1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 1999 - 2018 Intel Corporation. */
3
4#include <linux/pci.h>
5#include <linux/delay.h>
6#include <linux/sched.h>
7#include <linux/netdevice.h>
8
9#include "ixgbe.h"
10#include "ixgbe_common.h"
11#include "ixgbe_phy.h"
12
13static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
14static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
15static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
16static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
17static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
18static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
19					u16 count);
20static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
21static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
22static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
23static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
24
25static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
26static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg);
27static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
28					     u16 words, u16 *data);
29static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
30					     u16 words, u16 *data);
31static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
32						 u16 offset);
33static s32 ixgbe_disable_pcie_primary(struct ixgbe_hw *hw);
34
35/* Base table for registers values that change by MAC */
36const u32 ixgbe_mvals_8259X[IXGBE_MVALS_IDX_LIMIT] = {
37	IXGBE_MVALS_INIT(8259X)
38};
39
40/**
41 *  ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
42 *  control
43 *  @hw: pointer to hardware structure
44 *
45 *  There are several phys that do not support autoneg flow control. This
46 *  function check the device id to see if the associated phy supports
47 *  autoneg flow control.
48 **/
49bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
50{
51	bool supported = false;
52	ixgbe_link_speed speed;
53	bool link_up;
54
55	switch (hw->phy.media_type) {
56	case ixgbe_media_type_fiber:
57		/* flow control autoneg black list */
58		switch (hw->device_id) {
59		case IXGBE_DEV_ID_X550EM_A_SFP:
60		case IXGBE_DEV_ID_X550EM_A_SFP_N:
61			supported = false;
62			break;
63		default:
64			hw->mac.ops.check_link(hw, &speed, &link_up, false);
65			/* if link is down, assume supported */
66			if (link_up)
67				supported = speed == IXGBE_LINK_SPEED_1GB_FULL;
68			else
69				supported = true;
70		}
71
72		break;
73	case ixgbe_media_type_backplane:
74		if (hw->device_id == IXGBE_DEV_ID_X550EM_X_XFI)
75			supported = false;
76		else
77			supported = true;
78		break;
79	case ixgbe_media_type_copper:
80		/* only some copper devices support flow control autoneg */
81		switch (hw->device_id) {
82		case IXGBE_DEV_ID_82599_T3_LOM:
83		case IXGBE_DEV_ID_X540T:
84		case IXGBE_DEV_ID_X540T1:
85		case IXGBE_DEV_ID_X550T:
86		case IXGBE_DEV_ID_X550T1:
87		case IXGBE_DEV_ID_X550EM_X_10G_T:
88		case IXGBE_DEV_ID_X550EM_A_10G_T:
89		case IXGBE_DEV_ID_X550EM_A_1G_T:
90		case IXGBE_DEV_ID_X550EM_A_1G_T_L:
91			supported = true;
92			break;
93		default:
94			break;
95		}
96		break;
97	default:
98		break;
99	}
100
101	if (!supported)
102		hw_dbg(hw, "Device %x does not support flow control autoneg\n",
103		       hw->device_id);
104
105	return supported;
106}
107
108/**
109 *  ixgbe_setup_fc_generic - Set up flow control
110 *  @hw: pointer to hardware structure
111 *
112 *  Called at init time to set up flow control.
113 **/
114s32 ixgbe_setup_fc_generic(struct ixgbe_hw *hw)
115{
116	s32 ret_val = 0;
117	u32 reg = 0, reg_bp = 0;
118	u16 reg_cu = 0;
119	bool locked = false;
120
121	/*
122	 * Validate the requested mode.  Strict IEEE mode does not allow
123	 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
124	 */
125	if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
126		hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
127		return -EINVAL;
128	}
129
130	/*
131	 * 10gig parts do not have a word in the EEPROM to determine the
132	 * default flow control setting, so we explicitly set it to full.
133	 */
134	if (hw->fc.requested_mode == ixgbe_fc_default)
135		hw->fc.requested_mode = ixgbe_fc_full;
136
137	/*
138	 * Set up the 1G and 10G flow control advertisement registers so the
139	 * HW will be able to do fc autoneg once the cable is plugged in.  If
140	 * we link at 10G, the 1G advertisement is harmless and vice versa.
141	 */
142	switch (hw->phy.media_type) {
143	case ixgbe_media_type_backplane:
144		/* some MAC's need RMW protection on AUTOC */
145		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &reg_bp);
146		if (ret_val)
147			return ret_val;
148
149		fallthrough; /* only backplane uses autoc */
150	case ixgbe_media_type_fiber:
151		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
152
153		break;
154	case ixgbe_media_type_copper:
155		hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
156					MDIO_MMD_AN, &reg_cu);
157		break;
158	default:
159		break;
160	}
161
162	/*
163	 * The possible values of fc.requested_mode are:
164	 * 0: Flow control is completely disabled
165	 * 1: Rx flow control is enabled (we can receive pause frames,
166	 *    but not send pause frames).
167	 * 2: Tx flow control is enabled (we can send pause frames but
168	 *    we do not support receiving pause frames).
169	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
170	 * other: Invalid.
171	 */
172	switch (hw->fc.requested_mode) {
173	case ixgbe_fc_none:
174		/* Flow control completely disabled by software override. */
175		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
176		if (hw->phy.media_type == ixgbe_media_type_backplane)
177			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
178				    IXGBE_AUTOC_ASM_PAUSE);
179		else if (hw->phy.media_type == ixgbe_media_type_copper)
180			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
181		break;
182	case ixgbe_fc_tx_pause:
183		/*
184		 * Tx Flow control is enabled, and Rx Flow control is
185		 * disabled by software override.
186		 */
187		reg |= IXGBE_PCS1GANA_ASM_PAUSE;
188		reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
189		if (hw->phy.media_type == ixgbe_media_type_backplane) {
190			reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
191			reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
192		} else if (hw->phy.media_type == ixgbe_media_type_copper) {
193			reg_cu |= IXGBE_TAF_ASM_PAUSE;
194			reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
195		}
196		break;
197	case ixgbe_fc_rx_pause:
198		/*
199		 * Rx Flow control is enabled and Tx Flow control is
200		 * disabled by software override. Since there really
201		 * isn't a way to advertise that we are capable of RX
202		 * Pause ONLY, we will advertise that we support both
203		 * symmetric and asymmetric Rx PAUSE, as such we fall
204		 * through to the fc_full statement.  Later, we will
205		 * disable the adapter's ability to send PAUSE frames.
206		 */
207	case ixgbe_fc_full:
208		/* Flow control (both Rx and Tx) is enabled by SW override. */
209		reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
210		if (hw->phy.media_type == ixgbe_media_type_backplane)
211			reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
212				  IXGBE_AUTOC_ASM_PAUSE;
213		else if (hw->phy.media_type == ixgbe_media_type_copper)
214			reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
215		break;
216	default:
217		hw_dbg(hw, "Flow control param set incorrectly\n");
218		return -EIO;
219	}
220
221	if (hw->mac.type != ixgbe_mac_X540) {
222		/*
223		 * Enable auto-negotiation between the MAC & PHY;
224		 * the MAC will advertise clause 37 flow control.
225		 */
226		IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
227		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
228
229		/* Disable AN timeout */
230		if (hw->fc.strict_ieee)
231			reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
232
233		IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
234		hw_dbg(hw, "Set up FC; PCS1GLCTL = 0x%08X\n", reg);
235	}
236
237	/*
238	 * AUTOC restart handles negotiation of 1G and 10G on backplane
239	 * and copper. There is no need to set the PCS1GCTL register.
240	 *
241	 */
242	if (hw->phy.media_type == ixgbe_media_type_backplane) {
243		/* Need the SW/FW semaphore around AUTOC writes if 82599 and
244		 * LESM is on, likewise reset_pipeline requries the lock as
245		 * it also writes AUTOC.
246		 */
247		ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
248		if (ret_val)
249			return ret_val;
250
251	} else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
252		   ixgbe_device_supports_autoneg_fc(hw)) {
253		hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
254				      MDIO_MMD_AN, reg_cu);
255	}
256
257	hw_dbg(hw, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
258	return ret_val;
259}
260
261/**
262 *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
263 *  @hw: pointer to hardware structure
264 *
265 *  Starts the hardware by filling the bus info structure and media type, clears
266 *  all on chip counters, initializes receive address registers, multicast
267 *  table, VLAN filter table, calls routine to set up link and flow control
268 *  settings, and leaves transmit and receive units disabled and uninitialized
269 **/
270s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
271{
272	s32 ret_val;
273	u32 ctrl_ext;
274	u16 device_caps;
275
276	/* Set the media type */
277	hw->phy.media_type = hw->mac.ops.get_media_type(hw);
278
279	/* Identify the PHY */
280	hw->phy.ops.identify(hw);
281
282	/* Clear the VLAN filter table */
283	hw->mac.ops.clear_vfta(hw);
284
285	/* Clear statistics registers */
286	hw->mac.ops.clear_hw_cntrs(hw);
287
288	/* Set No Snoop Disable */
289	ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
290	ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
291	IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
292	IXGBE_WRITE_FLUSH(hw);
293
294	/* Setup flow control if method for doing so */
295	if (hw->mac.ops.setup_fc) {
296		ret_val = hw->mac.ops.setup_fc(hw);
297		if (ret_val)
298			return ret_val;
299	}
300
301	/* Cashe bit indicating need for crosstalk fix */
302	switch (hw->mac.type) {
303	case ixgbe_mac_82599EB:
304	case ixgbe_mac_X550EM_x:
305	case ixgbe_mac_x550em_a:
306		hw->mac.ops.get_device_caps(hw, &device_caps);
307		if (device_caps & IXGBE_DEVICE_CAPS_NO_CROSSTALK_WR)
308			hw->need_crosstalk_fix = false;
309		else
310			hw->need_crosstalk_fix = true;
311		break;
312	default:
313		hw->need_crosstalk_fix = false;
314		break;
315	}
316
317	/* Clear adapter stopped flag */
318	hw->adapter_stopped = false;
319
320	return 0;
321}
322
323/**
324 *  ixgbe_start_hw_gen2 - Init sequence for common device family
325 *  @hw: pointer to hw structure
326 *
327 * Performs the init sequence common to the second generation
328 * of 10 GbE devices.
329 * Devices in the second generation:
330 *     82599
331 *     X540
332 **/
333s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
334{
335	u32 i;
336
337	/* Clear the rate limiters */
338	for (i = 0; i < hw->mac.max_tx_queues; i++) {
339		IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
340		IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
341	}
342	IXGBE_WRITE_FLUSH(hw);
343
344	return 0;
345}
346
347/**
348 *  ixgbe_init_hw_generic - Generic hardware initialization
349 *  @hw: pointer to hardware structure
350 *
351 *  Initialize the hardware by resetting the hardware, filling the bus info
352 *  structure and media type, clears all on chip counters, initializes receive
353 *  address registers, multicast table, VLAN filter table, calls routine to set
354 *  up link and flow control settings, and leaves transmit and receive units
355 *  disabled and uninitialized
356 **/
357s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
358{
359	s32 status;
360
361	/* Reset the hardware */
362	status = hw->mac.ops.reset_hw(hw);
363
364	if (status == 0) {
365		/* Start the HW */
366		status = hw->mac.ops.start_hw(hw);
367	}
368
369	/* Initialize the LED link active for LED blink support */
370	if (hw->mac.ops.init_led_link_act)
371		hw->mac.ops.init_led_link_act(hw);
372
373	return status;
374}
375
376/**
377 *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
378 *  @hw: pointer to hardware structure
379 *
380 *  Clears all hardware statistics counters by reading them from the hardware
381 *  Statistics counters are clear on read.
382 **/
383s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
384{
385	u16 i = 0;
386
387	IXGBE_READ_REG(hw, IXGBE_CRCERRS);
388	IXGBE_READ_REG(hw, IXGBE_ILLERRC);
389	IXGBE_READ_REG(hw, IXGBE_ERRBC);
390	IXGBE_READ_REG(hw, IXGBE_MSPDC);
391	for (i = 0; i < 8; i++)
392		IXGBE_READ_REG(hw, IXGBE_MPC(i));
393
394	IXGBE_READ_REG(hw, IXGBE_MLFC);
395	IXGBE_READ_REG(hw, IXGBE_MRFC);
396	IXGBE_READ_REG(hw, IXGBE_RLEC);
397	IXGBE_READ_REG(hw, IXGBE_LXONTXC);
398	IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
399	if (hw->mac.type >= ixgbe_mac_82599EB) {
400		IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
401		IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
402	} else {
403		IXGBE_READ_REG(hw, IXGBE_LXONRXC);
404		IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
405	}
406
407	for (i = 0; i < 8; i++) {
408		IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
409		IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
410		if (hw->mac.type >= ixgbe_mac_82599EB) {
411			IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
412			IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
413		} else {
414			IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
415			IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
416		}
417	}
418	if (hw->mac.type >= ixgbe_mac_82599EB)
419		for (i = 0; i < 8; i++)
420			IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
421	IXGBE_READ_REG(hw, IXGBE_PRC64);
422	IXGBE_READ_REG(hw, IXGBE_PRC127);
423	IXGBE_READ_REG(hw, IXGBE_PRC255);
424	IXGBE_READ_REG(hw, IXGBE_PRC511);
425	IXGBE_READ_REG(hw, IXGBE_PRC1023);
426	IXGBE_READ_REG(hw, IXGBE_PRC1522);
427	IXGBE_READ_REG(hw, IXGBE_GPRC);
428	IXGBE_READ_REG(hw, IXGBE_BPRC);
429	IXGBE_READ_REG(hw, IXGBE_MPRC);
430	IXGBE_READ_REG(hw, IXGBE_GPTC);
431	IXGBE_READ_REG(hw, IXGBE_GORCL);
432	IXGBE_READ_REG(hw, IXGBE_GORCH);
433	IXGBE_READ_REG(hw, IXGBE_GOTCL);
434	IXGBE_READ_REG(hw, IXGBE_GOTCH);
435	if (hw->mac.type == ixgbe_mac_82598EB)
436		for (i = 0; i < 8; i++)
437			IXGBE_READ_REG(hw, IXGBE_RNBC(i));
438	IXGBE_READ_REG(hw, IXGBE_RUC);
439	IXGBE_READ_REG(hw, IXGBE_RFC);
440	IXGBE_READ_REG(hw, IXGBE_ROC);
441	IXGBE_READ_REG(hw, IXGBE_RJC);
442	IXGBE_READ_REG(hw, IXGBE_MNGPRC);
443	IXGBE_READ_REG(hw, IXGBE_MNGPDC);
444	IXGBE_READ_REG(hw, IXGBE_MNGPTC);
445	IXGBE_READ_REG(hw, IXGBE_TORL);
446	IXGBE_READ_REG(hw, IXGBE_TORH);
447	IXGBE_READ_REG(hw, IXGBE_TPR);
448	IXGBE_READ_REG(hw, IXGBE_TPT);
449	IXGBE_READ_REG(hw, IXGBE_PTC64);
450	IXGBE_READ_REG(hw, IXGBE_PTC127);
451	IXGBE_READ_REG(hw, IXGBE_PTC255);
452	IXGBE_READ_REG(hw, IXGBE_PTC511);
453	IXGBE_READ_REG(hw, IXGBE_PTC1023);
454	IXGBE_READ_REG(hw, IXGBE_PTC1522);
455	IXGBE_READ_REG(hw, IXGBE_MPTC);
456	IXGBE_READ_REG(hw, IXGBE_BPTC);
457	for (i = 0; i < 16; i++) {
458		IXGBE_READ_REG(hw, IXGBE_QPRC(i));
459		IXGBE_READ_REG(hw, IXGBE_QPTC(i));
460		if (hw->mac.type >= ixgbe_mac_82599EB) {
461			IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
462			IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
463			IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
464			IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
465			IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
466		} else {
467			IXGBE_READ_REG(hw, IXGBE_QBRC(i));
468			IXGBE_READ_REG(hw, IXGBE_QBTC(i));
469		}
470	}
471
472	if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) {
473		if (hw->phy.id == 0)
474			hw->phy.ops.identify(hw);
475		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL, MDIO_MMD_PCS, &i);
476		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH, MDIO_MMD_PCS, &i);
477		hw->phy.ops.read_reg(hw, IXGBE_LDPCECL, MDIO_MMD_PCS, &i);
478		hw->phy.ops.read_reg(hw, IXGBE_LDPCECH, MDIO_MMD_PCS, &i);
479	}
480
481	return 0;
482}
483
484/**
485 *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
486 *  @hw: pointer to hardware structure
487 *  @pba_num: stores the part number string from the EEPROM
488 *  @pba_num_size: part number string buffer length
489 *
490 *  Reads the part number string from the EEPROM.
491 **/
492s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
493				  u32 pba_num_size)
494{
495	s32 ret_val;
496	u16 data;
497	u16 pba_ptr;
498	u16 offset;
499	u16 length;
500
501	if (pba_num == NULL) {
502		hw_dbg(hw, "PBA string buffer was null\n");
503		return -EINVAL;
504	}
505
506	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
507	if (ret_val) {
508		hw_dbg(hw, "NVM Read Error\n");
509		return ret_val;
510	}
511
512	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
513	if (ret_val) {
514		hw_dbg(hw, "NVM Read Error\n");
515		return ret_val;
516	}
517
518	/*
519	 * if data is not ptr guard the PBA must be in legacy format which
520	 * means pba_ptr is actually our second data word for the PBA number
521	 * and we can decode it into an ascii string
522	 */
523	if (data != IXGBE_PBANUM_PTR_GUARD) {
524		hw_dbg(hw, "NVM PBA number is not stored as string\n");
525
526		/* we will need 11 characters to store the PBA */
527		if (pba_num_size < 11) {
528			hw_dbg(hw, "PBA string buffer too small\n");
529			return -ENOSPC;
530		}
531
532		/* extract hex string from data and pba_ptr */
533		pba_num[0] = (data >> 12) & 0xF;
534		pba_num[1] = (data >> 8) & 0xF;
535		pba_num[2] = (data >> 4) & 0xF;
536		pba_num[3] = data & 0xF;
537		pba_num[4] = (pba_ptr >> 12) & 0xF;
538		pba_num[5] = (pba_ptr >> 8) & 0xF;
539		pba_num[6] = '-';
540		pba_num[7] = 0;
541		pba_num[8] = (pba_ptr >> 4) & 0xF;
542		pba_num[9] = pba_ptr & 0xF;
543
544		/* put a null character on the end of our string */
545		pba_num[10] = '\0';
546
547		/* switch all the data but the '-' to hex char */
548		for (offset = 0; offset < 10; offset++) {
549			if (pba_num[offset] < 0xA)
550				pba_num[offset] += '0';
551			else if (pba_num[offset] < 0x10)
552				pba_num[offset] += 'A' - 0xA;
553		}
554
555		return 0;
556	}
557
558	ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
559	if (ret_val) {
560		hw_dbg(hw, "NVM Read Error\n");
561		return ret_val;
562	}
563
564	if (length == 0xFFFF || length == 0) {
565		hw_dbg(hw, "NVM PBA number section invalid length\n");
566		return -EIO;
567	}
568
569	/* check if pba_num buffer is big enough */
570	if (pba_num_size  < (((u32)length * 2) - 1)) {
571		hw_dbg(hw, "PBA string buffer too small\n");
572		return -ENOSPC;
573	}
574
575	/* trim pba length from start of string */
576	pba_ptr++;
577	length--;
578
579	for (offset = 0; offset < length; offset++) {
580		ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
581		if (ret_val) {
582			hw_dbg(hw, "NVM Read Error\n");
583			return ret_val;
584		}
585		pba_num[offset * 2] = (u8)(data >> 8);
586		pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
587	}
588	pba_num[offset * 2] = '\0';
589
590	return 0;
591}
592
593/**
594 *  ixgbe_get_mac_addr_generic - Generic get MAC address
595 *  @hw: pointer to hardware structure
596 *  @mac_addr: Adapter MAC address
597 *
598 *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
599 *  A reset of the adapter must be performed prior to calling this function
600 *  in order for the MAC address to have been loaded from the EEPROM into RAR0
601 **/
602s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
603{
604	u32 rar_high;
605	u32 rar_low;
606	u16 i;
607
608	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
609	rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
610
611	for (i = 0; i < 4; i++)
612		mac_addr[i] = (u8)(rar_low >> (i*8));
613
614	for (i = 0; i < 2; i++)
615		mac_addr[i+4] = (u8)(rar_high >> (i*8));
616
617	return 0;
618}
619
620enum ixgbe_bus_width ixgbe_convert_bus_width(u16 link_status)
621{
622	switch (link_status & IXGBE_PCI_LINK_WIDTH) {
623	case IXGBE_PCI_LINK_WIDTH_1:
624		return ixgbe_bus_width_pcie_x1;
625	case IXGBE_PCI_LINK_WIDTH_2:
626		return ixgbe_bus_width_pcie_x2;
627	case IXGBE_PCI_LINK_WIDTH_4:
628		return ixgbe_bus_width_pcie_x4;
629	case IXGBE_PCI_LINK_WIDTH_8:
630		return ixgbe_bus_width_pcie_x8;
631	default:
632		return ixgbe_bus_width_unknown;
633	}
634}
635
636enum ixgbe_bus_speed ixgbe_convert_bus_speed(u16 link_status)
637{
638	switch (link_status & IXGBE_PCI_LINK_SPEED) {
639	case IXGBE_PCI_LINK_SPEED_2500:
640		return ixgbe_bus_speed_2500;
641	case IXGBE_PCI_LINK_SPEED_5000:
642		return ixgbe_bus_speed_5000;
643	case IXGBE_PCI_LINK_SPEED_8000:
644		return ixgbe_bus_speed_8000;
645	default:
646		return ixgbe_bus_speed_unknown;
647	}
648}
649
650/**
651 *  ixgbe_get_bus_info_generic - Generic set PCI bus info
652 *  @hw: pointer to hardware structure
653 *
654 *  Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
655 **/
656s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
657{
658	u16 link_status;
659
660	hw->bus.type = ixgbe_bus_type_pci_express;
661
662	/* Get the negotiated link width and speed from PCI config space */
663	link_status = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_LINK_STATUS);
664
665	hw->bus.width = ixgbe_convert_bus_width(link_status);
666	hw->bus.speed = ixgbe_convert_bus_speed(link_status);
667
668	hw->mac.ops.set_lan_id(hw);
669
670	return 0;
671}
672
673/**
674 *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
675 *  @hw: pointer to the HW structure
676 *
677 *  Determines the LAN function id by reading memory-mapped registers
678 *  and swaps the port value if requested.
679 **/
680void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
681{
682	struct ixgbe_bus_info *bus = &hw->bus;
683	u16 ee_ctrl_4;
684	u32 reg;
685
686	reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
687	bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
688	bus->lan_id = bus->func;
689
690	/* check for a port swap */
691	reg = IXGBE_READ_REG(hw, IXGBE_FACTPS(hw));
692	if (reg & IXGBE_FACTPS_LFS)
693		bus->func ^= 0x1;
694
695	/* Get MAC instance from EEPROM for configuring CS4227 */
696	if (hw->device_id == IXGBE_DEV_ID_X550EM_A_SFP) {
697		hw->eeprom.ops.read(hw, IXGBE_EEPROM_CTRL_4, &ee_ctrl_4);
698		bus->instance_id = (ee_ctrl_4 & IXGBE_EE_CTRL_4_INST_ID) >>
699				   IXGBE_EE_CTRL_4_INST_ID_SHIFT;
700	}
701}
702
703/**
704 *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
705 *  @hw: pointer to hardware structure
706 *
707 *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
708 *  disables transmit and receive units. The adapter_stopped flag is used by
709 *  the shared code and drivers to determine if the adapter is in a stopped
710 *  state and should not touch the hardware.
711 **/
712s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
713{
714	u32 reg_val;
715	u16 i;
716
717	/*
718	 * Set the adapter_stopped flag so other driver functions stop touching
719	 * the hardware
720	 */
721	hw->adapter_stopped = true;
722
723	/* Disable the receive unit */
724	hw->mac.ops.disable_rx(hw);
725
726	/* Clear interrupt mask to stop interrupts from being generated */
727	IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
728
729	/* Clear any pending interrupts, flush previous writes */
730	IXGBE_READ_REG(hw, IXGBE_EICR);
731
732	/* Disable the transmit unit.  Each queue must be disabled. */
733	for (i = 0; i < hw->mac.max_tx_queues; i++)
734		IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
735
736	/* Disable the receive unit by stopping each queue */
737	for (i = 0; i < hw->mac.max_rx_queues; i++) {
738		reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
739		reg_val &= ~IXGBE_RXDCTL_ENABLE;
740		reg_val |= IXGBE_RXDCTL_SWFLSH;
741		IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
742	}
743
744	/* flush all queues disables */
745	IXGBE_WRITE_FLUSH(hw);
746	usleep_range(1000, 2000);
747
748	/*
749	 * Prevent the PCI-E bus from hanging by disabling PCI-E primary
750	 * access and verify no pending requests
751	 */
752	return ixgbe_disable_pcie_primary(hw);
753}
754
755/**
756 *  ixgbe_init_led_link_act_generic - Store the LED index link/activity.
757 *  @hw: pointer to hardware structure
758 *
759 *  Store the index for the link active LED. This will be used to support
760 *  blinking the LED.
761 **/
762s32 ixgbe_init_led_link_act_generic(struct ixgbe_hw *hw)
763{
764	struct ixgbe_mac_info *mac = &hw->mac;
765	u32 led_reg, led_mode;
766	u16 i;
767
768	led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
769
770	/* Get LED link active from the LEDCTL register */
771	for (i = 0; i < 4; i++) {
772		led_mode = led_reg >> IXGBE_LED_MODE_SHIFT(i);
773
774		if ((led_mode & IXGBE_LED_MODE_MASK_BASE) ==
775		    IXGBE_LED_LINK_ACTIVE) {
776			mac->led_link_act = i;
777			return 0;
778		}
779	}
780
781	/* If LEDCTL register does not have the LED link active set, then use
782	 * known MAC defaults.
783	 */
784	switch (hw->mac.type) {
785	case ixgbe_mac_x550em_a:
786		mac->led_link_act = 0;
787		break;
788	case ixgbe_mac_X550EM_x:
789		mac->led_link_act = 1;
790		break;
791	default:
792		mac->led_link_act = 2;
793	}
794
795	return 0;
796}
797
798/**
799 *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
800 *  @hw: pointer to hardware structure
801 *  @index: led number to turn on
802 **/
803s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
804{
805	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
806
807	if (index > 3)
808		return -EINVAL;
809
810	/* To turn on the LED, set mode to ON. */
811	led_reg &= ~IXGBE_LED_MODE_MASK(index);
812	led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
813	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
814	IXGBE_WRITE_FLUSH(hw);
815
816	return 0;
817}
818
819/**
820 *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
821 *  @hw: pointer to hardware structure
822 *  @index: led number to turn off
823 **/
824s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
825{
826	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
827
828	if (index > 3)
829		return -EINVAL;
830
831	/* To turn off the LED, set mode to OFF. */
832	led_reg &= ~IXGBE_LED_MODE_MASK(index);
833	led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
834	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
835	IXGBE_WRITE_FLUSH(hw);
836
837	return 0;
838}
839
840/**
841 *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
842 *  @hw: pointer to hardware structure
843 *
844 *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
845 *  ixgbe_hw struct in order to set up EEPROM access.
846 **/
847s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
848{
849	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
850	u32 eec;
851	u16 eeprom_size;
852
853	if (eeprom->type == ixgbe_eeprom_uninitialized) {
854		eeprom->type = ixgbe_eeprom_none;
855		/* Set default semaphore delay to 10ms which is a well
856		 * tested value */
857		eeprom->semaphore_delay = 10;
858		/* Clear EEPROM page size, it will be initialized as needed */
859		eeprom->word_page_size = 0;
860
861		/*
862		 * Check for EEPROM present first.
863		 * If not present leave as none
864		 */
865		eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
866		if (eec & IXGBE_EEC_PRES) {
867			eeprom->type = ixgbe_eeprom_spi;
868
869			/*
870			 * SPI EEPROM is assumed here.  This code would need to
871			 * change if a future EEPROM is not SPI.
872			 */
873			eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
874					    IXGBE_EEC_SIZE_SHIFT);
875			eeprom->word_size = BIT(eeprom_size +
876						 IXGBE_EEPROM_WORD_SIZE_SHIFT);
877		}
878
879		if (eec & IXGBE_EEC_ADDR_SIZE)
880			eeprom->address_bits = 16;
881		else
882			eeprom->address_bits = 8;
883		hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: %d\n",
884		       eeprom->type, eeprom->word_size, eeprom->address_bits);
885	}
886
887	return 0;
888}
889
890/**
891 *  ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
892 *  @hw: pointer to hardware structure
893 *  @offset: offset within the EEPROM to write
894 *  @words: number of words
895 *  @data: 16 bit word(s) to write to EEPROM
896 *
897 *  Reads 16 bit word(s) from EEPROM through bit-bang method
898 **/
899s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
900					       u16 words, u16 *data)
901{
902	s32 status;
903	u16 i, count;
904
905	hw->eeprom.ops.init_params(hw);
906
907	if (words == 0 || (offset + words > hw->eeprom.word_size))
908		return -EINVAL;
909
910	/*
911	 * The EEPROM page size cannot be queried from the chip. We do lazy
912	 * initialization. It is worth to do that when we write large buffer.
913	 */
914	if ((hw->eeprom.word_page_size == 0) &&
915	    (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
916		ixgbe_detect_eeprom_page_size_generic(hw, offset);
917
918	/*
919	 * We cannot hold synchronization semaphores for too long
920	 * to avoid other entity starvation. However it is more efficient
921	 * to read in bursts than synchronizing access for each word.
922	 */
923	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
924		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
925			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
926		status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
927							    count, &data[i]);
928
929		if (status != 0)
930			break;
931	}
932
933	return status;
934}
935
936/**
937 *  ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
938 *  @hw: pointer to hardware structure
939 *  @offset: offset within the EEPROM to be written to
940 *  @words: number of word(s)
941 *  @data: 16 bit word(s) to be written to the EEPROM
942 *
943 *  If ixgbe_eeprom_update_checksum is not called after this function, the
944 *  EEPROM will most likely contain an invalid checksum.
945 **/
946static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
947					      u16 words, u16 *data)
948{
949	s32 status;
950	u16 word;
951	u16 page_size;
952	u16 i;
953	u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
954
955	/* Prepare the EEPROM for writing  */
956	status = ixgbe_acquire_eeprom(hw);
957	if (status)
958		return status;
959
960	if (ixgbe_ready_eeprom(hw) != 0) {
961		ixgbe_release_eeprom(hw);
962		return -EIO;
963	}
964
965	for (i = 0; i < words; i++) {
966		ixgbe_standby_eeprom(hw);
967
968		/* Send the WRITE ENABLE command (8 bit opcode) */
969		ixgbe_shift_out_eeprom_bits(hw,
970					    IXGBE_EEPROM_WREN_OPCODE_SPI,
971					    IXGBE_EEPROM_OPCODE_BITS);
972
973		ixgbe_standby_eeprom(hw);
974
975		/* Some SPI eeproms use the 8th address bit embedded
976		 * in the opcode
977		 */
978		if ((hw->eeprom.address_bits == 8) &&
979		    ((offset + i) >= 128))
980			write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
981
982		/* Send the Write command (8-bit opcode + addr) */
983		ixgbe_shift_out_eeprom_bits(hw, write_opcode,
984					    IXGBE_EEPROM_OPCODE_BITS);
985		ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
986					    hw->eeprom.address_bits);
987
988		page_size = hw->eeprom.word_page_size;
989
990		/* Send the data in burst via SPI */
991		do {
992			word = data[i];
993			word = (word >> 8) | (word << 8);
994			ixgbe_shift_out_eeprom_bits(hw, word, 16);
995
996			if (page_size == 0)
997				break;
998
999			/* do not wrap around page */
1000			if (((offset + i) & (page_size - 1)) ==
1001			    (page_size - 1))
1002				break;
1003		} while (++i < words);
1004
1005		ixgbe_standby_eeprom(hw);
1006		usleep_range(10000, 20000);
1007	}
1008	/* Done with writing - release the EEPROM */
1009	ixgbe_release_eeprom(hw);
1010
1011	return 0;
1012}
1013
1014/**
1015 *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
1016 *  @hw: pointer to hardware structure
1017 *  @offset: offset within the EEPROM to be written to
1018 *  @data: 16 bit word to be written to the EEPROM
1019 *
1020 *  If ixgbe_eeprom_update_checksum is not called after this function, the
1021 *  EEPROM will most likely contain an invalid checksum.
1022 **/
1023s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1024{
1025	hw->eeprom.ops.init_params(hw);
1026
1027	if (offset >= hw->eeprom.word_size)
1028		return -EINVAL;
1029
1030	return ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
1031}
1032
1033/**
1034 *  ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
1035 *  @hw: pointer to hardware structure
1036 *  @offset: offset within the EEPROM to be read
1037 *  @words: number of word(s)
1038 *  @data: read 16 bit words(s) from EEPROM
1039 *
1040 *  Reads 16 bit word(s) from EEPROM through bit-bang method
1041 **/
1042s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1043					      u16 words, u16 *data)
1044{
1045	s32 status;
1046	u16 i, count;
1047
1048	hw->eeprom.ops.init_params(hw);
1049
1050	if (words == 0 || (offset + words > hw->eeprom.word_size))
1051		return -EINVAL;
1052
1053	/*
1054	 * We cannot hold synchronization semaphores for too long
1055	 * to avoid other entity starvation. However it is more efficient
1056	 * to read in bursts than synchronizing access for each word.
1057	 */
1058	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1059		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1060			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1061
1062		status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1063							   count, &data[i]);
1064
1065		if (status)
1066			return status;
1067	}
1068
1069	return 0;
1070}
1071
1072/**
1073 *  ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1074 *  @hw: pointer to hardware structure
1075 *  @offset: offset within the EEPROM to be read
1076 *  @words: number of word(s)
1077 *  @data: read 16 bit word(s) from EEPROM
1078 *
1079 *  Reads 16 bit word(s) from EEPROM through bit-bang method
1080 **/
1081static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1082					     u16 words, u16 *data)
1083{
1084	s32 status;
1085	u16 word_in;
1086	u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1087	u16 i;
1088
1089	/* Prepare the EEPROM for reading  */
1090	status = ixgbe_acquire_eeprom(hw);
1091	if (status)
1092		return status;
1093
1094	if (ixgbe_ready_eeprom(hw) != 0) {
1095		ixgbe_release_eeprom(hw);
1096		return -EIO;
1097	}
1098
1099	for (i = 0; i < words; i++) {
1100		ixgbe_standby_eeprom(hw);
1101		/* Some SPI eeproms use the 8th address bit embedded
1102		 * in the opcode
1103		 */
1104		if ((hw->eeprom.address_bits == 8) &&
1105		    ((offset + i) >= 128))
1106			read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1107
1108		/* Send the READ command (opcode + addr) */
1109		ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1110					    IXGBE_EEPROM_OPCODE_BITS);
1111		ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1112					    hw->eeprom.address_bits);
1113
1114		/* Read the data. */
1115		word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1116		data[i] = (word_in >> 8) | (word_in << 8);
1117	}
1118
1119	/* End this read operation */
1120	ixgbe_release_eeprom(hw);
1121
1122	return 0;
1123}
1124
1125/**
1126 *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1127 *  @hw: pointer to hardware structure
1128 *  @offset: offset within the EEPROM to be read
1129 *  @data: read 16 bit value from EEPROM
1130 *
1131 *  Reads 16 bit value from EEPROM through bit-bang method
1132 **/
1133s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1134				       u16 *data)
1135{
1136	hw->eeprom.ops.init_params(hw);
1137
1138	if (offset >= hw->eeprom.word_size)
1139		return -EINVAL;
1140
1141	return ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1142}
1143
1144/**
1145 *  ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1146 *  @hw: pointer to hardware structure
1147 *  @offset: offset of word in the EEPROM to read
1148 *  @words: number of word(s)
1149 *  @data: 16 bit word(s) from the EEPROM
1150 *
1151 *  Reads a 16 bit word(s) from the EEPROM using the EERD register.
1152 **/
1153s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1154				   u16 words, u16 *data)
1155{
1156	u32 eerd;
1157	s32 status;
1158	u32 i;
1159
1160	hw->eeprom.ops.init_params(hw);
1161
1162	if (words == 0 || offset >= hw->eeprom.word_size)
1163		return -EINVAL;
1164
1165	for (i = 0; i < words; i++) {
1166		eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1167		       IXGBE_EEPROM_RW_REG_START;
1168
1169		IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1170		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1171
1172		if (status == 0) {
1173			data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1174				   IXGBE_EEPROM_RW_REG_DATA);
1175		} else {
1176			hw_dbg(hw, "Eeprom read timed out\n");
1177			return status;
1178		}
1179	}
1180
1181	return 0;
1182}
1183
1184/**
1185 *  ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1186 *  @hw: pointer to hardware structure
1187 *  @offset: offset within the EEPROM to be used as a scratch pad
1188 *
1189 *  Discover EEPROM page size by writing marching data at given offset.
1190 *  This function is called only when we are writing a new large buffer
1191 *  at given offset so the data would be overwritten anyway.
1192 **/
1193static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1194						 u16 offset)
1195{
1196	u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1197	s32 status;
1198	u16 i;
1199
1200	for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1201		data[i] = i;
1202
1203	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1204	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1205					     IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1206	hw->eeprom.word_page_size = 0;
1207	if (status)
1208		return status;
1209
1210	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1211	if (status)
1212		return status;
1213
1214	/*
1215	 * When writing in burst more than the actual page size
1216	 * EEPROM address wraps around current page.
1217	 */
1218	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1219
1220	hw_dbg(hw, "Detected EEPROM page size = %d words.\n",
1221	       hw->eeprom.word_page_size);
1222	return 0;
1223}
1224
1225/**
1226 *  ixgbe_read_eerd_generic - Read EEPROM word using EERD
1227 *  @hw: pointer to hardware structure
1228 *  @offset: offset of  word in the EEPROM to read
1229 *  @data: word read from the EEPROM
1230 *
1231 *  Reads a 16 bit word from the EEPROM using the EERD register.
1232 **/
1233s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1234{
1235	return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1236}
1237
1238/**
1239 *  ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1240 *  @hw: pointer to hardware structure
1241 *  @offset: offset of  word in the EEPROM to write
1242 *  @words: number of words
1243 *  @data: word(s) write to the EEPROM
1244 *
1245 *  Write a 16 bit word(s) to the EEPROM using the EEWR register.
1246 **/
1247s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1248				    u16 words, u16 *data)
1249{
1250	u32 eewr;
1251	s32 status;
1252	u16 i;
1253
1254	hw->eeprom.ops.init_params(hw);
1255
1256	if (words == 0 || offset >= hw->eeprom.word_size)
1257		return -EINVAL;
1258
1259	for (i = 0; i < words; i++) {
1260		eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1261		       (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1262		       IXGBE_EEPROM_RW_REG_START;
1263
1264		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1265		if (status) {
1266			hw_dbg(hw, "Eeprom write EEWR timed out\n");
1267			return status;
1268		}
1269
1270		IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1271
1272		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1273		if (status) {
1274			hw_dbg(hw, "Eeprom write EEWR timed out\n");
1275			return status;
1276		}
1277	}
1278
1279	return 0;
1280}
1281
1282/**
1283 *  ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1284 *  @hw: pointer to hardware structure
1285 *  @offset: offset of  word in the EEPROM to write
1286 *  @data: word write to the EEPROM
1287 *
1288 *  Write a 16 bit word to the EEPROM using the EEWR register.
1289 **/
1290s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1291{
1292	return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1293}
1294
1295/**
1296 *  ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1297 *  @hw: pointer to hardware structure
1298 *  @ee_reg: EEPROM flag for polling
1299 *
1300 *  Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1301 *  read or write is done respectively.
1302 **/
1303static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1304{
1305	u32 i;
1306	u32 reg;
1307
1308	for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1309		if (ee_reg == IXGBE_NVM_POLL_READ)
1310			reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1311		else
1312			reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1313
1314		if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1315			return 0;
1316		}
1317		udelay(5);
1318	}
1319	return -EIO;
1320}
1321
1322/**
1323 *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1324 *  @hw: pointer to hardware structure
1325 *
1326 *  Prepares EEPROM for access using bit-bang method. This function should
1327 *  be called before issuing a command to the EEPROM.
1328 **/
1329static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1330{
1331	u32 eec;
1332	u32 i;
1333
1334	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0)
1335		return -EBUSY;
1336
1337	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1338
1339	/* Request EEPROM Access */
1340	eec |= IXGBE_EEC_REQ;
1341	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1342
1343	for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1344		eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1345		if (eec & IXGBE_EEC_GNT)
1346			break;
1347		udelay(5);
1348	}
1349
1350	/* Release if grant not acquired */
1351	if (!(eec & IXGBE_EEC_GNT)) {
1352		eec &= ~IXGBE_EEC_REQ;
1353		IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1354		hw_dbg(hw, "Could not acquire EEPROM grant\n");
1355
1356		hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1357		return -EIO;
1358	}
1359
1360	/* Setup EEPROM for Read/Write */
1361	/* Clear CS and SK */
1362	eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1363	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1364	IXGBE_WRITE_FLUSH(hw);
1365	udelay(1);
1366	return 0;
1367}
1368
1369/**
1370 *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
1371 *  @hw: pointer to hardware structure
1372 *
1373 *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1374 **/
1375static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1376{
1377	u32 timeout = 2000;
1378	u32 i;
1379	u32 swsm;
1380
1381	/* Get SMBI software semaphore between device drivers first */
1382	for (i = 0; i < timeout; i++) {
1383		/*
1384		 * If the SMBI bit is 0 when we read it, then the bit will be
1385		 * set and we have the semaphore
1386		 */
1387		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1388		if (!(swsm & IXGBE_SWSM_SMBI))
1389			break;
1390		usleep_range(50, 100);
1391	}
1392
1393	if (i == timeout) {
1394		hw_dbg(hw, "Driver can't access the Eeprom - SMBI Semaphore not granted.\n");
1395		/* this release is particularly important because our attempts
1396		 * above to get the semaphore may have succeeded, and if there
1397		 * was a timeout, we should unconditionally clear the semaphore
1398		 * bits to free the driver to make progress
1399		 */
1400		ixgbe_release_eeprom_semaphore(hw);
1401
1402		usleep_range(50, 100);
1403		/* one last try
1404		 * If the SMBI bit is 0 when we read it, then the bit will be
1405		 * set and we have the semaphore
1406		 */
1407		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1408		if (swsm & IXGBE_SWSM_SMBI) {
1409			hw_dbg(hw, "Software semaphore SMBI between device drivers not granted.\n");
1410			return -EIO;
1411		}
1412	}
1413
1414	/* Now get the semaphore between SW/FW through the SWESMBI bit */
1415	for (i = 0; i < timeout; i++) {
1416		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1417
1418		/* Set the SW EEPROM semaphore bit to request access */
1419		swsm |= IXGBE_SWSM_SWESMBI;
1420		IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm);
1421
1422		/* If we set the bit successfully then we got the
1423		 * semaphore.
1424		 */
1425		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1426		if (swsm & IXGBE_SWSM_SWESMBI)
1427			break;
1428
1429		usleep_range(50, 100);
1430	}
1431
1432	/* Release semaphores and return error if SW EEPROM semaphore
1433	 * was not granted because we don't have access to the EEPROM
1434	 */
1435	if (i >= timeout) {
1436		hw_dbg(hw, "SWESMBI Software EEPROM semaphore not granted.\n");
1437		ixgbe_release_eeprom_semaphore(hw);
1438		return -EIO;
1439	}
1440
1441	return 0;
1442}
1443
1444/**
1445 *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
1446 *  @hw: pointer to hardware structure
1447 *
1448 *  This function clears hardware semaphore bits.
1449 **/
1450static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1451{
1452	u32 swsm;
1453
1454	swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1455
1456	/* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1457	swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1458	IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm);
1459	IXGBE_WRITE_FLUSH(hw);
1460}
1461
1462/**
1463 *  ixgbe_ready_eeprom - Polls for EEPROM ready
1464 *  @hw: pointer to hardware structure
1465 **/
1466static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1467{
1468	u16 i;
1469	u8 spi_stat_reg;
1470
1471	/*
1472	 * Read "Status Register" repeatedly until the LSB is cleared.  The
1473	 * EEPROM will signal that the command has been completed by clearing
1474	 * bit 0 of the internal status register.  If it's not cleared within
1475	 * 5 milliseconds, then error out.
1476	 */
1477	for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1478		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1479					    IXGBE_EEPROM_OPCODE_BITS);
1480		spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1481		if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1482			break;
1483
1484		udelay(5);
1485		ixgbe_standby_eeprom(hw);
1486	}
1487
1488	/*
1489	 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1490	 * devices (and only 0-5mSec on 5V devices)
1491	 */
1492	if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
1493		hw_dbg(hw, "SPI EEPROM Status error\n");
1494		return -EIO;
1495	}
1496
1497	return 0;
1498}
1499
1500/**
1501 *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1502 *  @hw: pointer to hardware structure
1503 **/
1504static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
1505{
1506	u32 eec;
1507
1508	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1509
1510	/* Toggle CS to flush commands */
1511	eec |= IXGBE_EEC_CS;
1512	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1513	IXGBE_WRITE_FLUSH(hw);
1514	udelay(1);
1515	eec &= ~IXGBE_EEC_CS;
1516	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1517	IXGBE_WRITE_FLUSH(hw);
1518	udelay(1);
1519}
1520
1521/**
1522 *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1523 *  @hw: pointer to hardware structure
1524 *  @data: data to send to the EEPROM
1525 *  @count: number of bits to shift out
1526 **/
1527static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1528					u16 count)
1529{
1530	u32 eec;
1531	u32 mask;
1532	u32 i;
1533
1534	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1535
1536	/*
1537	 * Mask is used to shift "count" bits of "data" out to the EEPROM
1538	 * one bit at a time.  Determine the starting bit based on count
1539	 */
1540	mask = BIT(count - 1);
1541
1542	for (i = 0; i < count; i++) {
1543		/*
1544		 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1545		 * "1", and then raising and then lowering the clock (the SK
1546		 * bit controls the clock input to the EEPROM).  A "0" is
1547		 * shifted out to the EEPROM by setting "DI" to "0" and then
1548		 * raising and then lowering the clock.
1549		 */
1550		if (data & mask)
1551			eec |= IXGBE_EEC_DI;
1552		else
1553			eec &= ~IXGBE_EEC_DI;
1554
1555		IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1556		IXGBE_WRITE_FLUSH(hw);
1557
1558		udelay(1);
1559
1560		ixgbe_raise_eeprom_clk(hw, &eec);
1561		ixgbe_lower_eeprom_clk(hw, &eec);
1562
1563		/*
1564		 * Shift mask to signify next bit of data to shift in to the
1565		 * EEPROM
1566		 */
1567		mask = mask >> 1;
1568	}
1569
1570	/* We leave the "DI" bit set to "0" when we leave this routine. */
1571	eec &= ~IXGBE_EEC_DI;
1572	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1573	IXGBE_WRITE_FLUSH(hw);
1574}
1575
1576/**
1577 *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1578 *  @hw: pointer to hardware structure
1579 *  @count: number of bits to shift
1580 **/
1581static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
1582{
1583	u32 eec;
1584	u32 i;
1585	u16 data = 0;
1586
1587	/*
1588	 * In order to read a register from the EEPROM, we need to shift
1589	 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
1590	 * the clock input to the EEPROM (setting the SK bit), and then reading
1591	 * the value of the "DO" bit.  During this "shifting in" process the
1592	 * "DI" bit should always be clear.
1593	 */
1594	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1595
1596	eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
1597
1598	for (i = 0; i < count; i++) {
1599		data = data << 1;
1600		ixgbe_raise_eeprom_clk(hw, &eec);
1601
1602		eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1603
1604		eec &= ~(IXGBE_EEC_DI);
1605		if (eec & IXGBE_EEC_DO)
1606			data |= 1;
1607
1608		ixgbe_lower_eeprom_clk(hw, &eec);
1609	}
1610
1611	return data;
1612}
1613
1614/**
1615 *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
1616 *  @hw: pointer to hardware structure
1617 *  @eec: EEC register's current value
1618 **/
1619static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1620{
1621	/*
1622	 * Raise the clock input to the EEPROM
1623	 * (setting the SK bit), then delay
1624	 */
1625	*eec = *eec | IXGBE_EEC_SK;
1626	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec);
1627	IXGBE_WRITE_FLUSH(hw);
1628	udelay(1);
1629}
1630
1631/**
1632 *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
1633 *  @hw: pointer to hardware structure
1634 *  @eec: EEC's current value
1635 **/
1636static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1637{
1638	/*
1639	 * Lower the clock input to the EEPROM (clearing the SK bit), then
1640	 * delay
1641	 */
1642	*eec = *eec & ~IXGBE_EEC_SK;
1643	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec);
1644	IXGBE_WRITE_FLUSH(hw);
1645	udelay(1);
1646}
1647
1648/**
1649 *  ixgbe_release_eeprom - Release EEPROM, release semaphores
1650 *  @hw: pointer to hardware structure
1651 **/
1652static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
1653{
1654	u32 eec;
1655
1656	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1657
1658	eec |= IXGBE_EEC_CS;  /* Pull CS high */
1659	eec &= ~IXGBE_EEC_SK; /* Lower SCK */
1660
1661	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1662	IXGBE_WRITE_FLUSH(hw);
1663
1664	udelay(1);
1665
1666	/* Stop requesting EEPROM access */
1667	eec &= ~IXGBE_EEC_REQ;
1668	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1669
1670	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1671
1672	/*
1673	 * Delay before attempt to obtain semaphore again to allow FW
1674	 * access. semaphore_delay is in ms we need us for usleep_range
1675	 */
1676	usleep_range(hw->eeprom.semaphore_delay * 1000,
1677		     hw->eeprom.semaphore_delay * 2000);
1678}
1679
1680/**
1681 *  ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
1682 *  @hw: pointer to hardware structure
1683 **/
1684s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
1685{
1686	u16 i;
1687	u16 j;
1688	u16 checksum = 0;
1689	u16 length = 0;
1690	u16 pointer = 0;
1691	u16 word = 0;
1692
1693	/* Include 0x0-0x3F in the checksum */
1694	for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
1695		if (hw->eeprom.ops.read(hw, i, &word)) {
1696			hw_dbg(hw, "EEPROM read failed\n");
1697			break;
1698		}
1699		checksum += word;
1700	}
1701
1702	/* Include all data from pointers except for the fw pointer */
1703	for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
1704		if (hw->eeprom.ops.read(hw, i, &pointer)) {
1705			hw_dbg(hw, "EEPROM read failed\n");
1706			return -EIO;
1707		}
1708
1709		/* If the pointer seems invalid */
1710		if (pointer == 0xFFFF || pointer == 0)
1711			continue;
1712
1713		if (hw->eeprom.ops.read(hw, pointer, &length)) {
1714			hw_dbg(hw, "EEPROM read failed\n");
1715			return -EIO;
1716		}
1717
1718		if (length == 0xFFFF || length == 0)
1719			continue;
1720
1721		for (j = pointer + 1; j <= pointer + length; j++) {
1722			if (hw->eeprom.ops.read(hw, j, &word)) {
1723				hw_dbg(hw, "EEPROM read failed\n");
1724				return -EIO;
1725			}
1726			checksum += word;
1727		}
1728	}
1729
1730	checksum = (u16)IXGBE_EEPROM_SUM - checksum;
1731
1732	return (s32)checksum;
1733}
1734
1735/**
1736 *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1737 *  @hw: pointer to hardware structure
1738 *  @checksum_val: calculated checksum
1739 *
1740 *  Performs checksum calculation and validates the EEPROM checksum.  If the
1741 *  caller does not need checksum_val, the value can be NULL.
1742 **/
1743s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
1744					   u16 *checksum_val)
1745{
1746	s32 status;
1747	u16 checksum;
1748	u16 read_checksum = 0;
1749
1750	/*
1751	 * Read the first word from the EEPROM. If this times out or fails, do
1752	 * not continue or we could be in for a very long wait while every
1753	 * EEPROM read fails
1754	 */
1755	status = hw->eeprom.ops.read(hw, 0, &checksum);
1756	if (status) {
1757		hw_dbg(hw, "EEPROM read failed\n");
1758		return status;
1759	}
1760
1761	status = hw->eeprom.ops.calc_checksum(hw);
1762	if (status < 0)
1763		return status;
1764
1765	checksum = (u16)(status & 0xffff);
1766
1767	status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
1768	if (status) {
1769		hw_dbg(hw, "EEPROM read failed\n");
1770		return status;
1771	}
1772
1773	/* Verify read checksum from EEPROM is the same as
1774	 * calculated checksum
1775	 */
1776	if (read_checksum != checksum)
1777		status = -EIO;
1778
1779	/* If the user cares, return the calculated checksum */
1780	if (checksum_val)
1781		*checksum_val = checksum;
1782
1783	return status;
1784}
1785
1786/**
1787 *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1788 *  @hw: pointer to hardware structure
1789 **/
1790s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
1791{
1792	s32 status;
1793	u16 checksum;
1794
1795	/*
1796	 * Read the first word from the EEPROM. If this times out or fails, do
1797	 * not continue or we could be in for a very long wait while every
1798	 * EEPROM read fails
1799	 */
1800	status = hw->eeprom.ops.read(hw, 0, &checksum);
1801	if (status) {
1802		hw_dbg(hw, "EEPROM read failed\n");
1803		return status;
1804	}
1805
1806	status = hw->eeprom.ops.calc_checksum(hw);
1807	if (status < 0)
1808		return status;
1809
1810	checksum = (u16)(status & 0xffff);
1811
1812	status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);
1813
1814	return status;
1815}
1816
1817/**
1818 *  ixgbe_set_rar_generic - Set Rx address register
1819 *  @hw: pointer to hardware structure
1820 *  @index: Receive address register to write
1821 *  @addr: Address to put into receive address register
1822 *  @vmdq: VMDq "set" or "pool" index
1823 *  @enable_addr: set flag that address is active
1824 *
1825 *  Puts an ethernet address into a receive address register.
1826 **/
1827s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
1828			  u32 enable_addr)
1829{
1830	u32 rar_low, rar_high;
1831	u32 rar_entries = hw->mac.num_rar_entries;
1832
1833	/* Make sure we are using a valid rar index range */
1834	if (index >= rar_entries) {
1835		hw_dbg(hw, "RAR index %d is out of range.\n", index);
1836		return -EINVAL;
1837	}
1838
1839	/* setup VMDq pool selection before this RAR gets enabled */
1840	hw->mac.ops.set_vmdq(hw, index, vmdq);
1841
1842	/*
1843	 * HW expects these in little endian so we reverse the byte
1844	 * order from network order (big endian) to little endian
1845	 */
1846	rar_low = ((u32)addr[0] |
1847		   ((u32)addr[1] << 8) |
1848		   ((u32)addr[2] << 16) |
1849		   ((u32)addr[3] << 24));
1850	/*
1851	 * Some parts put the VMDq setting in the extra RAH bits,
1852	 * so save everything except the lower 16 bits that hold part
1853	 * of the address and the address valid bit.
1854	 */
1855	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1856	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1857	rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
1858
1859	if (enable_addr != 0)
1860		rar_high |= IXGBE_RAH_AV;
1861
1862	/* Record lower 32 bits of MAC address and then make
1863	 * sure that write is flushed to hardware before writing
1864	 * the upper 16 bits and setting the valid bit.
1865	 */
1866	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
1867	IXGBE_WRITE_FLUSH(hw);
1868	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1869
1870	return 0;
1871}
1872
1873/**
1874 *  ixgbe_clear_rar_generic - Remove Rx address register
1875 *  @hw: pointer to hardware structure
1876 *  @index: Receive address register to write
1877 *
1878 *  Clears an ethernet address from a receive address register.
1879 **/
1880s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
1881{
1882	u32 rar_high;
1883	u32 rar_entries = hw->mac.num_rar_entries;
1884
1885	/* Make sure we are using a valid rar index range */
1886	if (index >= rar_entries) {
1887		hw_dbg(hw, "RAR index %d is out of range.\n", index);
1888		return -EINVAL;
1889	}
1890
1891	/*
1892	 * Some parts put the VMDq setting in the extra RAH bits,
1893	 * so save everything except the lower 16 bits that hold part
1894	 * of the address and the address valid bit.
1895	 */
1896	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1897	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1898
1899	/* Clear the address valid bit and upper 16 bits of the address
1900	 * before clearing the lower bits. This way we aren't updating
1901	 * a live filter.
1902	 */
1903	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1904	IXGBE_WRITE_FLUSH(hw);
1905	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
1906
1907	/* clear VMDq pool/queue selection for this RAR */
1908	hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
1909
1910	return 0;
1911}
1912
1913/**
1914 *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
1915 *  @hw: pointer to hardware structure
1916 *
1917 *  Places the MAC address in receive address register 0 and clears the rest
1918 *  of the receive address registers. Clears the multicast table. Assumes
1919 *  the receiver is in reset when the routine is called.
1920 **/
1921s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
1922{
1923	u32 i;
1924	u32 rar_entries = hw->mac.num_rar_entries;
1925
1926	/*
1927	 * If the current mac address is valid, assume it is a software override
1928	 * to the permanent address.
1929	 * Otherwise, use the permanent address from the eeprom.
1930	 */
1931	if (!is_valid_ether_addr(hw->mac.addr)) {
1932		/* Get the MAC address from the RAR0 for later reference */
1933		hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
1934
1935		hw_dbg(hw, " Keeping Current RAR0 Addr =%pM\n", hw->mac.addr);
1936	} else {
1937		/* Setup the receive address. */
1938		hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
1939		hw_dbg(hw, " New MAC Addr =%pM\n", hw->mac.addr);
1940
1941		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
1942	}
1943
1944	/*  clear VMDq pool/queue selection for RAR 0 */
1945	hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
1946
1947	hw->addr_ctrl.overflow_promisc = 0;
1948
1949	hw->addr_ctrl.rar_used_count = 1;
1950
1951	/* Zero out the other receive addresses. */
1952	hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1);
1953	for (i = 1; i < rar_entries; i++) {
1954		IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
1955		IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
1956	}
1957
1958	/* Clear the MTA */
1959	hw->addr_ctrl.mta_in_use = 0;
1960	IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1961
1962	hw_dbg(hw, " Clearing MTA\n");
1963	for (i = 0; i < hw->mac.mcft_size; i++)
1964		IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
1965
1966	if (hw->mac.ops.init_uta_tables)
1967		hw->mac.ops.init_uta_tables(hw);
1968
1969	return 0;
1970}
1971
1972/**
1973 *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
1974 *  @hw: pointer to hardware structure
1975 *  @mc_addr: the multicast address
1976 *
1977 *  Extracts the 12 bits, from a multicast address, to determine which
1978 *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
1979 *  incoming rx multicast addresses, to determine the bit-vector to check in
1980 *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
1981 *  by the MO field of the MCSTCTRL. The MO field is set during initialization
1982 *  to mc_filter_type.
1983 **/
1984static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
1985{
1986	u32 vector = 0;
1987
1988	switch (hw->mac.mc_filter_type) {
1989	case 0:   /* use bits [47:36] of the address */
1990		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
1991		break;
1992	case 1:   /* use bits [46:35] of the address */
1993		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
1994		break;
1995	case 2:   /* use bits [45:34] of the address */
1996		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
1997		break;
1998	case 3:   /* use bits [43:32] of the address */
1999		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
2000		break;
2001	default:  /* Invalid mc_filter_type */
2002		hw_dbg(hw, "MC filter type param set incorrectly\n");
2003		break;
2004	}
2005
2006	/* vector can only be 12-bits or boundary will be exceeded */
2007	vector &= 0xFFF;
2008	return vector;
2009}
2010
2011/**
2012 *  ixgbe_set_mta - Set bit-vector in multicast table
2013 *  @hw: pointer to hardware structure
2014 *  @mc_addr: Multicast address
2015 *
2016 *  Sets the bit-vector in the multicast table.
2017 **/
2018static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
2019{
2020	u32 vector;
2021	u32 vector_bit;
2022	u32 vector_reg;
2023
2024	hw->addr_ctrl.mta_in_use++;
2025
2026	vector = ixgbe_mta_vector(hw, mc_addr);
2027	hw_dbg(hw, " bit-vector = 0x%03X\n", vector);
2028
2029	/*
2030	 * The MTA is a register array of 128 32-bit registers. It is treated
2031	 * like an array of 4096 bits.  We want to set bit
2032	 * BitArray[vector_value]. So we figure out what register the bit is
2033	 * in, read it, OR in the new bit, then write back the new value.  The
2034	 * register is determined by the upper 7 bits of the vector value and
2035	 * the bit within that register are determined by the lower 5 bits of
2036	 * the value.
2037	 */
2038	vector_reg = (vector >> 5) & 0x7F;
2039	vector_bit = vector & 0x1F;
2040	hw->mac.mta_shadow[vector_reg] |= BIT(vector_bit);
2041}
2042
2043/**
2044 *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2045 *  @hw: pointer to hardware structure
2046 *  @netdev: pointer to net device structure
2047 *
2048 *  The given list replaces any existing list. Clears the MC addrs from receive
2049 *  address registers and the multicast table. Uses unused receive address
2050 *  registers for the first multicast addresses, and hashes the rest into the
2051 *  multicast table.
2052 **/
2053s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw,
2054				      struct net_device *netdev)
2055{
2056	struct netdev_hw_addr *ha;
2057	u32 i;
2058
2059	/*
2060	 * Set the new number of MC addresses that we are being requested to
2061	 * use.
2062	 */
2063	hw->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
2064	hw->addr_ctrl.mta_in_use = 0;
2065
2066	/* Clear mta_shadow */
2067	hw_dbg(hw, " Clearing MTA\n");
2068	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2069
2070	/* Update mta shadow */
2071	netdev_for_each_mc_addr(ha, netdev) {
2072		hw_dbg(hw, " Adding the multicast addresses:\n");
2073		ixgbe_set_mta(hw, ha->addr);
2074	}
2075
2076	/* Enable mta */
2077	for (i = 0; i < hw->mac.mcft_size; i++)
2078		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2079				      hw->mac.mta_shadow[i]);
2080
2081	if (hw->addr_ctrl.mta_in_use > 0)
2082		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2083				IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2084
2085	hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n");
2086	return 0;
2087}
2088
2089/**
2090 *  ixgbe_enable_mc_generic - Enable multicast address in RAR
2091 *  @hw: pointer to hardware structure
2092 *
2093 *  Enables multicast address in RAR and the use of the multicast hash table.
2094 **/
2095s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2096{
2097	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2098
2099	if (a->mta_in_use > 0)
2100		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2101				hw->mac.mc_filter_type);
2102
2103	return 0;
2104}
2105
2106/**
2107 *  ixgbe_disable_mc_generic - Disable multicast address in RAR
2108 *  @hw: pointer to hardware structure
2109 *
2110 *  Disables multicast address in RAR and the use of the multicast hash table.
2111 **/
2112s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2113{
2114	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2115
2116	if (a->mta_in_use > 0)
2117		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2118
2119	return 0;
2120}
2121
2122/**
2123 *  ixgbe_fc_enable_generic - Enable flow control
2124 *  @hw: pointer to hardware structure
2125 *
2126 *  Enable flow control according to the current settings.
2127 **/
2128s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2129{
2130	u32 mflcn_reg, fccfg_reg;
2131	u32 reg;
2132	u32 fcrtl, fcrth;
2133	int i;
2134
2135	/* Validate the water mark configuration. */
2136	if (!hw->fc.pause_time)
2137		return -EINVAL;
2138
2139	/* Low water mark of zero causes XOFF floods */
2140	for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2141		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2142		    hw->fc.high_water[i]) {
2143			if (!hw->fc.low_water[i] ||
2144			    hw->fc.low_water[i] >= hw->fc.high_water[i]) {
2145				hw_dbg(hw, "Invalid water mark configuration\n");
2146				return -EINVAL;
2147			}
2148		}
2149	}
2150
2151	/* Negotiate the fc mode to use */
2152	hw->mac.ops.fc_autoneg(hw);
2153
2154	/* Disable any previous flow control settings */
2155	mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2156	mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2157
2158	fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2159	fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2160
2161	/*
2162	 * The possible values of fc.current_mode are:
2163	 * 0: Flow control is completely disabled
2164	 * 1: Rx flow control is enabled (we can receive pause frames,
2165	 *    but not send pause frames).
2166	 * 2: Tx flow control is enabled (we can send pause frames but
2167	 *    we do not support receiving pause frames).
2168	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2169	 * other: Invalid.
2170	 */
2171	switch (hw->fc.current_mode) {
2172	case ixgbe_fc_none:
2173		/*
2174		 * Flow control is disabled by software override or autoneg.
2175		 * The code below will actually disable it in the HW.
2176		 */
2177		break;
2178	case ixgbe_fc_rx_pause:
2179		/*
2180		 * Rx Flow control is enabled and Tx Flow control is
2181		 * disabled by software override. Since there really
2182		 * isn't a way to advertise that we are capable of RX
2183		 * Pause ONLY, we will advertise that we support both
2184		 * symmetric and asymmetric Rx PAUSE.  Later, we will
2185		 * disable the adapter's ability to send PAUSE frames.
2186		 */
2187		mflcn_reg |= IXGBE_MFLCN_RFCE;
2188		break;
2189	case ixgbe_fc_tx_pause:
2190		/*
2191		 * Tx Flow control is enabled, and Rx Flow control is
2192		 * disabled by software override.
2193		 */
2194		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2195		break;
2196	case ixgbe_fc_full:
2197		/* Flow control (both Rx and Tx) is enabled by SW override. */
2198		mflcn_reg |= IXGBE_MFLCN_RFCE;
2199		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2200		break;
2201	default:
2202		hw_dbg(hw, "Flow control param set incorrectly\n");
2203		return -EIO;
2204	}
2205
2206	/* Set 802.3x based flow control settings. */
2207	mflcn_reg |= IXGBE_MFLCN_DPF;
2208	IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2209	IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2210
2211	/* Set up and enable Rx high/low water mark thresholds, enable XON. */
2212	for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2213		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2214		    hw->fc.high_water[i]) {
2215			fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2216			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2217			fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2218		} else {
2219			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2220			/*
2221			 * In order to prevent Tx hangs when the internal Tx
2222			 * switch is enabled we must set the high water mark
2223			 * to the Rx packet buffer size - 24KB.  This allows
2224			 * the Tx switch to function even under heavy Rx
2225			 * workloads.
2226			 */
2227			fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576;
2228		}
2229
2230		IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2231	}
2232
2233	/* Configure pause time (2 TCs per register) */
2234	reg = hw->fc.pause_time * 0x00010001U;
2235	for (i = 0; i < (MAX_TRAFFIC_CLASS / 2); i++)
2236		IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2237
2238	IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2239
2240	return 0;
2241}
2242
2243/**
2244 *  ixgbe_negotiate_fc - Negotiate flow control
2245 *  @hw: pointer to hardware structure
2246 *  @adv_reg: flow control advertised settings
2247 *  @lp_reg: link partner's flow control settings
2248 *  @adv_sym: symmetric pause bit in advertisement
2249 *  @adv_asm: asymmetric pause bit in advertisement
2250 *  @lp_sym: symmetric pause bit in link partner advertisement
2251 *  @lp_asm: asymmetric pause bit in link partner advertisement
2252 *
2253 *  Find the intersection between advertised settings and link partner's
2254 *  advertised settings
2255 **/
2256s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2257		       u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2258{
2259	if ((!(adv_reg)) ||  (!(lp_reg)))
2260		return -EINVAL;
2261
2262	if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2263		/*
2264		 * Now we need to check if the user selected Rx ONLY
2265		 * of pause frames.  In this case, we had to advertise
2266		 * FULL flow control because we could not advertise RX
2267		 * ONLY. Hence, we must now check to see if we need to
2268		 * turn OFF the TRANSMISSION of PAUSE frames.
2269		 */
2270		if (hw->fc.requested_mode == ixgbe_fc_full) {
2271			hw->fc.current_mode = ixgbe_fc_full;
2272			hw_dbg(hw, "Flow Control = FULL.\n");
2273		} else {
2274			hw->fc.current_mode = ixgbe_fc_rx_pause;
2275			hw_dbg(hw, "Flow Control=RX PAUSE frames only\n");
2276		}
2277	} else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2278		   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2279		hw->fc.current_mode = ixgbe_fc_tx_pause;
2280		hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
2281	} else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2282		   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2283		hw->fc.current_mode = ixgbe_fc_rx_pause;
2284		hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
2285	} else {
2286		hw->fc.current_mode = ixgbe_fc_none;
2287		hw_dbg(hw, "Flow Control = NONE.\n");
2288	}
2289	return 0;
2290}
2291
2292/**
2293 *  ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2294 *  @hw: pointer to hardware structure
2295 *
2296 *  Enable flow control according on 1 gig fiber.
2297 **/
2298static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2299{
2300	u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2301	s32 ret_val;
2302
2303	/*
2304	 * On multispeed fiber at 1g, bail out if
2305	 * - link is up but AN did not complete, or if
2306	 * - link is up and AN completed but timed out
2307	 */
2308
2309	linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2310	if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2311	    (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1))
2312		return -EIO;
2313
2314	pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2315	pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
2316
2317	ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
2318			       pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
2319			       IXGBE_PCS1GANA_ASM_PAUSE,
2320			       IXGBE_PCS1GANA_SYM_PAUSE,
2321			       IXGBE_PCS1GANA_ASM_PAUSE);
2322
2323	return ret_val;
2324}
2325
2326/**
2327 *  ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2328 *  @hw: pointer to hardware structure
2329 *
2330 *  Enable flow control according to IEEE clause 37.
2331 **/
2332static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2333{
2334	u32 links2, anlp1_reg, autoc_reg, links;
2335	s32 ret_val;
2336
2337	/*
2338	 * On backplane, bail out if
2339	 * - backplane autoneg was not completed, or if
2340	 * - we are 82599 and link partner is not AN enabled
2341	 */
2342	links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2343	if ((links & IXGBE_LINKS_KX_AN_COMP) == 0)
2344		return -EIO;
2345
2346	if (hw->mac.type == ixgbe_mac_82599EB) {
2347		links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2348		if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0)
2349			return -EIO;
2350	}
2351	/*
2352	 * Read the 10g AN autoc and LP ability registers and resolve
2353	 * local flow control settings accordingly
2354	 */
2355	autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2356	anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2357
2358	ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
2359		anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
2360		IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
2361
2362	return ret_val;
2363}
2364
2365/**
2366 *  ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2367 *  @hw: pointer to hardware structure
2368 *
2369 *  Enable flow control according to IEEE clause 37.
2370 **/
2371static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
2372{
2373	u16 technology_ability_reg = 0;
2374	u16 lp_technology_ability_reg = 0;
2375
2376	hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
2377			     MDIO_MMD_AN,
2378			     &technology_ability_reg);
2379	hw->phy.ops.read_reg(hw, MDIO_AN_LPA,
2380			     MDIO_MMD_AN,
2381			     &lp_technology_ability_reg);
2382
2383	return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
2384				  (u32)lp_technology_ability_reg,
2385				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
2386				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
2387}
2388
2389/**
2390 *  ixgbe_fc_autoneg - Configure flow control
2391 *  @hw: pointer to hardware structure
2392 *
2393 *  Compares our advertised flow control capabilities to those advertised by
2394 *  our link partner, and determines the proper flow control mode to use.
2395 **/
2396void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
2397{
2398	ixgbe_link_speed speed;
2399	s32 ret_val = -EIO;
2400	bool link_up;
2401
2402	/*
2403	 * AN should have completed when the cable was plugged in.
2404	 * Look for reasons to bail out.  Bail out if:
2405	 * - FC autoneg is disabled, or if
2406	 * - link is not up.
2407	 *
2408	 * Since we're being called from an LSC, link is already known to be up.
2409	 * So use link_up_wait_to_complete=false.
2410	 */
2411	if (hw->fc.disable_fc_autoneg)
2412		goto out;
2413
2414	hw->mac.ops.check_link(hw, &speed, &link_up, false);
2415	if (!link_up)
2416		goto out;
2417
2418	switch (hw->phy.media_type) {
2419	/* Autoneg flow control on fiber adapters */
2420	case ixgbe_media_type_fiber:
2421		if (speed == IXGBE_LINK_SPEED_1GB_FULL)
2422			ret_val = ixgbe_fc_autoneg_fiber(hw);
2423		break;
2424
2425	/* Autoneg flow control on backplane adapters */
2426	case ixgbe_media_type_backplane:
2427		ret_val = ixgbe_fc_autoneg_backplane(hw);
2428		break;
2429
2430	/* Autoneg flow control on copper adapters */
2431	case ixgbe_media_type_copper:
2432		if (ixgbe_device_supports_autoneg_fc(hw))
2433			ret_val = ixgbe_fc_autoneg_copper(hw);
2434		break;
2435
2436	default:
2437		break;
2438	}
2439
2440out:
2441	if (ret_val == 0) {
2442		hw->fc.fc_was_autonegged = true;
2443	} else {
2444		hw->fc.fc_was_autonegged = false;
2445		hw->fc.current_mode = hw->fc.requested_mode;
2446	}
2447}
2448
2449/**
2450 * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
2451 * @hw: pointer to hardware structure
2452 *
2453 * System-wide timeout range is encoded in PCIe Device Control2 register.
2454 *
2455 *  Add 10% to specified maximum and return the number of times to poll for
2456 *  completion timeout, in units of 100 microsec.  Never return less than
2457 *  800 = 80 millisec.
2458 **/
2459static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
2460{
2461	s16 devctl2;
2462	u32 pollcnt;
2463
2464	devctl2 = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_CONTROL2);
2465	devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
2466
2467	switch (devctl2) {
2468	case IXGBE_PCIDEVCTRL2_65_130ms:
2469		 pollcnt = 1300;         /* 130 millisec */
2470		break;
2471	case IXGBE_PCIDEVCTRL2_260_520ms:
2472		pollcnt = 5200;         /* 520 millisec */
2473		break;
2474	case IXGBE_PCIDEVCTRL2_1_2s:
2475		pollcnt = 20000;        /* 2 sec */
2476		break;
2477	case IXGBE_PCIDEVCTRL2_4_8s:
2478		pollcnt = 80000;        /* 8 sec */
2479		break;
2480	case IXGBE_PCIDEVCTRL2_17_34s:
2481		pollcnt = 34000;        /* 34 sec */
2482		break;
2483	case IXGBE_PCIDEVCTRL2_50_100us:        /* 100 microsecs */
2484	case IXGBE_PCIDEVCTRL2_1_2ms:           /* 2 millisecs */
2485	case IXGBE_PCIDEVCTRL2_16_32ms:         /* 32 millisec */
2486	case IXGBE_PCIDEVCTRL2_16_32ms_def:     /* 32 millisec default */
2487	default:
2488		pollcnt = 800;          /* 80 millisec minimum */
2489		break;
2490	}
2491
2492	/* add 10% to spec maximum */
2493	return (pollcnt * 11) / 10;
2494}
2495
2496/**
2497 *  ixgbe_disable_pcie_primary - Disable PCI-express primary access
2498 *  @hw: pointer to hardware structure
2499 *
2500 *  Disables PCI-Express primary access and verifies there are no pending
2501 *  requests. -EALREADY is returned if primary disable
2502 *  bit hasn't caused the primary requests to be disabled, else 0
2503 *  is returned signifying primary requests disabled.
2504 **/
2505static s32 ixgbe_disable_pcie_primary(struct ixgbe_hw *hw)
2506{
2507	u32 i, poll;
2508	u16 value;
2509
2510	/* Always set this bit to ensure any future transactions are blocked */
2511	IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
2512
2513	/* Poll for bit to read as set */
2514	for (i = 0; i < IXGBE_PCI_PRIMARY_DISABLE_TIMEOUT; i++) {
2515		if (IXGBE_READ_REG(hw, IXGBE_CTRL) & IXGBE_CTRL_GIO_DIS)
2516			break;
2517		usleep_range(100, 120);
2518	}
2519	if (i >= IXGBE_PCI_PRIMARY_DISABLE_TIMEOUT) {
2520		hw_dbg(hw, "GIO disable did not set - requesting resets\n");
2521		goto gio_disable_fail;
2522	}
2523
2524	/* Exit if primary requests are blocked */
2525	if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
2526	    ixgbe_removed(hw->hw_addr))
2527		return 0;
2528
2529	/* Poll for primary request bit to clear */
2530	for (i = 0; i < IXGBE_PCI_PRIMARY_DISABLE_TIMEOUT; i++) {
2531		udelay(100);
2532		if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2533			return 0;
2534	}
2535
2536	/*
2537	 * Two consecutive resets are required via CTRL.RST per datasheet
2538	 * 5.2.5.3.2 Primary Disable.  We set a flag to inform the reset routine
2539	 * of this need.  The first reset prevents new primary requests from
2540	 * being issued by our device.  We then must wait 1usec or more for any
2541	 * remaining completions from the PCIe bus to trickle in, and then reset
2542	 * again to clear out any effects they may have had on our device.
2543	 */
2544	hw_dbg(hw, "GIO Primary Disable bit didn't clear - requesting resets\n");
2545gio_disable_fail:
2546	hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
2547
2548	if (hw->mac.type >= ixgbe_mac_X550)
2549		return 0;
2550
2551	/*
2552	 * Before proceeding, make sure that the PCIe block does not have
2553	 * transactions pending.
2554	 */
2555	poll = ixgbe_pcie_timeout_poll(hw);
2556	for (i = 0; i < poll; i++) {
2557		udelay(100);
2558		value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
2559		if (ixgbe_removed(hw->hw_addr))
2560			return 0;
2561		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
2562			return 0;
2563	}
2564
2565	hw_dbg(hw, "PCIe transaction pending bit also did not clear.\n");
2566	return -EALREADY;
2567}
2568
2569/**
2570 *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
2571 *  @hw: pointer to hardware structure
2572 *  @mask: Mask to specify which semaphore to acquire
2573 *
2574 *  Acquires the SWFW semaphore through the GSSR register for the specified
2575 *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2576 **/
2577s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2578{
2579	u32 gssr = 0;
2580	u32 swmask = mask;
2581	u32 fwmask = mask << 5;
2582	u32 timeout = 200;
2583	u32 i;
2584
2585	for (i = 0; i < timeout; i++) {
2586		/*
2587		 * SW NVM semaphore bit is used for access to all
2588		 * SW_FW_SYNC bits (not just NVM)
2589		 */
2590		if (ixgbe_get_eeprom_semaphore(hw))
2591			return -EBUSY;
2592
2593		gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2594		if (!(gssr & (fwmask | swmask))) {
2595			gssr |= swmask;
2596			IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2597			ixgbe_release_eeprom_semaphore(hw);
2598			return 0;
2599		} else {
2600			/* Resource is currently in use by FW or SW */
2601			ixgbe_release_eeprom_semaphore(hw);
2602			usleep_range(5000, 10000);
2603		}
2604	}
2605
2606	/* If time expired clear the bits holding the lock and retry */
2607	if (gssr & (fwmask | swmask))
2608		ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
2609
2610	usleep_range(5000, 10000);
2611	return -EBUSY;
2612}
2613
2614/**
2615 *  ixgbe_release_swfw_sync - Release SWFW semaphore
2616 *  @hw: pointer to hardware structure
2617 *  @mask: Mask to specify which semaphore to release
2618 *
2619 *  Releases the SWFW semaphore through the GSSR register for the specified
2620 *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2621 **/
2622void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2623{
2624	u32 gssr;
2625	u32 swmask = mask;
2626
2627	ixgbe_get_eeprom_semaphore(hw);
2628
2629	gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2630	gssr &= ~swmask;
2631	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2632
2633	ixgbe_release_eeprom_semaphore(hw);
2634}
2635
2636/**
2637 * prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
2638 * @hw: pointer to hardware structure
2639 * @reg_val: Value we read from AUTOC
2640 * @locked: bool to indicate whether the SW/FW lock should be taken.  Never
2641 *	    true in this the generic case.
2642 *
2643 * The default case requires no protection so just to the register read.
2644 **/
2645s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
2646{
2647	*locked = false;
2648	*reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2649	return 0;
2650}
2651
2652/**
2653 * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
2654 * @hw: pointer to hardware structure
2655 * @reg_val: value to write to AUTOC
2656 * @locked: bool to indicate whether the SW/FW lock was already taken by
2657 *	    previous read.
2658 **/
2659s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
2660{
2661	IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
2662	return 0;
2663}
2664
2665/**
2666 *  ixgbe_disable_rx_buff_generic - Stops the receive data path
2667 *  @hw: pointer to hardware structure
2668 *
2669 *  Stops the receive data path and waits for the HW to internally
2670 *  empty the Rx security block.
2671 **/
2672s32 ixgbe_disable_rx_buff_generic(struct ixgbe_hw *hw)
2673{
2674#define IXGBE_MAX_SECRX_POLL 40
2675	int i;
2676	int secrxreg;
2677
2678	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2679	secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
2680	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2681	for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
2682		secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
2683		if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
2684			break;
2685		else
2686			/* Use interrupt-safe sleep just in case */
2687			udelay(1000);
2688	}
2689
2690	/* For informational purposes only */
2691	if (i >= IXGBE_MAX_SECRX_POLL)
2692		hw_dbg(hw, "Rx unit being enabled before security path fully disabled. Continuing with init.\n");
2693
2694	return 0;
2695
2696}
2697
2698/**
2699 *  ixgbe_enable_rx_buff_generic - Enables the receive data path
2700 *  @hw: pointer to hardware structure
2701 *
2702 *  Enables the receive data path
2703 **/
2704s32 ixgbe_enable_rx_buff_generic(struct ixgbe_hw *hw)
2705{
2706	u32 secrxreg;
2707
2708	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2709	secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
2710	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2711	IXGBE_WRITE_FLUSH(hw);
2712
2713	return 0;
2714}
2715
2716/**
2717 *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2718 *  @hw: pointer to hardware structure
2719 *  @regval: register value to write to RXCTRL
2720 *
2721 *  Enables the Rx DMA unit
2722 **/
2723s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
2724{
2725	if (regval & IXGBE_RXCTRL_RXEN)
2726		hw->mac.ops.enable_rx(hw);
2727	else
2728		hw->mac.ops.disable_rx(hw);
2729
2730	return 0;
2731}
2732
2733/**
2734 *  ixgbe_blink_led_start_generic - Blink LED based on index.
2735 *  @hw: pointer to hardware structure
2736 *  @index: led number to blink
2737 **/
2738s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
2739{
2740	ixgbe_link_speed speed = 0;
2741	bool link_up = false;
2742	u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2743	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2744	bool locked = false;
2745	s32 ret_val;
2746
2747	if (index > 3)
2748		return -EINVAL;
2749
2750	/*
2751	 * Link must be up to auto-blink the LEDs;
2752	 * Force it if link is down.
2753	 */
2754	hw->mac.ops.check_link(hw, &speed, &link_up, false);
2755
2756	if (!link_up) {
2757		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2758		if (ret_val)
2759			return ret_val;
2760
2761		autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2762		autoc_reg |= IXGBE_AUTOC_FLU;
2763
2764		ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2765		if (ret_val)
2766			return ret_val;
2767
2768		IXGBE_WRITE_FLUSH(hw);
2769
2770		usleep_range(10000, 20000);
2771	}
2772
2773	led_reg &= ~IXGBE_LED_MODE_MASK(index);
2774	led_reg |= IXGBE_LED_BLINK(index);
2775	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2776	IXGBE_WRITE_FLUSH(hw);
2777
2778	return 0;
2779}
2780
2781/**
2782 *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2783 *  @hw: pointer to hardware structure
2784 *  @index: led number to stop blinking
2785 **/
2786s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
2787{
2788	u32 autoc_reg = 0;
2789	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2790	bool locked = false;
2791	s32 ret_val;
2792
2793	if (index > 3)
2794		return -EINVAL;
2795
2796	ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2797	if (ret_val)
2798		return ret_val;
2799
2800	autoc_reg &= ~IXGBE_AUTOC_FLU;
2801	autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2802
2803	ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2804	if (ret_val)
2805		return ret_val;
2806
2807	led_reg &= ~IXGBE_LED_MODE_MASK(index);
2808	led_reg &= ~IXGBE_LED_BLINK(index);
2809	led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
2810	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2811	IXGBE_WRITE_FLUSH(hw);
2812
2813	return 0;
2814}
2815
2816/**
2817 *  ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
2818 *  @hw: pointer to hardware structure
2819 *  @san_mac_offset: SAN MAC address offset
2820 *
2821 *  This function will read the EEPROM location for the SAN MAC address
2822 *  pointer, and returns the value at that location.  This is used in both
2823 *  get and set mac_addr routines.
2824 **/
2825static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
2826					u16 *san_mac_offset)
2827{
2828	s32 ret_val;
2829
2830	/*
2831	 * First read the EEPROM pointer to see if the MAC addresses are
2832	 * available.
2833	 */
2834	ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
2835				      san_mac_offset);
2836	if (ret_val)
2837		hw_err(hw, "eeprom read at offset %d failed\n",
2838		       IXGBE_SAN_MAC_ADDR_PTR);
2839
2840	return ret_val;
2841}
2842
2843/**
2844 *  ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
2845 *  @hw: pointer to hardware structure
2846 *  @san_mac_addr: SAN MAC address
2847 *
2848 *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
2849 *  per-port, so set_lan_id() must be called before reading the addresses.
2850 *  set_lan_id() is called by identify_sfp(), but this cannot be relied
2851 *  upon for non-SFP connections, so we must call it here.
2852 **/
2853s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
2854{
2855	u16 san_mac_data, san_mac_offset;
2856	u8 i;
2857	s32 ret_val;
2858
2859	/*
2860	 * First read the EEPROM pointer to see if the MAC addresses are
2861	 * available.  If they're not, no point in calling set_lan_id() here.
2862	 */
2863	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
2864	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
2865
2866		goto san_mac_addr_clr;
2867
2868	/* make sure we know which port we need to program */
2869	hw->mac.ops.set_lan_id(hw);
2870	/* apply the port offset to the address offset */
2871	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
2872			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
2873	for (i = 0; i < 3; i++) {
2874		ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
2875					      &san_mac_data);
2876		if (ret_val) {
2877			hw_err(hw, "eeprom read at offset %d failed\n",
2878			       san_mac_offset);
2879			goto san_mac_addr_clr;
2880		}
2881		san_mac_addr[i * 2] = (u8)(san_mac_data);
2882		san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
2883		san_mac_offset++;
2884	}
2885	return 0;
2886
2887san_mac_addr_clr:
2888	/* No addresses available in this EEPROM.  It's not necessarily an
2889	 * error though, so just wipe the local address and return.
2890	 */
2891	for (i = 0; i < 6; i++)
2892		san_mac_addr[i] = 0xFF;
2893	return ret_val;
2894}
2895
2896/**
2897 *  ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
2898 *  @hw: pointer to hardware structure
2899 *
2900 *  Read PCIe configuration space, and get the MSI-X vector count from
2901 *  the capabilities table.
2902 **/
2903u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
2904{
2905	u16 msix_count;
2906	u16 max_msix_count;
2907	u16 pcie_offset;
2908
2909	switch (hw->mac.type) {
2910	case ixgbe_mac_82598EB:
2911		pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
2912		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
2913		break;
2914	case ixgbe_mac_82599EB:
2915	case ixgbe_mac_X540:
2916	case ixgbe_mac_X550:
2917	case ixgbe_mac_X550EM_x:
2918	case ixgbe_mac_x550em_a:
2919		pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
2920		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
2921		break;
2922	default:
2923		return 1;
2924	}
2925
2926	msix_count = ixgbe_read_pci_cfg_word(hw, pcie_offset);
2927	if (ixgbe_removed(hw->hw_addr))
2928		msix_count = 0;
2929	msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
2930
2931	/* MSI-X count is zero-based in HW */
2932	msix_count++;
2933
2934	if (msix_count > max_msix_count)
2935		msix_count = max_msix_count;
2936
2937	return msix_count;
2938}
2939
2940/**
2941 *  ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
2942 *  @hw: pointer to hardware struct
2943 *  @rar: receive address register index to disassociate
2944 *  @vmdq: VMDq pool index to remove from the rar
2945 **/
2946s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2947{
2948	u32 mpsar_lo, mpsar_hi;
2949	u32 rar_entries = hw->mac.num_rar_entries;
2950
2951	/* Make sure we are using a valid rar index range */
2952	if (rar >= rar_entries) {
2953		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2954		return -EINVAL;
2955	}
2956
2957	mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2958	mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2959
2960	if (ixgbe_removed(hw->hw_addr))
2961		return 0;
2962
2963	if (!mpsar_lo && !mpsar_hi)
2964		return 0;
2965
2966	if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
2967		if (mpsar_lo) {
2968			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2969			mpsar_lo = 0;
2970		}
2971		if (mpsar_hi) {
2972			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
2973			mpsar_hi = 0;
2974		}
2975	} else if (vmdq < 32) {
2976		mpsar_lo &= ~BIT(vmdq);
2977		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
2978	} else {
2979		mpsar_hi &= ~BIT(vmdq - 32);
2980		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
2981	}
2982
2983	/* was that the last pool using this rar? */
2984	if (mpsar_lo == 0 && mpsar_hi == 0 &&
2985	    rar != 0 && rar != hw->mac.san_mac_rar_index)
2986		hw->mac.ops.clear_rar(hw, rar);
2987
2988	return 0;
2989}
2990
2991/**
2992 *  ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
2993 *  @hw: pointer to hardware struct
2994 *  @rar: receive address register index to associate with a VMDq index
2995 *  @vmdq: VMDq pool index
2996 **/
2997s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2998{
2999	u32 mpsar;
3000	u32 rar_entries = hw->mac.num_rar_entries;
3001
3002	/* Make sure we are using a valid rar index range */
3003	if (rar >= rar_entries) {
3004		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
3005		return -EINVAL;
3006	}
3007
3008	if (vmdq < 32) {
3009		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3010		mpsar |= BIT(vmdq);
3011		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
3012	} else {
3013		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3014		mpsar |= BIT(vmdq - 32);
3015		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
3016	}
3017	return 0;
3018}
3019
3020/**
3021 *  ixgbe_set_vmdq_san_mac_generic - Associate VMDq pool index with a rx address
3022 *  @hw: pointer to hardware struct
3023 *  @vmdq: VMDq pool index
3024 *
3025 *  This function should only be involved in the IOV mode.
3026 *  In IOV mode, Default pool is next pool after the number of
3027 *  VFs advertized and not 0.
3028 *  MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
3029 **/
3030s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
3031{
3032	u32 rar = hw->mac.san_mac_rar_index;
3033
3034	if (vmdq < 32) {
3035		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), BIT(vmdq));
3036		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3037	} else {
3038		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3039		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), BIT(vmdq - 32));
3040	}
3041
3042	return 0;
3043}
3044
3045/**
3046 *  ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
3047 *  @hw: pointer to hardware structure
3048 **/
3049s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
3050{
3051	int i;
3052
3053	for (i = 0; i < 128; i++)
3054		IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
3055
3056	return 0;
3057}
3058
3059/**
3060 *  ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
3061 *  @hw: pointer to hardware structure
3062 *  @vlan: VLAN id to write to VLAN filter
3063 *  @vlvf_bypass: true to find vlanid only, false returns first empty slot if
3064 *		  vlanid not found
3065 *
3066 *  return the VLVF index where this VLAN id should be placed
3067 *
3068 **/
3069static s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan, bool vlvf_bypass)
3070{
3071	s32 regindex, first_empty_slot;
3072	u32 bits;
3073
3074	/* short cut the special case */
3075	if (vlan == 0)
3076		return 0;
3077
3078	/* if vlvf_bypass is set we don't want to use an empty slot, we
3079	 * will simply bypass the VLVF if there are no entries present in the
3080	 * VLVF that contain our VLAN
3081	 */
3082	first_empty_slot = vlvf_bypass ? -ENOSPC : 0;
3083
3084	/* add VLAN enable bit for comparison */
3085	vlan |= IXGBE_VLVF_VIEN;
3086
3087	/* Search for the vlan id in the VLVF entries. Save off the first empty
3088	 * slot found along the way.
3089	 *
3090	 * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1
3091	 */
3092	for (regindex = IXGBE_VLVF_ENTRIES; --regindex;) {
3093		bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3094		if (bits == vlan)
3095			return regindex;
3096		if (!first_empty_slot && !bits)
3097			first_empty_slot = regindex;
3098	}
3099
3100	/* If we are here then we didn't find the VLAN.  Return first empty
3101	 * slot we found during our search, else error.
3102	 */
3103	if (!first_empty_slot)
3104		hw_dbg(hw, "No space in VLVF.\n");
3105
3106	return first_empty_slot ? : -ENOSPC;
3107}
3108
3109/**
3110 *  ixgbe_set_vfta_generic - Set VLAN filter table
3111 *  @hw: pointer to hardware structure
3112 *  @vlan: VLAN id to write to VLAN filter
3113 *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
3114 *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
3115 *  @vlvf_bypass: boolean flag indicating updating default pool is okay
3116 *
3117 *  Turn on/off specified VLAN in the VLAN filter table.
3118 **/
3119s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3120			   bool vlan_on, bool vlvf_bypass)
3121{
3122	u32 regidx, vfta_delta, vfta, bits;
3123	s32 vlvf_index;
3124
3125	if ((vlan > 4095) || (vind > 63))
3126		return -EINVAL;
3127
3128	/*
3129	 * this is a 2 part operation - first the VFTA, then the
3130	 * VLVF and VLVFB if VT Mode is set
3131	 * We don't write the VFTA until we know the VLVF part succeeded.
3132	 */
3133
3134	/* Part 1
3135	 * The VFTA is a bitstring made up of 128 32-bit registers
3136	 * that enable the particular VLAN id, much like the MTA:
3137	 *    bits[11-5]: which register
3138	 *    bits[4-0]:  which bit in the register
3139	 */
3140	regidx = vlan / 32;
3141	vfta_delta = BIT(vlan % 32);
3142	vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regidx));
3143
3144	/* vfta_delta represents the difference between the current value
3145	 * of vfta and the value we want in the register.  Since the diff
3146	 * is an XOR mask we can just update vfta using an XOR.
3147	 */
3148	vfta_delta &= vlan_on ? ~vfta : vfta;
3149	vfta ^= vfta_delta;
3150
3151	/* Part 2
3152	 * If VT Mode is set
3153	 *   Either vlan_on
3154	 *     make sure the vlan is in VLVF
3155	 *     set the vind bit in the matching VLVFB
3156	 *   Or !vlan_on
3157	 *     clear the pool bit and possibly the vind
3158	 */
3159	if (!(IXGBE_READ_REG(hw, IXGBE_VT_CTL) & IXGBE_VT_CTL_VT_ENABLE))
3160		goto vfta_update;
3161
3162	vlvf_index = ixgbe_find_vlvf_slot(hw, vlan, vlvf_bypass);
3163	if (vlvf_index < 0) {
3164		if (vlvf_bypass)
3165			goto vfta_update;
3166		return vlvf_index;
3167	}
3168
3169	bits = IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32));
3170
3171	/* set the pool bit */
3172	bits |= BIT(vind % 32);
3173	if (vlan_on)
3174		goto vlvf_update;
3175
3176	/* clear the pool bit */
3177	bits ^= BIT(vind % 32);
3178
3179	if (!bits &&
3180	    !IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + 1 - vind / 32))) {
3181		/* Clear VFTA first, then disable VLVF.  Otherwise
3182		 * we run the risk of stray packets leaking into
3183		 * the PF via the default pool
3184		 */
3185		if (vfta_delta)
3186			IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
3187
3188		/* disable VLVF and clear remaining bit from pool */
3189		IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
3190		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), 0);
3191
3192		return 0;
3193	}
3194
3195	/* If there are still bits set in the VLVFB registers
3196	 * for the VLAN ID indicated we need to see if the
3197	 * caller is requesting that we clear the VFTA entry bit.
3198	 * If the caller has requested that we clear the VFTA
3199	 * entry bit but there are still pools/VFs using this VLAN
3200	 * ID entry then ignore the request.  We're not worried
3201	 * about the case where we're turning the VFTA VLAN ID
3202	 * entry bit on, only when requested to turn it off as
3203	 * there may be multiple pools and/or VFs using the
3204	 * VLAN ID entry.  In that case we cannot clear the
3205	 * VFTA bit until all pools/VFs using that VLAN ID have also
3206	 * been cleared.  This will be indicated by "bits" being
3207	 * zero.
3208	 */
3209	vfta_delta = 0;
3210
3211vlvf_update:
3212	/* record pool change and enable VLAN ID if not already enabled */
3213	IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), bits);
3214	IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), IXGBE_VLVF_VIEN | vlan);
3215
3216vfta_update:
3217	/* Update VFTA now that we are ready for traffic */
3218	if (vfta_delta)
3219		IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
3220
3221	return 0;
3222}
3223
3224/**
3225 *  ixgbe_clear_vfta_generic - Clear VLAN filter table
3226 *  @hw: pointer to hardware structure
3227 *
3228 *  Clears the VLAN filter table, and the VMDq index associated with the filter
3229 **/
3230s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
3231{
3232	u32 offset;
3233
3234	for (offset = 0; offset < hw->mac.vft_size; offset++)
3235		IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
3236
3237	for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
3238		IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
3239		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
3240		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2 + 1), 0);
3241	}
3242
3243	return 0;
3244}
3245
3246/**
3247 *  ixgbe_need_crosstalk_fix - Determine if we need to do cross talk fix
3248 *  @hw: pointer to hardware structure
3249 *
3250 *  Contains the logic to identify if we need to verify link for the
3251 *  crosstalk fix
3252 **/
3253static bool ixgbe_need_crosstalk_fix(struct ixgbe_hw *hw)
3254{
3255	/* Does FW say we need the fix */
3256	if (!hw->need_crosstalk_fix)
3257		return false;
3258
3259	/* Only consider SFP+ PHYs i.e. media type fiber */
3260	switch (hw->mac.ops.get_media_type(hw)) {
3261	case ixgbe_media_type_fiber:
3262	case ixgbe_media_type_fiber_qsfp:
3263		break;
3264	default:
3265		return false;
3266	}
3267
3268	return true;
3269}
3270
3271/**
3272 *  ixgbe_check_mac_link_generic - Determine link and speed status
3273 *  @hw: pointer to hardware structure
3274 *  @speed: pointer to link speed
3275 *  @link_up: true when link is up
3276 *  @link_up_wait_to_complete: bool used to wait for link up or not
3277 *
3278 *  Reads the links register to determine if link is up and the current speed
3279 **/
3280s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
3281				 bool *link_up, bool link_up_wait_to_complete)
3282{
3283	bool crosstalk_fix_active = ixgbe_need_crosstalk_fix(hw);
3284	u32 links_reg, links_orig;
3285	u32 i;
3286
3287	/* If Crosstalk fix enabled do the sanity check of making sure
3288	 * the SFP+ cage is full.
3289	 */
3290	if (crosstalk_fix_active) {
3291		u32 sfp_cage_full;
3292
3293		switch (hw->mac.type) {
3294		case ixgbe_mac_82599EB:
3295			sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
3296					IXGBE_ESDP_SDP2;
3297			break;
3298		case ixgbe_mac_X550EM_x:
3299		case ixgbe_mac_x550em_a:
3300			sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
3301					IXGBE_ESDP_SDP0;
3302			break;
3303		default:
3304			/* sanity check - No SFP+ devices here */
3305			sfp_cage_full = false;
3306			break;
3307		}
3308
3309		if (!sfp_cage_full) {
3310			*link_up = false;
3311			*speed = IXGBE_LINK_SPEED_UNKNOWN;
3312			return 0;
3313		}
3314	}
3315
3316	/* clear the old state */
3317	links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
3318
3319	links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3320
3321	if (links_orig != links_reg) {
3322		hw_dbg(hw, "LINKS changed from %08X to %08X\n",
3323		       links_orig, links_reg);
3324	}
3325
3326	if (link_up_wait_to_complete) {
3327		for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
3328			if (links_reg & IXGBE_LINKS_UP) {
3329				*link_up = true;
3330				break;
3331			} else {
3332				*link_up = false;
3333			}
3334			msleep(100);
3335			links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3336		}
3337	} else {
3338		if (links_reg & IXGBE_LINKS_UP) {
3339			if (crosstalk_fix_active) {
3340				/* Check the link state again after a delay
3341				 * to filter out spurious link up
3342				 * notifications.
3343				 */
3344				mdelay(5);
3345				links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3346				if (!(links_reg & IXGBE_LINKS_UP)) {
3347					*link_up = false;
3348					*speed = IXGBE_LINK_SPEED_UNKNOWN;
3349					return 0;
3350				}
3351			}
3352			*link_up = true;
3353		} else {
3354			*link_up = false;
3355		}
3356	}
3357
3358	switch (links_reg & IXGBE_LINKS_SPEED_82599) {
3359	case IXGBE_LINKS_SPEED_10G_82599:
3360		if ((hw->mac.type >= ixgbe_mac_X550) &&
3361		    (links_reg & IXGBE_LINKS_SPEED_NON_STD))
3362			*speed = IXGBE_LINK_SPEED_2_5GB_FULL;
3363		else
3364			*speed = IXGBE_LINK_SPEED_10GB_FULL;
3365		break;
3366	case IXGBE_LINKS_SPEED_1G_82599:
3367		*speed = IXGBE_LINK_SPEED_1GB_FULL;
3368		break;
3369	case IXGBE_LINKS_SPEED_100_82599:
3370		if ((hw->mac.type >= ixgbe_mac_X550) &&
3371		    (links_reg & IXGBE_LINKS_SPEED_NON_STD))
3372			*speed = IXGBE_LINK_SPEED_5GB_FULL;
3373		else
3374			*speed = IXGBE_LINK_SPEED_100_FULL;
3375		break;
3376	case IXGBE_LINKS_SPEED_10_X550EM_A:
3377		*speed = IXGBE_LINK_SPEED_UNKNOWN;
3378		if (hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T ||
3379		    hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T_L) {
3380			*speed = IXGBE_LINK_SPEED_10_FULL;
3381		}
3382		break;
3383	default:
3384		*speed = IXGBE_LINK_SPEED_UNKNOWN;
3385	}
3386
3387	return 0;
3388}
3389
3390/**
3391 *  ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
3392 *  the EEPROM
3393 *  @hw: pointer to hardware structure
3394 *  @wwnn_prefix: the alternative WWNN prefix
3395 *  @wwpn_prefix: the alternative WWPN prefix
3396 *
3397 *  This function will read the EEPROM from the alternative SAN MAC address
3398 *  block to check the support for the alternative WWNN/WWPN prefix support.
3399 **/
3400s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
3401					u16 *wwpn_prefix)
3402{
3403	u16 offset, caps;
3404	u16 alt_san_mac_blk_offset;
3405
3406	/* clear output first */
3407	*wwnn_prefix = 0xFFFF;
3408	*wwpn_prefix = 0xFFFF;
3409
3410	/* check if alternative SAN MAC is supported */
3411	offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
3412	if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
3413		goto wwn_prefix_err;
3414
3415	if ((alt_san_mac_blk_offset == 0) ||
3416	    (alt_san_mac_blk_offset == 0xFFFF))
3417		return 0;
3418
3419	/* check capability in alternative san mac address block */
3420	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
3421	if (hw->eeprom.ops.read(hw, offset, &caps))
3422		goto wwn_prefix_err;
3423	if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
3424		return 0;
3425
3426	/* get the corresponding prefix for WWNN/WWPN */
3427	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
3428	if (hw->eeprom.ops.read(hw, offset, wwnn_prefix))
3429		hw_err(hw, "eeprom read at offset %d failed\n", offset);
3430
3431	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
3432	if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
3433		goto wwn_prefix_err;
3434
3435	return 0;
3436
3437wwn_prefix_err:
3438	hw_err(hw, "eeprom read at offset %d failed\n", offset);
3439	return 0;
3440}
3441
3442/**
3443 *  ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
3444 *  @hw: pointer to hardware structure
3445 *  @enable: enable or disable switch for MAC anti-spoofing
3446 *  @vf: Virtual Function pool - VF Pool to set for MAC anti-spoofing
3447 *
3448 **/
3449void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3450{
3451	int vf_target_reg = vf >> 3;
3452	int vf_target_shift = vf % 8;
3453	u32 pfvfspoof;
3454
3455	if (hw->mac.type == ixgbe_mac_82598EB)
3456		return;
3457
3458	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3459	if (enable)
3460		pfvfspoof |= BIT(vf_target_shift);
3461	else
3462		pfvfspoof &= ~BIT(vf_target_shift);
3463	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3464}
3465
3466/**
3467 *  ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
3468 *  @hw: pointer to hardware structure
3469 *  @enable: enable or disable switch for VLAN anti-spoofing
3470 *  @vf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
3471 *
3472 **/
3473void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3474{
3475	int vf_target_reg = vf >> 3;
3476	int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
3477	u32 pfvfspoof;
3478
3479	if (hw->mac.type == ixgbe_mac_82598EB)
3480		return;
3481
3482	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3483	if (enable)
3484		pfvfspoof |= BIT(vf_target_shift);
3485	else
3486		pfvfspoof &= ~BIT(vf_target_shift);
3487	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3488}
3489
3490/**
3491 *  ixgbe_get_device_caps_generic - Get additional device capabilities
3492 *  @hw: pointer to hardware structure
3493 *  @device_caps: the EEPROM word with the extra device capabilities
3494 *
3495 *  This function will read the EEPROM location for the device capabilities,
3496 *  and return the word through device_caps.
3497 **/
3498s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
3499{
3500	hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
3501
3502	return 0;
3503}
3504
3505/**
3506 * ixgbe_set_rxpba_generic - Initialize RX packet buffer
3507 * @hw: pointer to hardware structure
3508 * @num_pb: number of packet buffers to allocate
3509 * @headroom: reserve n KB of headroom
3510 * @strategy: packet buffer allocation strategy
3511 **/
3512void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw,
3513			     int num_pb,
3514			     u32 headroom,
3515			     int strategy)
3516{
3517	u32 pbsize = hw->mac.rx_pb_size;
3518	int i = 0;
3519	u32 rxpktsize, txpktsize, txpbthresh;
3520
3521	/* Reserve headroom */
3522	pbsize -= headroom;
3523
3524	if (!num_pb)
3525		num_pb = 1;
3526
3527	/* Divide remaining packet buffer space amongst the number
3528	 * of packet buffers requested using supplied strategy.
3529	 */
3530	switch (strategy) {
3531	case (PBA_STRATEGY_WEIGHTED):
3532		/* pba_80_48 strategy weight first half of packet buffer with
3533		 * 5/8 of the packet buffer space.
3534		 */
3535		rxpktsize = ((pbsize * 5 * 2) / (num_pb * 8));
3536		pbsize -= rxpktsize * (num_pb / 2);
3537		rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
3538		for (; i < (num_pb / 2); i++)
3539			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3540		fallthrough; /* configure remaining packet buffers */
3541	case (PBA_STRATEGY_EQUAL):
3542		/* Divide the remaining Rx packet buffer evenly among the TCs */
3543		rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
3544		for (; i < num_pb; i++)
3545			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3546		break;
3547	default:
3548		break;
3549	}
3550
3551	/*
3552	 * Setup Tx packet buffer and threshold equally for all TCs
3553	 * TXPBTHRESH register is set in K so divide by 1024 and subtract
3554	 * 10 since the largest packet we support is just over 9K.
3555	 */
3556	txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
3557	txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
3558	for (i = 0; i < num_pb; i++) {
3559		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
3560		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
3561	}
3562
3563	/* Clear unused TCs, if any, to zero buffer size*/
3564	for (; i < IXGBE_MAX_PB; i++) {
3565		IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
3566		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
3567		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
3568	}
3569}
3570
3571/**
3572 *  ixgbe_calculate_checksum - Calculate checksum for buffer
3573 *  @buffer: pointer to EEPROM
3574 *  @length: size of EEPROM to calculate a checksum for
3575 *
3576 *  Calculates the checksum for some buffer on a specified length.  The
3577 *  checksum calculated is returned.
3578 **/
3579u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
3580{
3581	u32 i;
3582	u8 sum = 0;
3583
3584	if (!buffer)
3585		return 0;
3586
3587	for (i = 0; i < length; i++)
3588		sum += buffer[i];
3589
3590	return (u8) (0 - sum);
3591}
3592
3593/**
3594 *  ixgbe_hic_unlocked - Issue command to manageability block unlocked
3595 *  @hw: pointer to the HW structure
3596 *  @buffer: command to write and where the return status will be placed
3597 *  @length: length of buffer, must be multiple of 4 bytes
3598 *  @timeout: time in ms to wait for command completion
3599 *
3600 *  Communicates with the manageability block. On success return 0
3601 *  else returns semaphore error when encountering an error acquiring
3602 *  semaphore, -EINVAL when incorrect parameters passed or -EIO when
3603 *  command fails.
3604 *
3605 *  This function assumes that the IXGBE_GSSR_SW_MNG_SM semaphore is held
3606 *  by the caller.
3607 **/
3608s32 ixgbe_hic_unlocked(struct ixgbe_hw *hw, u32 *buffer, u32 length,
3609		       u32 timeout)
3610{
3611	u32 hicr, i, fwsts;
3612	u16 dword_len;
3613
3614	if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3615		hw_dbg(hw, "Buffer length failure buffersize-%d.\n", length);
3616		return -EINVAL;
3617	}
3618
3619	/* Set bit 9 of FWSTS clearing FW reset indication */
3620	fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
3621	IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);
3622
3623	/* Check that the host interface is enabled. */
3624	hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3625	if (!(hicr & IXGBE_HICR_EN)) {
3626		hw_dbg(hw, "IXGBE_HOST_EN bit disabled.\n");
3627		return -EIO;
3628	}
3629
3630	/* Calculate length in DWORDs. We must be DWORD aligned */
3631	if (length % sizeof(u32)) {
3632		hw_dbg(hw, "Buffer length failure, not aligned to dword");
3633		return -EINVAL;
3634	}
3635
3636	dword_len = length >> 2;
3637
3638	/* The device driver writes the relevant command block
3639	 * into the ram area.
3640	 */
3641	for (i = 0; i < dword_len; i++)
3642		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
3643				      i, (__force u32)cpu_to_le32(buffer[i]));
3644
3645	/* Setting this bit tells the ARC that a new command is pending. */
3646	IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
3647
3648	for (i = 0; i < timeout; i++) {
3649		hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3650		if (!(hicr & IXGBE_HICR_C))
3651			break;
3652		usleep_range(1000, 2000);
3653	}
3654
3655	/* Check command successful completion. */
3656	if ((timeout && i == timeout) ||
3657	    !(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV))
3658		return -EIO;
3659
3660	return 0;
3661}
3662
3663/**
3664 *  ixgbe_host_interface_command - Issue command to manageability block
3665 *  @hw: pointer to the HW structure
3666 *  @buffer: contains the command to write and where the return status will
3667 *           be placed
3668 *  @length: length of buffer, must be multiple of 4 bytes
3669 *  @timeout: time in ms to wait for command completion
3670 *  @return_data: read and return data from the buffer (true) or not (false)
3671 *  Needed because FW structures are big endian and decoding of
3672 *  these fields can be 8 bit or 16 bit based on command. Decoding
3673 *  is not easily understood without making a table of commands.
3674 *  So we will leave this up to the caller to read back the data
3675 *  in these cases.
3676 *
3677 *  Communicates with the manageability block.  On success return 0
3678 *  else return -EIO or -EINVAL.
3679 **/
3680s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, void *buffer,
3681				 u32 length, u32 timeout,
3682				 bool return_data)
3683{
3684	u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
3685	struct ixgbe_hic_hdr *hdr = buffer;
3686	u32 *u32arr = buffer;
3687	u16 buf_len, dword_len;
3688	s32 status;
3689	u32 bi;
3690
3691	if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3692		hw_dbg(hw, "Buffer length failure buffersize-%d.\n", length);
3693		return -EINVAL;
3694	}
3695	/* Take management host interface semaphore */
3696	status = hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3697	if (status)
3698		return status;
3699
3700	status = ixgbe_hic_unlocked(hw, buffer, length, timeout);
3701	if (status)
3702		goto rel_out;
3703
3704	if (!return_data)
3705		goto rel_out;
3706
3707	/* Calculate length in DWORDs */
3708	dword_len = hdr_size >> 2;
3709
3710	/* first pull in the header so we know the buffer length */
3711	for (bi = 0; bi < dword_len; bi++) {
3712		u32arr[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3713		le32_to_cpus(&u32arr[bi]);
3714	}
3715
3716	/* If there is any thing in data position pull it in */
3717	buf_len = hdr->buf_len;
3718	if (!buf_len)
3719		goto rel_out;
3720
3721	if (length < round_up(buf_len, 4) + hdr_size) {
3722		hw_dbg(hw, "Buffer not large enough for reply message.\n");
3723		status = -EIO;
3724		goto rel_out;
3725	}
3726
3727	/* Calculate length in DWORDs, add 3 for odd lengths */
3728	dword_len = (buf_len + 3) >> 2;
3729
3730	/* Pull in the rest of the buffer (bi is where we left off) */
3731	for (; bi <= dword_len; bi++) {
3732		u32arr[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3733		le32_to_cpus(&u32arr[bi]);
3734	}
3735
3736rel_out:
3737	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3738
3739	return status;
3740}
3741
3742/**
3743 *  ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
3744 *  @hw: pointer to the HW structure
3745 *  @maj: driver version major number
3746 *  @min: driver version minor number
3747 *  @build: driver version build number
3748 *  @sub: driver version sub build number
3749 *  @len: length of driver_ver string
3750 *  @driver_ver: driver string
3751 *
3752 *  Sends driver version number to firmware through the manageability
3753 *  block.  On success return 0
3754 *  else returns -EBUSY when encountering an error acquiring
3755 *  semaphore or -EIO when command fails.
3756 **/
3757s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
3758				 u8 build, u8 sub, __always_unused u16 len,
3759				 __always_unused const char *driver_ver)
3760{
3761	struct ixgbe_hic_drv_info fw_cmd;
3762	int i;
3763	s32 ret_val;
3764
3765	fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
3766	fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
3767	fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
3768	fw_cmd.port_num = hw->bus.func;
3769	fw_cmd.ver_maj = maj;
3770	fw_cmd.ver_min = min;
3771	fw_cmd.ver_build = build;
3772	fw_cmd.ver_sub = sub;
3773	fw_cmd.hdr.checksum = 0;
3774	fw_cmd.pad = 0;
3775	fw_cmd.pad2 = 0;
3776	fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
3777				(FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
3778
3779	for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
3780		ret_val = ixgbe_host_interface_command(hw, &fw_cmd,
3781						       sizeof(fw_cmd),
3782						       IXGBE_HI_COMMAND_TIMEOUT,
3783						       true);
3784		if (ret_val != 0)
3785			continue;
3786
3787		if (fw_cmd.hdr.cmd_or_resp.ret_status ==
3788		    FW_CEM_RESP_STATUS_SUCCESS)
3789			ret_val = 0;
3790		else
3791			ret_val = -EIO;
3792
3793		break;
3794	}
3795
3796	return ret_val;
3797}
3798
3799/**
3800 * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
3801 * @hw: pointer to the hardware structure
3802 *
3803 * The 82599 and x540 MACs can experience issues if TX work is still pending
3804 * when a reset occurs.  This function prevents this by flushing the PCIe
3805 * buffers on the system.
3806 **/
3807void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
3808{
3809	u32 gcr_ext, hlreg0, i, poll;
3810	u16 value;
3811
3812	/*
3813	 * If double reset is not requested then all transactions should
3814	 * already be clear and as such there is no work to do
3815	 */
3816	if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
3817		return;
3818
3819	/*
3820	 * Set loopback enable to prevent any transmits from being sent
3821	 * should the link come up.  This assumes that the RXCTRL.RXEN bit
3822	 * has already been cleared.
3823	 */
3824	hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
3825	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
3826
3827	/* wait for a last completion before clearing buffers */
3828	IXGBE_WRITE_FLUSH(hw);
3829	usleep_range(3000, 6000);
3830
3831	/* Before proceeding, make sure that the PCIe block does not have
3832	 * transactions pending.
3833	 */
3834	poll = ixgbe_pcie_timeout_poll(hw);
3835	for (i = 0; i < poll; i++) {
3836		usleep_range(100, 200);
3837		value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
3838		if (ixgbe_removed(hw->hw_addr))
3839			break;
3840		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
3841			break;
3842	}
3843
3844	/* initiate cleaning flow for buffers in the PCIe transaction layer */
3845	gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
3846	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
3847			gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
3848
3849	/* Flush all writes and allow 20usec for all transactions to clear */
3850	IXGBE_WRITE_FLUSH(hw);
3851	udelay(20);
3852
3853	/* restore previous register values */
3854	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
3855	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
3856}
3857
3858static const u8 ixgbe_emc_temp_data[4] = {
3859	IXGBE_EMC_INTERNAL_DATA,
3860	IXGBE_EMC_DIODE1_DATA,
3861	IXGBE_EMC_DIODE2_DATA,
3862	IXGBE_EMC_DIODE3_DATA
3863};
3864static const u8 ixgbe_emc_therm_limit[4] = {
3865	IXGBE_EMC_INTERNAL_THERM_LIMIT,
3866	IXGBE_EMC_DIODE1_THERM_LIMIT,
3867	IXGBE_EMC_DIODE2_THERM_LIMIT,
3868	IXGBE_EMC_DIODE3_THERM_LIMIT
3869};
3870
3871/**
3872 *  ixgbe_get_ets_data - Extracts the ETS bit data
3873 *  @hw: pointer to hardware structure
3874 *  @ets_cfg: extected ETS data
3875 *  @ets_offset: offset of ETS data
3876 *
3877 *  Returns error code.
3878 **/
3879static s32 ixgbe_get_ets_data(struct ixgbe_hw *hw, u16 *ets_cfg,
3880			      u16 *ets_offset)
3881{
3882	s32 status;
3883
3884	status = hw->eeprom.ops.read(hw, IXGBE_ETS_CFG, ets_offset);
3885	if (status)
3886		return status;
3887
3888	if ((*ets_offset == 0x0000) || (*ets_offset == 0xFFFF))
3889		return -EOPNOTSUPP;
3890
3891	status = hw->eeprom.ops.read(hw, *ets_offset, ets_cfg);
3892	if (status)
3893		return status;
3894
3895	if ((*ets_cfg & IXGBE_ETS_TYPE_MASK) != IXGBE_ETS_TYPE_EMC_SHIFTED)
3896		return -EOPNOTSUPP;
3897
3898	return 0;
3899}
3900
3901/**
3902 *  ixgbe_get_thermal_sensor_data_generic - Gathers thermal sensor data
3903 *  @hw: pointer to hardware structure
3904 *
3905 *  Returns the thermal sensor data structure
3906 **/
3907s32 ixgbe_get_thermal_sensor_data_generic(struct ixgbe_hw *hw)
3908{
3909	s32 status;
3910	u16 ets_offset;
3911	u16 ets_cfg;
3912	u16 ets_sensor;
3913	u8  num_sensors;
3914	u8  i;
3915	struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3916
3917	/* Only support thermal sensors attached to physical port 0 */
3918	if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
3919		return -EOPNOTSUPP;
3920
3921	status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3922	if (status)
3923		return status;
3924
3925	num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3926	if (num_sensors > IXGBE_MAX_SENSORS)
3927		num_sensors = IXGBE_MAX_SENSORS;
3928
3929	for (i = 0; i < num_sensors; i++) {
3930		u8  sensor_index;
3931		u8  sensor_location;
3932
3933		status = hw->eeprom.ops.read(hw, (ets_offset + 1 + i),
3934					     &ets_sensor);
3935		if (status)
3936			return status;
3937
3938		sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3939				IXGBE_ETS_DATA_INDEX_SHIFT);
3940		sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3941				   IXGBE_ETS_DATA_LOC_SHIFT);
3942
3943		if (sensor_location != 0) {
3944			status = hw->phy.ops.read_i2c_byte(hw,
3945					ixgbe_emc_temp_data[sensor_index],
3946					IXGBE_I2C_THERMAL_SENSOR_ADDR,
3947					&data->sensor[i].temp);
3948			if (status)
3949				return status;
3950		}
3951	}
3952
3953	return 0;
3954}
3955
3956/**
3957 * ixgbe_init_thermal_sensor_thresh_generic - Inits thermal sensor thresholds
3958 * @hw: pointer to hardware structure
3959 *
3960 * Inits the thermal sensor thresholds according to the NVM map
3961 * and save off the threshold and location values into mac.thermal_sensor_data
3962 **/
3963s32 ixgbe_init_thermal_sensor_thresh_generic(struct ixgbe_hw *hw)
3964{
3965	s32 status;
3966	u16 ets_offset;
3967	u16 ets_cfg;
3968	u16 ets_sensor;
3969	u8  low_thresh_delta;
3970	u8  num_sensors;
3971	u8  therm_limit;
3972	u8  i;
3973	struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3974
3975	memset(data, 0, sizeof(struct ixgbe_thermal_sensor_data));
3976
3977	/* Only support thermal sensors attached to physical port 0 */
3978	if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
3979		return -EOPNOTSUPP;
3980
3981	status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3982	if (status)
3983		return status;
3984
3985	low_thresh_delta = ((ets_cfg & IXGBE_ETS_LTHRES_DELTA_MASK) >>
3986			     IXGBE_ETS_LTHRES_DELTA_SHIFT);
3987	num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3988	if (num_sensors > IXGBE_MAX_SENSORS)
3989		num_sensors = IXGBE_MAX_SENSORS;
3990
3991	for (i = 0; i < num_sensors; i++) {
3992		u8  sensor_index;
3993		u8  sensor_location;
3994
3995		if (hw->eeprom.ops.read(hw, ets_offset + 1 + i, &ets_sensor)) {
3996			hw_err(hw, "eeprom read at offset %d failed\n",
3997			       ets_offset + 1 + i);
3998			continue;
3999		}
4000		sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
4001				IXGBE_ETS_DATA_INDEX_SHIFT);
4002		sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
4003				   IXGBE_ETS_DATA_LOC_SHIFT);
4004		therm_limit = ets_sensor & IXGBE_ETS_DATA_HTHRESH_MASK;
4005
4006		hw->phy.ops.write_i2c_byte(hw,
4007			ixgbe_emc_therm_limit[sensor_index],
4008			IXGBE_I2C_THERMAL_SENSOR_ADDR, therm_limit);
4009
4010		if (sensor_location == 0)
4011			continue;
4012
4013		data->sensor[i].location = sensor_location;
4014		data->sensor[i].caution_thresh = therm_limit;
4015		data->sensor[i].max_op_thresh = therm_limit - low_thresh_delta;
4016	}
4017
4018	return 0;
4019}
4020
4021/**
4022 *  ixgbe_get_orom_version - Return option ROM from EEPROM
4023 *
4024 *  @hw: pointer to hardware structure
4025 *  @nvm_ver: pointer to output structure
4026 *
4027 *  if valid option ROM version, nvm_ver->or_valid set to true
4028 *  else nvm_ver->or_valid is false.
4029 **/
4030void ixgbe_get_orom_version(struct ixgbe_hw *hw,
4031			    struct ixgbe_nvm_version *nvm_ver)
4032{
4033	u16 offset, eeprom_cfg_blkh, eeprom_cfg_blkl;
4034
4035	nvm_ver->or_valid = false;
4036	/* Option Rom may or may not be present.  Start with pointer */
4037	hw->eeprom.ops.read(hw, NVM_OROM_OFFSET, &offset);
4038
4039	/* make sure offset is valid */
4040	if (offset == 0x0 || offset == NVM_INVALID_PTR)
4041		return;
4042
4043	hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_HI, &eeprom_cfg_blkh);
4044	hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_LOW, &eeprom_cfg_blkl);
4045
4046	/* option rom exists and is valid */
4047	if ((eeprom_cfg_blkl | eeprom_cfg_blkh) == 0x0 ||
4048	    eeprom_cfg_blkl == NVM_VER_INVALID ||
4049	    eeprom_cfg_blkh == NVM_VER_INVALID)
4050		return;
4051
4052	nvm_ver->or_valid = true;
4053	nvm_ver->or_major = eeprom_cfg_blkl >> NVM_OROM_SHIFT;
4054	nvm_ver->or_build = (eeprom_cfg_blkl << NVM_OROM_SHIFT) |
4055			    (eeprom_cfg_blkh >> NVM_OROM_SHIFT);
4056	nvm_ver->or_patch = eeprom_cfg_blkh & NVM_OROM_PATCH_MASK;
4057}
4058
4059/**
4060 *  ixgbe_get_oem_prod_version - Etrack ID from EEPROM
4061 *  @hw: pointer to hardware structure
4062 *  @nvm_ver: pointer to output structure
4063 *
4064 *  if valid OEM product version, nvm_ver->oem_valid set to true
4065 *  else nvm_ver->oem_valid is false.
4066 **/
4067void ixgbe_get_oem_prod_version(struct ixgbe_hw *hw,
4068				struct ixgbe_nvm_version *nvm_ver)
4069{
4070	u16 rel_num, prod_ver, mod_len, cap, offset;
4071
4072	nvm_ver->oem_valid = false;
4073	hw->eeprom.ops.read(hw, NVM_OEM_PROD_VER_PTR, &offset);
4074
4075	/* Return is offset to OEM Product Version block is invalid */
4076	if (offset == 0x0 || offset == NVM_INVALID_PTR)
4077		return;
4078
4079	/* Read product version block */
4080	hw->eeprom.ops.read(hw, offset, &mod_len);
4081	hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_CAP_OFF, &cap);
4082
4083	/* Return if OEM product version block is invalid */
4084	if (mod_len != NVM_OEM_PROD_VER_MOD_LEN ||
4085	    (cap & NVM_OEM_PROD_VER_CAP_MASK) != 0x0)
4086		return;
4087
4088	hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_L, &prod_ver);
4089	hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_H, &rel_num);
4090
4091	/* Return if version is invalid */
4092	if ((rel_num | prod_ver) == 0x0 ||
4093	    rel_num == NVM_VER_INVALID || prod_ver == NVM_VER_INVALID)
4094		return;
4095
4096	nvm_ver->oem_major = prod_ver >> NVM_VER_SHIFT;
4097	nvm_ver->oem_minor = prod_ver & NVM_VER_MASK;
4098	nvm_ver->oem_release = rel_num;
4099	nvm_ver->oem_valid = true;
4100}
4101
4102/**
4103 *  ixgbe_get_etk_id - Return Etrack ID from EEPROM
4104 *
4105 *  @hw: pointer to hardware structure
4106 *  @nvm_ver: pointer to output structure
4107 *
4108 *  word read errors will return 0xFFFF
4109 **/
4110void ixgbe_get_etk_id(struct ixgbe_hw *hw,
4111		      struct ixgbe_nvm_version *nvm_ver)
4112{
4113	u16 etk_id_l, etk_id_h;
4114
4115	if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_LOW, &etk_id_l))
4116		etk_id_l = NVM_VER_INVALID;
4117	if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_HI, &etk_id_h))
4118		etk_id_h = NVM_VER_INVALID;
4119
4120	/* The word order for the version format is determined by high order
4121	 * word bit 15.
4122	 */
4123	if ((etk_id_h & NVM_ETK_VALID) == 0) {
4124		nvm_ver->etk_id = etk_id_h;
4125		nvm_ver->etk_id |= (etk_id_l << NVM_ETK_SHIFT);
4126	} else {
4127		nvm_ver->etk_id = etk_id_l;
4128		nvm_ver->etk_id |= (etk_id_h << NVM_ETK_SHIFT);
4129	}
4130}
4131
4132void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
4133{
4134	u32 rxctrl;
4135
4136	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
4137	if (rxctrl & IXGBE_RXCTRL_RXEN) {
4138		if (hw->mac.type != ixgbe_mac_82598EB) {
4139			u32 pfdtxgswc;
4140
4141			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
4142			if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
4143				pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
4144				IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
4145				hw->mac.set_lben = true;
4146			} else {
4147				hw->mac.set_lben = false;
4148			}
4149		}
4150		rxctrl &= ~IXGBE_RXCTRL_RXEN;
4151		IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
4152	}
4153}
4154
4155void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
4156{
4157	u32 rxctrl;
4158
4159	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
4160	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));
4161
4162	if (hw->mac.type != ixgbe_mac_82598EB) {
4163		if (hw->mac.set_lben) {
4164			u32 pfdtxgswc;
4165
4166			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
4167			pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
4168			IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
4169			hw->mac.set_lben = false;
4170		}
4171	}
4172}
4173
4174/** ixgbe_mng_present - returns true when management capability is present
4175 * @hw: pointer to hardware structure
4176 **/
4177bool ixgbe_mng_present(struct ixgbe_hw *hw)
4178{
4179	u32 fwsm;
4180
4181	if (hw->mac.type < ixgbe_mac_82599EB)
4182		return false;
4183
4184	fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM(hw));
4185
4186	return !!(fwsm & IXGBE_FWSM_FW_MODE_PT);
4187}
4188
4189/**
4190 *  ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
4191 *  @hw: pointer to hardware structure
4192 *  @speed: new link speed
4193 *  @autoneg_wait_to_complete: true when waiting for completion is needed
4194 *
4195 *  Set the link speed in the MAC and/or PHY register and restarts link.
4196 */
4197s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
4198					  ixgbe_link_speed speed,
4199					  bool autoneg_wait_to_complete)
4200{
4201	ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN;
4202	ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
4203	s32 status = 0;
4204	u32 speedcnt = 0;
4205	u32 i = 0;
4206	bool autoneg, link_up = false;
4207
4208	/* Mask off requested but non-supported speeds */
4209	status = hw->mac.ops.get_link_capabilities(hw, &link_speed, &autoneg);
4210	if (status)
4211		return status;
4212
4213	speed &= link_speed;
4214
4215	/* Try each speed one by one, highest priority first.  We do this in
4216	 * software because 10Gb fiber doesn't support speed autonegotiation.
4217	 */
4218	if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
4219		speedcnt++;
4220		highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;
4221
4222		/* Set the module link speed */
4223		switch (hw->phy.media_type) {
4224		case ixgbe_media_type_fiber:
4225			hw->mac.ops.set_rate_select_speed(hw,
4226						    IXGBE_LINK_SPEED_10GB_FULL);
4227			break;
4228		case ixgbe_media_type_fiber_qsfp:
4229			/* QSFP module automatically detects MAC link speed */
4230			break;
4231		default:
4232			hw_dbg(hw, "Unexpected media type\n");
4233			break;
4234		}
4235
4236		/* Allow module to change analog characteristics (1G->10G) */
4237		msleep(40);
4238
4239		status = hw->mac.ops.setup_mac_link(hw,
4240						    IXGBE_LINK_SPEED_10GB_FULL,
4241						    autoneg_wait_to_complete);
4242		if (status)
4243			return status;
4244
4245		/* Flap the Tx laser if it has not already been done */
4246		if (hw->mac.ops.flap_tx_laser)
4247			hw->mac.ops.flap_tx_laser(hw);
4248
4249		/* Wait for the controller to acquire link.  Per IEEE 802.3ap,
4250		 * Section 73.10.2, we may have to wait up to 500ms if KR is
4251		 * attempted.  82599 uses the same timing for 10g SFI.
4252		 */
4253		for (i = 0; i < 5; i++) {
4254			/* Wait for the link partner to also set speed */
4255			msleep(100);
4256
4257			/* If we have link, just jump out */
4258			status = hw->mac.ops.check_link(hw, &link_speed,
4259							&link_up, false);
4260			if (status)
4261				return status;
4262
4263			if (link_up)
4264				goto out;
4265		}
4266	}
4267
4268	if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
4269		speedcnt++;
4270		if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
4271			highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;
4272
4273		/* Set the module link speed */
4274		switch (hw->phy.media_type) {
4275		case ixgbe_media_type_fiber:
4276			hw->mac.ops.set_rate_select_speed(hw,
4277						     IXGBE_LINK_SPEED_1GB_FULL);
4278			break;
4279		case ixgbe_media_type_fiber_qsfp:
4280			/* QSFP module automatically detects link speed */
4281			break;
4282		default:
4283			hw_dbg(hw, "Unexpected media type\n");
4284			break;
4285		}
4286
4287		/* Allow module to change analog characteristics (10G->1G) */
4288		msleep(40);
4289
4290		status = hw->mac.ops.setup_mac_link(hw,
4291						    IXGBE_LINK_SPEED_1GB_FULL,
4292						    autoneg_wait_to_complete);
4293		if (status)
4294			return status;
4295
4296		/* Flap the Tx laser if it has not already been done */
4297		if (hw->mac.ops.flap_tx_laser)
4298			hw->mac.ops.flap_tx_laser(hw);
4299
4300		/* Wait for the link partner to also set speed */
4301		msleep(100);
4302
4303		/* If we have link, just jump out */
4304		status = hw->mac.ops.check_link(hw, &link_speed, &link_up,
4305						false);
4306		if (status)
4307			return status;
4308
4309		if (link_up)
4310			goto out;
4311	}
4312
4313	/* We didn't get link.  Configure back to the highest speed we tried,
4314	 * (if there was more than one).  We call ourselves back with just the
4315	 * single highest speed that the user requested.
4316	 */
4317	if (speedcnt > 1)
4318		status = ixgbe_setup_mac_link_multispeed_fiber(hw,
4319						      highest_link_speed,
4320						      autoneg_wait_to_complete);
4321
4322out:
4323	/* Set autoneg_advertised value based on input link speed */
4324	hw->phy.autoneg_advertised = 0;
4325
4326	if (speed & IXGBE_LINK_SPEED_10GB_FULL)
4327		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
4328
4329	if (speed & IXGBE_LINK_SPEED_1GB_FULL)
4330		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
4331
4332	return status;
4333}
4334
4335/**
4336 *  ixgbe_set_soft_rate_select_speed - Set module link speed
4337 *  @hw: pointer to hardware structure
4338 *  @speed: link speed to set
4339 *
4340 *  Set module link speed via the soft rate select.
4341 */
4342void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw,
4343				      ixgbe_link_speed speed)
4344{
4345	s32 status;
4346	u8 rs, eeprom_data;
4347
4348	switch (speed) {
4349	case IXGBE_LINK_SPEED_10GB_FULL:
4350		/* one bit mask same as setting on */
4351		rs = IXGBE_SFF_SOFT_RS_SELECT_10G;
4352		break;
4353	case IXGBE_LINK_SPEED_1GB_FULL:
4354		rs = IXGBE_SFF_SOFT_RS_SELECT_1G;
4355		break;
4356	default:
4357		hw_dbg(hw, "Invalid fixed module speed\n");
4358		return;
4359	}
4360
4361	/* Set RS0 */
4362	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4363					   IXGBE_I2C_EEPROM_DEV_ADDR2,
4364					   &eeprom_data);
4365	if (status) {
4366		hw_dbg(hw, "Failed to read Rx Rate Select RS0\n");
4367		return;
4368	}
4369
4370	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
4371
4372	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4373					    IXGBE_I2C_EEPROM_DEV_ADDR2,
4374					    eeprom_data);
4375	if (status) {
4376		hw_dbg(hw, "Failed to write Rx Rate Select RS0\n");
4377		return;
4378	}
4379
4380	/* Set RS1 */
4381	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
4382					   IXGBE_I2C_EEPROM_DEV_ADDR2,
4383					   &eeprom_data);
4384	if (status) {
4385		hw_dbg(hw, "Failed to read Rx Rate Select RS1\n");
4386		return;
4387	}
4388
4389	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
4390
4391	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
4392					    IXGBE_I2C_EEPROM_DEV_ADDR2,
4393					    eeprom_data);
4394	if (status) {
4395		hw_dbg(hw, "Failed to write Rx Rate Select RS1\n");
4396		return;
4397	}
4398}
4399