL_V1_DELAY_REQ_MSG;
1012		aflags |= (IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
1013			   IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
1014		break;
1015	case HWTSTAMP_FILTER_PTP_V2_EVENT:
1016	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1017	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1018	case HWTSTAMP_FILTER_PTP_V2_SYNC:
1019	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1020	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1021	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1022	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1023	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1024		tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_EVENT_V2;
1025		is_l2 = true;
1026		config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
1027		aflags |= (IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
1028			   IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
1029		break;
1030	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1031	case HWTSTAMP_FILTER_NTP_ALL:
1032	case HWTSTAMP_FILTER_ALL:
1033		/* The X550 controller is capable of timestamping all packets,
1034		 * which allows it to accept any filter.
1035		 */
1036		if (hw->mac.type >= ixgbe_mac_X550) {
1037			tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_ALL;
1038			config->rx_filter = HWTSTAMP_FILTER_ALL;
1039			aflags |= IXGBE_FLAG_RX_HWTSTAMP_ENABLED;
1040			break;
1041		}
1042		fallthrough;
1043	default:
1044		/*
1045		 * register RXMTRL must be set in order to do V1 packets,
1046		 * therefore it is not possible to time stamp both V1 Sync and
1047		 * Delay_Req messages and hardware does not support
1048		 * timestamping all packets => return error
1049		 */
1050		config->rx_filter = HWTSTAMP_FILTER_NONE;
1051		return -ERANGE;
1052	}
1053
1054	if (hw->mac.type == ixgbe_mac_82598EB) {
1055		adapter->flags &= ~(IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
1056				    IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
1057		if (tsync_rx_ctl | tsync_tx_ctl)
1058			return -ERANGE;
1059		return 0;
1060	}
1061
1062	/* Per-packet timestamping only works if the filter is set to all
1063	 * packets. Since this is desired, always timestamp all packets as long
1064	 * as any Rx filter was configured.
1065	 */
1066	switch (hw->mac.type) {
1067	case ixgbe_mac_X550:
1068	case ixgbe_mac_X550EM_x:
1069	case ixgbe_mac_x550em_a:
1070		/* enable timestamping all packets only if at least some
1071		 * packets were requested. Otherwise, play nice and disable
1072		 * timestamping
1073		 */
1074		if (config->rx_filter == HWTSTAMP_FILTER_NONE)
1075			break;
1076
1077		tsync_rx_ctl = IXGBE_TSYNCRXCTL_ENABLED |
1078			       IXGBE_TSYNCRXCTL_TYPE_ALL |
1079			       IXGBE_TSYNCRXCTL_TSIP_UT_EN;
1080		config->rx_filter = HWTSTAMP_FILTER_ALL;
1081		aflags |= IXGBE_FLAG_RX_HWTSTAMP_ENABLED;
1082		aflags &= ~IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER;
1083		is_l2 = true;
1084		break;
1085	default:
1086		break;
1087	}
1088
1089	/* define ethertype filter for timestamping L2 packets */
1090	if (is_l2)
1091		IXGBE_WRITE_REG(hw, IXGBE_ETQF(IXGBE_ETQF_FILTER_1588),
1092				(IXGBE_ETQF_FILTER_EN | /* enable filter */
1093				 IXGBE_ETQF_1588 | /* enable timestamping */
1094				 ETH_P_1588));     /* 1588 eth protocol type */
1095	else
1096		IXGBE_WRITE_REG(hw, IXGBE_ETQF(IXGBE_ETQF_FILTER_1588), 0);
1097
1098	/* enable/disable TX */
1099	regval = IXGBE_READ_REG(hw, IXGBE_TSYNCTXCTL);
1100	regval &= ~IXGBE_TSYNCTXCTL_ENABLED;
1101	regval |= tsync_tx_ctl;
1102	IXGBE_WRITE_REG(hw, IXGBE_TSYNCTXCTL, regval);
1103
1104	/* enable/disable RX */
1105	regval = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL);
1106	regval &= ~(IXGBE_TSYNCRXCTL_ENABLED | IXGBE_TSYNCRXCTL_TYPE_MASK);
1107	regval |= tsync_rx_ctl;
1108	IXGBE_WRITE_REG(hw, IXGBE_TSYNCRXCTL, regval);
1109
1110	/* define which PTP packets are time stamped */
1111	IXGBE_WRITE_REG(hw, IXGBE_RXMTRL, tsync_rx_mtrl);
1112
1113	IXGBE_WRITE_FLUSH(hw);
1114
1115	/* configure adapter flags only when HW is actually configured */
1116	adapter->flags = aflags;
1117
1118	/* clear TX/RX time stamp registers, just to be sure */
1119	ixgbe_ptp_clear_tx_timestamp(adapter);
1120	IXGBE_READ_REG(hw, IXGBE_RXSTMPH);
1121
1122	return 0;
1123}
1124
1125/**
1126 * ixgbe_ptp_set_ts_config - user entry point for timestamp mode
1127 * @adapter: pointer to adapter struct
1128 * @ifr: ioctl data
1129 *
1130 * Set hardware to requested mode. If unsupported, return an error with no
1131 * changes. Otherwise, store the mode for future reference.
1132 */
1133int ixgbe_ptp_set_ts_config(struct ixgbe_adapter *adapter, struct ifreq *ifr)
1134{
1135	struct hwtstamp_config config;
1136	int err;
1137
1138	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1139		return -EFAULT;
1140
1141	err = ixgbe_ptp_set_timestamp_mode(adapter, &config);
1142	if (err)
1143		return err;
1144
1145	/* save these settings for future reference */
1146	memcpy(&adapter->tstamp_config, &config,
1147	       sizeof(adapter->tstamp_config));
1148
1149	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1150		-EFAULT : 0;
1151}
1152
1153static void ixgbe_ptp_link_speed_adjust(struct ixgbe_adapter *adapter,
1154					u32 *shift, u32 *incval)
1155{
1156	/**
1157	 * Scale the NIC cycle counter by a large factor so that
1158	 * relatively small corrections to the frequency can be added
1159	 * or subtracted. The drawbacks of a large factor include
1160	 * (a) the clock register overflows more quickly, (b) the cycle
1161	 * counter structure must be able to convert the systime value
1162	 * to nanoseconds using only a multiplier and a right-shift,
1163	 * and (c) the value must fit within the timinca register space
1164	 * => math based on internal DMA clock rate and available bits
1165	 *
1166	 * Note that when there is no link, internal DMA clock is same as when
1167	 * link speed is 10Gb. Set the registers correctly even when link is
1168	 * down to preserve the clock setting
1169	 */
1170	switch (adapter->link_speed) {
1171	case IXGBE_LINK_SPEED_100_FULL:
1172		*shift = IXGBE_INCVAL_SHIFT_100;
1173		*incval = IXGBE_INCVAL_100;
1174		break;
1175	case IXGBE_LINK_SPEED_1GB_FULL:
1176		*shift = IXGBE_INCVAL_SHIFT_1GB;
1177		*incval = IXGBE_INCVAL_1GB;
1178		break;
1179	case IXGBE_LINK_SPEED_10GB_FULL:
1180	default:
1181		*shift = IXGBE_INCVAL_SHIFT_10GB;
1182		*incval = IXGBE_INCVAL_10GB;
1183		break;
1184	}
1185}
1186
1187/**
1188 * ixgbe_ptp_start_cyclecounter - create the cycle counter from hw
1189 * @adapter: pointer to the adapter structure
1190 *
1191 * This function should be called to set the proper values for the TIMINCA
1192 * register and tell the cyclecounter structure what the tick rate of SYSTIME
1193 * is. It does not directly modify SYSTIME registers or the timecounter
1194 * structure. It should be called whenever a new TIMINCA value is necessary,
1195 * such as during initialization or when the link speed changes.
1196 */
1197void ixgbe_ptp_start_cyclecounter(struct ixgbe_adapter *adapter)
1198{
1199	struct ixgbe_hw *hw = &adapter->hw;
1200	struct cyclecounter cc;
1201	unsigned long flags;
1202	u32 incval = 0;
1203	u32 fuse0 = 0;
1204
1205	/* For some of the boards below this mask is technically incorrect.
1206	 * The timestamp mask overflows at approximately 61bits. However the
1207	 * particular hardware does not overflow on an even bitmask value.
1208	 * Instead, it overflows due to conversion of upper 32bits billions of
1209	 * cycles. Timecounters are not really intended for this purpose so
1210	 * they do not properly function if the overflow point isn't 2^N-1.
1211	 * However, the actual SYSTIME values in question take ~138 years to
1212	 * overflow. In practice this means they won't actually overflow. A
1213	 * proper fix to this problem would require modification of the
1214	 * timecounter delta calculations.
1215	 */
1216	cc.mask = CLOCKSOURCE_MASK(64);
1217	cc.mult = 1;
1218	cc.shift = 0;
1219
1220	switch (hw->mac.type) {
1221	case ixgbe_mac_X550EM_x:
1222		/* SYSTIME assumes X550EM_x board frequency is 300Mhz, and is
1223		 * designed to represent seconds and nanoseconds when this is
1224		 * the case. However, some revisions of hardware have a 400Mhz
1225		 * clock and we have to compensate for this frequency
1226		 * variation using corrected mult and shift values.
1227		 */
1228		fuse0 = IXGBE_READ_REG(hw, IXGBE_FUSES0_GROUP(0));
1229		if (!(fuse0 & IXGBE_FUSES0_300MHZ)) {
1230			cc.mult = 3;
1231			cc.shift = 2;
1232		}
1233		fallthrough;
1234	case ixgbe_mac_x550em_a:
1235	case ixgbe_mac_X550:
1236		cc.read = ixgbe_ptp_read_X550;
1237		break;
1238	case ixgbe_mac_X540:
1239		cc.read = ixgbe_ptp_read_82599;
1240
1241		ixgbe_ptp_link_speed_adjust(adapter, &cc.shift, &incval);
1242		IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, incval);
1243		break;
1244	case ixgbe_mac_82599EB:
1245		cc.read = ixgbe_ptp_read_82599;
1246
1247		ixgbe_ptp_link_speed_adjust(adapter, &cc.shift, &incval);
1248		incval >>= IXGBE_INCVAL_SHIFT_82599;
1249		cc.shift -= IXGBE_INCVAL_SHIFT_82599;
1250		IXGBE_WRITE_REG(hw, IXGBE_TIMINCA,
1251				BIT(IXGBE_INCPER_SHIFT_82599) | incval);
1252		break;
1253	default:
1254		/* other devices aren't supported */
1255		return;
1256	}
1257
1258	/* update the base incval used to calculate frequency adjustment */
1259	WRITE_ONCE(adapter->base_incval, incval);
1260	smp_mb();
1261
1262	/* need lock to prevent incorrect read while modifying cyclecounter */
1263	spin_lock_irqsave(&adapter->tmreg_lock, flags);
1264	memcpy(&adapter->hw_cc, &cc, sizeof(adapter->hw_cc));
1265	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1266}
1267
1268/**
1269 * ixgbe_ptp_init_systime - Initialize SYSTIME registers
1270 * @adapter: the ixgbe private board structure
1271 *
1272 * Initialize and start the SYSTIME registers.
1273 */
1274static void ixgbe_ptp_init_systime(struct ixgbe_adapter *adapter)
1275{
1276	struct ixgbe_hw *hw = &adapter->hw;
1277	u32 tsauxc;
1278
1279	switch (hw->mac.type) {
1280	case ixgbe_mac_X550EM_x:
1281	case ixgbe_mac_x550em_a:
1282	case ixgbe_mac_X550:
1283		tsauxc = IXGBE_READ_REG(hw, IXGBE_TSAUXC);
1284
1285		/* Reset SYSTIME registers to 0 */
1286		IXGBE_WRITE_REG(hw, IXGBE_SYSTIMR, 0);
1287		IXGBE_WRITE_REG(hw, IXGBE_SYSTIML, 0);
1288		IXGBE_WRITE_REG(hw, IXGBE_SYSTIMH, 0);
1289
1290		/* Reset interrupt settings */
1291		IXGBE_WRITE_REG(hw, IXGBE_TSIM, IXGBE_TSIM_TXTS);
1292		IXGBE_WRITE_REG(hw, IXGBE_EIMS, IXGBE_EIMS_TIMESYNC);
1293
1294		/* Activate the SYSTIME counter */
1295		IXGBE_WRITE_REG(hw, IXGBE_TSAUXC,
1296				tsauxc & ~IXGBE_TSAUXC_DISABLE_SYSTIME);
1297		break;
1298	case ixgbe_mac_X540:
1299	case ixgbe_mac_82599EB:
1300		/* Reset SYSTIME registers to 0 */
1301		IXGBE_WRITE_REG(hw, IXGBE_SYSTIML, 0);
1302		IXGBE_WRITE_REG(hw, IXGBE_SYSTIMH, 0);
1303		break;
1304	default:
1305		/* Other devices aren't supported */
1306		return;
1307	}
1308
1309	IXGBE_WRITE_FLUSH(hw);
1310}
1311
1312/**
1313 * ixgbe_ptp_reset
1314 * @adapter: the ixgbe private board structure
1315 *
1316 * When the MAC resets, all the hardware bits for timesync are reset. This
1317 * function is used to re-enable the device for PTP based on current settings.
1318 * We do lose the current clock time, so just reset the cyclecounter to the
1319 * system real clock time.
1320 *
1321 * This function will maintain hwtstamp_config settings, and resets the SDP
1322 * output if it was enabled.
1323 */
1324void ixgbe_ptp_reset(struct ixgbe_adapter *adapter)
1325{
1326	struct ixgbe_hw *hw = &adapter->hw;
1327	unsigned long flags;
1328
1329	/* reset the hardware timestamping mode */
1330	ixgbe_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
1331
1332	/* 82598 does not support PTP */
1333	if (hw->mac.type == ixgbe_mac_82598EB)
1334		return;
1335
1336	ixgbe_ptp_start_cyclecounter(adapter);
1337
1338	ixgbe_ptp_init_systime(adapter);
1339
1340	spin_lock_irqsave(&adapter->tmreg_lock, flags);
1341	timecounter_init(&adapter->hw_tc, &adapter->hw_cc,
1342			 ktime_to_ns(ktime_get_real()));
1343	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1344
1345	adapter->last_overflow_check = jiffies;
1346
1347	/* Now that the shift has been calculated and the systime
1348	 * registers reset, (re-)enable the Clock out feature
1349	 */
1350	if (adapter->ptp_setup_sdp)
1351		adapter->ptp_setup_sdp(adapter);
1352}
1353
1354/**
1355 * ixgbe_ptp_create_clock
1356 * @adapter: the ixgbe private adapter structure
1357 *
1358 * This function performs setup of the user entry point function table and
1359 * initializes the PTP clock device, which is used to access the clock-like
1360 * features of the PTP core. It will be called by ixgbe_ptp_init, and may
1361 * reuse a previously initialized clock (such as during a suspend/resume
1362 * cycle).
1363 */
1364static long ixgbe_ptp_create_clock(struct ixgbe_adapter *adapter)
1365{
1366	struct net_device *netdev = adapter->netdev;
1367	long err;
1368
1369	/* do nothing if we already have a clock device */
1370	if (!IS_ERR_OR_NULL(adapter->ptp_clock))
1371		return 0;
1372
1373	switch (adapter->hw.mac.type) {
1374	case ixgbe_mac_X540:
1375		snprintf(adapter->ptp_caps.name,
1376			 sizeof(adapter->ptp_caps.name),
1377			 "%s", netdev->name);
1378		adapter->ptp_caps.owner = THIS_MODULE;
1379		adapter->ptp_caps.max_adj = 250000000;
1380		adapter->ptp_caps.n_alarm = 0;
1381		adapter->ptp_caps.n_ext_ts = 0;
1382		adapter->ptp_caps.n_per_out = 0;
1383		adapter->ptp_caps.pps = 1;
1384		adapter->ptp_caps.adjfine = ixgbe_ptp_adjfine_82599;
1385		adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime;
1386		adapter->ptp_caps.gettimex64 = ixgbe_ptp_gettimex;
1387		adapter->ptp_caps.settime64 = ixgbe_ptp_settime;
1388		adapter->ptp_caps.enable = ixgbe_ptp_feature_enable;
1389		adapter->ptp_setup_sdp = ixgbe_ptp_setup_sdp_X540;
1390		break;
1391	case ixgbe_mac_82599EB:
1392		snprintf(adapter->ptp_caps.name,
1393			 sizeof(adapter->ptp_caps.name),
1394			 "%s", netdev->name);
1395		adapter->ptp_caps.owner = THIS_MODULE;
1396		adapter->ptp_caps.max_adj = 250000000;
1397		adapter->ptp_caps.n_alarm = 0;
1398		adapter->ptp_caps.n_ext_ts = 0;
1399		adapter->ptp_caps.n_per_out = 0;
1400		adapter->ptp_caps.pps = 0;
1401		adapter->ptp_caps.adjfine = ixgbe_ptp_adjfine_82599;
1402		adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime;
1403		adapter->ptp_caps.gettimex64 = ixgbe_ptp_gettimex;
1404		adapter->ptp_caps.settime64 = ixgbe_ptp_settime;
1405		adapter->ptp_caps.enable = ixgbe_ptp_feature_enable;
1406		break;
1407	case ixgbe_mac_X550:
1408	case ixgbe_mac_X550EM_x:
1409	case ixgbe_mac_x550em_a:
1410		snprintf(adapter->ptp_caps.name, 16, "%s", netdev->name);
1411		adapter->ptp_caps.owner = THIS_MODULE;
1412		adapter->ptp_caps.max_adj = 30000000;
1413		adapter->ptp_caps.n_alarm = 0;
1414		adapter->ptp_caps.n_ext_ts = 0;
1415		adapter->ptp_caps.n_per_out = 0;
1416		adapter->ptp_caps.pps = 1;
1417		adapter->ptp_caps.adjfine = ixgbe_ptp_adjfine_X550;
1418		adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime;
1419		adapter->ptp_caps.gettimex64 = ixgbe_ptp_gettimex;
1420		adapter->ptp_caps.settime64 = ixgbe_ptp_settime;
1421		adapter->ptp_caps.enable = ixgbe_ptp_feature_enable;
1422		adapter->ptp_setup_sdp = ixgbe_ptp_setup_sdp_X550;
1423		break;
1424	default:
1425		adapter->ptp_clock = NULL;
1426		adapter->ptp_setup_sdp = NULL;
1427		return -EOPNOTSUPP;
1428	}
1429
1430	adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
1431						&adapter->pdev->dev);
1432	if (IS_ERR(adapter->ptp_clock)) {
1433		err = PTR_ERR(adapter->ptp_clock);
1434		adapter->ptp_clock = NULL;
1435		e_dev_err("ptp_clock_register failed\n");
1436		return err;
1437	} else if (adapter->ptp_clock)
1438		e_dev_info("registered PHC device on %s\n", netdev->name);
1439
1440	/* set default timestamp mode to disabled here. We do this in
1441	 * create_clock instead of init, because we don't want to override the
1442	 * previous settings during a resume cycle.
1443	 */
1444	adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
1445	adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
1446
1447	return 0;
1448}
1449
1450/**
1451 * ixgbe_ptp_init
1452 * @adapter: the ixgbe private adapter structure
1453 *
1454 * This function performs the required steps for enabling PTP
1455 * support. If PTP support has already been loaded it simply calls the
1456 * cyclecounter init routine and exits.
1457 */
1458void ixgbe_ptp_init(struct ixgbe_adapter *adapter)
1459{
1460	/* initialize the spin lock first since we can't control when a user
1461	 * will call the entry functions once we have initialized the clock
1462	 * device
1463	 */
1464	spin_lock_init(&adapter->tmreg_lock);
1465
1466	/* obtain a PTP device, or re-use an existing device */
1467	if (ixgbe_ptp_create_clock(adapter))
1468		return;
1469
1470	/* we have a clock so we can initialize work now */
1471	INIT_WORK(&adapter->ptp_tx_work, ixgbe_ptp_tx_hwtstamp_work);
1472
1473	/* reset the PTP related hardware bits */
1474	ixgbe_ptp_reset(adapter);
1475
1476	/* enter the IXGBE_PTP_RUNNING state */
1477	set_bit(__IXGBE_PTP_RUNNING, &adapter->state);
1478
1479	return;
1480}
1481
1482/**
1483 * ixgbe_ptp_suspend - stop PTP work items
1484 * @adapter: pointer to adapter struct
1485 *
1486 * this function suspends PTP activity, and prevents more PTP work from being
1487 * generated, but does not destroy the PTP clock device.
1488 */
1489void ixgbe_ptp_suspend(struct ixgbe_adapter *adapter)
1490{
1491	/* Leave the IXGBE_PTP_RUNNING state. */
1492	if (!test_and_clear_bit(__IXGBE_PTP_RUNNING, &adapter->state))
1493		return;
1494
1495	adapter->flags2 &= ~IXGBE_FLAG2_PTP_PPS_ENABLED;
1496	if (adapter->ptp_setup_sdp)
1497		adapter->ptp_setup_sdp(adapter);
1498
1499	/* ensure that we cancel any pending PTP Tx work item in progress */
1500	cancel_work_sync(&adapter->ptp_tx_work);
1501	ixgbe_ptp_clear_tx_timestamp(adapter);
1502}
1503
1504/**
1505 * ixgbe_ptp_stop - close the PTP device
1506 * @adapter: pointer to adapter struct
1507 *
1508 * completely destroy the PTP device, should only be called when the device is
1509 * being fully closed.
1510 */
1511void ixgbe_ptp_stop(struct ixgbe_adapter *adapter)
1512{
1513	/* first, suspend PTP activity */
1514	ixgbe_ptp_suspend(adapter);
1515
1516	/* disable the PTP clock device */
1517	if (adapter->ptp_clock) {
1518		ptp_clock_unregister(adapter->ptp_clock);
1519		adapter->ptp_clock = NULL;
1520		e_dev_info("removed PHC on %s\n",
1521			   adapter->netdev->name);
1522	}
1523}
1524